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Abstract—Novelty Search (NS) has been proposed as an
alternative search approach for black-box optimization methods
where the fitness function is replaced and only novel solutions
are searched for. NS has been demonstrated as advantageous
when the fitness landscape is highly deceptive and misdirects the
search process towards local optima. In this research we test the
efficacy of NS in comparison to a purely objective based approach
and a hybrid approach that combines NS and a fitness function
in combination with two behavior characterization schemes. The
task is non-Markovian double-pole balancing. Results indicate
that the success of NS strongly depends upon the behavior
characterization scheme used, given that NS performed the best
under one scheme and relatively poorly under the other scheme.

Keywords—Novelty Search; Neuro-Evolution; Pole Balancing;
Deception; Evolutionary Algorithms

I. INTRODUCTION

Neuro-Evolution (NE) [6] has been successfully demon-
strated in a diverse range of tasks, producing Artificial Neural
Networks (ANN) controllers that yield pole balancing [13],
finless rocket control [12] behaviors, as well as behaviors that
solve various evolutionary robotics tasks [33] such as maze
navigation and biped locomotion [22]. Currently, most NE
controller design methods are objective based, using a fitness
function to evaluate solution quality [27, 35, 16]. Novelty
Search (NS) [22] is a non-objective based approach, where
the search for novel solutions replaces a fitness function.

This research investigates the efficacy of NS compared
to objective based NE for deriving ANN controllers able to
solve the non-Markovian double-pole balancing task [11].
A hybrid approach, combining novelty and objective based
search to guide the NE process, is also tested. The non-
Markovian double-pole balancing task was selected as it is
an established machine learning benchmark task that is a
surrogate for complex noisy non-linear control tasks such as
robot behavior automation [14]. NE has been demonstrated as
an effective approach for solving such tasks [26].

NS has also been demonstrated as out-performing, in terms
of the number of evaluations required for solution evolution,
objective based NE methods in various tasks [19]. Such tasks
include maze navigation [21], [30], biped locomotion [22],
behavior-morphology co-evolution [20], an aggregation swarm
robotics task [9], optimizing specially designed functions [31],
and evolving plastic ANNs [34] and operant reward learning
controllers in maze environments [38]. The increased task
performance of NS in these cases has been attributed to
NS functioning akin diversity maintenance techniques (such
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as niching and crowding [3, 7, 18, 25, 43]) common in
evolutionary search methods [32], as well as its hypothesized
benefits in deceptive search spaces [22].

A deceptive search space is one which causes a solution to
become trapped in an area where it is unlikely to ultimately
reach the objective [42]. Deception has been associated with
task complexity as well as specific types of search spaces
where a fitness function draws candidate solutions closer to
an objective but ultimately the objective cannot be reached.
Figure 1 presents an example of deception in a maze navigation
task. Objective based search, where a fitness function measures
how far a solution (behavior) is from the objective, would be
deceived into rewarding behaviors that find dead-ends close to
the objective [22].

In the context of this research, it is unclear if the search
space of the non-Markovian double pole-balancing task is
inherently deceptive. However, the closer the lengths of the
two poles, the more difficult the task becomes [11]. Task
difficulty and hence complexity of the search space has been
equated by some as deception [22], [9], [4], in that as task
complexity increases it becomes increasingly difficult to design
an appropriate fitness function, and objective based search
becomes more vulnerable to deception [42]. In the pole-
balancing task we hypothesize that deception plays a role
in that the likelihood of the fitness function misguiding the
search of an NE process, causing convergence to local optima,
increases with the task difficulty.

An essential component of NS is its novelty metric that
determines how novel evolved solutions are, compared to
previously evolved solutions stored in a novelty archive [22].
Dissimilar to objective based approaches, where selection
pressure acts to adapt solutions according to a fitness function,
NS consistently produces novel solutions via maintaining a
constant pressure to produce novelty. However, it has been
noted that NS performs poorly in tasks with large search
(behavior) spaces [1], [24], [23], [30]. That is, whilst NS is
not strictly a behavioral diversity maintenance method [32],
it is tantamount to a process that optimizes for diversity
(novelty). However, as the novelty archive increases in size
it becomes increasingly costly for the novelty metric to find
nearest neighbors [32]. Potential solutions include adapting
the behavior metric or combining novelty and objective based
search to form a hybrid approach [4]. Combining novelty and
objective based search into a hybrid that uses a weighted sum
has been demonstrated as yielding superior task performance
in a deceptive version of Tartarus [1] and swarm robotic tasks
[8] compared to NS or objective based approaches.
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Fig. 1. Maze Navigation Map. The large circle represents the starting
position of the robot and the small circle represents the goal. Dead-ends near
the goal creates the potential for deception [22].

Given this, the research objective of this study was to
comparatively test NS, objective based search and a novelty-
fitness hybrid in a double pole balancing task. This is a part
of continuing research that aims to characterize and define the
types of tasks, behavior and genotype representations, fitness
and novelty metrics (for example, deception [22], various types
of behavior characterization [19], and various hybrid fitness-
novelty metrics [30]) that benefit from NS versus objective-
based and hybrid fitness-novelty search. A key motivation for
this objective was that despite research that demonstrates NS
as being beneficial in various types of tasks, with varying
behavior and genotype representations, and novelty metrics
[19], there is conflicting evidence for when NS [1] versus
hybrid search methods [17] are advantageous.

To address this objective, this study comparatively tests
NS, objective based search and a hybrid search method with
respect to two types of behavior characterization schemes in
the non-Markovian double pole balancing task [14].

II. METHODS

The NE method used was Neuro-Evolution of Augmenting
Topologies (NEAT) [39]. NEAT is an established NE method
that was selected since it has been previously employed in
similar studies that have applied NS versus objective based
search [22], [41], [36], [37]. NEAT evolves both the topology
and the weights of ANNSs via a process called complexification.
That is, at the start of artificial evolution, ANNs in the
population are functionally simple, with a minimal number of
nodes and connections. During the course of evolution, further
nodes and connections are added to ANNs, where increasing
the number of nodes and connections in an ANN increases
the search space dimensionality. It is hypothesized that NEAT
evolved ANNs are only as complex as is required to solve
the given task [39]. This decreases the number of evaluations
by finding a solution in a low dimensional search space. Other
distinguishing features of NEAT are speciation, which protects
innovation, and historical markings, which aid in the crossover
of structurally different ANNs. Also, NEAT complements NS
in that it encourages genotypic diversity whilst NS encourages
phenotypic (behavioral) diversity [9].

A. ANN Controller

Given that the task is non-Markovian double pole balanc-
ing, controllers are only supplied with the cart position and
the relative pole-angles (positions) and not the pole velocities.
The ANN controller used in this study is the same as used in
previous research [14], where three sensory input nodes accept
the cart position and the two pole positions (angles). Sensory

TABLE 1. EXPERIMENT PARAMETERS: PARAMETERS IN BOLD ARE
SPECIFIC TO NS AND HYBRID SEARCH. FIXED AND PROPORTIONAL
SAMPLING APPLY ONLY TO NS AND HYBRID SEARCH. OTHER
PARAMETERS APPLY TO NS, OBJECTIVE AND HYBRID SEARCH.

Parameter Fixed Sampling Proportional Sampling
Novelty Threshold 0.05 0.05
Novelty Archive Size Unbound Unbound
Sampled Time Steps 10, 50, 100, 200 1/8, 2/8, 3/8, 4/8
- 500, 1,000, 5,000, 10,000 5/8, 6/8, /8, 8/8
Experiment runs 100 500
Simulation task trial iterations 100,000 100,000
Task trials per NEAT iteration 1 1
k-nearest neighbors 15 15
Pole lengths [0.5, 0.05] [0.5, 0.05]
Pole velocities Hidden Hidden

inputs are connected to an intermediate hidden layer which
is in turn connected to a motor output node that yields the
cart force. The number of input and output nodes are fixed,
whereas NEAT adapts the number of hidden layer nodes and
connectivity and connection weight values between layers.

At each iteration of a pole balancing simulation task trial,
the controller receives state variable values normalized to the
range [-1.0, 1.0]. Controller output is cart force exerted such
that simulation transitions to the next state which is then a
new sensory input supplied to the controller. This sensory-
motor cycle is repeated until a pole falls or the cart goes off
the end of the track. Task simulation parameters are the same
as those used in previous research [14], and the experimental
setup is described in section III.

Adaptation of the ANN controller for pole balancing be-
havior was guided by either a fitness function (section III),
novelty search (section II-B) or a hybrid objective-novelty
based method (section II-C).

B. Novelty Search

NS encourages novelty and diversity in its solutions via
keeping an archive of novel solutions. The novelty metric is
applied to newly evolved solutions in order that the novelty
of new solutions is ascertained. If a new solution’s novelty
exceeds the novelty metric’s threshold, then that solution is
added to the archive [22]. In the context of a search space
of behaviors, if a solution is in a dense cluster of previously
visited behaviors, it would be considered less novel and thus
rewarded less. Thus, significantly novel behaviors are added
to the archive over the course of an iterative search process.

In this study the fitness function of NEAT was replaced
with a novelty metric, where novelty scores were computed via
comparing pole-balancing behaviors (a vector of pole angles)
with those behaviors stored in the novelty archive. However,
we tested two behavior characterization schemes, each of
which was defined by a procedure that sampled pole positions
at given iterations during a pole balancing simulation. These
behavior characterization schemes were known as Fixed and
Proportional Sampling (section II-D).

1) Novelty Metric: In this study, the pole angles sampled
at given iterations during a simulation task trial represented
the pole-balancing behavior of a given ANN controller. Thus
the novelty metric compared vectors of pole angles in order



to ascertain if an evolved behavior was sufficiently different
(novel) from those stored in the novelty archive. Hence,
novel behavior was that which exceeded the novelty metric’s
threshold (table I) in the comparison of any two behaviors
(pole position vectors).

Each genotype was a direct encoding (that is, no devel-
opmental encoding) of a vector of pole positions, for the two
poles, for a given sample of simulation iterations (table I). The
novelty metric was thus based on the sparseness (equation 1)
of behaviors. Sparseness was measured as the average distance
between the k-nearest neighbors of a given behavior [22],
where k is fixed (table I). Neighbors are composed of other
behaviors in the same generation as well as neighbors in the
novelty archive.

k
Sparseness(z) = % Z dist(x, p;) (1)
i=0

where p is the ith-nearest neighbor of x with respect to the
novelty metric, and where the distance component in equation
1 uses the Euclidean distance derived by the Pythagorean
theorem [15] (equation 2).

dist(x, 1) = /(21 — )? + (2 — p2)? + .. + (2 — Mn);)
(

Given that the novelty metric records N samples (table I),
each behavior is thus composed of N dimensions for each pole.
When behavioral distances were computed, each dimension of
a behavior (pole position vector component) was compared
with the corresponding dimension in the other behavior.

C. Hybrid Novelty-Objective Based Search

Hybrid search methods, combining novelty metrics and
fitness functions, have been demonstrated as yielding superior
task performance, compared to NS or objective based search
in a range of tasks [2], [10], [17]. This is hypothesized to
be a result of hybrid methods introducing a bias in search
towards optimal solutions which are potentially ignored by NS
or not readily attainable by fitness functions given rapid loss
of genotypic diversity [22].

The hybrid method proposed by Inden et al. [17] used
selection as its defining feature. For example, half a genotype
population was selected based on fitness and the other half
based on novelty. Another approach is to take the most promis-
ing solutions found from NS thus far and further optimize
them using a fitness function. This approach exploits the
strengths of both methods, using NS to find good approximate
solutions and then using objective based search to fune these
approximate solutions in order to increase the likelihood that
optimal solutions are attained [22, 29]. Specific hybrid methods
include combining novelty and fitness functions linearly [2],
and using a a multi-objective formulation that treats novelty
and fitness as complementary objectives to be optimized [28].

The hybrid search method used in this study linearly
combines varying biases for novelty and fitness [2]. Thus via
adjusting novelty and fitness biases, the experimenter is able
to control the complementary degrees of novelty and objective

TABLE IL SUMMARY OF EXPERIMENTS: p DEFINES THE
NOVELTY-FITNESS PROPORTION OF THE HYBRID SEARCH METHOD.
Method P NEAT Iterations
Objective based 1.0 100
Novelty based 0.0 100
Hybrid 0.25, 0.5, 0.75 100

based search that the hybrid is optimizing for. The score that
each solution receives for the hybrid method is defined as:

score(i) = p.fit(i) + (1 — p).nov(i) 3)

Where, p € [0,1] controls the relative weighting of fitness
and novelty, which are normalized according to:

(@) nov(i) — novmin
= nov (i) =
fitmax - fitmin ’

fit(i)

NOUmax — NOVUmin

Where, novmin, fitmin are the lowest novelty and fitness
values in the population, respectively and novy,qz, fitmas are
the highest. A high value of p indicates a bias towards objective
based search whilst lower values of p indicate a bias towards
NS. Consequently, p = 1 means that only objective based
search was used and p = 0 means that only NS was used [2].

D. Novelty and Hybrid Sampling Approaches

For the NS and hybrid methods, two methods for sampling
pole positions during a task trial simulation were tested (table
I). These were Fixed and Proportional Sampling, where Fixed
Sampling sampled pole positions at [10, 50, 100, 200, 500,
1,000, 5,000, 10,000] iterations in a pole-balancing simulation.
This was the same sampling range used in previous pole-
balancing experiments [17], where 10,000 was set as the
maximum simulation duration given that those controllers that
did not achieve a pole balancing behavior by 10,000 iterations
were highly unlikely to do so thereafter. However, Proportional
Sampling sampled pole positions at one eighth portions of the
simulation length (table I). We hypothesized that this would be
a more appropriate behavior characterization scheme for this
study, discussed in section IV.

III. EXPERIMENTS AND TASK

The task was non-Markovian double pole balancing with
incomplete state information (pole velocities were hidden)
and fourth-order Runge-Kutta integration [14]. Pole balancing
simulation task trials ran for a maximum of 100,000 simulation
iterations (table I), where a controller’s sensory-motor cycle
was processed every iteration, corresponding to approximately
0.01 second of real time. The same simulation parameters as
previous research were used [14].

For the objective based and hybrid methods (section II-C),
fitness was determined by the number of iterations a controller
could keep both poles within a specified failure angle from
vertical and the cart between the ends of the track. In line
with previous research [14], the failure angle was 36 degrees,
the range of cart track was [-2.4, 2.4], and pole lengths were
set such that the second pole was to be 1/10th the length of
the first pole (table I).



TABLE III. NEAT PARAMETERS: PARAMETERS USED FOR THE
OBJECTIVE BASED, NOVELTY AND HYBRID METHODS.
Parameter Objective | Novelty | Hybrid
Population Size 1000 1000 1000
Add Connection Probability 0.3 0.3 0.3
Mutate Connection Probability 0.1 0.1 0.1
Add Neuron Probability 0.01 0.01 0.01
Mutate Neuron Probability 0.01 0.01 0.01
Survival Threshold 0.4 0.4 0.4
Recurring Probability 0.2 0.2 0.2
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Fig. 2. Fixed Sampling behavior characterization. Average number of

evaluations until a pole balancing behavior was achieved for increasing values
of p, starting with pure novelty (p = 0) up to pure fitness (p = 1). Results
from p = 0 are different with statistical significance (Mann-Whitney U test,
p < 0.05) compared to all other p values.

Experiments comparatively tested three methods for direct-
ing the search process of NEAT (table II). That is, NS [22],
a fitness function [40] and a hybrid that used a linear com-
bination of novelty and fitness. Table II presents an overview
of the experiments. Table I outlines parameters used for the
comparative methods, where Fixed and Proportional Sampling
are different behavior characterization (pole position sampling)
schemes (section II-D). Also, the Novelty Threshold, Novelty
Archive Size, and Sampled Time Steps parameters are specific
to the NS and hybrid methods. Table III presents the NE
(NEAT) parameters common to the NS, objective based and
hybrid search methods.

The comparative task performance (average number of
evaluations required to evolve a pole-balancing behavior) of
NS, the objective based and hybrid search methods, with
respect to two types of behavioral characterization used (Fixed
and Proportional Sampling) were measured over 100 runs
(section IV). This task performance measure was used as it
is consistent with previous research [14].

IV. RESULTS AND DISCUSSION

Figure 2 presents results from the Fixed Sampling behavior
characterization scheme, where NS, objective based and hybrid
methods are tested via adjusting the p value (table II). Figure
2 presents the average number of evaluations (calculated over
100 runs per p value) required to reach the highest performing
pole-balancing behavior, for NS (p = 0), objective based
search (p = 1), and a range of p values in between indicative
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Fig. 3. Proportional Sampling behavior characterization. Average number of
evaluations until a pole balancing behavior was achieved for increasing values
of p, starting with pure novelty (p = 0) up to pure fitness (p = 1). All p
values are different with statistical significance (Mann-Whitney U test, p <
0.05) compared to all other p values.

of varying complements of fitness and novelty for the hybrid
method. A Mann-Whitney U statistical test [5] yielded a sta-
tistically significant difference (p < 0.05) between NS (p = 0)
and all other p values, indicating the benefit of NS when Fixed
Sampling behavior characterization was used. No statistically
significant difference was found between the objective based
and hybrid methods for Fixed Sampling.

Thus NS out-performed the objective based and hybrid
search methods, which is inconsistent with the results of Inden
et al. [17] that indicated NS performed comparably to objective
based search and poorly compared to a hybrid method in the
non-Markovian double pole balancing task. A similar behavior
characterization scheme (Fixed Sampling) was also used by
Inden et al. [17], however the cart position was sampled instead
of pole positions, as in this study. Also, Inden et al. [17] used
a hybrid method based on selection [17]. These experimental
differences are theorized to explain the difference in results
presented here, though this is the subject of ongoing research.

A potential issue with Fixed Sampling (section II-D) is that
pole-balancing behaviors would fail early in a simulation prior
to a behavior sample (pole positions) being taken. This would
result in default values (0) being placed in the pole position
vector elements of the given behavior. Figure 4 illustrates an
example of this, where behavior A fails before behavior B and
thus includes more default O values. In the context of NS, the
novelty metric would select for behaviors that are sufficiently
different (that is, novel). That is, behaviors that have fewer
default O values, and thus more pole position samples, would
be selected by NS. This would correspond to improved pole
balancing behaviors, that is, those behaviors that have few or
no failures (0 values).

Similarly, in the case of the objective based and hybrid
methods, the fitness function (section III) selects for behaviors
that fail late in the simulation, or not at all. That is, genotypes
with few or no default 0 values in. The mitigating factor of
NS and the hybrid search method is that the novelty metric en-
courages selection from a diverse range of sufficiently different
(novel) yet not necessarily optimal behaviors. The impact of
progressively introducing increasing degrees of objective based
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Fig. 4. Example pole-balancing behaviors, A and B, where behaviors consist
of several pole angle samples taken during a pole-balancing simulation. The
default value of O is given if the behavior has failed when the sample is taken.

search in the hybrid is evident in figure 2, where the average
number of evaluations required by the hybrid to achieve a pole-
balancing behavior increases such that NS (p = 0) yields a
statistically significant higher task performance.

To remove any bias that potentially occurs with Fixed
Sampling behavior characterization when solutions fail early
in a simulation, and are thus explicitly selected against by the
objective based or hybrid methods, the Proportional Sampling
(section II-D) behavior characterization was devised. Pro-
portional Sampling characterized pole-balancing behavior via
sampling pole positions proportional to how many simulation
iterations transpired before the behavior failed. In this study
the sampling rate was one eighth meaning that a behavior (pole
positions’) sample was taken every 12,500 iterations and there
were eight samples in total, where a pole balancing simulation
could run for a maximum of 100,000 iterations (table I).

However, if the pole-balancing behavior failed before it-
eration 100,000, then samples would be taken at one eighth
portions up until the iteration where the pole-balancing be-
havior failed, given that pole-positions were recorded at every
simulation iteration. For example, if a pole balancing behavior
failed at iteration 1000, then samples would be taken at every
125 iterations, in order that this behavior consists of eight
pole positions. A key idea of Proportional Sampling was that
behaviors that contained initially good pole angles, but that
later failed during the simulation would not necessarily be
selected against, given that a pole balancing behavior may be
briefly achieved but then subsequently fail.

Figure 3 presents results from Proportional Sampling,
where NS, the objective based and hybrid methods are tested
via adjusting the p value (table II). Figure 3 presents the
average number of evaluations (calculated over 500 runs per
p value), required to attain the best performing pole-balancing
behavior for NS (p = 0) and objective based search (p = 1),
as well as a range of p values in between indicative of varying
complements of fitness and novelty for the hybrid method.
A Mann-Whitney U statistical test yielded a statistically sig-
nificant difference (p < 0.05) between all p values, indicating
that the pure objective based search (p = 1) out-performed NS
(p = 0) and the hybrid method when Proportional Sampling
behavior characterization was used.

However, this result is indicative of the fitness function
selecting for behaviors that maximize the number of simulation
iterations for which poles were kept between the failure angles
(section III). That is, given that Proportional Sampling ensures

that only samples prior to pole-balancing behavior failure
are taken, the objective based method optimized within this
search space of behaviors converging upon optima within
this restricted behavior set. Thus, even though pole-balancing
behaviors that maximize the number of iterations are selected
for, behaviors that fail at some point during the simulation are
invariably selected.

The sub-optimal nature of the Proportional Sampling be-
havior characterization scheme is evident in a comparison
of Fixed and Proportional sampling for all methods (figure
5). Figure 5 presents the comparative number of average
evaluations (calculated over 100 runs) required for all methods,
using Fixed versus Proportional Sampling to attain the highest
performing pole-balancing behavior. This indicates that search
methods using Fixed Sampling outperform Proportional Sam-
pling, with statistical significance (p < 0.05 using the Mann-
Whitney U statistical test), where on average approximately
40,000 fewer evaluations were required by methods using
Fixed Sampling behavior characterization (figure 5). However,
within Fixed Sampling, NS yielded the highest task perfor-
mance, with statistical significance, over the objective based
and hybrid methods (figure 2).

These results support the notion that behavioral charac-
terization has a significant impact upon the success of the
search method and the evolution of effective problem solving
behaviors [9]. In this study there was a direct genotype to
behavior mapping, so the composition of genotypes (vectors
of pole positions) had a significant impact upon the fitness and
novelty values assigned to genotypes (behaviors) and thus the
success of a given search process.

This was especially the case for the objective based
and hybrid methods using Fixed Sampling, where genotypes
(behaviors) with few or no default 0 values were selected,
meaning that Fixed compared to Proportional Sampling, in-
directly resulted in the selection of more robust behaviors.
Fixed Sampling also aided NS in the selection of effective
behaviors given that the novelty metric selected behaviors that
were sufficiently different from those already in the novelty
archive. Given that behaviors containing many default 0 values
were initially placed in the archive, as they were initially
novel, NS subsequently selected novel behaviors which were
those with relatively few or no default O values. That is, the
comparatively higher performance of NS is attributable to the
novelty metric which measures behavioral distance [19], and
selects accordingly different (novel) high performing behaviors
from across a broad spectrum of the behavior space.

Furthermore, NS is theorized to be comparatively suc-
cessful in the pole-balancing task given that many points in
the search space correspond to the same type of behavior
[21]. That is, in the pole balancing task, there are many
permutations of pole positions that can comprise a genotype,
where all of these permutations correspond to an effective
pole-balancing behavior. Another factor that we theorize as
resulting in a deficiency in the hybrid method, leading to its
comparatively inferior performance (figure 2), was the use
of a linear combination of fitness and novelty metrics [2].
These results indicate that a linear combination of metrics is
not always an appropriate approach given that hybrid fitness-
novelty metrics are highly sensitive to their relative fitness and
novelty weightings. Also, these results support the notion that
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Fig. 5. Average number of evaluations comparing Fixed and Proportional
Sampling behavior characterization methods for the search methods tested.
Results are statistically significant (Mann-Whitney U test, p < 0.05).

linear combinations of novelty and fitness metrics are sensitive
to behavior characterization and genotype representation.

The combination of factors leading to effective hybrid
fitness-novelty guided search [2], [17], [9] remains the sub-
ject of current research, however one potential improvement
in the pole-balancing would be the use of multi-objective
evolutionary algorithms that combine novelty and fitness as
complementary objectives [30].

V. CONCLUSION

This research presented a comparative study that tested
novelty, objective based and novelty-objective hybrid search
methods applied to behavior evolution in the non-Markovian
double pole balancing task. Also, two different behavior
characterization schemes were tested in combination with
each method in order to ascertain the impact of behavior
characterization on the respective search methods. In this task
behaviors were characterized by a set of pole positions sampled
at given iterations during a pole balancing simulation, and
there was a direct mapping between genotypes and behaviors.
The behavior characterization schemes were Fixed and Propor-
tional Sampling, where behaviors were characterized by pole
positions sampled at fixed intervals and in proportion to the
simulation length, respectively.

Results indicated that methods using Fixed Sampling be-
havior characterization significantly out-performed those using
Proportional Sampling in terms of the number of the average
number of evaluations required to evolve the best performing
pole balancing behavior. Within the context of methods using
Fixed Sampling, NS was found to yield a higher performance
compared to the objective based and hybrid search methods.
However, under the Proportional Sampling behavior character-
ization scheme, NS performed relatively poorly compared to
the other search methods. Thus results indicate the importance
of behavior characterization when using NS, given that the
novelty metric relies upon behavioral differences in its selec-
tion process.

Future research will test other hybrid novelty-fitness met-
rics, such as multi-objective optimization approaches [30], as

well as test novelty search with various behavior characteri-
zations [19] in tasks with more complex and deceptive search
spaces [9].
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