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ABSTRACT 
Lecture recording has become an important part of the provision 
of accessible tertiary education and having good autonomous 
recording and processing systems is necessary to make it feasible. 
In this work, we develop and evaluate a video processing 
framework that uses 4K video to track the lecturer and frame 
him/her in a way that simulates a human camera operator. We 
also investigate general issues pertaining to blackboard usage and 
its influence on cinematography decisions. We found that post-
processing produced better tracking and framing results when 
compared to some real-time approaches. Furthermore, the entire 
pipeline can run on a commodity PC and will complete within the 
suggested time of 300% of the input video length. In fact, our 
testing showed that 60% of the total processing time can be 
ascribed to I/O operations. With the removal of redundant reads 
and writes, this proportion can be reduced. Finally, some 
algorithms can be remapped to parallel versions which will exploit 
multicore CPUs or GPUs if these are available. 

CCS CONCEPTS 
• Computing Methodologies ➝ Computer vision problems 

• Computing Methodologies ➝ Video segmentation 

• Computing Methodologies ➝ Tracking 

KEYWORDS 
Background Segmentation; Lecture Recording; Movement 
Detection; Object Tracking; Presenter Tracking; OpenCV Library; 
Virtual Cinematography; Panning. 

1 INTRODUCTION 
The recording of lectures has become popular in the last decade 
and has been implemented at universities and institutions 
worldwide [1, 2]. In this work, we focus on the technical aspects 
of preparing a captured video stream for online consumption. 

Course content written on the boards is important [2–5], and it 
is necessary to capture this when filming the lecturer and to 
ensure that it is clearly legible. It is also important that the video 
is filmed in a way that is natural, with the camera tracking the 

lecturer and keeping the board in view for context, when 
appropriate. Another important requirement is that the size of the 
video or the bitrate required to stream the video should be such 
that a student with a modest internet connection can benefit from 
the recording. This is particularly important in the developing 
world where network infrastructure is often poor. The recent 
adoption of 4K video cameras to record lectures has exacerbated 
this problem. 

Furthermore, the existing solutions that are commonly used to 
record and prepare videos are often proprietary and have a high 
cost, which may further hamper adoption in developing countries. 

A 4K camera has a resolution of 3840x2160. This provides a 
wide viewing angle allowing the camera to capture a large portion 
of the scene. Although this produces high-quality videos, the file 
size is so large (bit rate of 5.652Mbps) that it is inaccessible to 
many students and institutions that cannot afford the necessary 
data bandwidth to stream these videos in 4K. An alternative 
approach is to crop a smaller window of “attention” from the 
larger 4K frames. By using computer vision algorithms to detect 
and track the lecturer, we can move this cropping window to 
follow the lecturer and frame relevant context. 

Our work aims to address these issues by post-processing of 4K 
video streams to produce an output video that is both significantly 
smaller and tracks the lecturer in a more natural way.  Since we 
run our system as a post-process, we can analyse the entire video 
before making any physical changes to it. This allows our 
algorithms to analyse future events in advance and perform more 
robust edits to the video file. It is also possible to use more 
complex calculations at each stage of the pipeline, which should 
allow for fewer errors in lecturer-tracking. 

Lectures are recorded using 4K cameras, which capture the 
whole view of the lecture area including any chalkboards 
(henceforth referred to as blackboards) as seen in Figure 1. The 
lecturer and blackboards (typically green or black) are then 
tracked by computer vision algorithms and framed by a small 
cropping window to simulate a virtual panning effect.  This 
cropping window is set to a size smaller than the original 4K input, 
typically a 720p video frame; in effect, the system must determine 
how to move this window through the larger frame in a smooth 
and natural way which sensibly frames the lecturer and board 
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content. Once the cropped stream is generated, the output video 
can easily be streamed online due to its reduced file size. 

The software has three main components (or stages); 
blackboard and usage detection, lecturer-tracking, and the Virtual 
Cinematographer (VC). Blackboard segmentation is the process of 
detecting where the blackboards are in the video and when they 
are used. The blackboard usage information allows the VC to 
make framing decisions. The tracking module has access to the 
full video and performs a lookahead to find and track the lecturer 
in the video. The person with the longest on-screen time is then 
selected as the lecturer. Finally, the VC uses all the information 
from the previous stages to crop the best possible view from the 
input video.  

 

Figure 1 - Example lecture venue 

Our results show a successful first pass implementation which can 
complete post-processing in under 3 times the input video’s 
length. This is important because the high volume of lecture 
videos could result in a perpetual backlog if the processing takes 
too long. It is also worth noting that our implementation can 
reduce file size from 1.97 GB to 219 MB when using the MP4 
CODEC (9 times smaller). The framing produced by the VC was 
also deemed to be visually pleasing by our expert evaluators and 
produced better results than some real-time tracking 
implementations. 

The paper is laid out as follows. Section 2 examines related 
work, Section 3 discusses the methodology and implementation, 
Section 4 discusses the results and Section 5 concludes and 
discusses future work 

2 BACKGROUND AND RELATED WORK 
In this section, we provide a review of related work from the 
following fields: blackboard and usage detection, object tracking, 
and virtual cinematography. These fields collectively constitute a 
lecturer-tracking package. 

2.1 Blackboard Detection 
Blackboard and usage detection is performed in other approaches 
by using background modelling to separate the foreground from 
the background [6]. These approaches assume that the blackboard 
is static. Since the only motion is assumed to be the lecturer, the 
foreground motion can be classified as being the lecturer. These 
approaches use existing computer vision approaches such as 
background subtraction to build the functionality [7, 8]. Edge-

detection algorithms can also be used to detect the features on the 
boards [9], which provide good results. Our work also uses an 
edge-detection approach for detecting the boards and uses feature 
detection for detecting when writing is added to it. 

2.2 Tracking 
Zhang et al. [10] present a tracking solution based on a pixel 
motion histogram that implements virtual panning. In addition to 
this, they also use a PTZ camera that can pan horizontally to track 
the lecturer when they move out of frame. They mention the 
performance issues with face detection regarding run time as well 
as robustness. To make their system robust to lighting changes 
and make it more efficient, the motion pixel histogram is only 
calculated around an area that surrounds the detected lecturer. 
This means that changes in lighting don’t affect other areas of the 
screen as they simply aren’t processed. While this solution 
appears to work well, their frame was a 640 x 480 resolution which 
is far smaller than the 4K frame we need to process. It is possible 
that performance would become a problem. 

Arseneau et al. [11] present a tracking solution for classroom 
environments where the camera isn’t mounted and pointed in an 
optimal position. A background subtraction technique that divides 
horizontal and vertical maxima into bins is used. The global 
maxima of these two axes are chosen as the centre point of a 
region of interest. These regions of interests are then processed 
using a 2:1 height:width ratio rectangle to output the location of 
the presenter. This approach is more robust to room setup but 
doesn’t account for other movement in the scene, if two humans 
were to enter the view the region of interest could jump between 
successive frames. 

2.3 Virtual Cinematography 
Virtual Cinematography, also known as Virtual Videography and 
Computational Cinematography [12, 13], can generally be 
achieved by two different methods combined with various 
heuristics [12–17]. The first method involves taking existing 
frames and cropping them to a stream of a smaller size with a 
lower quality. The second method involves making the camera 
move autonomously (such as a Pan Tilt Zoom camera) in such a 
way that the resultant video mimics a video recorded by a human 
cinematographer. 

There is a collection of seminal papers in the field of Virtual 
Videography and Computational Cinematography [7, 12, 13, 15] 
which suggest a system that can automatically create good quality 
video presentations from already recorded videos. These papers 
mention how important it is to understand what is happening in 
the video and to know whether it is beneficial to pan (or alter the 
current video stream in any way) before doing anything. The 
papers are an iterative improvement towards a functional system 
and, as the authors progressed, a list of principles and heuristics 
was derived over time. Notably, the system must attract the 
viewer’s attention to what is important in the video; it must make 
effective use of both space and time by pacing the pan operations 
artfully; the viewer’s visual interest should be kept since the size 
of the display is small and the attention of the viewer is limited. A 
successful VC should communicate this information to the viewer 
intuitively. 



Technical Report CS17-01-00 
University of Cape Town, 2017 

 

 

 3 

Rui et al. [3] describe their system as an automatic lecture 
tracking and recording system which is aimed towards recording 
lectures without a personal camera crew. The system tracks the 
lecturer, the members of the audience, the slides of the 
presentation and is also capable of selecting a stream from 
multiple camera outputs using a “Virtual Director” (VD) which 
controls a VC for each camera. This paper lists the main 
components necessary for an effective VC and concludes by 
noting that their implementation works almost as well as a 
manned camera but there is still potential for future work and 
improvements. 

A VC should, therefore, accommodate the heuristics listed 
below when it evaluates how to generate output: 

• The camera should focus on what is important. 
• The VC should not frame the shots in any way that would 

confuse (or otherwise frustrate) the viewer but should 
guide their attention. 

• There are advantages to post-production (such as using 
past and future information for the current frame and 
efficiency is not the most important concern). 

• All pans need to consist of a single direction and should 
be considered as a separate operation to the other pans. 

• The panning should be smooth, which means it should 
accelerate to a maximum speed and then decelerate 
towards the end of the pan. 

3 METHODOLOGY 
This section discusses the implementation of the system and has 
been divided into three sections, one for each part of the system. 
All the image processing methods are implemented using the 
OpenCV library [18]. The system was developed in C++ due to its 
performance capabilities [19]. The system is made up of three 
modules, described below. 

3.1 Blackboard and Usage Detection 
The board detection module is responsible for detecting the 
position and movement of the blackboards in the lecture venue 
and then determining when content is added or removed. 

The scene is analysed by using edge detection to find all edges. 
These edges are then processed by an OpenCV algorithm 
findContours which is based on [20] and then outputs a list of 
points representing all the edges found. These contours are then 
bound by rectangles allowing us to find all rectangular shapes. 
This stage produces many rectangles that do not enclose the 
boards and we need to select only the rectangles that enclose 
boards. This is done by evaluating the rectangles box and 
contained pixels on the following set of criteria: pixel brightness, 
aspect ratio, and size. Brightness is evaluated by first converting 
the image into a binary image. A threshold is chosen that ensures 
the blackboards map to black in the threshold image; this is easily 
done since they are darker. We use aspect ratio – defined as the 
ratio width:height – and size to remove unwanted rectangles. The 
width needs to be longer than the height with an aspect ratio close 
to 1.8:1. This aspect ratio was chosen since we found that most 
lecture boards had an average lower bound aspect ratio close to 
this value. With regards to size, small rectangles that have a width 

less than 400px (pixels) and a height less than 300px are discarded. 
This was chosen since the boards usually occupy a substantial 
portion of the screen and small rectangles were not likely to 
represent boards. We found that this worked well. 

Once all rectangles in the frame have been classified, the 
rectangles (containing blackboards) are then passed into a feature 
detection function. We require a way of detecting when the 
boards are being utilised. By using a feature detection algorithm, 
we can count the features in each rectangle and whenever we 
detect an increase in the number of features, we can assume that 
the board is being used. The Speeded Up Robust Features (SURF) 
[21]  function was used to count the number of key points in each 
rectangle. An example of these features can be seen in Figure 2. 
SURF is robust and produces usable features regardless of 
handwriting style since it looks for corners or edges which are 
present in any style of handwriting. 

Our primary goal is to locate moving boards since we expect 
these to more strongly influence VC decisions. Since these are 
often arranged above one another, we chose to group them in 
columns and to s count the number of detected features from the 
individual boards in each respective column. The feature count is 
evaluated and when an increase of features beyond a threshold 
occurred in this column it is flagged as being in use. An example 
of this can be seen in Figure 3. As seen in Figure 2, the feature 
detector also detects features of the lecturer and to prevent the 
system from classifying this as board usage, the threshold value 
was empirically chosen to limit the impact of these spurious 
detections. 

 

Figure 2 - Features detected by SURF 

 

Figure 3 - Features tallied by column and usage is flagged 

All this information is then passed onto the VC to make better 
framing decisions. 
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3.2 Movement Recognition and Tracking 
We made use of a background subtraction [22] technique for our 
movement detection algorithm. We found background 
subtraction is cheap computationally, but still successfully detects 
movement. We interpret the detected movement by making 
assumptions about general lecture environments as well as human 
movement. Specifically, we used an absolute difference algorithm 
[23] subsequently filtered through a thresholding function. This 
provided mostly clean background subtraction with very little 
noise because of the very tight limits we chose for our 
thresholding function. 

Next, we perform a morphological dilation [23] on the frame 
using a 3 x 3 rectangle structuring element. Subsequently, we 
apply a normalised box filter blur [23] using a large 15 x 15 filter 
kernel to make contours more recognisable. This minimises noise 
while making detectable edges more pronounced. After this, we 
find the contours of our edited frame the output of which is shown 
in Figure 4 below. 

We noticed that contour chains with few nodes were often 
created by small differences between frames related to noise, light 
changes and camera refocusing. We, therefore, cull these; Human 
movements tend to have larger chains, as seen in Figure 4. 
 

 

Figure 4 - Output after finding contours (left) and a 
processed bounding rectangle (right) 

We generate a bounding rectangle around each contour chain as 
this makes it computationally cheaper to work with. This also 
simplifies decisions around linking or extending chains. We 
assume that lecturers will lecture above a minimum and below a 
maximum height as cameras will be pointed to the centre of the 
lecturing space. Given this assumption, we culled rectangles 
entirely outside this “lecturing band”. 

We also assess all rectangles’ width:height ratio which if too 
wide are also culled. This is intended to cull tracked boards as 
shown in Figure 5. 
 

 

Figure 5 - Movement of board’s top being detected 

Once we have culled all logical oddities we needed to merge 
nearby and overlapping rectangles into a larger rectangle. By 
doing this, multiple tracked rectangles which are part of a larger 
single object, such as a person, should be correctly merged 
together. Figure 4 (right) shows the outcome of this clustering 
algorithm. 

Two frame information redundancy checks are then 
performed. The first checks if the frame is too cluttered with 
rectangles. This can happen when too much motion is detected, 
including drastic light changes, or when the camera refocuses. In 
this case, it is difficult to extract any useful information. The 
second case is if no bounding rectangles are found. In both cases, 
a default rectangle is placed in the centre of the frame. This step 
is important otherwise frames are effectively discarded. The 
virtual cinematographer depends on complete information to 
avoid lagging the actual video. 

Rectangles are tracked and associated with frames using our 
“Ghost” class and logic. This records how long a sequence of 
related rectangles has existed across frames and allows us to 
establish some form of persistence. The ghost tracks the 
movement detection rectangles across multiple frames recording 
how long an object is tracked as the number of frames it is tracked 
in. A new ghost is instantiated when a rectangle is found that 
doesn’t intersect with any ghosts from the previous frame. This 
new ghost will have the dimensions of that rectangle as well as on 
screen time of 1 frame. In successive frames, if this new ghost 
intersects other rectangles, it will grow towards that intersecting 
rectangle’s extremities as shown in Figure 6. Specifically, we 
relate each ghost corner to a nearby rectangle corner, such that 
each corner has only one other related corner. We then move each 
ghost corner to a position 75% of the distance between the ghost 
point and the rectangle point. We found this value helped the 
ghost retain a moderate size while still translating with the 
lecturer. It wouldn’t scale too fast with large rectangle changes, 
such as a board moving, but also wouldn’t shrink inwards too 
much if it intersected a smaller rectangle. This meant that the 
ghost was generally close to the rectangle’s dimensions but 
allowed for variation in terms of size and placement. 
 

 

Figure 6 - A ghost (white) updating position towards the 
movement detected (blue) 

If no rectangle intersection is found or a rectangle’s intersection 
with the ghost is below a threshold percentage of the ghost’s area, 
then the ghost will shrink inwards, reflecting uncertainty around 
the tracking result. Once the ghost has become small enough it 
will not be recorded in subsequent frames. This assumes that 
people in view will constantly be moving at least a small amount. 
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This should ensure that animate objects, such as people, are 
constantly tracked whereas inanimate objects such as boards are 
only tracked when they are moved. The resizing of the ghost 
based on intersecting rectangles allows the ghost to track 
movement laterally as in Figure 6. This assumes that people do 
not move quickly enough to exit the ghost between frames. 

To handle occlusion of two or more tracked objects, merge and 
split algorithms were introduced. This means the highest screen 
time count of the merged ghosts is recorded and kept. Figure 7 
illustrates the split algorithm running. It shows two rectangles 
within a ghost being a certain distance apart, greater than an 
empirically determined threshold, and therefore is split into 
individual ghosts. 

As a form of soft reset in the case that the system picks up the 
wrong object as the lecturer, each ghost’s time is reduced by two-
thirds every 120 frames. We found through testing that 120 frames 
were frequent enough to affect any object visible on screen for 
more than 4 seconds. The choice of a 4-second window is based 
on the time it took to briskly walk across the 4K camera view. 
 

 

Figure 7 - Ghost (white) being split into two because of 
rectangle (blue) distance 

 

Code Block 1 - Positional Importance Formula 

This function (Code Block 1) continues the assumption that a 
lecturer will favour the middle of the view on the x and y-axis. 
Finally, the locations of the lecturer are saved as a vector of 
rectangles and can be accessed by the virtual cinematography 
module to perform the cinematographic logic. This will be 
discussed in the following section. 

3.3 Virtual Cinematographer 
The Virtual Cinematographer (VC) is split into 3 components: 
video lookahead and pan analysis, noise reduction and smooth 
pan sequencing, and final output. 

The video lookahead component deals with identifying the 
changes in the lecturer’s position. The VC has all the lecturer’s 

positions and evaluates them one at a time. Each position is 
compared with its predecessor to determine a direction. All frames 
where the lecturer is moving in the same direction are 
accumulated into a pan operation. A pan operation is a collection 
of frames with a start and end defined in the 4K frame’s coordinate 
space. The accumulation is stopped when the direction reverses. 
This process continues for all recorded frames and the collection 
of pan operations are passed onto the next component of the VC. 

The next component evaluates the newly formed pan 
operations and determines which are too short to produce a 
meaningful pan. These short operations are combined with other 
short pan operations to make a noise segment. The noise segments 
are parts of the video where the cropping window does not move. 
This is done to remove the jitter from the cropping window’s 
movements. As noise segments appear, they are recalibrated: the 
end position of the pan operation before the noise segment is 
moved to the start position of the pan operation immediately after 
the noise segment. We do this so that the cropping window does 
not jump from one position to another after pausing over a noise 
segment. 

Once the pan operations are fully refined the last component 
writes the cropping window’s enclosed area (for each frame) to 
the output file. The resultant video file has a resolution of 720p 
and resembles the motions a human camera operator would have 
made (instead of just a static camera). A visual example of this 
cropping process can be seen in Figure 8. 
 

 

Figure 8 - Cropping window output as 720P 

4 RESULTS 
We ran the experiment on a laptop with the following 
specifications: 

CPU: Intel Core i7-6700HQ @ 2.60 – 3.5 GHz 
RAM: 16GB DDR4 2133MHz 
Hard Drive: 7200RPM 1TB HDD 
OS: Windows 10 

 
We tested blackboard detection and the tracking modules 
individually to determine the robustness and speed of these parts 
of the pipeline – see Table 6 for the runtime results. To evaluate 
the quality of the VC, we ran the video processing pipeline with a 
full 4K lecture video as input to produce a complete 720p version. 
We sent the output video for expert evaluation to assess the 
quality of the video from a professional perspective. Since this is 
a time-consuming task the expert was unable to commit to more 
evaluation time and only one video was professionally assessed. 

4.1 Blackboard and Usage Detection 
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Since the blackboard and usage detection was primarily being 
evaluated for feasibility, less time was devoted to testing this 
component. 

The evaluation was conducted by manually reviewing a 50-
minute lecture and flagging the frame timestamps at which each 
of the cases in Table 1 occurred. This was considered the control. 
This video was then passed through the blackboard and usage 
detection module and was compared to the control, by counting 
the number of times our system correctly flagged the 
corresponding case at that timestamp. Since this was a normal 
lecture, there was no set number of instances for each case and 
the results in Table 2 show a percentage of the experiment 
outcome successfully meeting the expected outcome of each test 
case. The six test cases used along with their expected outcomes 
can be found in Table 1. 

Table 1 - Board usage detection test cases 

No. Test Case Description Expected Outcome 

1 
Lecturer walks passes board 
without writing on it 

Board not used 

2 
Lecturer gestures in front of the 
board (Hand movements, 
pointing, but not writing) 

Board not used 

3 Lecturer writes on board Board used 

4 
Lecturer moves board with 
writing on 

Board not used 

5 Lecturer moves empty board Board not used 
6 Lecturer erases board Board used 

Table 2 - Results of board usage detection 

No. Test Case Description Success (%) 

1 
Lecturer walks passes board 
without writing on it 

100 

2 
Lecturer gestures in front of the 
board (Hand movements, 
pointing, but not writing) 

100 

3 Lecturer writes on board 83.8 

4 
Lecturer moves board with 
writing on 

100 

5 Lecturer moves empty board 100 
6 Lecturer erases board 0 

 
For test cases 1, 2, 4 and 5 the system matched the expected 
outcomes for each respective instance evaluated. In case 3, the 
system only correctly identified 83.8% of these cases as identified 
in the control. Finally, test case 6 failed entirely since none of the 
board erasing events triggered as usage. This is likely due to chalk 
dust being detected by the feature detector and hence the decrease 
in features not exceeding the threshold necessary to be classified 
as usage. 

4.2 Movement Recognition and Tracking 
The lecturer-tracking worked successfully for all normal cases of 
lecturer movement and only had difficulty in tracking abnormal 
behaviour such as quick running, multiple students crossing the 

room constantly, and continuous sharp light changes. We found 
that normal behaviour such as board movement, a single student 
crossing the field of view, and lecturer pacing had a successful 
tracking rate of 90%. 

To test this module, we devised a set of 17 use cases shown in 
Table 4. The use cases cover how a lecturer might move in a real 
lecture. We then recorded lectures we set up specifically to test 
these 17 use cases with a 4K camera. These videos were then 
processed by this module. We analysed a set of 5 videos of real 
lectures. For each of our 17 use cases, we estimated a score (1 – 5) 
explained in Table 3. Note that we do not use likelihood in the 
regular statistical sense, but in a more colloquial way as explained 
in the Table. 

 
 

Table 3 - Explanation of lecture use case scores 

Likelihood No. Occurrence 
Very Unlikely 1 Once in 5 videos 
Unlikely 2 At least once in 3 videos 
Possibly 3 Once in all 5 videos 
Likely 4 2 – 5 times in all 5 videos 
Very Likely 5 More than 5 times in all videos 

Table 4 - Lecturer use cases 

No. Lecturer movement description Likelihood 
(1 - 5) 

1 Light movement, no pacing or gesturing. 5 
2 Moderate movement, pacing and 

gesturing. 
4 

3 High movement, heavy pacing and 
gesturing. 

4 

4 Sudden and reoccurring light changes, 
moderate lecturer movement. 

2 

5 Moving boards often and light 
movement. 

3 

6 Projector screens rolling up and down 
alongside heavy movement and pacing. 

2 

7 Projector screens rolling up and down 
while stationary. 

2 

8 Move outside view and back in. 3 
9 Stationary lecturing while student 

crosses. 
3 

10 Lecturer and student moving together, 
lecturer stops in the centre of view. 

2 

11 Student and lecturer approaching from 
opposite sides of view. 

1 

12 Lecturer runs across the view. 1 
13 Lecturer plays “catch” with a student. 1 
14 3 students giving a presentation. 1 
15 Two students cross from either side of 

the room with the lecturer in the centre. 
1 

16 Students moving along chairs in the 
bottom of the view. 

3 

17 No movement with no one in the view. 2 
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The division between likely and unlikely use cases ultimately 
helped us evaluate the effectiveness of the lecturer-tracking 
module. 

To evaluate the performance of each use case we stepped 
through the videos at a rate of 4 frames per step counting the 
number of times the program incorrectly identified the lecturer. 
Incorrect identification was counted when the tracking rectangle 
tracked the wrong person, a moving object or lagged the 
movement of the lecturer (having the lecturer completely outside 
of the rectangle but still tracking in their direction). In our results, 
we simplified the data by rounding frames to the nearest second. 
Using this result we evaluated the percentage of the use case that 
was correctly tracked. Our goal for success in a use case was 90% 
which represents almost the whole use case correctly tracked. The 
10% margin of error means that if the lecturer is miss-tracked it 
would not be long enough to cause the viewer to lose any visual 
context. 

We also evaluated the efficiency of each run, where processing 
time of more than 2 times the length of the video constitutes 
failure. This limit was chosen because the total processing time 
available to the system was limited to 3 times the length of the 
video to make it tractable. 

Table 5 - Lecturer use cases results 

No. Likeli-
hood 

Video 
Length 

(s) 

Process 
Time 

(s) 

% 
Process 

Time 

Did 
not 

track 
(s) 

% 
Correct 
Track 

1 3-5 57 66.192 116.13% 2 96.49% 
2 3-5 31 32.756 105.66% 0 100% 
3 3-5 48 46.648 97.18% 0 100% 
4 1-2 85 90.575 106.56% 60 29.41% 
5 3-5 40 44.879 112.20% 3 92.50% 
6 1-2 48 56.975 118.70% 1 97.92% 
7 1-2 46 52.147 113.36% 3 93.48% 
8 3-5 40 45.824 114.56% 3 92.50% 
9 3-5 72 85.613 118.91% 4 94.44% 
10 1-2 17 19.67 115.71% 1 94.12% 
11 1-2 16 21.707 135.67% 0 100% 
12 1-2 24 28.274 117.81% 14 41.67% 
13 1-2 32 40.115 125.36% 2 93.75% 
14 1-2 162 156.31 96.49% 62 61.73% 
15 1-2 30 37.577 125.26% 3 90% 
16 3-5 32 36.397 113.74% 1 96.88% 
17 1-2 77 76.248 99.02% 0 100% 

 
From it’s clear that the runtime of each use case passed the 
efficiency test. This can be ascribed to our approach of choosing 
simple, cheap algorithms such as background subtraction and the 
use of rectangle reasoning to track the lecturer. This is particularly 
important since a lot of processing time went to reading and 
decoding the large 4K frames where we couldn’t find any 
efficiency gains. This I/O overhead represents a fundamental 
lower bound on how fast any processing can occur 

The results in Table 5 show that most of the tracking tests pass 
with all the likely cases succeeding. We found that for most cases 
enough lecturer movement was happening for the system to find 
something large enough to track. 

The tracking solution registers large movement well. This is 
because the first step of our algorithm employs absolute difference 
background subtraction. It also works well for moderate 
movement because of the rectangle clustering algorithm. 
Unfortunately, with very small or no movement there isn’t 
enough information for our system to track the lecturer so we 
default to the centre of the screen. 

The results show that our tracking fails the 90% test for 3 of the 
use cases. These are all unlikely use cases meaning that this 
shouldn’t invalidate the usefulness of the tracking module. 

Use case 4 evaluates many sudden light changes which caused 
the 4K camera (which attempts to do light correction on the fly) 
to reduce its effective frame rate and stutter. The test itself 
leveraged lots of sudden light changes in quick succession which 
is abnormal for lecturing conditions where the lecturer is more 
likely to make a single lighting change. So, while this test 
performed badly it represents a very unlikely sequence of events. 

Use case 12 evaluates a lecturer running across the lecturing 
area. When processed, the lecturer is moving quickly enough to 
exit his or her ghost between frames. This means the ghost’s 
position isn’t updated towards the new rectangle position as a 
locational correlation wasn’t found. This problem is a direct result 
of our frame sampling rate; if we skip fewer frames between a 
detection step this effect can be lessened or removed entirely, 
however, this would increase processing time for this module. 

Use case 14 evaluates multiple students giving a presentation. 
This use case only tracked the lecturer correctly 61,7% of the time. 
Fundamentally this is meant to be a difficult use case for the 
module to handle. When 3 students are presenting there is no 
indication other than voice and nuanced movement to distinguish 
who the presenter is at any one moment. While our system was 
developed to handle temporary passing and occlusion of students 
it still only tracks one lecturer. With this in mind, the problems 
we noticed were the students who weren’t lecturing but were in 
the view continued moving and thus retained their screen time 
count. Additionally, because the role of speaker is passed between 
students, the screen time counts are all mixed together. Therefore, 
the lecturer is often decided by who of the 3 is most central in the 
view. 

The lecturer-tracking worked for all normal cases of lecturer 
movement and only has difficulty in tracking abnormal behaviour 
such as quick running, multiple students lecturing and continuous 
sharp light changes. Given these encouraging results, we believe 
this module could realistically be used for lecturer-tracking in real 
lectures. 

4.3 Virtual Cinematographer 
We sent a reference output video from the VC module for 
professional evaluation and we received the following remarks 
concerning the video quality: 
• The video starts untidily due to the lecturer-tracking 

module since it struggles to identify the lecturer fast enough 
to be unnoticeable. 
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• The camera acceleration and deceleration are very smooth 
and effective at framing the presenter appropriately (in 
most cases). There is also no point at which the movement 
of the camera is jarring or unexpected. 

• The resolution of the output video stream has more than 
enough clarity and detail for viewers to read the writing on 
the boards and see the lecturer’s gestures (which are the 
main objectives for the VC to address). The camera height 
was slightly too low for some of the writing, however. 

• The output video was compared to the output videos from 
competing approaches and the output of this program is 
significantly better than that of the Axis Digital 
Autotracking app which ran directly off the camera. It is 
also equivalent to (or even slightly better than) the Axis 
5915 camera and LectureSight real-time tracking solution. 

• The VC has some shortcomings in its framing of the 
lecturer when the lecturer is writing on the board. 

4.4 System Runtime and Efficiency 
Regarding runtime, the processing time taken to process a 50-
minute length video, categorised by the operation can be seen in. 
A separate column shows the amount of time used for file Input 
and Output (IO) operations. The I/O time can be mitigated by 
using fast SSD, for example. Note that these results do not use 
parallel implementations of algorithms or GPUs, so there is 
certainly scope for improvement. 

Table 6 - Runtime results 

Operation Time taken 
(Algorithm) 

Time 
taken (File 

IO) 

Total 

Blackboard and 
Usage Detection 

15m20s 27m15s 42m35s 

Movement 
Recognition and 
Tracking 

29m15s 27m15s 56m30s 

Virtual 
Cinematographer 

10m45s 32m15s 43m0s 

TOTAL 55m20s 86m45s 142m5s 

4.5 Discussion 
Preliminary testing of the Blackboard and Usage Detection 
module showed that using a feature detection algorithm is feasible 
for this purpose and that further studies can be carried out in this 
field. The feature detection approach worked and could recognise 
the presence of handwriting. This is because feature detection 
looks for edges and corner key points and any handwriting style 
will always have these present. 

The feature count threshold was chosen based on a small 
sample of lecture videos. This could also be an influencing factor 
in the failure of the board erasing test case and a more complex 
approach may be required to deal with handwriting detection 
artefacts. 
The movement recognition and tracking module functions well 
but there is room for improvement. The movement recognition 

implemented with background subtraction techniques 
fundamentally lacks any context about the movement it picks up. 
While we have accommodated many contexts with our rectangle 
clustering and other checks, there are still other possible 
extensions such as utilising the colour characteristics of objects to 
help differentiate them. Such characteristics could also be used in 
the ghost reasoning section which struggled on tests where the 
identity of who was lecturing was unclear. 

Based on initial testing, the VC produces acceptable framing 
but the cropping window is, at times, too low for some of the 
content on the higher boards. This problem arises from the 
exclusive use of horizontal panning to move the cropping 
window. When the lecturer is writing on the board, the VC seems 
to be worse at framing both.  Improvements can thus be made to 
the heuristics involving the lecturer and the use of the boards. 

For the proposed processing r pipeline to be tractable, we 
required that the time required for all video processing is within 
300% of the input video’s length. Our results show that video post-
processing completed in less than 285% of the input video length, 
within the prescribed 300% threshold. Furthermore, we found that 
file I/O amounted to about 60% of the total system runtime. For 
the VC, the time spent on I/O, about 75%, was much higher since 
it also needed to save the smaller output video stream.  The system 
reduced the input file size from 1.97 GB to 219 MB in the output 
video when using the MP4 CODEC -  a 9-fold size reduction. 

5 CONCLUSIONS 
We have developed an automated post-production video editing 
system capable of reducing the resolution of the input 4K video 
by carefully selecting a small output cropping window to track the 
lecturer and local context through the larger 4K frames. The 
cropping window is moved in a way that mimics, to a large degree, 
the camera control decisions that a human camera operator would 
make when trying to keep the lecturer and board context in-frame 
using a camera with a smaller field of view. 

The first system module, board detection and usage, shows 
promising initial results based on a feature detection algorithm, 
although excessive smudging from chalkboard erasure is 
problematic. The tracking module produces good results for the 
general use case and works in some unlikely use cases too. The 
VC reduces the video from 1.97 GB to 219 MB when using the MP4 
CODEC, and the 720p video produced by the software is clear to 
the point where the board contents are clearly legible and 
lecturer’s gestures are clearly visible -  a major objective of the 
system. The system also successfully makes the cropping window 
move as smoothly as a human cinematographer’s movements in a 
way that respects accepted cinematography best practices 
throughout the video. 

6 FUTURE WORK 
While expert opinion rates the video output as good, there is room 
for improvement in several aspects of the system. These are being 
actively pursued in ongoing research. 

The writing detection in the blackboard and usage detection 
module can be extended to be more robust by using a larger 
sample of lecture videos using more complex heuristics to reject 
spurious clusters of feature key points. 
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The lecturer-tracking solution currently functions on the 
assumption that the lecturer will spend most of his or her time 
near the middle of the field of view. Certain lecture theatres may 
change this assumption. We could make use of the movement 
mask calculated in the pre-processing step to build a more robust 
solution and build this change into our algorithm (Code Block 1) 

The framing section of the VC module has limitations and could 
be refined. The crop window currently only moves along the x-
axis at a fixed position on the y-axis. This can be improved by 
adding functionality to tilt the cropping window. Zoom 
functionality can also be added in future version. 

Currently, each module reads the entire file as it processes the 
video This makes the program run for longer than necessary since 
the frames being read are identical. This will be addressed in 
future work by reading the file in once and sharing this 
information across all 3 modules. 
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