
A Virtual Cinematographer for Presenter Tracking in 4K Lecture
Videos

Technical Report CS17-01-00

Department of Computer Science

University of Cape Town

2017

Charles Fitzhenry; Maximilian Hahn; Tanweer Khatieb; Patrick Marais; Stephen Marquard

Corresponding author: patrick@cs.uct.ac.za

ABSTRACT
Lecture recording has become an important part of the provision
of accessible tertiary education and having good autonomous
recording and processing systems is necessary to make it feasible.
In this work, we develop and evaluate a video processing
framework that uses 4K video to track the lecturer and frame
him/her in a way that simulates a human camera operator. We
also investigate general issues pertaining to blackboard usage and
its influence on cinematography decisions. We found that post-
processing produced better tracking and framing results when
compared to some real-time approaches. Furthermore, the entire
pipeline can run on a commodity PC and will complete within the
suggested time of 300% of the input video length. In fact, our
testing showed that 60% of the total processing time can be
ascribed to I/O operations. With the removal of redundant reads
and writes, this proportion can be reduced. Finally, some
algorithms can be remapped to parallel versions which will exploit
multicore CPUs or GPUs if these are available.

CCS CONCEPTS
• Computing Methodologies ➝ Computer vision problems

• Computing Methodologies ➝ Video segmentation

• Computing Methodologies ➝ Tracking

KEYWORDS
Background Segmentation; Lecture Recording; Movement
Detection; Object Tracking; Presenter Tracking; OpenCV Library;
Virtual Cinematography; Panning.

1 INTRODUCTION
The recording of lectures has become popular in the last decade
and has been implemented at universities and institutions
worldwide [1, 2]. In this work, we focus on the technical aspects
of preparing a captured video stream for online consumption.

Course content written on the boards is important [2–5], and it
is necessary to capture this when filming the lecturer and to
ensure that it is clearly legible. It is also important that the video
is filmed in a way that is natural, with the camera tracking the

lecturer and keeping the board in view for context, when
appropriate. Another important requirement is that the size of the
video or the bitrate required to stream the video should be such
that a student with a modest internet connection can benefit from
the recording. This is particularly important in the developing
world where network infrastructure is often poor. The recent
adoption of 4K video cameras to record lectures has exacerbated
this problem.

Furthermore, the existing solutions that are commonly used to
record and prepare videos are often proprietary and have a high
cost, which may further hamper adoption in developing countries.

A 4K camera has a resolution of 3840x2160. This provides a
wide viewing angle allowing the camera to capture a large portion
of the scene. Although this produces high-quality videos, the file
size is so large (bit rate of 5.652Mbps) that it is inaccessible to
many students and institutions that cannot afford the necessary
data bandwidth to stream these videos in 4K. An alternative
approach is to crop a smaller window of “attention” from the
larger 4K frames. By using computer vision algorithms to detect
and track the lecturer, we can move this cropping window to
follow the lecturer and frame relevant context.

Our work aims to address these issues by post-processing of 4K
video streams to produce an output video that is both significantly
smaller and tracks the lecturer in a more natural way. Since we
run our system as a post-process, we can analyse the entire video
before making any physical changes to it. This allows our
algorithms to analyse future events in advance and perform more
robust edits to the video file. It is also possible to use more
complex calculations at each stage of the pipeline, which should
allow for fewer errors in lecturer-tracking.

Lectures are recorded using 4K cameras, which capture the
whole view of the lecture area including any chalkboards
(henceforth referred to as blackboards) as seen in Figure 1. The
lecturer and blackboards (typically green or black) are then
tracked by computer vision algorithms and framed by a small
cropping window to simulate a virtual panning effect. This
cropping window is set to a size smaller than the original 4K input,
typically a 720p video frame; in effect, the system must determine
how to move this window through the larger frame in a smooth
and natural way which sensibly frames the lecturer and board

2

content. Once the cropped stream is generated, the output video
can easily be streamed online due to its reduced file size.

The software has three main components (or stages);
blackboard and usage detection, lecturer-tracking, and the Virtual
Cinematographer (VC). Blackboard segmentation is the process of
detecting where the blackboards are in the video and when they
are used. The blackboard usage information allows the VC to
make framing decisions. The tracking module has access to the
full video and performs a lookahead to find and track the lecturer
in the video. The person with the longest on-screen time is then
selected as the lecturer. Finally, the VC uses all the information
from the previous stages to crop the best possible view from the
input video.

Figure 1 - Example lecture venue

Our results show a successful first pass implementation which can
complete post-processing in under 3 times the input video’s
length. This is important because the high volume of lecture
videos could result in a perpetual backlog if the processing takes
too long. It is also worth noting that our implementation can
reduce file size from 1.97 GB to 219 MB when using the MP4
CODEC (9 times smaller). The framing produced by the VC was
also deemed to be visually pleasing by our expert evaluators and
produced better results than some real-time tracking
implementations.

The paper is laid out as follows. Section 2 examines related
work, Section 3 discusses the methodology and implementation,
Section 4 discusses the results and Section 5 concludes and
discusses future work

2 BACKGROUND AND RELATED WORK
In this section, we provide a review of related work from the
following fields: blackboard and usage detection, object tracking,
and virtual cinematography. These fields collectively constitute a
lecturer-tracking package.

2.1 Blackboard Detection
Blackboard and usage detection is performed in other approaches
by using background modelling to separate the foreground from
the background [6]. These approaches assume that the blackboard
is static. Since the only motion is assumed to be the lecturer, the
foreground motion can be classified as being the lecturer. These
approaches use existing computer vision approaches such as
background subtraction to build the functionality [7, 8]. Edge-

detection algorithms can also be used to detect the features on the
boards [9], which provide good results. Our work also uses an
edge-detection approach for detecting the boards and uses feature
detection for detecting when writing is added to it.

2.2 Tracking
Zhang et al. [10] present a tracking solution based on a pixel
motion histogram that implements virtual panning. In addition to
this, they also use a PTZ camera that can pan horizontally to track
the lecturer when they move out of frame. They mention the
performance issues with face detection regarding run time as well
as robustness. To make their system robust to lighting changes
and make it more efficient, the motion pixel histogram is only
calculated around an area that surrounds the detected lecturer.
This means that changes in lighting don’t affect other areas of the
screen as they simply aren’t processed. While this solution
appears to work well, their frame was a 640 x 480 resolution which
is far smaller than the 4K frame we need to process. It is possible
that performance would become a problem.

Arseneau et al. [11] present a tracking solution for classroom
environments where the camera isn’t mounted and pointed in an
optimal position. A background subtraction technique that divides
horizontal and vertical maxima into bins is used. The global
maxima of these two axes are chosen as the centre point of a
region of interest. These regions of interests are then processed
using a 2:1 height:width ratio rectangle to output the location of
the presenter. This approach is more robust to room setup but
doesn’t account for other movement in the scene, if two humans
were to enter the view the region of interest could jump between
successive frames.

2.3 Virtual Cinematography
Virtual Cinematography, also known as Virtual Videography and
Computational Cinematography [12, 13], can generally be
achieved by two different methods combined with various
heuristics [12–17]. The first method involves taking existing
frames and cropping them to a stream of a smaller size with a
lower quality. The second method involves making the camera
move autonomously (such as a Pan Tilt Zoom camera) in such a
way that the resultant video mimics a video recorded by a human
cinematographer.

There is a collection of seminal papers in the field of Virtual
Videography and Computational Cinematography [7, 12, 13, 15]
which suggest a system that can automatically create good quality
video presentations from already recorded videos. These papers
mention how important it is to understand what is happening in
the video and to know whether it is beneficial to pan (or alter the
current video stream in any way) before doing anything. The
papers are an iterative improvement towards a functional system
and, as the authors progressed, a list of principles and heuristics
was derived over time. Notably, the system must attract the
viewer’s attention to what is important in the video; it must make
effective use of both space and time by pacing the pan operations
artfully; the viewer’s visual interest should be kept since the size
of the display is small and the attention of the viewer is limited. A
successful VC should communicate this information to the viewer
intuitively.

Technical Report CS17-01-00
University of Cape Town, 2017

 3

Rui et al. [3] describe their system as an automatic lecture
tracking and recording system which is aimed towards recording
lectures without a personal camera crew. The system tracks the
lecturer, the members of the audience, the slides of the
presentation and is also capable of selecting a stream from
multiple camera outputs using a “Virtual Director” (VD) which
controls a VC for each camera. This paper lists the main
components necessary for an effective VC and concludes by
noting that their implementation works almost as well as a
manned camera but there is still potential for future work and
improvements.

A VC should, therefore, accommodate the heuristics listed
below when it evaluates how to generate output:

• The camera should focus on what is important.
• The VC should not frame the shots in any way that would

confuse (or otherwise frustrate) the viewer but should
guide their attention.

• There are advantages to post-production (such as using
past and future information for the current frame and
efficiency is not the most important concern).

• All pans need to consist of a single direction and should
be considered as a separate operation to the other pans.

• The panning should be smooth, which means it should
accelerate to a maximum speed and then decelerate
towards the end of the pan.

3 METHODOLOGY
This section discusses the implementation of the system and has
been divided into three sections, one for each part of the system.
All the image processing methods are implemented using the
OpenCV library [18]. The system was developed in C++ due to its
performance capabilities [19]. The system is made up of three
modules, described below.

3.1 Blackboard and Usage Detection
The board detection module is responsible for detecting the
position and movement of the blackboards in the lecture venue
and then determining when content is added or removed.

The scene is analysed by using edge detection to find all edges.
These edges are then processed by an OpenCV algorithm
findContours which is based on [20] and then outputs a list of
points representing all the edges found. These contours are then
bound by rectangles allowing us to find all rectangular shapes.
This stage produces many rectangles that do not enclose the
boards and we need to select only the rectangles that enclose
boards. This is done by evaluating the rectangles box and
contained pixels on the following set of criteria: pixel brightness,
aspect ratio, and size. Brightness is evaluated by first converting
the image into a binary image. A threshold is chosen that ensures
the blackboards map to black in the threshold image; this is easily
done since they are darker. We use aspect ratio – defined as the
ratio width:height – and size to remove unwanted rectangles. The
width needs to be longer than the height with an aspect ratio close
to 1.8:1. This aspect ratio was chosen since we found that most
lecture boards had an average lower bound aspect ratio close to
this value. With regards to size, small rectangles that have a width

less than 400px (pixels) and a height less than 300px are discarded.
This was chosen since the boards usually occupy a substantial
portion of the screen and small rectangles were not likely to
represent boards. We found that this worked well.

Once all rectangles in the frame have been classified, the
rectangles (containing blackboards) are then passed into a feature
detection function. We require a way of detecting when the
boards are being utilised. By using a feature detection algorithm,
we can count the features in each rectangle and whenever we
detect an increase in the number of features, we can assume that
the board is being used. The Speeded Up Robust Features (SURF)
[21] function was used to count the number of key points in each
rectangle. An example of these features can be seen in Figure 2.
SURF is robust and produces usable features regardless of
handwriting style since it looks for corners or edges which are
present in any style of handwriting.

Our primary goal is to locate moving boards since we expect
these to more strongly influence VC decisions. Since these are
often arranged above one another, we chose to group them in
columns and to s count the number of detected features from the
individual boards in each respective column. The feature count is
evaluated and when an increase of features beyond a threshold
occurred in this column it is flagged as being in use. An example
of this can be seen in Figure 3. As seen in Figure 2, the feature
detector also detects features of the lecturer and to prevent the
system from classifying this as board usage, the threshold value
was empirically chosen to limit the impact of these spurious
detections.

Figure 2 - Features detected by SURF

Figure 3 - Features tallied by column and usage is flagged

All this information is then passed onto the VC to make better
framing decisions.

4

3.2 Movement Recognition and Tracking
We made use of a background subtraction [22] technique for our
movement detection algorithm. We found background
subtraction is cheap computationally, but still successfully detects
movement. We interpret the detected movement by making
assumptions about general lecture environments as well as human
movement. Specifically, we used an absolute difference algorithm
[23] subsequently filtered through a thresholding function. This
provided mostly clean background subtraction with very little
noise because of the very tight limits we chose for our
thresholding function.

Next, we perform a morphological dilation [23] on the frame
using a 3 x 3 rectangle structuring element. Subsequently, we
apply a normalised box filter blur [23] using a large 15 x 15 filter
kernel to make contours more recognisable. This minimises noise
while making detectable edges more pronounced. After this, we
find the contours of our edited frame the output of which is shown
in Figure 4 below.

We noticed that contour chains with few nodes were often
created by small differences between frames related to noise, light
changes and camera refocusing. We, therefore, cull these; Human
movements tend to have larger chains, as seen in Figure 4.

Figure 4 - Output after finding contours (left) and a
processed bounding rectangle (right)

We generate a bounding rectangle around each contour chain as
this makes it computationally cheaper to work with. This also
simplifies decisions around linking or extending chains. We
assume that lecturers will lecture above a minimum and below a
maximum height as cameras will be pointed to the centre of the
lecturing space. Given this assumption, we culled rectangles
entirely outside this “lecturing band”.

We also assess all rectangles’ width:height ratio which if too
wide are also culled. This is intended to cull tracked boards as
shown in Figure 5.

Figure 5 - Movement of board’s top being detected

Once we have culled all logical oddities we needed to merge
nearby and overlapping rectangles into a larger rectangle. By
doing this, multiple tracked rectangles which are part of a larger
single object, such as a person, should be correctly merged
together. Figure 4 (right) shows the outcome of this clustering
algorithm.

Two frame information redundancy checks are then
performed. The first checks if the frame is too cluttered with
rectangles. This can happen when too much motion is detected,
including drastic light changes, or when the camera refocuses. In
this case, it is difficult to extract any useful information. The
second case is if no bounding rectangles are found. In both cases,
a default rectangle is placed in the centre of the frame. This step
is important otherwise frames are effectively discarded. The
virtual cinematographer depends on complete information to
avoid lagging the actual video.

Rectangles are tracked and associated with frames using our
“Ghost” class and logic. This records how long a sequence of
related rectangles has existed across frames and allows us to
establish some form of persistence. The ghost tracks the
movement detection rectangles across multiple frames recording
how long an object is tracked as the number of frames it is tracked
in. A new ghost is instantiated when a rectangle is found that
doesn’t intersect with any ghosts from the previous frame. This
new ghost will have the dimensions of that rectangle as well as on
screen time of 1 frame. In successive frames, if this new ghost
intersects other rectangles, it will grow towards that intersecting
rectangle’s extremities as shown in Figure 6. Specifically, we
relate each ghost corner to a nearby rectangle corner, such that
each corner has only one other related corner. We then move each
ghost corner to a position 75% of the distance between the ghost
point and the rectangle point. We found this value helped the
ghost retain a moderate size while still translating with the
lecturer. It wouldn’t scale too fast with large rectangle changes,
such as a board moving, but also wouldn’t shrink inwards too
much if it intersected a smaller rectangle. This meant that the
ghost was generally close to the rectangle’s dimensions but
allowed for variation in terms of size and placement.

Figure 6 - A ghost (white) updating position towards the
movement detected (blue)

If no rectangle intersection is found or a rectangle’s intersection
with the ghost is below a threshold percentage of the ghost’s area,
then the ghost will shrink inwards, reflecting uncertainty around
the tracking result. Once the ghost has become small enough it
will not be recorded in subsequent frames. This assumes that
people in view will constantly be moving at least a small amount.

Technical Report CS17-01-00
University of Cape Town, 2017

 5

This should ensure that animate objects, such as people, are
constantly tracked whereas inanimate objects such as boards are
only tracked when they are moved. The resizing of the ghost
based on intersecting rectangles allows the ghost to track
movement laterally as in Figure 6. This assumes that people do
not move quickly enough to exit the ghost between frames.

To handle occlusion of two or more tracked objects, merge and
split algorithms were introduced. This means the highest screen
time count of the merged ghosts is recorded and kept. Figure 7
illustrates the split algorithm running. It shows two rectangles
within a ghost being a certain distance apart, greater than an
empirically determined threshold, and therefore is split into
individual ghosts.

As a form of soft reset in the case that the system picks up the
wrong object as the lecturer, each ghost’s time is reduced by two-
thirds every 120 frames. We found through testing that 120 frames
were frequent enough to affect any object visible on screen for
more than 4 seconds. The choice of a 4-second window is based
on the time it took to briskly walk across the 4K camera view.

Figure 7 - Ghost (white) being split into two because of
rectangle (blue) distance

Code Block 1 - Positional Importance Formula

This function (Code Block 1) continues the assumption that a
lecturer will favour the middle of the view on the x and y-axis.
Finally, the locations of the lecturer are saved as a vector of
rectangles and can be accessed by the virtual cinematography
module to perform the cinematographic logic. This will be
discussed in the following section.

3.3 Virtual Cinematographer
The Virtual Cinematographer (VC) is split into 3 components:
video lookahead and pan analysis, noise reduction and smooth
pan sequencing, and final output.

The video lookahead component deals with identifying the
changes in the lecturer’s position. The VC has all the lecturer’s

positions and evaluates them one at a time. Each position is
compared with its predecessor to determine a direction. All frames
where the lecturer is moving in the same direction are
accumulated into a pan operation. A pan operation is a collection
of frames with a start and end defined in the 4K frame’s coordinate
space. The accumulation is stopped when the direction reverses.
This process continues for all recorded frames and the collection
of pan operations are passed onto the next component of the VC.

The next component evaluates the newly formed pan
operations and determines which are too short to produce a
meaningful pan. These short operations are combined with other
short pan operations to make a noise segment. The noise segments
are parts of the video where the cropping window does not move.
This is done to remove the jitter from the cropping window’s
movements. As noise segments appear, they are recalibrated: the
end position of the pan operation before the noise segment is
moved to the start position of the pan operation immediately after
the noise segment. We do this so that the cropping window does
not jump from one position to another after pausing over a noise
segment.

Once the pan operations are fully refined the last component
writes the cropping window’s enclosed area (for each frame) to
the output file. The resultant video file has a resolution of 720p
and resembles the motions a human camera operator would have
made (instead of just a static camera). A visual example of this
cropping process can be seen in Figure 8.

Figure 8 - Cropping window output as 720P

4 RESULTS
We ran the experiment on a laptop with the following
specifications:

CPU: Intel Core i7-6700HQ @ 2.60 – 3.5 GHz
RAM: 16GB DDR4 2133MHz
Hard Drive: 7200RPM 1TB HDD
OS: Windows 10

We tested blackboard detection and the tracking modules
individually to determine the robustness and speed of these parts
of the pipeline – see Table 6 for the runtime results. To evaluate
the quality of the VC, we ran the video processing pipeline with a
full 4K lecture video as input to produce a complete 720p version.
We sent the output video for expert evaluation to assess the
quality of the video from a professional perspective. Since this is
a time-consuming task the expert was unable to commit to more
evaluation time and only one video was professionally assessed.

4.1 Blackboard and Usage Detection

6

Since the blackboard and usage detection was primarily being
evaluated for feasibility, less time was devoted to testing this
component.

The evaluation was conducted by manually reviewing a 50-
minute lecture and flagging the frame timestamps at which each
of the cases in Table 1 occurred. This was considered the control.
This video was then passed through the blackboard and usage
detection module and was compared to the control, by counting
the number of times our system correctly flagged the
corresponding case at that timestamp. Since this was a normal
lecture, there was no set number of instances for each case and
the results in Table 2 show a percentage of the experiment
outcome successfully meeting the expected outcome of each test
case. The six test cases used along with their expected outcomes
can be found in Table 1.

Table 1 - Board usage detection test cases

No. Test Case Description Expected Outcome

1
Lecturer walks passes board
without writing on it

Board not used

2
Lecturer gestures in front of the
board (Hand movements,
pointing, but not writing)

Board not used

3 Lecturer writes on board Board used

4
Lecturer moves board with
writing on

Board not used

5 Lecturer moves empty board Board not used
6 Lecturer erases board Board used

Table 2 - Results of board usage detection

No. Test Case Description Success (%)

1
Lecturer walks passes board
without writing on it

100

2
Lecturer gestures in front of the
board (Hand movements,
pointing, but not writing)

100

3 Lecturer writes on board 83.8

4
Lecturer moves board with
writing on

100

5 Lecturer moves empty board 100
6 Lecturer erases board 0

For test cases 1, 2, 4 and 5 the system matched the expected
outcomes for each respective instance evaluated. In case 3, the
system only correctly identified 83.8% of these cases as identified
in the control. Finally, test case 6 failed entirely since none of the
board erasing events triggered as usage. This is likely due to chalk
dust being detected by the feature detector and hence the decrease
in features not exceeding the threshold necessary to be classified
as usage.

4.2 Movement Recognition and Tracking
The lecturer-tracking worked successfully for all normal cases of
lecturer movement and only had difficulty in tracking abnormal
behaviour such as quick running, multiple students crossing the

room constantly, and continuous sharp light changes. We found
that normal behaviour such as board movement, a single student
crossing the field of view, and lecturer pacing had a successful
tracking rate of 90%.

To test this module, we devised a set of 17 use cases shown in
Table 4. The use cases cover how a lecturer might move in a real
lecture. We then recorded lectures we set up specifically to test
these 17 use cases with a 4K camera. These videos were then
processed by this module. We analysed a set of 5 videos of real
lectures. For each of our 17 use cases, we estimated a score (1 – 5)
explained in Table 3. Note that we do not use likelihood in the
regular statistical sense, but in a more colloquial way as explained
in the Table.

Table 3 - Explanation of lecture use case scores

Likelihood No. Occurrence
Very Unlikely 1 Once in 5 videos
Unlikely 2 At least once in 3 videos
Possibly 3 Once in all 5 videos
Likely 4 2 – 5 times in all 5 videos
Very Likely 5 More than 5 times in all videos

Table 4 - Lecturer use cases

No. Lecturer movement description Likelihood
(1 - 5)

1 Light movement, no pacing or gesturing. 5
2 Moderate movement, pacing and

gesturing.
4

3 High movement, heavy pacing and
gesturing.

4

4 Sudden and reoccurring light changes,
moderate lecturer movement.

2

5 Moving boards often and light
movement.

3

6 Projector screens rolling up and down
alongside heavy movement and pacing.

2

7 Projector screens rolling up and down
while stationary.

2

8 Move outside view and back in. 3
9 Stationary lecturing while student

crosses.
3

10 Lecturer and student moving together,
lecturer stops in the centre of view.

2

11 Student and lecturer approaching from
opposite sides of view.

1

12 Lecturer runs across the view. 1
13 Lecturer plays “catch” with a student. 1
14 3 students giving a presentation. 1
15 Two students cross from either side of

the room with the lecturer in the centre.
1

16 Students moving along chairs in the
bottom of the view.

3

17 No movement with no one in the view. 2

Technical Report CS17-01-00
University of Cape Town, 2017

 7

The division between likely and unlikely use cases ultimately
helped us evaluate the effectiveness of the lecturer-tracking
module.

To evaluate the performance of each use case we stepped
through the videos at a rate of 4 frames per step counting the
number of times the program incorrectly identified the lecturer.
Incorrect identification was counted when the tracking rectangle
tracked the wrong person, a moving object or lagged the
movement of the lecturer (having the lecturer completely outside
of the rectangle but still tracking in their direction). In our results,
we simplified the data by rounding frames to the nearest second.
Using this result we evaluated the percentage of the use case that
was correctly tracked. Our goal for success in a use case was 90%
which represents almost the whole use case correctly tracked. The
10% margin of error means that if the lecturer is miss-tracked it
would not be long enough to cause the viewer to lose any visual
context.

We also evaluated the efficiency of each run, where processing
time of more than 2 times the length of the video constitutes
failure. This limit was chosen because the total processing time
available to the system was limited to 3 times the length of the
video to make it tractable.

Table 5 - Lecturer use cases results

No. Likeli-
hood

Video
Length

(s)

Process
Time

(s)

%
Process

Time

Did
not

track
(s)

%
Correct
Track

1 3-5 57 66.192 116.13% 2 96.49%
2 3-5 31 32.756 105.66% 0 100%
3 3-5 48 46.648 97.18% 0 100%
4 1-2 85 90.575 106.56% 60 29.41%
5 3-5 40 44.879 112.20% 3 92.50%
6 1-2 48 56.975 118.70% 1 97.92%
7 1-2 46 52.147 113.36% 3 93.48%
8 3-5 40 45.824 114.56% 3 92.50%
9 3-5 72 85.613 118.91% 4 94.44%
10 1-2 17 19.67 115.71% 1 94.12%
11 1-2 16 21.707 135.67% 0 100%
12 1-2 24 28.274 117.81% 14 41.67%
13 1-2 32 40.115 125.36% 2 93.75%
14 1-2 162 156.31 96.49% 62 61.73%
15 1-2 30 37.577 125.26% 3 90%
16 3-5 32 36.397 113.74% 1 96.88%
17 1-2 77 76.248 99.02% 0 100%

From it’s clear that the runtime of each use case passed the
efficiency test. This can be ascribed to our approach of choosing
simple, cheap algorithms such as background subtraction and the
use of rectangle reasoning to track the lecturer. This is particularly
important since a lot of processing time went to reading and
decoding the large 4K frames where we couldn’t find any
efficiency gains. This I/O overhead represents a fundamental
lower bound on how fast any processing can occur

The results in Table 5 show that most of the tracking tests pass
with all the likely cases succeeding. We found that for most cases
enough lecturer movement was happening for the system to find
something large enough to track.

The tracking solution registers large movement well. This is
because the first step of our algorithm employs absolute difference
background subtraction. It also works well for moderate
movement because of the rectangle clustering algorithm.
Unfortunately, with very small or no movement there isn’t
enough information for our system to track the lecturer so we
default to the centre of the screen.

The results show that our tracking fails the 90% test for 3 of the
use cases. These are all unlikely use cases meaning that this
shouldn’t invalidate the usefulness of the tracking module.

Use case 4 evaluates many sudden light changes which caused
the 4K camera (which attempts to do light correction on the fly)
to reduce its effective frame rate and stutter. The test itself
leveraged lots of sudden light changes in quick succession which
is abnormal for lecturing conditions where the lecturer is more
likely to make a single lighting change. So, while this test
performed badly it represents a very unlikely sequence of events.

Use case 12 evaluates a lecturer running across the lecturing
area. When processed, the lecturer is moving quickly enough to
exit his or her ghost between frames. This means the ghost’s
position isn’t updated towards the new rectangle position as a
locational correlation wasn’t found. This problem is a direct result
of our frame sampling rate; if we skip fewer frames between a
detection step this effect can be lessened or removed entirely,
however, this would increase processing time for this module.

Use case 14 evaluates multiple students giving a presentation.
This use case only tracked the lecturer correctly 61,7% of the time.
Fundamentally this is meant to be a difficult use case for the
module to handle. When 3 students are presenting there is no
indication other than voice and nuanced movement to distinguish
who the presenter is at any one moment. While our system was
developed to handle temporary passing and occlusion of students
it still only tracks one lecturer. With this in mind, the problems
we noticed were the students who weren’t lecturing but were in
the view continued moving and thus retained their screen time
count. Additionally, because the role of speaker is passed between
students, the screen time counts are all mixed together. Therefore,
the lecturer is often decided by who of the 3 is most central in the
view.

The lecturer-tracking worked for all normal cases of lecturer
movement and only has difficulty in tracking abnormal behaviour
such as quick running, multiple students lecturing and continuous
sharp light changes. Given these encouraging results, we believe
this module could realistically be used for lecturer-tracking in real
lectures.

4.3 Virtual Cinematographer
We sent a reference output video from the VC module for
professional evaluation and we received the following remarks
concerning the video quality:
• The video starts untidily due to the lecturer-tracking

module since it struggles to identify the lecturer fast enough
to be unnoticeable.

8

• The camera acceleration and deceleration are very smooth
and effective at framing the presenter appropriately (in
most cases). There is also no point at which the movement
of the camera is jarring or unexpected.

• The resolution of the output video stream has more than
enough clarity and detail for viewers to read the writing on
the boards and see the lecturer’s gestures (which are the
main objectives for the VC to address). The camera height
was slightly too low for some of the writing, however.

• The output video was compared to the output videos from
competing approaches and the output of this program is
significantly better than that of the Axis Digital
Autotracking app which ran directly off the camera. It is
also equivalent to (or even slightly better than) the Axis
5915 camera and LectureSight real-time tracking solution.

• The VC has some shortcomings in its framing of the
lecturer when the lecturer is writing on the board.

4.4 System Runtime and Efficiency
Regarding runtime, the processing time taken to process a 50-
minute length video, categorised by the operation can be seen in.
A separate column shows the amount of time used for file Input
and Output (IO) operations. The I/O time can be mitigated by
using fast SSD, for example. Note that these results do not use
parallel implementations of algorithms or GPUs, so there is
certainly scope for improvement.

Table 6 - Runtime results

Operation Time taken
(Algorithm)

Time
taken (File

IO)

Total

Blackboard and
Usage Detection

15m20s 27m15s 42m35s

Movement
Recognition and
Tracking

29m15s 27m15s 56m30s

Virtual
Cinematographer

10m45s 32m15s 43m0s

TOTAL 55m20s 86m45s 142m5s

4.5 Discussion
Preliminary testing of the Blackboard and Usage Detection
module showed that using a feature detection algorithm is feasible
for this purpose and that further studies can be carried out in this
field. The feature detection approach worked and could recognise
the presence of handwriting. This is because feature detection
looks for edges and corner key points and any handwriting style
will always have these present.

The feature count threshold was chosen based on a small
sample of lecture videos. This could also be an influencing factor
in the failure of the board erasing test case and a more complex
approach may be required to deal with handwriting detection
artefacts.
The movement recognition and tracking module functions well
but there is room for improvement. The movement recognition

implemented with background subtraction techniques
fundamentally lacks any context about the movement it picks up.
While we have accommodated many contexts with our rectangle
clustering and other checks, there are still other possible
extensions such as utilising the colour characteristics of objects to
help differentiate them. Such characteristics could also be used in
the ghost reasoning section which struggled on tests where the
identity of who was lecturing was unclear.

Based on initial testing, the VC produces acceptable framing
but the cropping window is, at times, too low for some of the
content on the higher boards. This problem arises from the
exclusive use of horizontal panning to move the cropping
window. When the lecturer is writing on the board, the VC seems
to be worse at framing both. Improvements can thus be made to
the heuristics involving the lecturer and the use of the boards.

For the proposed processing r pipeline to be tractable, we
required that the time required for all video processing is within
300% of the input video’s length. Our results show that video post-
processing completed in less than 285% of the input video length,
within the prescribed 300% threshold. Furthermore, we found that
file I/O amounted to about 60% of the total system runtime. For
the VC, the time spent on I/O, about 75%, was much higher since
it also needed to save the smaller output video stream. The system
reduced the input file size from 1.97 GB to 219 MB in the output
video when using the MP4 CODEC - a 9-fold size reduction.

5 CONCLUSIONS
We have developed an automated post-production video editing
system capable of reducing the resolution of the input 4K video
by carefully selecting a small output cropping window to track the
lecturer and local context through the larger 4K frames. The
cropping window is moved in a way that mimics, to a large degree,
the camera control decisions that a human camera operator would
make when trying to keep the lecturer and board context in-frame
using a camera with a smaller field of view.

The first system module, board detection and usage, shows
promising initial results based on a feature detection algorithm,
although excessive smudging from chalkboard erasure is
problematic. The tracking module produces good results for the
general use case and works in some unlikely use cases too. The
VC reduces the video from 1.97 GB to 219 MB when using the MP4
CODEC, and the 720p video produced by the software is clear to
the point where the board contents are clearly legible and
lecturer’s gestures are clearly visible - a major objective of the
system. The system also successfully makes the cropping window
move as smoothly as a human cinematographer’s movements in a
way that respects accepted cinematography best practices
throughout the video.

6 FUTURE WORK
While expert opinion rates the video output as good, there is room
for improvement in several aspects of the system. These are being
actively pursued in ongoing research.

The writing detection in the blackboard and usage detection
module can be extended to be more robust by using a larger
sample of lecture videos using more complex heuristics to reject
spurious clusters of feature key points.

Technical Report CS17-01-00
University of Cape Town, 2017

 9

The lecturer-tracking solution currently functions on the
assumption that the lecturer will spend most of his or her time
near the middle of the field of view. Certain lecture theatres may
change this assumption. We could make use of the movement
mask calculated in the pre-processing step to build a more robust
solution and build this change into our algorithm (Code Block 1)

The framing section of the VC module has limitations and could
be refined. The crop window currently only moves along the x-
axis at a fixed position on the y-axis. This can be improved by
adding functionality to tilt the cropping window. Zoom
functionality can also be added in future version.

Currently, each module reads the entire file as it processes the
video This makes the program run for longer than necessary since
the frames being read are identical. This will be addressed in
future work by reading the file in once and sharing this
information across all 3 modules.

REFERENCES
[1] Demetriadis, S. and Pombortsis, A. 2007. e-Lectures for Flexible Learning: a

Study on Their Learning Efficiency. Educational Technology & Society. 10, 2
(2007), 147–157.

[2] Gonzalez-Agulla, E., Alba-Castro, J.L., Canto, H. and Goyanes, V. 2013.
GaliTracker: Real-Time Lecturer-Tracking for Lecture Capturing. 2013 IEEE
International Symposium on Multimedia (Anaheim, 2013), 462–467.

[3] Rui, Y., He, L., Gupta, A. and Liu, Q. 2001. Building an intelligent camera
management system. Proceedings of the ninth ACM international conference
on Multimedia - MULTIMEDIA ’01 (Ottawa, 2001), 2–11.

[4] Lampi, F., Kopf, S., Benz, M. and Effelsberg, W. 2007. An automatic
cameraman in a lecture recording system. Proceedings of the international
workshop on Educational multimedia and multimedia education - Emme ’07
(Augsburg, 2007), 11–18.

[5] Friedland, G. and Rojas, R. 2007. Anthropocentric Video Segmentation for
Lecture Webcasts. EURASIP Journal on Image and Video Processing. 2008, 1
(2007), 1–10.

[6] Wang, H. and Nguang, S.K. 2014. Video target tracking based on fusion state
estimation. 2014 International Symposium on Technology Management and
Emerging Technologies (Bandung, May 2014), 337–343.

[7] Wallick, M., Heck, R. and Gleicher, M. 2005. Marker and chalkboard regions.
Proceedings of Mirage 2005 (Rocquencourt, 2005), 223–228.

[8] Wallick, M.N., Gleicher, M.L. and Heck, R.M. 2003. Obtaining a Mid-level
Representation of Handwriting without Semantic Understanding. (2003).

[9] Onishi, M., Izumi, M. and Fukunaga, K. 2000. Blackboard segmentation using
video image of lecture and its applications. Proceedings 15th International
Conference on Pattern Recognition. ICPR-2000 (Barcelona, 2000), 615–618.

[10] Zhang, C., Rui, Y., He, L.W. and Wallick, M. 2005. Hybrid speaker tracking in
an automated lecture room. IEEE International Conference on Multimedia and
Expo, ICME 2005 (Amsterdam, 2005), 81–84.

[11] Arseneau, S. and Cooperstock, J.R. 1999. Presenter tracking in a classroom
environment. Industrial Electronics Society, 1999. IECON ’99 Proceedings.
The 25th Annual Conference of the IEEE (San Jose, 1999), 145–148.

[12] Gleicher, M.L., Heck, R.M. and Wallick, M.N. 2002. A framework for virtual
videography. Proceedings of the 2nd international symposium on Smart
graphics - SMARTGRAPH ’02 (Hawthorne, 2002), 9–16.

[13] Heck, R., Wallick, M. and Gleicher, M. 2007. Virtual videography. ACM
Transactions on Multimedia Computing, Communications, and Applications.
3, 1 (2007).

[14] Burelli, P. 2013. Virtual Cinematography in Games: Investigating the Impact
on Player Experience. International Conference On The Foundations Of
Digital Games (Chania, 2013), 134–141.

[15] Gleicher, M. and Masanz, J. 2000. Towards virtual videography (poster
session). Proceedings of the eighth ACM international conference on
Multimedia (Marina del Rey, 2000), 375–378.

[16] Jones, N. 2013. Quantification and Substitution: The Abstract Space of Virtual
Cinematography. Animation. 8, 3 (2013), 253–266.

[17] Nagai, T., Toyota, T., Nagoya, T., Nishizawa, K. and Imai, M. 2013.
Implementation of high-definition lecture recording system for daily use.
IEEE Global Engineering Education Conference (Berlin, 2013), 520–525.

[18] OpenCV library: http://opencv.org/. Accessed: 2017-05-17.
[19] Prechelt, L. 2000. An empirical comparison of C, C++, Java, Perl, Python, Rexx,

and Tcl for a search/string-processing program. (2000).
[20] Suzuki, S. and Be, K. 1985. Topological structural analysis of digitized binary

images by border following. Computer Vision, Graphics and Image
Processing. 30, 1 (Apr. 1985), 32–46.

[21] Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L. 2008. Speeded-Up Robust
Features (SURF). Computer Vision and Image Understanding. 110, 3 (2008),
346–359.

[22] Ponce, J. and Forsyth, D. 2012. Computer vision: a modern approach. Prentice
Hall.

[23] Thompson, M., Gonzalez, R.C.R., Wintz, P., Woods, R.E.R. and Masters, B.R.
2002. Digital image processing.

