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Abstract. We propose a method for an agent to revise its incomplete
probabilistic beliefs when a new piece of propositional information
is observed. In this work, an agent’s beliefs are represented by a set
of probabilistic formulae – a belief base. The method involves de-
termining a representative set of ‘boundary’ probability distributions
consistent with the current belief base, revising each of these proba-
bility distributions and then translating the revised information into a
new belief base. We use a version of Lewis Imaging as the revision
operation. The correctness of the approach is proved. An analysis of
the approach is done against six rationality postulates. The expres-
sivity of the belief bases under consideration are rather restricted, but
has some applications. We also discuss methods of belief base revi-
sion employing the notion of optimum entropy, and point out some of
the benefits and difficulties in those methods. Both the boundary dis-
tribution method and the optimum entropy methods are reasonable,
yet yield different results.

1 INTRODUCTION
Suppose an agent represents its probabilistic knowledge with a set of
statements; every statement says something about the probability of
some features the agent is aware of. Ideally, the agent would want
to have enough information to, at least, identify one probability dis-
tribution over all the situations (worlds) it deems possible. However,
if the agent could not gather sufficient data or if it was not told or
given sufficient information, it would not be able to pinpoint exactly
one probability distribution. An agent with this sort of ignorance,
can be thought of as having beliefs compatible with a set of distri-
butions. Now, this agent might need to revise its beliefs when new
(non-probabilistic) information is received, even though the agent’s
beliefs do not characterize a particular probability distribution over
its current possible worlds.

Several researchers argue that using a single probability distribu-
tion requires the agent to make unrealistically precise uncertainty dis-
tinctions [9, 27, 29].“One widely-used approach to dealing with this
has been to consider sets of probability measures as a way of model-
ing uncertainty,” [9]. However, simply applying standard probabilis-
tic conditioning to each of the measures/distributions in the set indi-
vidually and then combining the results is either not recommended
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because it produces unsatisfactory results [9, 27] or because it is not
computable due to the set being infinite. The framework presented
in this paper proposes two ways to go from one ‘probabilistically in-
complete’ belief base to another when new information is acquired.

Both belief revision methods presented, essentially follow this
process: From the original belief base, determine a relatively small
set of belief states / probability distributions which are ‘compatible’
with the belief base and in a sense, representative of the belief base.
(We shall use the terms belief state and probability distribution inter-
changeably). Then revise only the belief states in this representative
set. Finally, induce a new, revised belief base from the revised repre-
sentative set.

We shall present two approaches to determine the representative
set of belief states from the current belief base: (i) The approach
we focus on involves finding belief states which, in a sense, are at
the boundaries of the constraints implied by the belief base. These
‘boundary belief states’ can be thought of as drawing the outline of
the convex space of beliefs. This outline is then revised to form a new
outline shape, which can be translated into a new belief base. (ii) As a
possible alternative approach, the representative set is a single belief
state which can be imagined to be at the center of the outline of the
first approach. This ‘central’ belief state is found by determining the
one in the space of beliefs which is least biased or most entropic in
terms of information theory [11, 4].

For approach (i) – where the canonical set is the set of boundary
belief states – we shall prove that the revised canonical set character-
izes the set of all belief states which would have resulted from revis-
ing all (including interior) belief states compatible with the original
belief base.

The next section provides the relevant background theory and no-
tation. Section 3 presents a generalized imaging method for revis-
ing probabilistic belief states. Then we describe the application of
generalized imaging in our main contribution; revising boundary be-
lief states instead of all belief states. The subsequent section explain
two other approaches of revising our belief bases, based on optimum
entropy. The first method finds a single representative belief state
through maximum entropy inference and the second method revises
boundary belief states using minimum cross-entropy inference. All
three methods can be considered motivated methods, yet yield differ-
ent results. Then, in Section 6, we shall list six traditional rationality
postulates, and check how well the main approach fares against them.
The related work is discussed in Section 7. We end with a section on
future possible directions of research and some concluding remarks.

2 PRELIMINARIES
We shall work with classical propositional logic. Let P be the finite
set of n atomic propositional variables (atoms, for short). Formally,
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a world is a unique assignment of truth values to all the atoms in
P . There are thus 2n conceivable worlds. An agent may consider
some non-empty subset W of the conceivable worlds; W is called
the possible worlds. Often, in the exposition of this paper, a world
will be referred to by its truth vector. For instance, if the vocabulary
is placed in order 〈q, r〉 and w3 � ¬q ∧ r, then w3 may be referred
to as 01.5 Let L be all propositional formulae which can be formed
from P and the logical connectives ∧ and ¬, with � abbreviating
tautology and ⊥ abbreviating contradiction.

Let β be a sentence in L. [β] denotes the set of β-worlds, that is,
the elements of W satisfying β. The worlds satisfying all sentences
in a set of sentences K are denoted by [K].

We define the probabilistic language Lprob = {(α) �� x | α ∈
L, ��∈ {≤,=,≥}, x ∈ [0, 1]}. We propose a belief base (BB) to be
a consistent (logically satisfiable) subset of Lprob . A BB specifies an
agent’s knowledge.

The basic semantic element of an agent’s beliefs is a probability
distribution or a belief state

b = {(w1, p1), (w2, p2), . . . , (wn, pn)},
where pi is the probability that wi is the actual world in which the
agent is.

∑
(w,p)∈b p = 1. We may also use c to refer to a be-

lief state. For parsimony, let b = 〈p1, . . . , pn〉 be the probabilities
that belief state b assigns to w1, . . . , wn where 〈w1, w2, w3, w4〉 =
〈11, 10, 01, 00〉, and 〈w1, w2, . . . , w8〉 = 〈111, 110, . . . , 000〉. Let
Π be the set of all belief states over W .

b(α) abbreviates
∑

w∈W,w�α b(w). b satisfies formula (α) �� x
(denoted b � (α) �� x) iff b(α) �� x. If B is a set of formulae, then b
satisfies B (denoted b � B) iff ∀γ ∈ B, b � γ. If B and B′ are sets
of formulae, then B entails B′ (denoted B |= B′) iff for all b ∈ Π,
b � B′ whenever b � B. If B |= {γ} then we simply write B |= γ.
B is logically equivalent to B′ (denoted B ≡ B′) iff B |= B′ and
B′ |= B.

Instead of an agent’s beliefs being represented by a single belief
state, a BB B represents a set of belief-states: Let ΠB := {b ∈ Π |
b � B}. A BB B is satisfiable (consistent) iff ΠB �= ∅. We can now
also define entailment as B |= B′ iff ΠB ⊆ ΠB′

.
The technique of Lewis imaging for the revision of belief states,

requires a notion of distance between worlds to be defined. Various
notions of distance are possible, however, a study of their influence
on the imaging technique is beyond the scope of this paper. We use a
pseudo-distance measure between worlds, as defined by Lehmann et
al. [18] and adopted by Chhogyal et al. [3]. We add a ‘faithfulness’
condition, which we feel is lacking from the definition of Lehmann
et al. [18]: without this condition, a pseudo-distance measure would
allow all worlds to have zero distance between them. Boutilier [2]
mentions this condition, and we use his terminology: “faithfulness”.

Definition 1 A pseudo-distance function d : W ×W → Z satisfies
the following five conditions: for all worlds w,w′, w′′ ∈ W ,

1. d(w,w′) ≥ 0 (Non-negativity)
2. d(w,w) = 0 (Identity)
3. d(w,w′) = d(w′, w) (Symmetry)
4. d(w,w′) + d(w′, w′′) ≥ d(w,w′′) (Triangular Inequality)
5. if w �= w′, then d(w,w′) > 0 (Faithfulness)

Presently, the foundation theory, or paradigm, for studying belief
change operations is commonly known as AGM theory [1, 7]. Typ-
ically, belief change (in a static world) can be categorized as expan-
sion, revision or contraction, and is performed on a belief set, the set
5 w � α is read ‘w is a model for/satisfies α’.

of sentences K closed under logical consequence. Expansion (de-
noted +) is the logical consequences of K ∪ {α}, where α is new
information and K is the current belief set. Contraction of α is the
removal of some sentences until α cannot be inferred from K. Re-
vision is when α is (possibly) inconsistent with K and K is (mini-
mally) modified so that the new K remains consistent and entails α.
In this view, when the new information is consistent with the original
beliefs, expansion and revision are equivalent.

3 GENERALIZED IMAGING
It is not yet universally agreed what revision means in a probabilistic
setting. One school of thought says that probabilistic expansion is
equivalent to Bayesian conditioning. This is evidenced by Bayesian
conditioning (BC) being defined only when b(α) �= 0, thus making
BC expansion equivalent to BC revision. In other words, one could
define expansion (restricted revision) to be

b BC α = {(w, p) | w ∈ W, p = b(w | α), b(α) �= 0},

where b(w | α) can be defined as b(φw ∧ α)/b(α) and φw is a
sentence identifying w (i.e., a complete theory for w).

To accommodate cases where b(α) = 0, that is, where α contra-
dicts the agent’s current beliefs and its beliefs need to be revised in
the stronger sense, we shall make use of imaging. Imaging was intro-
duced by Lewis [20] as a means of revising a probability distribution,
and has been discussed in other work too [7, 6, 3, 25]. Informally,
Lewis’s original solution for accommodating contradicting evidence
α is to move the probability of each world to its closest, α-world.
Lewis made the strong assumption that every world has a unique
closest α-world. More general versions of imaging allows worlds to
have several, equally proximate, closest worlds.

Gärdenfors [7] calls one generalization of Lewis’s imaging, gen-
eral imaging. Our method is also a generalization of Lewis’s imag-
ing. We thus refer to his as Gärdenfors’s general imaging and to
our method as generalized imaging to distinguish them. It should be
noted that all three these imaging methods are general revision meth-
ods and can be used in place of Bayesian conditioning for expansion.
“Thus imaging is a more general method of describing belief changes
than conditionalization,” [7, p. 112] in the sense that Bayesian con-
ditioning cannot deal with contradicting evidence but imaging can.

Let Min(α,w, d) be the set of α-worlds closest to w with respect
to pseudo-distance d. Formally,

Min(α,w, d) :=

{w′ ∈ [α] | ∀w′′ ∈ [α], d(w′, w) ≤ d(w′′, w)},

where d(·) is some pseudo-distance measure between worlds (e.g.,
Hamming or Dalal distance).

Example 1 Let the vocabulary be {q, r, s}. Let α be (q ∧ r) ∨ (q ∧
¬r ∧ s). Suppose d is Hamming distance. Then

Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 111, d) = {111}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 110, d) = {110}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 101, d) = {101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 100, d) = {110, 101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 011, d) = {111}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 010, d) = {110}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 001, d) = {101}
Min((q ∧ r) ∨ (q ∧ ¬r ∧ s), 000, d) = {110, 101}

�
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Definition 2 (GI) Then generalized imaging (denoted GI) is defined
as

b GI α :=
{
(w, p) | w ∈ W, p = 0 if w �∈ [α],

else p =
∑

w′∈W
w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|
}
.

In words, bGIα is the new belief state produced by taking the gener-
alized image of b with respect to α. Notice how the probability mass
of non-α-worlds is shifted to their closest α-worlds. If a non-α-world
w× with probability p has n closest α-worlds (equally distant), then
each of these closest α-worlds gets p/n mass from w×.

We define b◦α := b ◦ α so that we can write b◦α(w), where ◦ is a
revision operator.

Example 2 Continuing on Example 1: Let b =
〈0, 0.1, 0, 0.2, 0, 0.3, 0, 0.4〉.

(q ∧ r) ∨ (q ∧ ¬r ∧ s) is abbreviated as α.

bGIα (111) =
∑

w′∈W
111∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(111)/|Min(α, 111, d)|+ b(011)/|Min(α, 011, d)|
= 0/1 + 0/1 = 0.

bGIα (110) =
∑

w′∈W
110∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(110)/|Min(α, 110, d)|+ b(100)/|Min(α, 100, d)|
+ b(010)/|Min(α, 010, d)|+ b(000)/|Min(α, 000, d)|

= 0.1/1 + 0.2/2 + 0.3/1 + 0.4/2 = 0.7.

bGIα (101) =
∑

w′∈W
101∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

= b(101)/|Min(α, 101, d)|+ b(100)/|Min(α, 100, d)|
+ b(001)/|Min(α, 001, d)|+ b(000)/|Min(α, 000, d)|

= 0/1 + 0.2/2 + 0/1 + 0.4/2 = 0.3.

And bGIα (100) = bGIα (011) = bGIα (010) = bGIα (001) = bGIα (000) =
0. �

4 REVISION VIA GI AND BOUNDARY BELIEF
STATES

The most obvious way to revise a given belief base (BB) B is to
revise every individual belief state in ΠB and then induce a new BB
from the set of revised belief states. Formally, given observation α,
first determine a new belief state bα for every b ∈ ΠB via the defined
revision operation:

ΠBα

= {bα ∈ Π | bα = b GI α, b ∈ ΠB}.

If there is more than only a single belief state in ΠB , then ΠB con-
tains an infinite number of belief states. Then how can one compute
ΠBα

? And how would one subsequently determine Bα from ΠBα

?

In the rest of this section we shall present a finite method of de-
termining ΠBα

. What makes this method possible is the insight that
ΠB can be represented by a finite set of ‘boundary’ belief states –
those belief states which, in a sense, represent the limits or the con-
vex hull of ΠB . We shall prove that the set of revised boundary belief
states defines ΠBα

. Inducing Bα from ΠBα

is then relatively easy,
as will be seen.

Let W perm be every permutation on the ordering of
worlds in W . For instance, if W = {w1, w2, w3, w4}, then
W perm = {〈w1, w2, w3, w4〉, 〈w1, w2, w4, w3〉, 〈w1, w3, w2, w4〉,
. . ., 〈w4, w3, w2, w1〉}. Given an ordering W# ∈ W perm ,
let W#(i) be the i-th element of W#; for instance,
〈w4, w3, w2, w1〉(2) = w3. Suppose we are given a BB B.
We now define a function which, given a permutation of worlds,
returns a belief state where worlds earlier in the ordering are
assigned maximal probabilities according to the boundary values
enforced by B.

Definition 3 MaxASAP(B,W#) is the b ∈ ΠB such that for
i = 1, . . . , |W |, ∀b′ ∈ ΠB , if b′ �= b, then

∑i
j=1 b(W

#(j)) ≥∑i
k=1 b

′(W#(k)).

Example 3 Suppose the vocabulary is {q, r} and B1 = {(q) ≥
0.6}. Then, for instance, MaxASAP(B1, 〈01, 00, 11, 10〉)
= {(01, 0.4), (00, 0), (11, 0.6), (10, 0)} = {(11, 0.6), (10, 0),
(01, 0.4), (00, 0)}. �

Definition 4 We define the boundary belief states of BB B as the set
ΠB

bnd := {b ∈ ΠB | W# ∈ W perm , b = MaxASAP(B,W#)}.

Example 4 Suppose the vocabulary is {q, r} and B1 = {(q) ≥
0.6}. Then

ΠB1
bnd = {{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},

{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.4), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.0), (00, 0.4)}}.

�

Next, the revision operation is applied to every belief state in ΠB
bnd .

Let (ΠB
bnd)

GI
α := {b′ ∈ Π | b′ = bGIα , b ∈ ΠB

bnd}.

Example 5 Suppose the vocabulary is {q, r} and B1 = {(q) ≥
0.6}. Let α be (q ∧ ¬r) ∨ (¬q ∧ r). Then

(ΠB1
bnd)

GI
α = {{(11, 0.0), (10, 0.5), (01, 0.5), (00, 0.0)},

{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.0), (10, 0.3), (01, 0.7), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.8), (01, 0.2), (00, 0.0)}}.

(Two revision operations produce
{(11, 0), (10, 0.5), (01, 0.5), (00, 0)}.) �

To induce the new BB Bα
bnd from (ΠB

bnd)
GI
α , the following pro-

cedure is executed. For every possible world, the procedure adds a
sentence enforcing the upper (resp., lower) probability limit of the
world, with respect to all the revised boundary belief states. Trivial
limits are excepted.
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For every w ∈ W , (φw) ≤ y ∈ Bα, where y =
maxb∈(ΠB

bnd
)GIα

b(w), except when y = 1, and (φw) ≥ y ∈ Bα,
where y = minb∈(ΠB

bnd
)GIα

b(w), except when y = 0.

The intention is that the procedure specifies Bα to represent the
upper and lower probability envelopes of the set of revised boundary
belief states. And thus, by Theorem 1, Bα defines the entire revised
belief state space.

Example 6 Continuing Example 5, using the translation procedure
just above, we see that Bα

1bnd = {(φ11) ≤ 0, (φ10) ≥ 0.3, (φ01) ≤
0.7, (φ00) ≤ 0.0}.

Note that if we let B′ = {((q ∧¬r)∨ (¬q ∧ r)) = 1, (q ∧¬r) ≥
0.3}, then ΠB′

= ΠBα
1bnd . �

Example 7 Suppose the vocabulary is {q, r} and B2 = {(¬q ∧
¬r) = 0.1}. Let α be ¬q. Then

ΠB2
bnd = {{(11, 0.9), (10, 0), (01, 0), (00, 0.1)},

{(11, 0), (10, 0.9), (01, 0), (00, 0.1)},
{(11, 0), (10, 0), (01, 0.9), (00, 0.1)}},

(ΠB2
bnd)

GI
α = {{(11, 0), (10, 0), (01, 0.9), (00, 0.1)},

{(11, 0), (10, 0), (01, 0), (00, 1)}} and

Bα
2bnd = {(φ11) ≤ 0, (φ10) ≤ 0, (φ01) ≤ 0.9, (φ00) ≥ 0.1}.
Note that if we let B′ = {(¬q) = 1, (¬q ∧ r) ≤ 0.9}, then

ΠB′
= ΠBα

2bnd . �

Note that every world in W can be associated with the size of
Min(α,w, d) for some α and d. Denote this size as #(w). Let
WMin(α,d) be a partition of W such that every block (equivalence
class) blk of the partition is defined as follows. blk = {w1, . . . , wk}
iff #(w1) = · · · = #(wk). Let [w] denote block blk iff w ∈ blk .
Finally, let wi indicate that i = #(w), in other words, [wi] is
the block containing all worlds such that i = |Min(α,w, d)|. Let
m := maxw∈W {|Min(α,w, d)|}.

Observation 1 Let δ1, δ2, . . . , δm be positive integers such that
i < j iff δi < δj . Let ν1, ν2, . . . , νm be values in [0, 1] such that∑m

k=1 νk = 1. Associate with every νi a maximum value it is al-
lowed to take: most(νi). For every νi, we define the assignment
value

av(νi) :=

{
most(νi) if

∑i
k=1 ≤ 1

1−
∑i−1

k=1 otherwise

Determine first av(ν1), then av(ν2) and so on. Then

av(ν1)

δ1
+ · · ·+ av(νm)

δm
>

ν′
1

δ1
+ · · ·+ ν′

m

δm

whenever ν′
i �= av(νi) for some i. �

For instance, let δ1 = 1, δ2 = 2, δ3 = 3, δ4 = 4. Let most(ν1) =
0.5, most(ν2) = 0.3, most(ν3) = 0.2, most(ν4) = 0.3. Then
av(ν1) = 0.5, av(ν2) = 0.3, av(ν3) = 0.2, av(ν4) = 0 and

0.5

1
+

0.3

2
+

0.2

3
+

0

4
= 0.716.

But
0.49

1
+

0.3

2
+

0.2

3
+

0.01

4
= 0.709.

And
0.5

1
+

0.29

2
+

0.2

3
+

0.01

4
= 0.714.

Lemma 1 essentially says that the belief state in ΠB which causes
a revised belief state to have a maximal value at world w (w.r.t. all
belief states in ΠB), will be in ΠB

bnd .

Lemma 1 For all w ∈ W ,
argmaxbX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)
bX(w′)/|Min(α,w′, d)| is in

ΠB
bnd .

Proof:
Note that

∑
w′∈W

w∈Min(α,w′,d)
b(w′)/|Min(α,w′, d)| can be written in

the form∑
w′∈[w1]

w∈Min(α,w′,d)
b(w′)

1
+ · · ·+

∑
w′∈[wm]

w∈Min(α,w′,d)
b(w′)

m
.

Observe that there must be a W# ∈ W perm such that W# =
〈w1

1, . . . , w
1
n1, . . . , w

m
1 , . . . , wm

nm〉. Then by the definition of the set
of boundary belief states (Def. 4), MaxASAP(B,W#) will as-
sign maximal probability mass to [w1] = {w1

1, . . . , w
1
n1}, then to

[w2] = {w2
1, . . . , w

m
n2} and so on.

That is, by Observation 1, for some bx ∈ ΠB
bnd ,

bx(w) = maxbX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)
bX(w′)/|Min(α,w′, d)|

for all w ∈ W . Therefore,
argmaxbX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)
bX(w′)/|Min(α,w′, d)| is in

ΠB
bnd . �

Let
xw := maxb∈ΠB

bnd
b(w) X

w
:= maxb∈ΠB b(w)

yw := maxb∈(ΠB
bnd

)GI
α

b(w) Y
w
:= maxb∈(ΠB)GI

α
b(w)

xw := minb∈ΠB
bnd

b(w) Xw := minb∈ΠB b(w)

yw := minb∈(ΠB
bnd

)GI
α

b(w) Y w := minb∈(ΠB)GI
α

b(w)

Lemma 2 states that for every world, the upper/lower probability
of the world with respect to ΠB

bnd is equal to the upper/lower proba-
bility of the world with respect to ΠB . The proof requires Observa-
tion 1 and Lemma 1.

Lemma 2 For all w ∈ W , yw = Y
w

and yw = Y w.

Proof:
Note that if w �∈ [α], then yw = Y

w
= 0 and yw = Y w = 0.

We now consider the cases where w ∈ [α].

yw = Y
w

iff
max

b∈(ΠB
bnd

)
b(w) = max

b∈(ΠB)
b(w)

iff

max
bx∈ΠB

bnd

∑
w′∈W

w∈Min(α,w′,d)

bx(w
′)/|Min(α,w′, d)|

= max
bX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)|
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if
bx(w) = bX(w), where

bx(w) := max
bx∈ΠB

bnd

∑
w′∈W

w∈Min(α,w′,d)

bx(w
′)/|Min(α,w′, d)|

and

bX(w) := max
bX∈ΠB

∑
w′∈W

w∈Min(α,w′,d)

bX(w′)/|Min(α,w′, d)|.

Note that ∑
w′∈W

w∈Min(α,w′,d)

b(w′)/|Min(α,w′, d)|

can be written in the form∑
w′∈[w1]

w∈Min(α,w′,d)
b(w′)

1
+ · · ·+

∑
w′∈[wm]

w∈Min(α,w′,d)
b(w′)

m
.

Then by Observation 1, bX(w) is in ΠB
bnd . And also by Lemma 1,

the belief state in ΠB
bnd identified by bX(w) must be the one which

maximizes ∑
w′∈W

w∈Min(α,w′,d)

bx(w
′)/|Min(α,w′, d)|,

where bx ∈ ΠB
bnd . That is, bx = bX .

With a symmetrical argument, it can be shown that yw = Y w. �

Informally, the following theorem says that the BB determined
through the method of revising boundary belief states captures ex-
actly the same beliefs and ignorance as the belief states in ΠB which
have been revised. This correspondence relies on the fact that the
upper and lower probability envelopes of ΠB can be induced from
ΠB

bnd , which is what Lemma 2 states.

Theorem 1 Let (ΠB)GIα := {bGIα ∈ Π | b ∈ ΠB}. Let Bα
bnd be the

BB induced from (ΠB
bnd)

GI
α . Then ΠBα

bnd = (ΠB)GIα .

Proof:
We show that ∀b′∈Π, b′∈ΠBα

bnd ⇐⇒ b′∈(ΠB)GIα .
(⇒) b′ ∈ ΠBα

bnd implies ∀w ∈ W , yw ≤ b′(w) ≤ yw (by def-
inition of Bα

bnd ). Lemma 2 states that for all w ∈ W , yw = Y
w

and yw = Y w. Hence, ∀w ∈ W , Y w ≤ b′(w) ≤ Y
w

Therefore,
b′(w) ∈ (ΠB)GIα .

(⇐) b′(w) ∈ (ΠB)GIα implies ∀w ∈ W , Y w ≤ b′(w) ≤ Y
w

.
Hence, by Lemma 2, ∀w ∈ W , yw ≤ b′(w) ≤ yw. Therefore, by
definition of Bα

bnd , b′∈ΠBα
bnd . �

5 REVISION VIA OPTIMUM ENTROPY
INFERENCE

Another approach to the revision of a belief base (BB) is to determine
a representative of ΠB (call it brep), change the representative belief
state via the the defined revision operation and then induce a new BB
from the revised representative belief state. Selecting a representative
probability distribution from a family of such functions is not new [8,
22, e.g.]. More formally, given observation α, first determine brep ∈
ΠB , then compute its revision bαrep , and finally induce Bα from bαrep .

We shall represent ΠB (and thus B) by the single ‘least biased’
belief state, that is, the belief state in ΠB with highest entropy:

Definition 5 (Shannon Entropy)

H(b) := −
∑
w∈W

b(w) ln b(w),

where b is a belief state.

Definition 6 (Maximum Entropy) Traditionally, given some set of
distributions Π, the most entropic distribution in Π is defined as

bH := argmax
b∈Π

H(b).

Suppose B2 = {(¬q∧¬r) = 0.1}. Then the belief state b ∈ ΠB2

satisfying the constraints posed by B2 for which H(b) is maximized
is brep = bH = 〈0.3, 0.3, 0.3, 0.1〉.

The above distribution can be found directly by applying the prin-
ciple of maximum entropy: The true belief state is estimated to be the
one consistent with known constraints, but is otherwise as unbiased
as possible, or “Given no other knowledge, assume that everything
is as random as possible. That is, the probabilities are distributed
as uniformly as possible consistent with the available information,”
[24]. Obviously world 00 must be assigned probability 0.1. And the
remaining 0.9 probability mass should be uniformly spread across
the other three worlds.

Applying GI to brep on evidence ¬q results in b¬q
rep = 〈0, 0, 0.6,

0.4〉.

Example 8 Suppose the vocabulary is {q, r}, B1 = {(q) ≥ 0.6}
and α is (q ∧ ¬r) ∨ (¬q ∧ r). Then brep = argmaxb∈ΠB1 H(b) =
〈0.3, 0.3, 0.2, 0.2〉. Applying GI to brep on α results in bαrep = 〈0,
0.61, 0.39, 0〉. bαrep can be translated into Bα

1rep as {(q ∧ ¬r) =
0.61, (¬q ∧ r) = 0.39}. �

Still using α = (q ∧ ¬r) ∨ (¬q ∧ r), notice that ΠBα
1rep �= ΠBα

1bnd .
But how different are Bα

1rep = {(q ∧¬r) = 0.61, (¬q ∧ r) = 0.39}
and Bα

1bnd = {(q ∧ r) ≤ 0, (q ∧ ¬r) ≥ 0.3, (¬q ∧ r) ≤ 0.7, (¬q ∧
¬r) ≤ 0.0}? Perhaps one should ask, how different Bα

1rep is from
the representative of Bα

1bnd : The least biased belief state satisfying
Bα

1bnd is 〈0, 0.5, 0.5, 0〉. That is, How different are 〈0, 0.61, 0.39, 0〉
and 〈0, 0.5, 0.5, 0〉?

In the case of B2, we could compare B¬q
2bnd = {(φ11) ≤ 0,

(φ10) ≤ 0, (φ01) ≤ 0.9, (φ00) ≥ 0.1} with b¬q
rep = 〈0, 0, 0.6,

0.4〉. Or if we take the least biased belief state satisfying B¬q
2bnd , we

can compare 〈0, 0, 0.5, 0.5〉 with 〈0, 0, 0.6, 0.4〉.
It has been extensively argued [11, 26, 23] that maximum entropy

is a reasonable inference mechanism, if not the most reasonable one
(w.r.t. probability constraints). On the other hand, the boundary be-
lief states method also seems like a very reasonable inference mech-
anism for revising BBs as defined here, in the sense that it causes
information loss. Resolving this misalignment in the results of the
two methods is an obvious task for future research.

An extended version of maximum entropy is minimum cross-
entropy (MCE) [17, 5]:

Definition 7 (Minimum Cross-Entropy) The ‘directed diver-
gence’ of distribution c from distribution b is defined as

R(c, b) :=
∑
w∈W

c(w) ln
c(w)

b(w)
.

R(c, b) is undefined when b(w) = 0 while c(w) > 0; when c(w) =
0, R(c, b) = 0, because limx→0 ln(x) = 0. Given new evidence
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φ ∈ Lprob , the distribution c satisfying φ diverging least from current
belief state b is

argmin
c∈Π,c�φ

R(c, b).

Definition 8 (MCI) Then MCE inference (denoted (MCI)) is defined
as

bMCI α := argmin
b′∈Π,b′�(α)=1

R(b′, b).

In the following example, we interpret revision as MCE inference.

Example 9 Suppose the vocabulary is {q, r} and B1 = {(q) ≥
0.6}. Let α be (q ∧ ¬r) ∨ (¬q ∧ r). Then

ΠB1
bnd = {{(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)},

{(11, 0.0), (10, 1.0), (01, 0.0), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.4), (00, 0.0)},
{(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)},
{(11, 0.0), (10, 0.6), (01, 0.4), (00, 0.0)},
{(11, 0.0), (10, 0.6), (01, 0.0), (00, 0.4)}},

(ΠB1
bnd)

MCI
α = {{(11, 0), (10, 0), (01, 1), (00, 0)},

{(11, 0), (10, 1), (01, 0), (00, 0)},
{(11, 0), (10, 0.6), (01, 0.4), (00, 0)}} and

Bα
1bnd = {(φ11) ≤ 0, (φ00) ≤ 0}.
Note that if we let B′ = {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1}, then

ΠB′
= ΠBα

1bnd . �

Recall from Example 6 that B′ included (q ∧ ¬r) ≥ 0.3.
Hence, in this particular case, combining the boundary belief states
approach with MCI results in a less informative revised belief
base than when GI is used. The reason for the loss of informa-
tion might be due to R(·, {(11, 1.0), (10, 0.0), (01, 0.0), (00, 0.0)})
and R(·, {(11, 0.6), (10, 0.0), (01, 0.0), (00, 0.4)}) being unde-
fined: Recall that R(c, b) is undefined when b(w) = 0 while c(w) >
0. But then there is no belief state c for which c � α and R(·) is
defined (with these two belief states as arguments). Hence, there are
no revised counterparts of these two belief states in (ΠB1

bnd)
MCI
α . We

would like to analyse MCI more within this framework. In particular,
in the future, we would like to determine whether a statement like
Theorem 1 holds for MCI too.

In MCE inference, b-consistency of evidence φ is defined as:
There exists a belief state c such that c � φ and c is totally con-
tinuous with respect to b (i.e., b(w) = 0 implies c(w) = 0). MCE
is undefined when the evidence is not b-consistent. This is analogous
to Bayesian conditioning being undefined for b(α) = 0. Obviously,
this is a limitation of MCE because some belief states may not be
considered as candidate revised belief states.

6 RATIONALITY POSTULATES
In this section, we assess the operation of revising a belief base B
by α via GI (denoted Bα) with respect to several rationality postu-
lates. Katsuno and Mendelzon [12] modified the eight AGM belief
revision postulates [1] to the following six ((R1)-(R6)). The postu-
lates are intended to be an ideal standard of rationality with respect
to the behavior of any revision operator. We shall simply translate
(=⇒) each postulate into one appropriate for belief bases (in the no-
tation of this paper) in order to get a sense of which ones are satisfied

and which not. We then intend to use this information to guide us
in drawing up appropriate generalised postulates in the future. 6 In
their notation [12], given a knowledge base represented by a propo-
sitional sentence ψ and an observation represented by a propositional
sentence μ, ψ ◦ μ denotes the revision of ψ by μ.7

(R1) ψ ◦ μ implies μ =⇒
(RB1) Bα |= (α) = 1.

Proposition 1 Postulate (RB1) holds.

Proof:
By definition of GI, all probability mass is shifted to closest α-
worlds. For every revised boundary belief state bbnd , it is thus the
case that bbnd(α) = 1. By the process of inducing Bα, it must be
that Bα entails (α) = 1. �

(R2) If ψ ∧ μ is satisfiable, then ψ ◦ μ ≡ ψ ∧ μ =⇒
(RB2) If B∪{(α) = 1} is satisfiable, then Bα ≡ B∪{(α) = 1}.

Proposition 2 Postulate (RB2) does not hold.

Proof:
Recall that B1 = {(q) ≥ 0.6}. Example 6 shows that
B

(q∧¬r)∨(¬q∧r)
1 ≡ B′ = {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1, (q ∧ ¬r) ≥

0.3}. Therefore, B′ |= (q ∧ ¬r) ≥ 0.3. But B1 ∪ {((q ∧ ¬r) ∨
(¬q∧ r)) = 1}, although satisfiable, does not entail (q∧¬r) ≥ 0.3.
Hence, B′ �≡ B1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1}. �

Let B4 = {(q ∧ r) = 0.2, (q ∧ ¬r) = 0.8}. Then Bq
4 ≡ B4 ≡

B4 ∪ {(q) = 1}. Notice that B4 specifies a particular belief state.
One can see that Postulate (RB2) will hold whenever the BB to be
revised specifies a particular belief state (i.e., whenever |ΠB | = 1).

(R3) If μ is satisfiable, then ψ ◦ μ is also satisfiable =⇒
(RB3) If (α) = 1 is satisfiable, then Bα is also satisfiable.

Proposition 3 Postulate (RB3) holds.

Proof:
(α) = 1 is satisfiable iff α is. And if α is satisfiable, then every
boundary belief state of B revised by α is defined. Hence, Bα must
be defined, i.e., satisfiable. �

(R4) If ψ ≡ ψ′ and μ ≡ μ′, then ψ ◦ μ ≡ ψ′ ◦ μ′ =⇒
(RB4) If B ≡ C and α ≡ β, then Bα ≡ Cβ .

Proposition 4 Postulate (RB4) holds.

Proof:
By definition, if B ≡ C, then ΠB = ΠC . Hence, the boundary belief
states for B and C are the same. And given α ≡ β, it must be the
case that Bα ≡ Cβ . �

(R5) (ψ ◦ μ) ∧ φ implies ψ ◦ (μ ∧ φ) =⇒
(RB5) Bα ∪ {(β) = 1} |= Bα∧β .

Proposition 5 Postulate (RB5) does not hold.

Proof:
Let α be �. Then Bα ≡ B and Bα∧β ≡ Bβ . Now let β be (q ∧
¬r) ∨ (¬q ∧ r). We can thus ask whether B ∪ {(β) = 1} |= Bβ .

Consider Example 6. Recall that B(q∧¬r)∨(¬q∧r)
1 |= (q ∧ ¬r) ≥

0.3. That is, ∀b ∈ ΠB
(q∧¬r)∨(¬q∧r)
1 , b � (q ∧¬r) ≥ 0.3. And recall

6 In these postulates, it is sometimes necessary to write an observation α
as a BB, i.e., as {(α) = 1} – in the present framework, observations are
regarded as certain.

7 ◦ is some revision operator.
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that B1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1} �|= (q ∧ ¬r) ≥ 0.3. That
is, ∃b ∈ ΠB1∪{((q∧¬r)∨(¬q∧r))=1} s.t. b �� (q ∧ ¬r) ≥ 0.3. Hence,

ΠB1∪{((q∧¬r)∨(¬q∧r))=1} �⊆ ΠB
(q∧¬r)∨(¬q∧r)
1 and by the definition

of |=, B1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1} �|= B
(q∧¬r)∨(¬q∧r)
1 . �

If Bα ∪ {(β) = 1} is not satisfiable, then (RB5) holds trivially.
If Bα ∪ {(β) = 1} is satisfiable, then α logically entails β, im-
plying that α ∧ β ≡ α. Then we can ask whether Bα ∪ {(β) =
1} |= Bα? Assuming B specifies a particular belief state, clearly
ΠBα∪{(β)=1} ⊆ ΠBα

and (RB5) holds. So the difficulties come in
when |ΠB | > 1.

(R6) If (ψ◦μ)∧φ is satisfiable, then ψ◦(μ∧φ) implies (ψ◦μ)∧φ
=⇒

(RB6) If Bα ∪ {(β) = 1} is satisfiable, then Bα∧β |= Bα ∪
{(β) = 1}.

Proposition 6 Postulate (RB6) does not hold.

Proof:
Let α be �. Then (RB6) becomes: If B ∪ {(β) = 1} is satisfiable,
then Bβ |= B ∪ {(β) = 1}.

Consider Example 6. Let β be (q ∧ ¬r) ∨ (¬q ∧ r). Note that
B1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1} is satisfiable. Then by (RB6),
B

(q∧¬r)∨(¬q∧r)
1 |= B1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1}. But this is

false:
Let b = 〈0, 0.5, 0.5, 0〉. Then

b ∈ ΠB
(q∧¬r)∨(¬q∧r)
1 = Π{((q∧¬r)∨(¬q∧r))=1,(q∧¬r)≥0.3}, but

b �∈ ΠB1∪{((q∧¬r)∨(¬q∧r))=1} = Π{(q)≥0.6,((q∧¬r)∨(¬q∧r))=1}.

Hence, ΠB
(q∧¬r)∨(¬q∧r)
1 �⊆ ΠB

1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1}.
Therefore, B(q∧¬r)∨(¬q∧r)

1 �|= B1 ∪ {((q ∧ ¬r) ∨ (¬q ∧ r)) = 1}.
�

From the discussion of Postulate (RB5), we notice that given the
antecedent of (RB6), Bα ∪ {(β) = 1} ≡ Bα. Thus, the consequent
of (RB6) becomes Bα |= Bα. This means that (RB6) holds when
|ΠB | = 1. Again, the difficulties come in when |ΠB | > 1.

7 RELATED WORK
Voorbraak [27] proposed the partial probability theory (PTT), which
allows probability assignments to be partially determined, and where
there is a distinction between probabilistic information based on (i)
hard background evidence and (ii) some assumptions. He does not
explicitly define the “constraint language”, however, from his ex-
amples and discussions, one can infer that he has something like
the language LPTT in mind: it contains all formulae which can be
formed with sentences in our Lprob in combination with connec-
tives ¬,∧ and ∨. A “belief state” in PTT is defined as the quadruple
〈Ω,B,A, C〉, where Ω is a sample space, B ⊂ LPTT is a sets of prob-
ability constraints, A ⊂ LPTT is a sets of assumptions and C ⊆ W
“represents specific information concerning the case at hand” (an ob-
servation or evidence).8 Our epistemic state can be expressed as a
restricted PTT “belief state” by letting Ω = W , B = B, A = ∅
and C = {w ∈ W | w � α}, where B is a belief base and α is an
observation in our notation.

Voorbraak [27] mentions that he will only consider conditioning
where the evidence does not contradict the current beliefs. He de-
fines the set of belief states corresponding to the conditionalized PPT

8 Voorbraak’s “belief state” would rather be called and epistemic state or
knowledge structure in our language.

“belief state” as {b(· | C) ∈ Π | b ∈ ΠB∪A, b(C) > 0}. In our nota-
tion, this corresponds to {(bBCα) ∈ Π | b ∈ ΠB , b(α) > 0}, where
α corresponds to C. Voorbraak [27] proposes constraining as an al-
ternative to conditioning: Let φ ∈ Lprob be a probability constraint.
In our notation, constraining ΠB on φ produces ΠB∪{φ}.

Note that expanding a belief set reduces the number of models
(worlds) and expanding a PPT ”belief state” with extra constraints
also reduces the number of models (belief states / probability distri-
butions).

In the context of belief sets, it is possible to obtain any belief
state from the ignorant belief state by a series of expansions.
In PPT, constraining, but not conditioning, has the analogous
property. This is one of the main reasons we prefer to con-
straining and not conditioning to be the probabilistic version
of expansion. [27, p. 4]

But Voorbraak does not address the issue that C and φ are different
kinds of observations, so constraining, as defined here, cannot be an
alternative to conditioning. C cannot be used directly for constrain-
ing and φ cannot be used directly for conditioning.

W.l.o.g., we can assume C is represented by α. If we take bGIα to
be an expansion operation whenever b(α) > 0, then one might ask, Is
it possible to obtain any belief base B′ from the ignorant belief base
B = ∅ by a series of expansions, using our approach? The answer
is, No. For instance, there is no observation or series of observations
which can change B = {} into B′ = {(q) ≥ 0.6}. But if we were
to allow sentences (constraints) in Lprob to be observations, then we
could obtain any B′ from the ignorant B.

Grove and Halpern [9] investigate what “update” (incorporation of
an observation with current beliefs, such that the observation does not
contradict the beliefs) means in a framework where beliefs are rep-
resented by a set of belief states. They state that the main purpose of
their paper is to illustrate how different the set-of-distributions frame-
work can be, “technically”, from the standard single-distribution
framework. They propose six postulates characterizing what proper-
ties an update function should have. They say that some of the postu-
lates are obvious, some arguable and one probably too strong. Out of
seven (families of) update functions only the one based on condition-
ing (Updcond(·)) and the one based on constraining (Updconstrain(·))
satisfy all six postulates, where Updcond(Π

B , α) := {(b BC α) ∈
Π | b ∈ ΠB , b(α) > 0} and where they interpret Voorbraak’s con-
straining [27] as Updconstrain(Π

B , α) := {b ∈ ΠB | b(α) = 1}.
Grove and Halpern [9] do not investigate the case when an obser-
vation must be incorporated while it is (possibly) inconsistent with
the old beliefs (i.e., revision). It would be interesting to analyse the
present work against their six postulates.

Kern-Isberner [14] develops a new perspective of probabilistic be-
lief change. Based on the ideas of Alchourrón et al. [1] and Katsuno
and Mendelzon [12] (KM), the operations of revision and update,
respectively, are investigated within a probabilistic framework. She
employs as basic knowledge structure as belief base (b,R), where b
is a probability distribution (belief state) of background knowledge
and R is a set of probabilistic conditionals of the form A � B[x]
meaning ‘The probability of B, given A, is x’. A universal inference
operation – based on the techniques of optimum entropy – is intro-
duced as an “adequate and powerful method to realize probabilistic
belief change”.

By having a belief state available in the belief base, minimum
cross-entropy can be used. The intention is then that an agent with
belief base (b, T ) should always reason w.r.t. belief state bT :=
argminc∈Π,c�T R(c, b). Kern-Isberner [14] then defines the prob-
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abilistic belief revision of (b,R) by evidence S as (b,R ∪ S). And
the probabilistic belief update of (b,R) by evidence S is defined as
(bR,S).9 She distinguishes between revision as a knowledge adding
process, and updating as a change-recording process. Kern-Isberner
[14] sets up comparisons of maximum cross-entropy belief change
with AGM revision and KM update. Cases where, for update, new
information R is inconsistent with the prior distribution b, or, for re-
vision, is inconsistent with b or the context R, are not dealt with [14,
p. 399, 400].

Having a belief state available for modification when new evi-
dence is to be adopted is quite convenient. As Voorbraak [27] argues,
however, an agent’s ignorance can hardly be represented in an epis-
temic state where a single belief state must always be chosen.

We would like to investigate the representation of conditional
probabilistic information such as is done in the work of Kern-
Isberner [14, 15] and Yue and Liu [29], for instance.

Yue and Liu [29] propose a probabilistic revision operation for im-
precise probabilistic beliefs in the framework of Probabilistic Logic
Programming (PLP). New evidence may be a probabilistic (condi-
tional) formula and needs not be consistent with the original beliefs.
Revision via imaging (e.g., GI) also overcomes this consistency is-
sue. Essentially, their probabilistic epistemic states Ψ are induced
from a PLP program which is a set of formulae, each formula having
the form (ψ | φ)[l, u], meaning that the probability of the conditional
(ψ | φ) lies in the interval [l, u]. The operator they propose has the
characteristic that if an epistemic state Ψ represents a single proba-
bility distribution, revising collapses to Jeffrey’s rule and Bayesian
conditioning. They mention that it is required that the models (distri-
butions) of Ψ is a convex set. There might thus be an opportunity to
employ their revision operation on a representative set of boundary
distributions as proposed in this paper.

Another PLP, proposed by Michels et al. [21], also allow for in-
complete specification of probabilities. The language of their logic
is however more expressive than ours, and they focus on inference
(probabilistic query answering). They mention that they want to al-
low for learning in their system – one could possibly interpret some
kinds of learning in this setting as belief revision.

8 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we propose an approach how to generate a new prob-
abilistic belief base from an old one, given a new piece of non-
probabilistic information, where a belief base is a finite set of sen-
tences, each sentence stating the likelihood of a proposition about
the world. In this framework, an agent’s belief base represents the set
of belief states compatible with the sentences in it. In this sense, the
agent is able to represent its knowledge and ignorance about the true
state of the world.

We used a version of the so-called imaging approach to implement
the revision operation.

Three methods were proposed: revising a finite set of ‘boundary
belief states’ via generalized imaging, revising a finite set of ‘bound-
ary belief states’ via minimum cross-entropy and revising a least bi-
ased belief state. We focussed on the first method and showed that
the latter two give different results.

There were two main contribution of this paper. The first was to
prove that the set of belief states satisfying Bnew is exactly those
belief states satisfying the original belief base, revised. The second
was to uncover an interesting conflict in the results of the three belief

9 This is a very simplified version of what she presents. Please refer to the
paper for details.

base revision methods. It is worth further understanding the reasons
behind such a difference, as such an investigation could give more
insight about the mechanisms behind the methods and indicate possi-
ble pros and cons of each. Importantly, further analysis with respect
to rationality postulated is necessary, as mentioned in § 8. Such an
analysis may also bring insights into the differing results.

The computational complexity of Min(·) is in O(|W |2) and the
complexity of GI is thus in O(|W |2|W |2) = O(|W |4) in the worst
case. However, this complexity is highly dependent on the observa-
tion and the distance function. Note that |ΠB

bnd | ≤ |W perm | = |W |!.
GI is applied to every belief state in ΠB

bnd . Hence, the complexity of
the method, in the worst case, is in O(|W |!|W |4).

As far as we know, there is no analytic solution to determine the
distribution in ΠB with maximum entropy / minimum cross-entropy.
To narrow in on the computational complexity of these methods, we
would have to know what class of optimization problem they are
(convex?), and thus what techniques are used to solve them. Our
knowledge in this area is lacking and it would require some time
for investigation.

The proposal or design, and justification of rationality postulates
similar to (RB1)-(RB6) in the section above is called for. An analysis
of the postulates with respect to the revision operation must then be
carried out. An attempt may be made to design the revision operation
so as to make more of the postulates hold, or we may attempt to
justify why our revision process does not / need not satisfy postulates
it fails at.

Given that we have found that the belief base resulting from re-
vising via the boundary-belief-states approach differs from the be-
lief base resulting from revising via the representative-belief-state
approach, the question arises, When is it appropriate to use a rep-
resentative belief state defined as the most entropic belief state of a
given set ΠB? This is an important question, especially due to the
popularity of employing the Maximum Entropy principle in cases of
underspecified probabilistic knowledge [11, 8, 10, 27, 14, 16] and the
principle’s well-behavedness [26, 22, 13].

As far as we know, imaging for belief change has never been ap-
plied to (conditional) probabilistic evidence. Due to issues with many
revision methods required to be consistent with prior beliefs, and
imaging not having this limitation, it might be worthwhile investi-
gating.

The translation from the set of belief states back to a belief base
is a mapping from every belief state to a probability formula. The
size of the belief base is thus in the order of |W perm |, where |W |
is already exponential in the size of P , the set of atoms. As we saw
in several examples in this paper, the new belief base often has a
more concise equivalent counterpart. It would be useful to find a way
to consistently determine more concise belief bases than our present
approach does.

Does a similar result as Theorem 1 holds for Bayesian condition-
ing? This is an important question we would like to answer and which
credal set theory [19, 28] may answer.
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