
Dependencies between modularity metrics
towards improved modules

Zubeida Casmod Khan1,2 and C. Maria Keet1

1 Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

2 Council for Scientific and Industrial Research, Pretoria, South Africa
zkhan@csir.co.za

Abstract. Recent years have seen many advances in ontology modu-
larisation. This has made it difficult to determine whether a module is
actually a good module; it is unclear which metrics should be consid-
ered. The few existing works on evaluation metrics focus on only some
metrics that suit the modularisation technique, and there is not always
a quantitative approach to calculate them. Overall, the metrics are not
comprehensive enough to apply to a variety of modules and it is unclear
which metrics fare well with particular types of ontology modules. To ad-
dress this, we create a comprehensive list of module evaluation metrics
with quantitative measures. These measures were implemented in the
new Tool for Ontology Module Metrics (TOMM) which was then used
in a testbed to test these metrics with existing modules. The results ob-
tained, in turn, uncovered which metrics fare well with which module
types, i.e., which metrics need to be measured to determine whether a
module of some type is a ‘good’ module.

1 Introduction

A number of techniques for ontology modularisation have been proposed in re-
cent years, such as traversal methods [18], locality-based extraction [9], and
partitioning [2, 4]. There also have been attempts at analysing which types of
modules exist [1], and which types are useful for which purpose, such as that
high-level abstraction modules are used for comprehension [15]. There is, how-
ever, a disconnect between the two. For instance, if a modeller wants to reuse,
say, only the branch of ‘social objects’ from the DOLCE foundational ontology
for an ontology about e-government, then how does the modeller know that the
module extracted from DOLCE is a good module, and which one of the modu-
larisation techniques creates the module of the ‘best’ quality? In fact, it is even
unclear how the quality of an ontology module could or should be measured.
There are a few studies on evaluation of ontology modules, which focus on a few
metrics, such as size, cohesion, coupling, correctness, and completeness [22, 24,
27], however some of them do not have a defined formula to measure them e.g.,
intra-module distance [4]. The metrics are not comprehensive enough to apply
to the 14 types of modules [15] that exist [11].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Metrics such as size do not fare well with modules created using locality-based
techniques [12], while completeness and correctness do not measure well with
partition-based modules [22]. This suggests that only specific metrics would be
applicable for some type of module to assess the quality of an ontology module.
To the best of our knowledge, no one has filled this knowledge gap of how
evaluation metrics relate to modules to reveal the module quality.

To solve these problems, we take both existing metrics, where for those
that do not have a computable component, we devise a new function, and
add three more metrics, totalling to 16. To examine their usefulness, we im-
plemented these metrics into one evaluation tool, the Tool for Ontology Modu-
larity Metrics (TOMM) and examined 189 ontology modules on these metrics.
TOMM can be downloaded from http://www.thezfiles.co.za/Modularity/

TOMM.zip. These results from TOMM generated insight into the expected values
for evaluation metrics for the different types of modules. We have evidence-based
insight about which metrics fare well with which module types. For instance,
ontology matching modules fare well with a mix of structural, relational, and in-
formation hiding metrics. This insight helps the ontology developer to determine
whether a module is of good quality or not.

The remainder of the paper is structured as followed. Related works are sum-
marised in Section 2, followed by the evaluation metrics for modules in Section 3.
The software, TOMM, experimental evaluation, and use-cases is presented in
Section 4, and a discussion in Section 5. Lastly, we conclude in Section 6.

2 Related works

In order to solve the problem of insufficient modularity metrics, we look at the
existing work. To start with we use a definition of a module by Khan and Keet
stating that a module M is a subset of a source ontology or module M is an
ontology existing in a set of modules such that, when combined, make up a
larger ontology [15]. In addition, Khan and Keet created a framework for ontol-
ogy modularity, aimed at guiding the modularisation process [15]. It consists of
dimensions for modularity such as use-cases, techniques, types, and properties.
The dimensions have been linked to reveal dependencies, and to annotate mod-
ules with additional information. It does not include module evaluation. Other
works do consider this. For instance, Pathak et. al [22] identified main proper-
ties that modules need to satisfy, such as size, correctness, completeness, and
evaluated them using existing tools, noting that module correctness is satisfied
by most techniques and that completeness and size are difficult to satisfy. They
also observed that the logic-based approaches tend to result in modules where
completeness is achieved while the graph-based approaches generate modules of
smaller size that are not logically complete.

Schlicht and Stuckenschmidt [24] created a set of structural criteria for ontol-
ogy modules, including connectedness, size, and redundancy of representation,
and use quantitative functions to formally measure each criteria value. They
argue that structural criteria have an effect on efficiency, robustness and main-

tainability for the application of semantics-based peer-to-peer systems. They
evaluated the SWOOP and PATO modularity tools on their structural criteria,
observing that SWOOP favours modules with a good connectedness over mod-
ules with suitable size values, whereas with PATO, a threshold value could be
selected such that when the threshold value is increased, so did the size suitabil-
ity of the module to the detriment of connectedness. Regarding connectedness or
cohesion, metrics were introduced by [27], being number of root classes, number
of leaf classes, and average depth of inheritance tree of all leaf node. These met-
rics are not aimed at evaluating the quality of modules, but are rather general for
ontologies. In light of this, Oh et. al present new metrics for cohesion to measure
the strength of the relations in a module [20], and semantic dependencies were
proposed in [5]. Ensan and Du’s metrics in [5] use the notion of strong and mod-
erate dependencies between entities. However, there are certain relations in an
ontology that are neither strong nor moderate, such as intersections of classes.

3 Evaluation metrics

The evaluation metrics for modularity was compiled by studying existing litera-
ture on modularity. This resulted in 13 metrics from the literature, of which five
were short of a metric for quantitative evaluation that have now been devised
(indicated with an asterisk), and three new ones have been added (indicated
with a double asterisk)3.

Size The size metric is a fairly common metric as a modularity evaluation
criterion [3, 4, 20, 22, 24]. Size refers to the number of entities in a module, |M |,
which can be subdivided into number of classes, |C|, object properties |OP |, data
properties |DP |, and individuals |I|. Size is calculated as follows: Size(M) =
|M | = |C| + |OP | + |DP | + |I|. Note that it excludes the number of axioms,
because that is considered a structural criterion.

Appropriateness of module size can be specified by mapping the size of
an ontology module to some appropriateness values. Schlicht and Stuckenschmidt
[24] propose an appropriate function to measure this, which ranges between 0
and 1, where a module with an optimal size has a value of 1. The function they
propose is based on software design principles: since the optimal size of software
modules is between 200-300 logical lines of software code, an axiom value of 250
would be the optimal size for an ontology, restricting the module to be between
0 and 500 axioms. The appropriateness equation is defined as follows [24], where
x is the number of axioms in the module: Appropriate(x) = 1

2 −
1
2cos(x.

π
250).

Attribute richness is defined as the average number of attributes per class
[25]; i.e., each class is defined by a number of axioms with properties describing

describing it, which are referred to as attributes: AR(M) = |att|
|C| where att is the

number of attributes (OWL properties) of all entities and |C| is the number of
classes in the module.

3 an earlier version of this section was presented at [14] and has now been updated
with some corrections, refinements, and better descriptions.

Inheritance richness refers to how the knowledge is distributed across
the ontology [25], such as with deep class hierarchies versus one with a flat or
horizontal structure with few subclasses; this is calculated as follows: IRS(M) =∑
Ci∈C

|HC(C1,Ci)|

|C| where |HC(C1, Ci)| is the number of subclasses (C1) for a class

Ci and |C| is the total number of classes in the ontology.

Cohesion refers to the extent to which entities in a module are related to
each other. We use a metric defined in [20]:

Cohesion(M) =

∑

Ci∈M

∑
Cj∈M

SR(ci,cj)
|M |(|M |−1) if |M | > 1

1 otherwise

where |M | is the number of entities in the module and |M |(|M | − 1) represents
the number of possible relations between entities in M . The strength of relation
for each entity is calculated based on a farness measure.

SR(ci, cj) =

{
1

farness(i) if relations exist between ci and cj

0 otherwise

Redundancy has been defined as the duplication of axioms within a set of
ontology modules [24]. When a large ontology is partitioned into smaller modules,
there are sometimes modules that overlap with regard to shared knowledge. Thus
axioms exist in more than one modules. Sometimes this is required for robustness
or efficiency. However, these redundant axioms cause difficulty in maintaining
the consistency of the modules when modules are to be updated. To measure

redundancy in a set of modules, we use: Redundancy =
(

k∑
i=1

ni)−n

k∑
i=1

ni

.

Correctness states that every axiom that exists in the module also exists
in the original ontology and that nothing new should be added to the module
[2, 4, 16, 22], i.e.: Correctness(M) = M ⊆ O.

Completeness A module is logically complete if the meaning of every en-
tity is preserved as in the source ontology. The completeness property evalu-
ates that for a given set of entities or signature, every axiom that is relevant
to the entity as in the source ontology is captured in the module [2, 4, 16, 22].

Completeness(M) =
n∑
i

Axioms(Entityi(M)) |= Axioms(Entityi(O)).

Intra-module distance* d’Aquin et al. [4] introduce the notion of intra-
module distance as the distance between entities in a module, which may be
calculated by counting the number of relations in the shortest path from one
entity to the other, for every entity in the module. The shortest path is calculated
based on the entity hierarchy. Based on the description by d’Aquin et al., we
refine this to measuring this distance by using Freeman’s Farness value [6]. In
the field of network centrality, Freeman’s Farness value of a node is described as
the sum of its distances to all other nodes in the network:

Intra-module distance(M) =

n∑
i

Farness(i) (1)

with n the number of nodes in the module and the Farness value defined as

Farness(i) =
n∑
j

distanceij The distance then is measured as the length of the

shortest path between entities.

Inter-module distance* in a set of modules has been described as the
number of modules that have to be considered to relate two entities [3, 4]. Based
on this definition, we have created an equation to measure the inter-module
distance of a network of modules.

IMD =

∑

Ci,Cj∈(Mi,,Mn)

NM(Ci,Cj)
|(Mi,..,Mn)|(|(Mi,..,Mn)|−1) |(Mi, ..,Mn)| > 1

1 otherwise
(2)

where NM(Ci, Cj) is the number of modules to consider to relate entities
i and j and |(Mi, ..,Mn)|(|(Mi, ..,Mn)| − 1) represents the number of possible
relations between entities in a set of modules (Mi, .,Mn).

Coupling* has been described as a measure of the degree of interdependence
of a module [7, 19–21]. The coupling value is high if entities in a module have
strong relations to entities in other modules. This also means that it will be
difficult to update such modules independently because they affect other modules
in the system. To measure the coupling of a module, we define our own measure
as a ratio of the number of external links (axioms) between a module Mi and Mj ,
NELMi,Mj

for n modules in a system to every possible external link between a
module Mi and Mj in a system.

Coupling(Mi) =

n∑
i=0

n∑
j=0
i 6=j

NELMi,Mj

|Mi||Mj | NELMi,Mj
> 0

0 otherwise

(3)

where |Mi| is the number of entities in the current module and |Mj | is the
number of entities in a related module in the set of n modules. External links in
ontology modules depend on what linking language is used.

Encapsulation* d’Aquin et al. mention encapsulation with the notion that
“a module can be easily exchanged for another, or internally modified, without
side-effects on the application can be a good indication of the quality of the mod-
ule” [4]. This general idea seems potentially useful for semantic interoperability.
There are thus two components to d’Aquin et al.’s encapsulation:

– ‘Swappability’ of a module, which increases with fewer links to entities in an-
other module in an ontology network; e.g., one can interchange their domain
ontologies between foundational ontologies using the SUGOI tool [13].

– Casting it into a measure of knowledge preservation within the given module.

We have designed an equation to calculate the encapsulation of a module in
a given a set of modules. For a module, with n − 1 related , this is measured
using the number of axioms in the given module |Axi| and the number of axioms

that overlap between the given module and related modules, |Axij |.

Encapsulation(M i) = 1−

n−1∑
j=1

|Axij |
|Axi|

n
(4)

Encapsulation values in modules that are equal or close to 1 indicates a
good encapsulation value; all or most of the knowledge has been encapsulated
and privacy has been completely preserved. Conversely, values that are equal
to or close to 0 indicates a poor encapsulation value; none or very little of the
knowledge has been encapsulated and privacy has not been preserved.

Independence* Independence evaluates whether a module is self-contained
and can be updated and reused separately. In this way, ontology modules can
evolve independently. Thus, the semantics of the entire ontology could change
without the need for all the modules to be changed. For instance, for the set
of Gist foundational ontology modules [17], if information about physical things
need to be updated, the relevant module gistPhysicalThing could be updated
without needing to alter the remaining modules. In order to determine whether
a module is independent, we use two metrics, i.e., the encapsulation and the
coupling measure. A module is set to be independent if it has an encapsulation
value of 1 and a coupling value of 0. This can be checked using the following
code snippet.

Ind(M i) =

{
true Encapsulation(M i) = 1 and Coupling(M i) = 0

false otherwise
(5)

where |Mi| is the number of entities in the current module and |Mj | is the number
of entities in a related module in the set of n modules.

Relative size** can be defined as the size of the module—i.e., number
of classes, properties, and individuals—compared to the original ontology. The
relative size of a module strongly influences the result of the module on tasks
such as reasoning and maintenance, for if the module extracted is nearly the
same as the original one, then not substantial optimisation will be obtained. To
compute this, we use the ratio of the size of the module M (i.e., |M |) and the
original (source) ontology O (i.e., |O|):

Relative size =
|M |
|O|

(6)

Thus, a lower value (between 0 and 1) is better.
Atomic Size** The notion of atoms within ontology modules was first in-

troduced in [26], who define it as a group of axioms within an ontology that have
dependencies between each other. Based on the findings from the study, that it
is possible to modularise an ontology using atomic decomposition as a method,
we propose to measure the size of atoms in ontologies. We define the atomic
size as the average size of a group of inter-dependent axioms in a module, and

formulate an equation to measure the atomic size of a module by using the sum
of all the atoms present in the module, and the size of the ontology.

Atomic Size(M) =

n∑
i

Atomi

|M |
(7)

Relative Intra-module distance** can be defined as the difference be-
tween distances of entities in a module M to a source ontology O. This difference
would reveal if the overall distance between the entities in the module has been
reduced, and by how many distance units. This is useful in comparing the dif-
ference in module size; whether the technique reduces the size considerably. To
compare the distances of the original ontology, we compute the farness values
for the subset of nodes that exist in a module, which is used to calculate the
intra-module distance of the original ontology, and is defined as follows:

Relative intra-module distance(M) =
Intra-module distance(O)

Intra-module distance(M)
(8)

4 Implementation and evaluation

We have created a Tool for Ontology Modularity Metrics (TOMM) to evalu-
ate ontology modules. TOMM allows one to upload a module or set of related
ontology modules, together with an original ontology (if it exists), and then it
computes metrics for the module/s. A screenshot of TOMM’s interface is shown
in Fig. 1. The metrics are saved as a text file on the user’s computer.

Fig. 1. The interface of TOMM.

4.1 Experimental evaluation

The purpose of the experiment is to evaluate modules with a set of metrics. We
expect that the results will determine how the metrics of a module relate to
other factors, such as technique to create them.

Table 1. Averages for a subset of TOMM’s metrics; |T | = number of module types,
approp. = appropriateness, IMD = intra module distance.

|T | Relative
size

Atomic
size

Approp.
Relative
IMD

Attribute
richness

Inheritance
richness

T1 13 0.02 5.50 0.34 20.69 0.83 1.48

T2 42 - 5.31 0.64 - 1.45 2.37

T3 7 0.90 6.31 0.11 1.00 0.84 2.30

T4 3 0.02 5.00 0.47 63.66 3.61 1.79

T5 2 0.30 7.20 0.61 1.04 0.87 2.45

T6 10 0.17 2.99 0.30 0.00 0.10 54.32

T7 90 0.01 1.00 0.007 0.00 0.50 1.19

T8 4 0.56 3.64 - 1.02 0.71 3.15

T9 1 1.00 2.89 - 0.00 0.00 2.83

T10 1 0.56 4.21 0.99 1.03 0.00 3.06

T11 3 0.49 3.77 0.89 1.00 0.58 2.44

T12 3 0.42 5.87 0.02 2.17 1.05 2.89

T13 6 1.00 4.33 0.38 1.00 0.73 2.72

T14 1 0.97 5.65 - 1.00 1.78 3.04

Materials and methods The method for the experiment is straightforward:
1) take a set of ontology modules ; 2) run the TOMM tool for each module;
3) conduct an analysis from the evaluation results for each module. In order to
determine which metrics can be used to evaluate which module types, we need
to determine how to interpret the values for each metric, which are as follows:
– correctness, completeness and independence are measured as true/false;
– size, no. of axioms, atomic size, intra-module distance. relative intra-module

distance, attribute richness, and inheritance richness are measured on a nu-
merical range;

– relative size, appropriateness, cohesion, encapsulation, coupling, and redun-
dancy are measured on a 4-point scale of small (0-0.25), medium (0.25-0.5),
moderate (0.51-0.75), and large (0.75-1).
The materials used for the experiment were as follows: Protégé v4.3 [8],

TOMM, and a set of ontology modules that serve as the training set. Khan
and Keet’s set [15] was reused, which contains 189 ontology modules that were
collected from ontology repositories and as referenced in the literature. This set
contains modules of 14 different types, which are summarised in the appendix.
All the test files used for this experimental evaluation can be downloaded from
www.thezfiles.co.za/Modules/testfiles.zip.

Results We ran TOMM for each of the 189 modules and metrics were success-
fully generated for 188. Due to space limits we include only Table 1 with average
values for a subset of the metrics and highlight the notable aspects of the results
here; the remaining metric tables are available online together with the test files.

For size, T7 (ontology matching) modules are very small, only 2% compared
to the original ontology. T2 (subject domain) could not be evaluated with the

relative size metric as there were no original ontologies. T13 (expressiveness sub-
language) is as large as the original ontology. For appropriateness, T10 (entity
type abstraction) is the most appropriate at 0.99, meaning that most of the
modules have between 200-300 axioms. The relative intra-module distance values
determine by how many units (paths between entities) the module has been
reduced. T4 (locality) modules were reduced with a high value by 63.65 units
followed by T1 (ontology design patterns) by 20.69 units.

The T4 (locality), T8 (optimal reasoning), T9 (axiom abstraction), and T10
(entity type abstraction) modules all hold the correctness metrics; every axiom
that exists in the module also exists in the source ontology and nothing new had
been added. T1 (ontology design pattern) modules are the only set that all hold
the completeness metric; the meaning of every entity in the module is preserved
as in the source ontology. For attribute richness, T4 (locality) modules were the
richest with a value of 3.61; these modules have on average 3.61 attributes per
class. For inheritance richness, T6 (domain coverage) modules had a large value
of 54.32 indicating many subclasses per class.

The information hiding and relational criteria only apply to module sets,
T2 (subject domain), T6 (domain coverage), T7 (ontology matching), and T8
(optimal reasoning). For encapsulation, T7 (ontology matching) modules had a
high value of 1; the knowledge is preserved in the individual modules and they
can be changed individually without affecting the other modules in the set. For
coupling, most of the modules had 0 values (no links to other modules in the set).
The T7 (ontology matching) modules are independent; they are self-contained
and also do not contain links to other modules in the set. The experiment uncov-
ered which metrics fare well with which module type as discussed in this section
and included in Fig. 2, where for each module type, the metrics and values that
fare well with it are stated in bold font.

It is also worthwhile to check whether the techniques used for modularisa-
tion have an effect on the quality of the module. For the set of 189 modules in
the set, there were four techniques used to generate them: graph partitioning,
locality-based modularisation, a priori modularisation, and manual methods.
The modules that were generated via graph partitioning measured well for the
following criteria: relative size (small), encapsulation (large), coupling (small),
redundancy (small). The modules generated with locality-based modularity per-
formed well for correctness (all true). a priori modules all performed well for
encapsulation (large), coupling (small), and redundancy (small). There was no
link between the metrics returned by the modules generated by manual methods;
all the results differed.

Use-cases We selected two existing cases of ontology modularisation to evaluate
TOMM and the resulting metrics, which are modules not in the training set.

Example 1 (QUDT ontology modules). The Quantities, Units, Dimensions and
Data Types (QUDT) ontology modules are a set of modules about science ter-
minology for representing physical quantities, units of measure, and their dimen-
sions [10]. According to the framework for ontology modularity, these modules

Fig. 2. The set of metrics that can be measured for each module type. Metrics and
values in bold font are those which evaluate well for a module type.

are of type T2: Subject domain modules. The modules fare well for 3 out of the 4
metrics that are expected of T2: Subject domain modules; the cohesion is small,
encapsulation is large, and coupling is small (see Table 2). The redundancy of
the QUDT modules is 0.50 which is moderate, as opposed to an expected small
value. For the metrics that are measured by their numerical values only, i.e.,
atomic size, attribute richness, etc., the metrics are within the expected ranges
summarised in Fig. 2. Thus according to the metrics, the QUDT ontology mod-
ules are of good quality as subject domain modules.

Table 2. The metrics for the QUDT ontology modules generated by TOMM; approp
= appropriateness, encap. = encapsulation, avg. = average, med. = median.

Structural criteria

Size Atomic size
No. of
axioms

Approp.
Intra module
distance

Cohesion

Avg. 595.38 5.71 3112.00 0.91 8577.25 0.008

Med. 479.00 3.70 1443.50 0.91 86.50 0.003

Richness criteria
Information
hiding criteria

Relational criteria

AR IR Encap. Coupling Independence Redundancy

Avg. 1.69 1.89 0.99 0 25% true
75% false

0.50
Med. 1.40 1.84 0.99 0 0.50

Example 2 (The Pescado Ontology). The Pescado ontology contains knowledge
about the environment, such as meteorological conditions and phenomena, air
quality, and disease information [23]. The PescadoDisease module is a subset
of information only about diseases, so it is a locality module (Type T4). The
module fares well for the cohesion metric, which is small, the appropriateness
value (being medium), the correctness metric (true), and for all those metrics
measured by numerical ranges too, according to the expected values of Figure 2.
The only metric that differs is relative size: the PescadoDisease module is small
compared to the experimental data where locality modules were medium.

Using TOMM and the use-cases, we were able to evaluate the quality of on-
tology modules. QUDT and Pescado are different types of modules and therefore
different values are expected for their metrics. With both modules, for all their
metrics except one, the values generated by TOMM are as expected for their
types; this indicates that the modules are of ‘good’ quality.

5 Discussion

The list of module metrics that was compiled is a first step in solving the prob-
lems regarding the evaluation of ontology modules, and, following from that,
knowing how to create a good module. The metrics that are programmed into

Table 3. The metrics for the Pescado disease ontology generated by TOMM; app =
appropriateness.

Structural criteria

Size
Atomic
size

No. of
axioms

App.
Intra module
distance

Cohesion
Relative
size

Relative
intra module
distance

39.00 3.10 128.00 0.51 158.00 0.16 0.03 10.61

Richness criteria Logical criteria

Attribute
richness

Inheritance
richness

Correctness Completeness

0.00 1.67 True True

TOMM allow one to evaluate ontology modules using different metrics such as
logical (correctness), structural (relational size), relational (coupling), and so on.
Of all the metrics, it was not feasible to include the inter-module distance metric
in the program, because these modules were linked using ε-connections, which
could not be recognised by the OWL API that was used to develop TOMM. Also,
in testing, the ‘FMA subset’ module (from T12: weighted abstraction modules)
was too large for TOMM to process due to insufficient Java heap space size
and increasing the parameters caused the machine to crash. We are looking at
running TOMM on a High-Performance Computing Cluster in the future.

We have evaluated modules with TOMM, and analysed their metrics. The
results reveal which metrics fare well with which module type, as displayed in
Figure 2; e.g., T1 (ontology design patterns) modules are relatively small com-
pared to the original ontology, and the completeness value is true. For T3, T13,
and T14 modules, there is limited associations between them and the metrics.
The analysis reveals that they all only fare well for the cohesion metric; all the
sets of modules fare well for the cohesion metric.

For the bulk of the modules, T3, T5, T11, T12, T13, and T14 provide good
results for structural metrics. Modules of type T1, T4, T9, and T10 have good
results for both structural, and logical metrics. Modules of type T2, T6, and
T7 have good results for structural, information hiding, and relational metrics,
and T8 type of modules have good results for some criteria, structural, logical,
relational, and information hiding. Richness criteria only returns a range of nu-
merical values which cannot be mapped to rate values such as small, medium,
etc., hence it is unclear what ideal values for such criteria are. Thus, using
TOMM to evaluate a module, a user is able to determine whether the module
is of ‘good’ quality. Our approach of evaluating whether a module is of ‘good’
quality heavily depends on the data from existing modules used in this experi-
ment. The reason for this approach is to offer the developer a practical solution
for evaluating modules in Semantic Web applications.

From the assessment on any relation between modularisation technique and
ontology module quality metrics, it exhibited a link between the graph partition-
ing, locality-based, and a priori techniques and the metrics; there were certain
metrics that were associated with each of the respective techniques. There were

four metrics associated with graph partitioning, one with locality, and three with
a priori techniques. Unsurprisingly, there does not seem to be any clear associa-
tion between manual modularisation technique and any of the metrics. Perhaps
an in-depth qualitative assessment of the manually created modules may reveal
what is going on exactly.

The use-case evaluation with the QUDT (of type subject domain modules)
and the Pescado-disease modules (of type locality) were promising, showing good
modules for their respective types. Others may not fare as well, which time may
tell. Most ontology modules we could find are already included in the test set,
so that will depend on the modules that are being developed, which, however,
can avail of the results presented here to exactly avoid creating a ‘bad’ module.

6 Conclusion

Five new modularity metrics with measures and three new measures for exist-
ing metrics were proposed, making the total to 16 ontology module evaluation
metrics. They have been implemented in the TOMM tool to enable scaling up of
module evaluation. Our evaluation carried out with 189 modules revealed which
metrics work well with which types of modules. This is displayed in bold font
in Figure 2; for each of the 14 module types, the metrics that fare well with
them together with the expected values are displayed. It is now possible for an
ontology developer to evaluate the quality of a module/set of modules by first
classifying its type using the framework for ontology modularity, and then gen-
erating its metrics using the TOMM metrics tool. Ontology developers are then
able to determine whether their ontology module is of ‘good quality’ based on
comparing the module’s metrics to what is expected in Figure 2.

For future work, we aim to achieve more insight into module evaluation by
linking the module evaluation metrics to other characteristics of the modularity
framework such as use-cases and properties, to reveal more dependencies. It is
also worthwhile to apply the tool to ontology design patterns towards improving
pattern quality.

References

1. Borgo, S.: Goals of modularity: A voice from the foundational viewpoint. In: Fifth
International Workshop on Modular Ontologies (WOMO’2011). Frontiers in Arti-
ficial Intelligence and Applications, vol. 230, pp. 1–6. IOS Press (2011), ljubljana,
Slovenia, August

2. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and Web Ontolo-
gies. In: 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR’06). pp. 198–209. AAAI Press (2006), June 2-5, Lake District,
United Kingdom

3. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Ontology modulariza-
tion for knowledge selection: Experiments and evaluations. In: 18th International
Conference on Database and Expert Systems Applications (DEXA’07). LNCS, vol.
4653, pp. 874–883. Springer (2007), regensburg, Germany, September 3-7, 2007

4. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Criteria and evaluation
for ontology modularization techniques. In: Modular Ontologies: Concepts, Theo-
ries and Techniques for Knowledge Modularization, LNCS, vol. 5445, pp. 67–89.
Springer (2009)

5. Ensan, F., Du, W.: A semantic metrics suite for evaluating modular ontologies.
Information Systems 38(5), 745–770 (2013)

6. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1978)

7. Garćıa, J., Peñalvo, F.J.G., Therón, R.: A survey on ontology metrics. In: Third
World Summit on the Knowledge Society, (WSKS’10). CCIS, vol. 111, pp. 22–27.
Springer (2010), corfu, Greece, September 22-24

8. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of Protégé: an environment for
knowledge-based systems development. International Journal of Human-Computer
Studies 58(1), 89–123 (2003)

9. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research 31, 273–318 (2008)

10. Hodgson, R., Keller, P.J.: QUDT-quantities, units, dimensions and data types in
OWL and XML. http://www.qudt.org (2011), online (September 2011)

11. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.A.: Swoop: A
Web Ontology Editing Browser. Journal of Web Semantics 4(2), 144–153 (2006)

12. Khan, Z., Keet, C.M.: The foundational ontology library ROMULUS. In: Third
International Conference on Model & Data Engineering (MEDI’13). LNCS, vol.
8216, pp. 200–211. Springer (2013), september 25-27, 2013, Amantea, Italy

13. Khan, Z., Keet, C.M.: Feasibility of automated foundational ontology interchange-
ability. In: 19th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW’14). LNAI, vol. 8876, pp. 225–237. Springer (2014), 24
- 28 November 2014, Linköping, Sweden

14. Khan, Z.C.: Evaluation metrics in ontology modules. In: 29th International Work-
shop on Description Logics (DL’16). CEUR Workshop Proc., vol. 1577. CEUR-
WS.org (2016), 22-25 April 2016, Cape Town, South Africa

15. Khan, Z.C., Keet, C.M.: An empirically-based framework for ontology modulari-
sation. Applied Ontology 10(3-4), 171–195 (2015)

16. Loebe, F.: Requirements for logical modules. In: First International Workshop on
Modular Ontologies (WoMO’06). CEUR Workshop Proc., vol. 232. CEUR-WS.org
(2006), november 5, Athens, Georgia, USA

17. McComb, D.: Gist: The minimalist upper ontology. Semantic Technology Confer-
ence (2010), june 21-25 2010, San Francisco, CA

18. Noy, N.F., Musen, M.A.: Specifying Ontology Views by Traversal. In: Third In-
ternational Semantic Web Conference (ISWC’04). LNCS, vol. 3298, pp. 713–725.
Springer (2004), nov 7-11, Hiroshima, Japan

19. Oh, S., Ahn, J.: Ontology module metrics. In: International Conference on e-
Business Engineering, (ICEBE’09). pp. 11–18. IEEE Computer Society (2009),
macau, China, 21-23 October

20. Oh, S., Yeom, H.Y., Ahn, J.: Cohesion and coupling metrics for ontology modules.
Information Technology and Management 12(2), 81–96 (2011)

21. Orme, A.M., Yao, H., Etzkorn, L.H.: Coupling metrics for ontology-based systems.
IEEE Software 23(2), 102–108 (2006)

22. Pathak, J., Johnson, T.M., Chute, C.G.: Survey of modular ontology techniques
and their applications in the biomedical domain. Integrated Computer-Aided En-
gineering 16(3), 225–242 (2009)

23. Rospocher, M.: An ontology for personalized environmental decision support. In:
Formal Ontology in Information Systems FOIS ’14. pp. 421–426 (2014), september,
22-25, 2014, Rio de Janeiro, Brazil

24. Schlicht, A., Stuckenschmidt, H.: Towards structural criteria for ontology modu-
larization. In: First International Workshop on Modular Ontologies, (WoMO’06).
CEUR Workshop Proc., vol. 232. CEUR-WS.org (2006), november 5, 2006, Athens,
Georgia, USA

25. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA:
Metric-based ontology quality analysis. IEEE Workshop on Knowledge Acquisition
from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge
Sources 9 (2005)

26. Vescovo, C.D.: The modular structure of an ontology: Atomic decomposition to-
wards applications. In: 24th International Workshop on Description Logics (DL
2011). CEUR Workshop Proc., vol. 745. CEUR-WS.org (2011), barcelona, Spain,
July 13-16

27. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and ap-
plication. Journal of Computer science 1(1), 107 (2005)

Appendix: summarised types of ontology modules
T1 Ontology design pattern modules An ontology is modularised by identifying

a part of the ontology for general reuse.
T2 Subject domain modules A large domain is divided by subdomains present

in the ontology.
T3 Isolation branch modules A subset of entities from an ontology is extracted

but entities with weak dependencies to the signature are not to be included
in the module.

T4 Locality modules A subset of entities from an ontology is extracted, including
all entities that are dependent on the subset.

T5 Privacy modules Some information is hidden from an ontology.
T6 Domain coverage modules A large ontology is partitioned by its graphical

structure and placement of entities in the taxonomy.
T7 Ontology matching modules An ontology is modularised for ontology match-

ing into disjoint modules so that there is no repetition of entities.
T8 Optimal reasoning modules An ontology is split into smaller modules to aid

in overall reasoning over the ontology.
T9 Axiom abstraction modules An ontology is modularised to have fewer axioms,

to decrease the horizontal structure of the ontology.
T10 Entity type abstraction modules An ontology is modularised by removing a

certain type of entity e.g., data properties or object properties.
T11 High-level abstraction modules An ontology is modularised by removing

lower-level classes and only keeping higher-level classes.
T12 Weighted abstraction modules An ontology is modularised by a weighting

decided by the developer.
T13 Expressiveness sub-language modules An ontology is modularised by using

a sub-language of a core ontology language.
T14 Expressiveness feature modules An ontology is modularised by using limited

language features.

