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Abstract—Like other real-world problems, reasoning in 

clinical depression presents cognitive challenges for clinicians. 

This is due to the presence of co-occuring diseases, incomplete 

data, uncertain knowledge, and the vast amount of data to be 

analysed. Current approaches rely heavily on the experience, 

knowledge, and subjective opinions of clinicians, creating 

scalability issues. Automating this process requires a good 

knowledge representation technique to capture the knowledge of 

the domain experts, and multidimensional inferential reasoning 

approaches that can utilise a few bits and pieces of information 

for efficient reasoning.  This study presents knowledge-based 

system with variants of Bayesian network models for efficient 

inferential reasoning, translating from available fragmented 

depression data to the desired information in a visually 

interpretable and transparent manner. Mutual information, a 

Conditional independence test-based method was used to learn 

the classifiers.  

Keywords—Bayesian networks; probability; expert systems; 

depressive disorders; inferential reasoning; graphical models. 

I. INTRODUCTION 

First developed in the mid-1960s [1] as an important 

applied subfield of artificial intelligence (AI), expert systems 

(ES) attempt to solve complex problems in a particular domain 

by mimicking human experts’ problem-solving methodology. 

ES have two main objectives: task-shifting from human 

experts to machine or non-experts [2] and sharing knowledge 

and know-how (as a way of reducing the gap between the have 

and have-nots [3] in the form of information products. By 

mimicking the problem-solving methods of human expert, ES 

help human experts to get a second opinion in decision-

making and also act as advice to non-experts in a particular 

domain. For ES to perform at this human-expert level, 

knowledge is provided by a human expert, which it integrates 

and makes available in readable and understandable formats. 

Variants of ES (see Fig.1) include rule-based ES (RBES), 

frame-based ES (FBES), fuzzy logic ES (FLES), neural-based 

ES (NBES) and probability-based ES (PBES) [4]. Knowledge 

representation techniques for these various ES are production 

rules, frames, fuzzy rules, a combination of production rules 

and neural networks, and Bayesian networks (BN), 

respectively [4].  

 

Fig. 1. Variants of expert systems 

PBES, also called knowledge-based systems or knowledge 

engineering with Bayesian networks (KEBN) [5], which is the 

primary focus of this paper, uses BN for exact and 

approximate modeling of physical and biological systems [6]. 

The decision to use KEBN as the modeling platform was 

influenced by its strength for simplifying conditionalization 

and for handling uncertainty using probabilistic representation 

[6]. With respect to the objective of this study, the limitations 

of the other ES were another influencing factor. For instance, 

besides the inability to reason omni-directionally, the 

traditional RBES, based upon Buchanan and Shortliffe’s 

MYCIN [7] for inference and decision-making has proved to 

be both brittle and cumbersome where problems are not well 

defined [5], [8]. Again, the single-disorder assumption of the 

RBES [9], that a patient only suffers from one disorder at a 

time, renders it ineffective for reasoning in the depression 

domain since depression has high comorbidity with other 

mental and/or physical illnesses [10], [11]. FBES, although 

they provide a natural way of describing the features and 

properties of objects in slots, may not be effective for 

knowledge representation in a complex domain such as 

depression because of similar drawbacks as in RBES [4]. Even 

though FLES are faster than RBES and FBES because of the 

smaller number of rules they require, Negnevitsky [4] 

highlights some major drawbacks, which make them 

unsuitable for  building medical diagnostic decision support 

systems. These include huge computational overhead and 
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allocation of equal importance to all symptoms that are 

combined in the diagnostic process. Another drawback is 

difficulties of tuning in fuzzy systems, and the rules of 

combining membership functions, known as the min-max 

rules for conjunctive (AND) and disjunctive (OR) reasoning 

that, do not fit the human-expert reasoning process in disease 

diagnosis. Though the proficiency of the NBES in building 

medical diagnosis support systems has been well explored 

[12], Ahmed et al [13] noted that it is sensitive to data formats 

and requires large datasets to produce reliable results. On the 

other hand, the difficulty of access to mental health datasets 

has been well discussed by Doherty et al [14] and in most 

cases comes as a mixture of symbolic, textual and numeric 

data, but neural networks works best only when the data is in 

numeric formats.  

As in other real-world problems, reasoning in clinical 

depression problems presents enormous cognitive challenges 

for clinicians of all categories. Adding uncertainty regarding 

the structure of the domain itself and the high comorbidity 

with physical and/or mental disorders with depression 

compounds the challenges. Omni-directional inferencing 

capability (reason from cause to effect, or from effect to 

cause), inherent ability to explicitly model uncertainty [5], and 

a combination of principles from numerous disciplines (see 

Fig. 2) [15], make KEBN suitable for direct representations of 

many complex problem domains such as depression.  

The main contributions of this paper are the design and 

description of probabilistic (graphical) system models for 

addressing problems in representation, inference and 

knowledge engineering within the decision-making process of 

clinical depression.  

The rest of the paper is structured as follows: Section II 

discusses the advantages of learning graphical KEBN models. 

Section III presents the step-by-step methodology taken to 

achieve the objective of the study. Section IV presents the 

experimental results and their analysis. Section V discusses 

the evaluation metrics used to measure the performance of our 

models. Section VI presents the works that are closely related 

to our study. Section VII concludes the study and sets out an 

agenda for future work. 

II. LEARNING GRAPHICAL KEBN MODELS 

A KEBN is a graphical model or probabilistic networks         

<N, A, Θ> [16], which is a directed acyclic graph (DAG) with 

nodes N, and directed arcs A, between the nodes, augmented 

by a conditional probability table (CPT) for each node, 

collectively represented by Θ. The network DAG and CPT 

present one convenient way of representing assumptions of 

conditional independence (CI). Each node n є N in the graph 

represents a random variable X (an attribute in a dataset), and 

has a value corresponding to the probability of the random 

variable, P(X) [17]. 

Each arc a є A between the nodes represents a probabilistic 

dependency, for instance, a direct arc from node X to node 

 

Fig. 2. Disciplines of KEBN 

Y shows that node X has a direct influence on node Y, written 

as P(Y|X). The nodes and the arcs define the structure of the 

network, and the conditional probabilities are the parameters 

given the structure. Learning a graphical model has two parts 

[5]: The first is the learning of parameters given a structure. 

The second, more difficult and interesting part, is to learn the 

graph structure. Though much effort is required to learn the 

structure from depression data, the result is worth the effort as 

it helps to avoid the potentially serious consequences of a 

diagnostic error that would have arisen if left to the mercy of 

intuition and subjective judgment of clinicians [5]. Through its 

omnidirectional inference system and inherent ability to 

explicitly model uncertainty, KEBN is suitable for direct 

representations of many real-world problems, such as 

reasoning about depression [5].  

III. METHODOLOGY 

To achieve the objective of the study, which is to develop 

and describe graphical KEBN models for reasoning in 

depression, the following steps were taken: 

a. Collection of depression data from the mental 

health unit of University of Benin Teaching 

Hospital (UBTH) and primary care centres in 

Nigeria. 

b. Data Preparation by discretisation, that is, 

transforming data into qualitative data. 

c. Presentation of dataset as an Ni * Mj matrix (‘i’ 

varies from 1 to 1090 and ‘j’ varies from 1 to 21. 

d. Extraction of significant features by reducing the 

number of symptoms (dimensionality reduction) 

using an unsupervised technique, the principal 

component analysis (PCA). This is similar to the 

way physicians extract the most significant 

symptoms of an illness during medical diagnosis. 



e. Presentation of new dataset with the significant 

symptoms extracted in (d) above (Ni * Mj matrix 

of the principal components).  

f. Generation of graphical KEBN model 

g. Specification of conditional probability 

distribution for each node to quantity the 

relationship between connected nodes. 

A. Data Processing 

Dataset collected from the hospital were 1090 data 

instances, 23 attributes (21 features and 2 class (target) 

attributes. The features are: age, sex, Sad mood, suicide 

attempt, loss of pleasure, insomnia, hypersomnia, loss of 

appetite, psychomotor agitation, psychomotor retardation, loss 

of energy, feeling of worthlessness, lack of thinking 

indecisiveness, recurrent thought of death, weight gain, weight 

loss, stressful life events, financial pressure, depression in 

family, employment status, depression diagnosis, and 

depression comorbidity. A smaller part of this dataset was first 

used in a study by Ojeme and Mbogho [18], [19] to test the 

predictive strength of BN in detecting depression. This study 

achieves the same objective, but beyond merely producing 

predictions like the previous ones, performed dimensionality 

reduction with PCA and used graphical knowledge-based 

system models to precisely quantify the importance of 

individual symptoms, and identified the most efficient path 

towards the target nodes. Data discretisation was performed 

with the Waikato environment for knowledge analysis (Weka) 

[20] on the default settings. Next was the extraction of 

significant features by reducing the number of features 

(dimensionality reduction) using the principal component 

analysis (PCA), also performed in Weka. This was necessary 

in order to remove redundant features and outliers from the 

dataset, which would have degraded the classification 

accuracy [21]. The step-by step PCA approach is summarized 

as follows: 1) take the whole dataset consisting of d-

dimensional samples ignoring the class label 2) compute the d-

dimensional mean vector (i.e., the mean for every dimension 

of the whole dataset 3) compute the covariance of the whole 

dataset 4) compute the eigenvectors  and the 

corresponding eigenvalues    5) sort the 

eigenvectors by decreasing eigenvalues and choose m 

eigenvectors with the largest eigenvalues to form an n * m 

dimensional matrix (where every column represents an 

eigenvector) 6) Use this n * m eigenvector matrix to transform 

the samples onto the new dataset. 

The initial input vector (eigenvector) having 21 features 
and their corresponding eigenvalues (marked in boldface for 
visualisation purpose) are shown in Table 1. Eigenvectors  

Table 1. Eigenvectors and eigenvalues in PCA 

  Features Eigen-

value 

  Features Eigen-

value 

1 Sad mood  1.6597 12 Psychomotor 

agitation  
0.9070 

2 Loss of 

pleasure  
1.2290 13 Psychomotor 

ret.  
0.8165 

3 Insomnia  1.1959 14 lack of thinking  0.7921 

4 Worthlessness  1.1583 15 financial 

pressure  
0.7314 

5 Impaired 
function  

1.1470 16 Hypersomnia  0.6512 

6 suicide attempt.  1.1358 17 Thought of 

death  
0.6232 

7 Employment 

status  
1.1254 18 Depression in 

family 
0.4943 

8 Indecisiveness  1.1161 19 Loss of appetite  0.4692 

9 Loss of energy  1.1094 20 Age  0.4512 

10 Weight loss  0.9840 21 Sex  0.4091 

11 Weight gain  0.9772       

 

have been sorted by decreasing  eigenvalues and those with 

the largest eigenvalues are the principal components (PC) 

[21]. In line with the concept of PCA, the PC for this study are 

the features with eigenvalues greater or equal to 1 (That is, 

features number 1 to 9 in Table 1). 

IV. EXPERIMENTAL RESULTS AND 

ANALYSIS 
Although KEBN provides an intuitive medium for 

knowledge acquisition and inference in many systems, 
graphical tools are required for the creation and manipulation 
of any nontrivial network structure. A number of software 
packages exist for KEBN modeling and inference. These 
include BayesiaLab [5], (Weka) [20], Multi-label extension to 
Weka (Meka) [22], Analytical, Bayes Net Toolbox, GeNIe, 
Hugin, JavaBayes, MSBNx, and Netical [6]. Built on the 
foundation of the BN formalism with a sophisticated GUI, 
BayesiaLab (Evaluation Version, 6.0.2), a powerful desktop 
application (Windows/Mac/Unix), was used in this study to 
automatically generate structural models from depression data 
and describe the probabilistic relationships between variables.  
BayesiaLab contains: (1) a graph editor, (2) a probability 
editor, and (3) a numerical engine for rapid prototyping and 
implementation of KEBN [5].  

Using a 10-fold cross-validation, the structure of the PCA-

transformed depression dataset was learnt using the Tree 

Augmented Naïve Bayes (TAN), an improved extension of the 

Naïve Bayes (NB) algorithm, which relaxes the problematic 

assumption that all attributes are independent of each other 

given the class. 

 



 

Fig. 3. Tree augmented Bayesian network graphical model of depression diagnosis 

 

TAN, as discussed in Cheng and Greiner [23] has a high 
performance that is comparable to state-of-the art classifiers 
like decision trees despite its robust nature and computational 
simplicity. Its learning procedure is: 1) take the training set X 
= (x1, x2,…,xn/c) as input (where X is the feature node and c is 
the classification node); 2) replace every mutual information 
test I(xi, xj) with a conditional mutual information test I(xi, xj 
/{c}); 3) add c as a parent of every xi where            I ≤ i ≤ n.; 
4) learn the parameters and output the TAN. Development of 
the KEBN graphical model with the PCA-transformed dataset 
was performed using the default settings of BayesiaLab. The 
experimental result is shown in Fig. 3 and analysed in Table 2.  

The top numbers in the yellow boxes (Fig. 3) show the 

mutual information (MI) value. Mutual information reports 

how much one variable, say a child, tells about another 

variable, say a parent [6]. The feature, impaired function, 

which has the highest MI of 0.6309, is the most important 

predictive variable with regard to depression diagnosis while 

the least important predictive feature with regard to depression 

diagnosis is employment status with MI of 0.0288. The middle 

blue numbers show the relative mutual information with 

regard to the child nodes while the bottom red numbers show 

the relative mutual information with regard to the parent 

nodes. The results confirm a good performance of this model 

in terms of the considered metrics but given that a classifier 

has its own inductive bias, we found it helpful testing out a 

variety of other supervised learning classifiers and selecting 

the best model.  
Table 3 presents a summary of the results from TAN and 

other variants of BN classifiers including Naïve Bayes (NB), 
Augmented Naïve Bayes (ANB), Tree Augmented Naïve 
Bayes (TAN), Markov Blanket (MB), Augmented Markov 
Blanket (AMB) and the Minimal Augmented Markov Blanket 
(MAMB) [24]. Though the results from the table show all the 
classifiers as reasonably good (none had less than 88% in 
terms of ROC and Precision, TAN had the best overall 
performance while NB had the least performance in the 
experiment.  

V. EVALUATION 

In order to ensure that nothing is neglected and that results 

from our experiments are consistent with expectations, we 

evaluate the performance of our models using a 10-fold cross-

validation and the following six model evaluation metrics 

discussed in Chai and Draxler [25]: 1) The root-mean-square 

error (RMSE) measures the differences between values 

predicted by a model and the values actually observed. 

 



Table 2: Relationship analysis with target node 

Parent/ 

target 

child 
Mutual 

information 

Effect 

on 

target 

Overall 

contribution 

(%) 

Depression 

diagnosis 

Loss 

of energy 
0.5621 0.9654 30.9540 

Depression 

diagnosis 

Impaired 

function 
0.6309 0.9590 22.7671 

Depression 
diagnosis 

worthlessness 
0.3650 0.8777 13.1727 

Depression 

diagnosis 

Loss 

of pleasure 
0.1618 0.9495 5.8394 

Depression 

diagnosis 

insomnia 
0.1179 0.5978 4.2550 

Depression 

diagnosis 

Sad mood 
0.0863 1.9125 3.1158 

Depression 
diagnosis 

indecisiveness 
0.3069 0.8466 1.9826 

Depression 

diagnosis 

Employment 

status 
0.0288 -1147 1.9751 

Depression 

diagnosis 

Suicide 

attempt 
0.0680 0.6871 0.2655 

Loss 

of pleasure 

Loss 

 of energy 
0.0310   11.7903 

insomnia 
Employment 
status 

0.0185   1.6035 

worthlessness 
Suicide 

attempt 
0.1031   1.5337 

Impaired 

function 

indecisiveness 
0.2726   0.7452 

 

Mathematically, 

   (1) 

where Xobs is observed values and Xmodel is modelled values at 

time/place i and n is the number of observations. The values of 

RMSE range from 0 to infinity with 0 indicating a perfect 

model performance. 2) The normalized root mean square error 

(NRMSE) is the non-dimensional form of the RMSE (to the 

range of the observed data) used for comparing RMSE with 

different units. NRMSE is expressed as a percentage, where 

lower values indicate less residual variance and better 

performance. Mathematically, 

   (2) 

3) The Pearson correlation coefficient (r) shows the strength 

and direction of a linear relationship between two variables, X 

(model output) Y (observed values). It is obtained by dividing 

the covariance of the two variables by the product of their 

standard deviations, given a value between -1 and +1. A 

correlation coefficient of +1 shows a total correlation, 0 is no 

correlation and -1 is a total negative correlation. 

Mathematically, 

  (3) 

where xi = actual number; yi= predicted number; x  and y  

are average numbers for actual and predicted, respectively. 4) 

The square of the Pearson correlation coefficient (R2), 

measures the power of correlation between predicted and 

actual number of faults. Like R, this metric’s value should be 

near to 1 if the model is to be acceptable. 5) Receiver 

operating characteristics (ROC) provides the area under the 

curve (AUC) of the plot of the true positive rate (y-axis) 

against the false positive rate (x-axis). An excellent classifier 

will have ROC area values between 0.9 and 1.0 (90 and 100%) 

while a poor classifier will have ROC area values between 0.6 

and 0.7 (60 and 70%) [26]. 6) A precision of 91 to 94% was 

achieved by all the classifiers indicating correct predictions 

among the positive predictions. Precision = TP/(TP + FP) 

where TP and FP refer to true positive and false positive, 

respectively. 

VI. RELATED WORK 

Studies show several attempts by KEBN researchers to 

design diagnostic tools for medical conditions. We highlight 

some of these studies that are closely related to the use of 

graphical models for reasoning in mental health.  

Table 3:  Results from performance of variants of BN classifiers 

  TAN NB ANB MB AMB MAMB 

RMSE 0.2148 0.3152 0.2141 0.3009 0.2262 0.2278 

NRMSE 

(%) 

7.1603 10.5078 7.1358 10.0311 7.5412 7.5942 

R 0.9532 0.8967 0.9536 0.9064 0.9481 0.9472 

R2 0.9087 0.8041 0.9093 0.8216 0.8988 0.8973 

ROC (%) 89.9676 88.7414 89.9047 89.5604 89.9676 89.9047 

Precision 

(%) 
94.8624 91.9266 94.9541 93.2110 94.4954 94.4954 

For the identification of factors that affect diseases and 

their correlation, Curiac et al [27] developed a BN model for 

the analysis of psychiatric data from a Romanian specialised 

clinic. The study found that the probability of patients 

diagnosed with specified psychiatric diseases fluctuates for 

mixed dementia paranoid schizophrenia but drops by about 

50% for simple schizophrenia. Seixas et al [28] proposed a BN 

decision model for assisting clinicians in the detection of 

dementia diseases (Alzheimer's Disease (AD) and Mild 

Cognitive Impairment (MCI)) using a combination of data and 

knowledge from clinicians while the network parameters were 

estimated using a supervised learning algorithm from a dataset 

of real clinical cases.  



VII. CONCLUSIONS AND FUTURE WORK 

Today's data-driven world requires researchers and 
clinicians to be able to explore and visualize data very quickly 
for informed decision-making. In this paper, we have 
demonstrated the strength of graphical KEBN in making 
reasoning in depression, not only appealing but convenient, by 
bringing out hidden structures in data. The model computed 
the predictive importance of various symptoms with regard to 
depression and showed that methods based on CI tests, such as 
mutual information, are suitable for BN classifier learning. 
The study demonstrates that more tools can be developed to 
help improve research data visualisation. However, the study 
can be extended and improved in several ways. We can use a 
scoring-based test that searches through possible network 
structure for a best scored network for the purpose of finding a 
graph and parameters that maximize the likelihood. Secondly, 
in increasing the role of computationally managed knowledge 
in healthcare, we will look at social, economic, legal and 
ethical issues that tend to create a wide gap between research 
and healthcare [29]. Lastly, we will investigate the 
performance of these methods in other contexts. 
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