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Figure 1: Machine assisted segmentation: 1. labeling regions that need to be differentiated, 2. run the classifier and 3. touch up the result.

Abstract

A laser scanning campaign to capture the geometry of a large heritage site can produce thousands of high resolution range
scans. These must be cleaned to remove noise and artefacts. To accelerate the cleaning task, we can i) reduce the time required
for batch-processing tasks, ii) reduce user interaction time, or iii) replace interactive tasks with more efficient automated
algorithms. We present a point cloud cleaning framework that attempts to improve each of these aspects. First, we present
a novel system architecture targeted point cloud segmentation. This architecture represents ‘layers’ of related points in a way
that greatly reduces memory consumption and provides efficient set operations between layers. These set operations (union,
difference, intersection) allow the creation of new layers which aid in the segmentation task. Next, we introduce roll-corrected
3D camera navigation that allows a user to look around freely while reducing disorientation. A user study showed that this
camera mode significantly reduces a users navigation time between locations in a large point cloud thus accelerating point
selection operations. Finally, we show how boosted random forests can be trained interactively, per scan, to assist users in a
point cleaning task. To achieve interactivity, we sub-sample the training data on the fly and use efficient features adapted to the
properties of range scans. Training and classification required 8-9s for point clouds up to 11 million points. Tests showed that
a simple user-selected seed allowed walls to be recovered from tree and bush overgrowth with up to 92% accuracy (f-score).
A preliminary user study showed that overall task time performance was improved. The study could however not confirm this
result as statistically significant with 19 users. These results are, however, promising and suggest that even larger performance
improvements are likely with more sophisticated features or the use of colour range images, which are now commonplace.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Picture/Image Generation]: Digitization and Image Capture—

Scanning

1. Introduction

Point cloud cleaning is the process of removing unwanted data
points from laser range scans and other types of point cloud data. It
is part of the pipeline [BR02] that converts laser range scans of her-
itage sites into 3D models. Unwanted points typically correspond
to objects, such as people or cars that were present at scan time
as well as noise [THOS]. Heritage scanning expeditions can pro-
duce more than 2000 range scans that need to be cleaned manually.
Cleaning a single scan can take a person between 30 minutes and 2
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hours [RH11]. The two most time consuming parts of the cleaning
task are interaction time, and processing time. We can thus either
improve the system interface so that the user is more efficient, or
improve the algorithms such that they consume less time. A third
option is to replace interactive tasks with more efficient automation.
In this paper we aim to reduce overall cleaning time by addressing
all 3 areas. We demonstrate a roll corrected camera mode that re-
duces navigation time in editing software. Then we introduce an
innovative architecture for representing layers such that less mem-
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ory is consumed and processing time is reduced. Finally we show
how boosted random forests can be used to assist a users with seg-
mentation tasks.

2. Navigation

Heritage point clouds or range scans are 3D virtual environments
that the user interacts with during the cleaning process. These in-
teractions can be grouped into navigation, selection, and system
control [JHST14, Han97]. Developing an efficient 3D navigation
technique for interactive 3D environments is complicated by the
need to control 3 degrees of rotational and translation freedom us-
ing a 2 dimensional mouse and keyboard inputs. Most 3D mod-
elling and point cloud editing packages use variations of the Ar-
cBall [Sho92] or Virtual Sphere [CMS88] to achieve 3D rotation
with 2D inputs. Rotating around a central point is best suited for
exploratory movement or object manipulation, rather than the tar-
geted movement used for cleaning. Another 3D navigation to use a
first person perspective (FPP) as employed by many games. In this
mode the user typically translates the camera position along a hori-
zontal plane using arrow keys while using the mouse to change the
camera orientation. FPP navigation, however, requires one to make
a trade-off between rotational freedom and potential disorientation.
If the camera can be rotated freely it is easy for a person to end up
in non-upright position that can be disorientating.

We developed a variation of the FPP camera that mitigates the
problem of accidental disorientation without restricting camera ro-
tations. With this technique a person is allowed to freely rotate the
camera around the yaw and pitch axis of the local reference frame.
This allows the user to look around naturally without being ob-
structed by invisible barriers. In allowing this level of freedom, the
camera can become rolled relative to the world axis. A roll state
only becomes undesirable when the horizon is along the line of
sight. When looking straight ahead along the horizon, a person ex-
pects to be upright. We can use the camera’s pitch relative to the
ground to develop a heuristic to determine when a roll state is un-
desirable. As the pitch angle approaches 0, roll becomes undesir-
able. Roll states are more tolerable as the pitch moves away from 0
since the user’s intention is likely to look up or down. This heuristic
can be used to determine when to unroll the camera. In our system
we apply a small correctional roll rotation to the camera with ev-
ery interaction when the heuristic indicates that a roll state is un-
desirable. With successive interactions the effect of the correction
slowly nudges the camera back upright. To control the speed of
the roll correction a damping coefficient d is used. The correction
factor is d(1 — | cos(8)]) when |cos(0)| < 45° and 0 otherwise.

Evaluation: If a roll corrected FPP camera reduces disorienta-
tion, a user should be able to navigate a virtual 3D environment
faster with roll correction when encountering disorientated refer-
ence frames. To test this hypothesis, 19 users were given two timed
navigation tasks. The tasks required them to use our system to nav-
igate from one position in a scan to another. The starting camera
orientation was rolled and the final camera orientation had to be
level with the ground. Each task was performed under two condi-
tions. In the control condition, roll correction was disabled and in
the experimental condition roll correction was enabled. A within-
subject counterbalanced design was used. User’s were randomly

assigned to one of two groups that determined the order in which
the experimental and control conditions were presented. The first
group started with the control task. To counter learning effects users
where primed by giving them time familiarise themselves with the
environment. Users were also given a trial run with each task. Users
were asked to repeat each navigation task 3 times under control and
experimental conditions in order to reduce random error.

Users performed both tasks significantly faster with roll correc-
tion on. In the first task the mean time without roll correction was
60.77s + 39.74s. With roll correction the mean time was 25.65s +
18.11s. This amounts to a 35.13s improvement that is significance
with p < 0.05. In the second task the mean time for the control
condition was 34.24s + 26.60s. Roll correction reduced the time
to 24.02s = 17.73s. That is a 10.22s reduction that is significance
with p < 0.05. A double tailed repeated measures t-test was used to
compare samples.

3. Layers

The manner in which a user tackles point removal depends largely
on the feature set of the software used. Selections allow one to tem-
porarily specify what points an operation should apply to. The most
relevant action for cleaning is to remove points. Layers are gener-
ally used to as a more persistent store of point sets, potentially for
future operations. Most software packages allow one to hide the
points in a layer. This mechanism supports a more iterative clean-
ing work flow. Instead of immediately discarding points, areas can
be hidden from view for later refinement.

In a system aimed specifically at point cloud cleaning, the only
requirement is to annotate points while maintaining interactivity.
Duplicating points during the creation of new layers may cause
thrashing when dealing with large point clouds or many layers.
Representing layers as a binary maps can be more computationally
and memory efficient. An ideal technique would however support
extra layers without a linear increase in memory consumption.

We devised a novel layering technique that supports the same
operations as maps, with similar performance, without a linear in-
crease in memory consumption for each additional layer. It also
supports constant time set operations between layers. The tech-
nique allocates n bits per point in the associated point cloud. This
allows one to keep track of 2" layers for the best case and n for
the worse case. The n bits associated with each point are used for
labelling points. 7 bits lets us create 2" unique labels. We use a sep-
arate data structure to keep track of layers. Layers are represented
as sets of associated labels. Initially each point is assigned the “0”
label that we designate as being the state in which a point is not
associated with any layer (see figure 2). To create a layer, we as-
sign each associated point a new label, and then associate the label
with the layer. In our example we assign a label of 1 to the points in
the new red circle, and then associate the label 1 with the red layer
(see figure 2). To add an additional non overlapping layer the same
process is followed. Creating overlapping layers is not as simple.
In figure 2 a new blue layer is created that overlaps with the red
layer. Assigning a new integer label to the points in the blue seg-
ment would remove the overlapping points from the red layer. This
problem is solved by creating two new labels. First we assign “3” to
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Figure 2: Managing layer labels.

the points that do not overlap with the red layer. This label is added
to the blue layer’s set. The overlapping points are given the label
“4”. This label is then added to both the set of the red and blue la-
bel. The blue and red layer end up having the “4” label in common.
To create a layer containing the intersection between the red and
blue layers we simply find the intersection between the two label
sets (i.e. 4), and create a new layer (cf. Figure 2). Union and differ-
ence operations can be achieved similarly. Set operation with naive
maps would incur a computational and memory cost of 0(n) where
n is the point cloud size. The number of labels that we can create
is limited by the number of layer intersections. In the worst case,
each newly created layer overlaps with every other layer and the
number of bits allocated for the label will be the maximum number
of layers. A 16 bit implementation therefore be limited to 16 layers.
If no overlaps occur, 65536 layers could be created.

4. Machine assisted segmentation

The cleaning of terrestrial range images in the heritage domain
has not been the topic of much research. The tools used to clean
these scans are mostly limited to manual techniques such as brush
and polygon lasso selection. Automated tools include automated
ground point extraction, wall selection, rooftop extraction, and gen-
eral purpose clustering. Such tools are mostly lacking when applied
to heritage applications since the accuracy is insufficient, or only
high enough for very specific use cases.

An effective automated technique should adapt to different con-
texts while achieving good accuracy. The accuracy should be such
that any manual touch up work required should not extend the total
task time beyond what it would be when performed.

In this study we focus on segmenting grey scale range images.
Working with range images is challenging because the point den-
sity of the cloud is non uniform. Range images can however also
be interpreted as 2D depth images, which could allow one to apply
2D segmentation techniques such as “GrabCut” [RKB]. Golovin-
skiy [GKFO09] uses graph cuts to segment objects in uniform point
clouds of cluttered city streets. We have found that constructing
such a graph over a range scan lead to bad segmentations due to
non uniform density. Anguelov et al. [ATC*05] demonstrates how
graph cuts can be successfully applied to segment range images
when the edge weights are determined via supervised learning.
Training was performed on 30 thousand training points, the training
duration was not reported. Selecting features specific to the objects
being targeted is problematic in heritage cleaning as segmentation
targets hard to anticipate.

The technique we developed is similar to “GrabCut” [RKB].
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Instead of using a graph cut to produce segmentations we apply
boosted random forest learning in a similar manner to [CLSBO8].
Random forest allows us to use features that are weakly correlated
with the target object to build a strong classifier. As in “Grab-
Cut” [RKB] our system lets a user roughly label areas in the scene
with different colours using a simple painting interface. When the
labelling is complete supervised on-line learning is applied to the
training set. This is followed by classification of the remainder of
the points (see Figure 1). The principal benefit of this approach is
that we can learn a classification scheme tailored to each scan that
we segment — this should suit the unpredictable nature of heritage
scan content far better than trying to learn a general point classifier.

To ensure interactivity is maintained, the training set is sub sam-
pled so that only 5% of the points are used. We use features that are
inexpensive to compute and have discriminative power in our sam-
ple of heritage sites: 3D positions, normals, intensity returns, and
principal components. Normals correlate with surfaces that face the
same direction and provided that the range image neighbourhood
structure is intact they are inexpensive to compute [KAWBO09]. Or-
dered coefficients of a principal component analysis in a neigh-
bourhood has been shown to discriminate well between edges, cor-
ners and planes [BF12, ATC*05]. In our system the neighbourhood
is a 200 cm radius. The intensity return of the laser scanner is
known to strongly correlate with the type of surface that it reflected
off [TP12]. The 3D coordinates of each point enforces some level of
spacial coherence between points. We use [CLSB08]’s implemen-
tation of boosted random forests with 100 trees, with a maximum
depth of 10, and 10 training iterations. This implementation discard
weak trees.

Evaluation: Participants (13 men, 6 women) with varying levels
of technical experience were recruited for this evaluation. Users
were presented with a timed segmentation task. Users were asked
to recreate a reference segmentation that was presented to them in
a layer. The segmentation had to be recreated with 97% or 95%
accuracy, depending on the task. In the control condition for this
experiment users started with a clean project file with nothing se-
lected. In the experimental condition users were presented with an
existing segmentation that was created by applying machine learn-
ing. In order to remove additional sources of variance from the test
procedure, one set of segmentation results were presented to all
users as the baseline for the machine assisted condition. These seg-
mentations were the result of the labellings depicted in Figure 1
and Figure 3 that were created in 20s each. In the first task the user
was required separate a tree and some shrubbery from a house wall
(see Figure 1). In the experimental condition the tree and shrubbery
was pre-segmented with 91.58% accuracy. The user was tasked to
achieve a final accuracy of 97%, from scratch or from the above
mentioned starting point. In the second task the windows in a court-
yard had to be segmented from a wall (see Figure 3). Our seg-
mentation algorithm achieved 78.69% given the training data as
shown in panel one of Figure 3. Users were initially tasked to also
achieve a segmentation accuracy of 97%, a pilot study however re-
vealed users required an excessive amount of time to achieve this
level of accuracy. The require accuracy was then dropped to 95%
which some users still had difficulty achieving. Segmentation ac-
curacy was measured with an F-score. A within-subject counter-
balanced design was used again. Users were randomly assigned to
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Figure 3: Machine assisted segmentation (courtyard) 1. labeling,
2. running the classifier and 3. touching up the result.

two groups. The first group was given the control segmentation task
first. Users were primed before starting the experiment. During the
priming procedure users were trained how to use the lasso, brush
and plane selection tools. Users were then given 3 targets to that
they could test each tool on.

Given a coarse user labelling, machine assisted segmentation re-
duced time to label the remaining points dramatically but no signif-
icant reduction in overall task duration was found for either task.
For task 1 users completed the manual segmentation in an average
time of 207s 4= 100s. The machine assisted segmentation was per-
formed in 142s + 73s, which is significant for p < 0.5, when the
estimated labelling and processing time of 29s is added the overall
time increases to 163s 4= 78s with no significance (p < 0.5). For
task 2 users completed the manual segmentation in an average time
of 268s £ 140s. The machine assisted segmentation was performed
in 206s £ 148s, which was not significant, when labelling and pro-
cessing overhead of 29s time is added the total time is on average
235s + 148s also with no significance (p < 0.5). A double tailed
repeated measures t-test was used to compare samples. It is worth
emphasizing that, given the coarse labeling, the time required for
user interaction was much lower than for the regular manual clean-
ing process. However, the results show that the learning process
produces an initial scan segmentation that requires a fair amount of
“touch-up” time. One possible reason for this is because we only
use (X, Y, Z) coordinate values to enforce coherence. Less accu-
rate segmentation results tend to be generated when isolated scan
regions are not labeled. This effect can be seen in the top left cor-
ner of the second panel of Figure 3. Applying a graph cut approach
as in [RKB] or [ATC*05] may produce better results. Better fea-
tures may also lead more accurate results which could reduce the
touch up time required. Most notably, utilising the extra informa-
tion in colour channels in scans that have them is likely to have
a big impact. Statistical significance is expected to be achievable
with a larger user sample.

5. Conclusion

We have presented a framework which addresses the acceleration of
the cleaning process in three ways. First, we define a roll-corrected
mouse interface to allow users to rapidly navigate through the range
scan point cloud during editing; secondly, we provide an efficient
layer-based point labelling data structure which supports fast mem-
ory efficient set-based layer operations; and finally, we introduced
a machine learning point classification scheme based on boosted
random forests to classify all scan points based on coarse user la-
belling. The learning algorithm is retrained for each scan based on
labelled data provided by a simple paint-by-numbers interface. Pre-

liminary findings show that our framework greatly reduces the time
to classify points into related clusters during cleaning, when com-
pared to a full manual point clustering/classification. However, the
time required to tweak the generated point labelling, to get high ac-
curacy, is still greater than it needs to be. This can be attributed to
(1) an unoptimized collection of features and the lack of a strong
spatial neighbourhood constraint, (2) the boosted random forest im-
plementation we used was unoptimized, so additional time could be
saved by utilising one of the many highly optimized machine learn-
ing libraries that now exist.

With regards to future work, we plan to utilise additional colour
features and to explore more complex features and learning algo-
rithms, whilst ensuring that more complex learning algorithms do
not unduly push up the overall processing time.
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