
Experimentally motivated transformations for
intermodel links between conceptual models

Zubeida C. Khan1,2, C. Maria Keet1, Pablo R. Fillottrani3,4, Karina Cenci3

1 Department of Computer Science, University of Cape Town, South Africa,
mkeet@cs.uct.ac.za

2 Council for Scientific and Industrial Research, South Africa, zkhan@csir.co.za
3 Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional

del Sur, Bah́ıa Blanca, Argentina, {prf,kmc}@cs.uns.edu.ar
4 Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires, Argentina

Abstract. Complex system development and information integration
at the conceptual layer raises the requirement to be able to declare in-
termodel assertions between entities in models that may, or may not,
be represented in the same modelling language. This is compounded by
the fact that semantically equivalent notions may have been represented
with a different element, such as an attribute or class. We first inves-
tigate such occurrences in six ICOM projects and 40 models with 33
schema matchings. While equivalence and subsumption are in the over-
whelming majority, this extends mainly to different types of attributes,
and therewith requiring non-1:1 mappings. We present a solution that
bridges these semantic gaps. To facilitate implementation, the mappings
and transformations are declared in ATL. This avails of a common, and
logic-based, metamodel to aid verification of the links. This is currently
being implemented as proof-of-concept in the ICOM tool.

1 Introduction

Complex system development requires one to develop models before implemen-
tation. Such models may be too large to deal with at once, so that a modular
approach is taken to conceptual model development, and they may represented
in different modelling languages. This requires a CASE tool, or at least a mod-
elling tool, that can manage modules and assertions of links between entities in
the different modules. There are only few tools that can do this, such as ICOM
[7] and Pounamu [20], which are at the proof-of-concept level and they allow
only, at most, equivalence and subsumption among classes and among relation-
ships, but not among attributes or roles, let alone have a way to handle, say,
that an entity is an attribute in one model and a class in another.

In addition, modelling choices are made during the data analysis stage, such
as choosing to make an attribute a simple one, a multivalued one, a composite
one, or a class, with the canonical example being Address, and whether Marriage
should be represented as a class or a relationship. Different choices are made
in different projects for their own reasons that may have seemed good choices

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

at the time. However, such differences do resurface during system integration.
While some transformation rules seem intuitively trivial, because they may be
so in the general abstract sense, the conceptual and syntax aspects are tricky in
the details and they are not readily specified formally and available, not even for
models represented in the same language, let alone across modelling languages.

While it is theoretically possible to generate a huge set of links and transfor-
mations, practically, only a subset of them are needed and yet others are logically
and ontologically not feasible. This leads to the following questions:
1. Taking ‘projects’ (sets of interlinked models) from one of such tools that

allows class and relationship intermodel assertions of equivalence and sub-
sumption: (a) Which type of intermodel assertions are actually used? (b)
How often are they used, compared to each other and compared to the mod-
els’ sizes? (c) Which module scenario was used? (e.g., for system integration,
for managing cognitive overload). Or: What is the primary reason behind in-
termodel assertions, if possible to ascertain?

2. In an integration scenario, if not constrained by the limitations of the tool
regarding the implemented types of intermodel assertions, then which links
would be used or needed, including any possible between-type intermodel
assertions?

To answer these questions, we conducted an experimental evaluation with six
ICOM projects, and added 9 more integration scenarios to it using publicly avail-
able models in different languages on the same universe of discourse, involving
40 models overall in 33 schema matchings. We describe and analyse several types
of intermodel links and for those that relate different types of entities—either in
the same conceptual data modelling language or across languages—we present a
structure that bridges the semantic gap. While this could have been formalised in
a logic, we valued applicability and therefore used the well-known Model-Driven
Engineering’s ATL-style notation [12] for the transformation specifications, and
use a common metamodel [14] to mediate between models represented in differ-
ent languages.

In the remainder of the paper we first report on the experimental assessment
of intermodel links in Section 2. The specification of the transformations is pre-
sented in Section 3. We compare it with related work and justify the approach
taken in Section 4, discuss in Section 5, and conclude in Section 6.

2 Experimental assessment of intermodel assertions

The purpose of the experimental evaluation is to analyse existing conceptual
data models on intermodel assertions among them.

2.1 Materials and methods

The assessment has been designed in two complementary experiments:
1. Analyse existing intermodel assertions: (i) Collect model sets from ICOM

projects; (ii) For each project in the set: (a) analyse its contents and inter-
model assertions, by measuring most frequently linked concept type, most

frequently linked relationship type, and number of intermodel links; (b) Anal-
yse the project to determine whether it is an integration project or a module
project; (iv) Repeat steps 2-3 for each model in each set.

2. Simulated system integration scenarios:
i. Collect model sets (online-sourced) in several subject domains with each

at least two models in either UML, EER, or ORM.
ii. For each model set, link the models to the other one(s) in the set—2

at a time—by using intermodel assertions manually, unconstrained by
whether a tool would support such links. Concerning the links, the fol-
lowing decisions have been taken: 1) there are equivalence and subsump-
tion links; 2) those that have a 1:1 mapping regarding the metamodel
[14] are counted as ‘full’ links; 3) there are entities that are very similar
(e.g., an attribute with or without a data type, different constraints),
which are ‘half’ links; 4) those links that require some transformation
(e.g., class to relationship) are ‘trans’ links; 5) concerning class hierar-
chies, there also may be ‘implied’ links.

iii. Analyse the collected intermodel assertions by measuring most frequently
linked concept type, most frequently linked relationship type, number
of intermodel links, number of transformations.

iv. Repeat steps 2-3 for each model pair in each set.
The materials consisted of six ICOM projects each with intermodel asser-

tions, covering domains about telecommunications, college, governance, and tax-
ation created by the students at UNS. The second model set covers nine ‘projects’,
each containing three models in either UML, EER, or ORM, and each covering
a different domain (bank, car insurance, flights, hospital, hotel, library, movie,
sales, and university systems).

2.2 Results and discussion

The models and the analyses are available at http://www.meteck.org/SAAR.

html and the results are summarised and discussed in this section.
Five of the six ICOM projects contain links between two models, and one

contains links between three models. There are a total of 25 links, with an
average of 4.17 links per project. There are 194 entities in the set of projects of
which thus 25*2=50 entities (25%) are linked. The links are mainly equivalence
and subsumption, with one being a disjointness link. 14 object types and 11
relationships were involved, with the breakdown as included in Table 1. Four
of these projects were created for integration purposes, and the remaining two
were created to manage cognitive overload, by splitting up large models into
separate subject domain modules. An example of the latter is the project about a
telecommunication data warehouse and a model with customer call information.

In order to uncover information about conceptual data model modules, we
classify these projects according to the framework for ontology modularity [15].
This module classification is used to determine use-cases for creating modules,
techniques that are used to create the modules, and properties that the modules
exhibit. The projects on cognitive overload correspond to the subject domain

Table 1. Total links by type for the ICOM projects and for the simulated integration
scenarios. OT = Object Type; VT = Value Type; att. = attribute; id. = identifer.

Link type Subdivision Comments

Links that can be declared in ICOM (projects/scenarios)

Equivalence (6/106)
Among OTs (4/72) Probably fewer logically
Among attributes (0/26)
Among relationships (2/8)

Subsumption (18/27)
Among OTs (9/16)
Among relationships (9/11) Due to cardinality con-

straint differences

Disjointness (1/1) Among OTs (1/1)

New link types (scenarios only)

‘Half’ Links (64)

‘Missing datatype’ between
ER and UML (56)
Relationship constraint mis-
match (4)

Neither subsumption nor
equivalence

Composite attribute ‘leaves’
(2)
Attribute constraint mis-
match (2)

Both UML attribute, differ-
ent cardinality

Implied Subsumption (12) Excluding the hospital
models, where it was too
confusing to do manually

Transformation Links (48)

Attribute - Identifier (18) UML attr. vs ER/ORM id.
Attribute - VT (13)
Attribute - OT (5)
Weak OT - OT (4)
Composite - Attribute (3)
Relationship - Aggregate (2)
Relationship - OT (1)
Associative OT - OT (1)
OT - Nested OT (1)

modules of the framework where the conceptual model is subdivided according
to the subject domains; the projects on system integration correspond the high-
level abstraction modules of the framework; further details are shown in Table 2.

For the projects created for integration, the most frequently linked relation-
ship type is split equally between equivalence and subsumption, and the most
frequently linked entity is split equally between object type and relationship for
the four projects. For the projects created for managing cognitive overload, the
most frequently linked relationship type is subsumption, and the most frequently
linked entity is split equally between object type and relationship.

Now we consider the simulated integration scenarios. An example of man-
ually aligned models is shown in Fig. 1, where the solid lines link entities of
the same type (e.g., the object types er:Airplane and uml:Aircraft), the long-
dashes dashed lines link semantically very similar entities (e.g., a full attribute,

Table 2. Classifying the ICOM projects using the framework for modularity.

Use-case Type Technique Property

Cognitive
overload
projects

Maintenance

Subject domain A priori

Pre-assigned
no. of modulesValidation

Collaboration
Overlapping

Reuse

Integration
projects

Comprehension High-level abstraction Manual
Source model
Proper subset
(Depth) Abstraction

as in uml:Airport.name and an attribute without data type, er:Airport.name),
and the short-dashes dashed line requires some transformation, such as be-
tween er:Airplaine.Type (an attribute) and uml:Aircraft Type (a class) and be-
tween er:Air-port.Code (an identifier, without data type) and uml:Airport.ID (a
plain attribute, with data type). In these projects, there are 9.5 links in each
2-model integration scenario (a total of 257), with the model size alike depicted
in Fig. 1.

The aggregates of the types of entities involved in the intermodel assertions
follow from the data included in Table 1. Attributes are the ones involved most,
with 119 in the ‘source’ and 108 in the ‘target’. However, they are also the
ones that occur most—by a large margin—in UML Class Diagrams and EER
diagrams [13], and, as can be seen also from Fig. 1, once a class can be linked,
there typically are also one or more attributes that can be linked.

As summarised and illustrated above, we identify two main kinds of links:
those that relate elements that are homogeneous in the unifying metamodel [14],
and those transformations that relate heterogeneous metamodel elements. The
former are further classified into traditional equivalence, subsumption and dis-
jointness links between compatible elements, which preserve the semantics of
each individual model. These links cover more that half of the identified links
(see Table 1), and relate compatible homogeneous entities of the original, pos-
sibly heterogeneous, models in the metamodel mappings; e.g., UML Class and
EER and ORM Entity type are the same. They are homogeneous in the meta-
model because they are instances of the same type, i.e., object type, attribute, or
relationship, and they are compatible because they exhibit coherent properties,
e.g., both attributes are ids, or the subsumed relationship has a more specific
cardinality constraint than the containing one. Both original models maintain
their respective semantics without changes. ‘Half links’ are 24.8% of the total
number of links, relating homogeneous entities that do not exhibit compatible
properties or constraints. The types of the mismatch in these constraints are
described in Table 1. These ‘half’ links may be represented by equivalence ax-
ioms, but one or both original models then would have to be updated with new
constraints. Any supporting tool, ideally with the aid of an automated reasoner,
will have to notify the conceptual modeller of these updates in order to decide on
their relevance for each model. Finally, the least common type of homogeneous

ID
name

Airline
ID
arrival_time
departure_time

Flight

AIRPLANE

TypeSeatsReg No

AIRPORTLANDS
ON

Code

Name

Country

City

AIRLINES

OWNED
BY

FLIES

FLIGHT

A name

Code

Flight

Arr_time Dep_time

Dep_dateArr_date

To

From

Class

TRAVELS
ON

HAS
BOOKING

BOOKING
OFFICE

BOOKS
TICKET

1

NM

N

1

N
N1

1
N Office

id

Office
name

ID
name

Airport

name
repair
landed

Aircraft

name
Aircraft Type

name
Pilot

Pilot3

Pilot2

Pilot1

1

1

1

1

*

*

* *
*

*

*

1

1

*

*

*

*

1..n

2..n

offers

owns

arrives to

departs from

uses Driven by

is of

Navigator of

Copilot of
Captain of

….….

Fig. 1. The intermodel assertions between the EER and UML Flights models. Solid
curvy line: links entities of the same type; long-dashes dashed line: links entities that
are semantically very similar; short-dashes dashed line: requires some transformation.

links are already implied subsumption by the models semantics. These links do
not need any new axiom and can be handled by an automated reasoner. The
links representing transformations are analysed in next section.

3 Entity transformations

Many options exist to specify transformations both at the level of overall archi-
tecture, and for each component in the architecture, which logics, implementa-
tion languages, and technologies. Generally, for intermodel assertions, there are
two input models with some intermodel assertions, a (formalised) metamodel
that the entities in the models are mapped into, the transformation rules, and
then the final check that the output of the rules indeed matches with the other
model. An orchestration to execute and verify the intermodel assertions is de-
picted in Fig. 2, where we focus on an architecture for checking the links. There
is already a mapping from each type of entity into the metamodel and back
in the form of a table [14] and basic rules [6], so that, instead of defining very
many transformation rules between individual languages in a mesh structure,
one simply can classify a model element into the metamodel, especially when
the metamodel drives the modelling environment. This is therefore not further
elaborated on in the model mappings.

For transformation rules, we consider principally those that are across lan-
guages, that require type conversions, which are not covered by regular mappings

map entities of M1 and
M2 into MM

input model M1
and M2 in language

X and Y, resp.

algorithms

output model M12
or NO

ISBN:string
Author:string

Book

Author
(ID) name

has

ISBN:string
Author:string

Book

Author
(ID) name

has

vocabulary +
list of entities to map,

transform, approximate,
or not

formalised
metamodel

Book
(ISBN)writes

Book
(ISBN)writes

input inter-model
assertions

process inter-model assertion using the
transformation rules and compare

output with element in M2

Fig. 2. General approach for validating intermodel assertions (based on [6]).

(like in [6]), those that can appear between entities that occur most often in
conceptual models. The latter is based on the experimental evaluation reported
in [13] of 101 UML class diagrams, ER/EER, ORM/ORM2 models. They are
mainly Object type, binary Relationship, Attribute (with the attribute-value type
conversion as specified in [6]), Single identifier, Mandatory constraint, Object type
cardinality, and Subsumption between object types. The rules assume that the
models, called Model1 and Model2, are syntactically correct. This means that,
e.g., in the attribute to object type rule, an attribute indeed is a binary relation-
ship between an object type C and a data type D. The main design objective
of these rules is that we only allow equivalence, disjointness, and subsumption
axioms between homogeneous metamodel entities. To do so, we introduce a third
model, called Intermodel, that keeps all intermediate metamodel entities that
are necessary to implement the transformation rule, which is a proper fragment
of the complete metamodel. This implies that the original link has no direction,
without source and target models. It is just a link relating entities in two models,
and we have to cope with this difference.

Prioritising the rules that are useful based on the most used entities, we
describe the rules for Attribute↔ Object type, Attribute↔ Single identifier, Object
type ↔ Relationship, and Weak Object Type ↔ Object Type, whereas the rule for
Attribute ↔ Value type has been presented already in [6]. The here omitted
transformations can also be described as ATL rules.

In the Attribute ↔ Object Type rule, an attribute A 7→ C × D becomes an
object type A′ with a new stub attribute a 7→ A′ × D and has a relationship R

rule Att<-->OT {
from

a : Model1.MM!Attribtue (a.range(dt)),
o : Model2.MM!ObjectType

to
newO : InterModel.MM!ObjectType (newO.hasAttribute <-- a1),
a1 : InterModel.MM!Attribute (a1.domain <-- newO,

a1.range<--dt, a1.of <-- co),
e : InterModel.MM!EqualityConstraint(e.declaredOn(a),

e.declaredOn(a1)),
co : InterModel.MM!CardO (co.cardinalityConstraint <-- cc,

co.attribute <-- a1, co.objectType <-- newO),
sid : InterModel.MM!SingleIdentification (sid.declaredOn <-- a1,

sid.identifies <-- newO, sid.mandatory <-- mc),
m : IntereModel.MM!Mandatory (m.declaredOn <-- a1.contains),
cc : InterModel.MM!CardinalityConstraint (cc.maximumCardinality <-- 1,

cc.minimumCardinality <-- 1),
s : InterModel.MM!Subsumption (s1.super <-- newO, s1.sub <-- o)

}

Fig. 3. Attribute ↔ Object Type transformation specified as an ATL rule.

Fig. 4. Graphical rendering of the rule Attribute↔Object Type output; see text for
details.

to an object type C. The rule in ATL-style notation is depicted in Fig. 3, and
the intuition of the rule is depicted in Fig. 4. It introduces a new object type
(newO) in InterModel, which is a “proxy” element for the object type and it is
identified by the new attribute a1 which is equivalent to the original attribute a

from Model1. The specification of a1 includes its domain, range, and the fact that
it is an identifier for newO. The latter is characterised by a SingleIdentification
constraint (a mandatory and a 1:1 cardinality constraint between the attribute
and the object type). A subsumption between newO and the original object type
o in Model2 closes the connection between the original two elements.

Any automated reasoning results on each of the (formalised) original models
—obtained by, e.g., a Description Logic-based reasoner—do not change by this
transformation rule. Considering the three models together, we have a one-to-
one correspondence between attribute values and object type instances. In case
the connected object type exhibits additional constraints that are not consistent
with the identification constraint in its attribute, an automated reasoner would
detect the inconsistency of the conjoining model, and the tool would suggest the
user to remove it or change the constraints.

The Attribute↔ Single identifier rule is shown in Fig. 5. There is a ‘silent’ data
type (placeholder), so only the equality between the attributes and the identi-
fication constraint for the non-key attribute has to be added to InterModel.

rule Att<-->ID {
from

a1 : Model1.MM!Attribtue (a1.domain(o1)) ,
a2 : Model2.MM!Attribute (a2.range(dt), a2.domain(o2)),
ic2 : Model2.MM!IdentificationConstraint (ic.declaredOn(a2),

ic.identifies(o2)),
to

e : InterModel.MM!EqualityConstraint(e.declaredOn(a1),
e.declaredOn(a1)),

ic : InterModel.MM!IdentificationConstraint (
ic.declaredOn(a1), ic.identifies(o1)),

co : InterModel.MM!CardO (co.cardinalityConstraint <-- cc,
co.attribute <-- a1, co.objectType <-- o1),

cc : InterModel.MM!CardinalityConstraint (
cc.maximumCardinality <-- 1,
cc.minimumCardinality <-- 1),

m : InterModel.MM!Mandatory (m.declaredOn <-- a1.contains,
a1.contains.plays <-- dt)

}

Fig. 5. Attribute ↔ Id transformation specified as an ATL rule.

rule OT<-->Rel {
from

o : Model1.MM!ObjectType,
r : Model2.MM!Relationship

to
newRel : InterModel.MM!Relationship (newRel.contains(newRol)),
newRol : InterModel.MM!Role (newRol.linkedTo(rp)),
cc : InterModel.MM!CardinalityConstraint (

cc.maximumCardinality <-- 1,
cc.minimumCardinality <-- 1, cc.of(rp)),

rp : InterModel.MM!RolePlaying (rp.plays(o)),
s : InterModel.MM!Subsumption (

s.super(newR), s.sub(r))
}

Fig. 6. Object Type ↔ Relationship transformation specified as an ATL rule.

A mandatory and 1:1 cardinality constraints must also be included. Reasoning
services on the conjoining three models would result in an equivalence axiom
between the containing object types. In case constraints attached to both at-
tributes are not consistent, the tool would suggest either to remove the rule or
to modify the constraints.

Regarding the Object type↔ Relationship transformation, the rule introduces
in InterModel a new Relationship newR and a new Role newRol that holds a
unique 1:1 role attached to the object type (see Fig. 6). The original relationship
is subsumed by this new relationship. Subtle issues relating participating con-
straints for the original object types and relationships may arise when reasoning
is applied to the conjoining three models, and several changes may be suggested
by the tool. For example, new cardinality constraints, subsumption, or equiva-
lences may appear, in addition to inconsistencies between them. This shows the
necessity in the tool for both graphical editing and reasoning services.

Finally, the Weak Object Type ↔ Object Type transformation involves creat-
ing in Intermodel a new object type which inherits the identification constraints
of the original object type in Model2, and making it a subsumee of the weak ob-
ject type. The rule is shown in Fig. 7.

rule WOT<-->OT {
from

w : Model1.MM!WeakObjectType,
o : Model2.MM!ObjectType

to
newO : InterModel.MM!ObjectType,
s1 : InterModel.MM!Subsumption (

s.super(o), s.sub(newO)),
s2 : InterModel.MM!Subsumption (

s.super(newO), s.sub(w))
}

Fig. 7. Weak Object Type ↔ Object Type transformation specified as an ATL rule.

All the rules described here, as well as those rules of the ‘half’ links type,
involve possible updates in the original models after reasoning over the whole set
of models that essentially form one logical theory in the background. Constraints
from one model may propagate to the other through the proposed links. A
conceptual model design tool that follows this approach will have to present
the changes to the user together with supporting justifications and the designer
would have to decide to accept the changes, or delete the links.

To conclude this section, it is important to remark that we have shown a
way to specify common transformation links between heterogeneous entities in
different conceptual models, in a first step without altering their meaning. The
transformations are specified as ATL rules, showing its feasibility for represen-
tation in any other related formalism. These rules together with the policy in
covering the rest of the links described at the beginning of this section, cover
the most important links identified in our experiment.

4 Related work

The general problem addressed in this paper is not new, especially works on
1:1 transformations, but there are scant results on intermodel assertions across
conceptual data modelling languages and pairing different types of element in a
sound way. Atzeni et al. [1] has similarities to our approach, in the sense of using
a “supermodel”, but a scope of only transforming, say, an ER model into a UML
Class diagram—rather than also intermodel assertions between them—and no
‘type transformations’. It also covers fewer types of entities, and glosses over
subtle issues such as ER’s identifier and a UML attribute that ought to have
had an {id}. Their follow-up paper provides an in-depth formal framework to
handle rules with Datalog and reason over them [2], which may be useful, but not
the rules either, i.e., not what exactly should be verified. The other, and more
application-oriented, system is the Pounamu tool for visual modelling [20], which
perhaps could be extended with the here presented transformation rules, pro-
vided the metamodel would be extended with the more recent language features
(like UML’s {id}) and the rules added. We also considered Eclipse’s metamodel
of the Eclipse Modeling Framework [https://eclipse.org/modeling/emf/],
so as to recast our metamodel and the UML, EER, and ORM2 fragments as

Eclipse models, but it is not expressive enough to represent them, and therewith
constrain the rules. For instance, the EMF metamodel does not deal with roles,
relationships, and cardinalities, or constrain attributes to be declared only for
classes and relationships, which, however, are necessary to be declared some-
where in order to enable validation of intermodel assertions.

Concerning the representation of the rules for the entity conversions, several
proposals other than ATL exist to specify model transformations as a whole or
of certain elements. From a rigorous logic-based viewpoint, Distributed Descrip-
tion Logics (DDL) might be an option, and a few types of conversions have been
defined at an abstract level, covering concept↔role and attribute↔role using so-
called “bridge rules” [9]. These two types of transformations do not cover the full
range needed for intermodel assertions in conceptual models, nor do the DDL
DLs have all the features of the main conceptual modelling languages. Module
interaction with a logic-based approach has been investigated for the Semantic
Web as well. OWL itself only supports whole-module imports [18], however, and
applied ε-connections are used for 1:1 mappings only [4]. The Distributed Ontol-
ogy Language (DOL, http://ontoiop.org) [17] may be useful, as it provides
a language to integrate logic-based models that may be represented in differ-
ent languages. DOL was accepted for standardisation by the OMG in March
2016 and is in the preliminary stages regarding the software infrastructure and
conformance of logics suitable for conceptual data modelling languages.

Model Driven Engineering typically uses any of graph, rule, or imperative-
based languages for model transformations, such as Triple Graph Grammars
(TGG) [10], OMG’s Query/View/Transformation (QVT) [19], and Eclipse’s At-
las Transformation Language (ATL) [12] that is a modified version of OMG’s
OCL. QVT was designed principally for a UML-to-relational mapping, and is
thus difficult to reuse for our setting. TGG seems exceedingly suitable, but ei-
ther the underlying formalism will have to be integrated with the metamodel
first, or, if the diagrammatic option is chosen, be manually redesigned for imple-
mentation in ICOM, thus requiring double work, and with its main implemen-
tation in Eclipse, then still faces thosee limitations as mentioned above. ATL is
implementation-oriented and tailored to handling data types, with an intuitive
notation and very similar to our implementation-independent rule-based nota-
tion of the metamodel-mediated rules-based approach [6]. Therefore, we used
ATL-style notation in the type conversion rules. While there indeed is a general
downside to ATL of having to know the metamodel (compared to the concrete
syntax-based graph transformation and Attributed Graph Grammar) [11], we do
know it and the rules have to be specified only once for system implementation,
not by users of the intermodel assertions, hence that downside is not applicable.
Purely implementation-oriented approaches, such as the type transformations
for programs using lambda calculus and Haskell [16], are too narrowly focussed
and therewith not easily adaptable to the generic conceptual modelling setting.

5 Discussion

Design decisions for each conceptual model are usually taken in the isolated con-
text of the application for that model. When the time arrives to integrate it with
other models, a gap between different representations must be bridged using in-
termodel links. Our exploration for their usage showed that a wide variety of links
are needed, ranging from trivial equivalence to complex transformation between
model elements. For the links used, and in order to answer questions 1a and
1b from Section 1, links between homogeneous entities are used most widely, of
which equivalence axioms are the majority. They are followed by the ‘half-links’,
subsumption, transformation, implied subsumption, and disjointness. From the
point of view of tools, currently there is lack of support for all of these links The
diversity of these links shown in Section 2 make it necessary for tools to improve
the assistance in developing the correct balance between a coherent and close
model integration and the preservation of each individual model semantics.

The experimental evaluation also showed that with actual projects, subsump-
tions are used most, while the integration simulation scenarios brought to the
fore the links between attributes—not available in tools—with as close second
object types, and there were many more equivalences in the integration scenarios
than in the ICOM projects. This difference may be attributed to the low number
of projects and, perhaps (not tested), the modeller. The experimental evaluation
projects were created for either integration purposes or modules for managing
cognitive overload. Both equivalence and subsumption are considered the most
frequently linked relationship type for the integration projects while subsump-
tion is the most frequently linked relationship type for the cognitive overload
projects, thus, for the ICOM projects, there is no significant correlation between
the type of project and the links in them.

The main issues with links between elements in the models revolved around
attributes, with mismatches on datatype and cardinality. We had expected more
Attribute ↔ Object type and Relationship ↔ Object type across-type links, as
such decisions feature prominently in the modelling process. Why this is not
the case is an aspect of further investigation. One could evaluate more models,
though the number was substantial in the experiment, and perhaps retrieve real
models from industry. That said, one faces a chicken-and-egg problem with the
experimental approach in this case: if the feature is not available—such as the
advanced intermodel links—then it will not be used so will be hard to find, and
one would need a tool to check whether the links in the scenarios are correct,
but the counting of the links needs to feed into the tool development so as to
assert them.

Most of the rules can be easily incorporated in integration tools with sub-
sumption, equivalence, and disjointness axioms between homogeneous elements.
However, there is still space for complex rules that require more elaborate mech-
anisms in order to be supported. The ATL rules in Section 3 express these
mechanisms in an implementation-oriented way.

Rule results are represented in a separate, intermediate model which holds all
new elements. This scheme allows for both preserving each model semantics while

making feasible a closer integration. Close integration with reasoning services are
necessary for tools in this case so as to go beyond the syntax and semantics of the
modelling languages and also deduce useful information about the consistency of
the linked model. ATL rules can be easily modified or extended in case the result
patterns require different translations. In this light, connections with ontology
patterns [5] are left as possible future work.

A general issue with model transformation is testing for correctness [3] to an-
swer the question: will the metamodel + ATL rules do the right thing? While our
metamodel is complex, it is formalized for easier processing where its constraints
direct the checking of the intermodel assertions [6]. For the basic transformation
rules, an implementation to compare transformation outputs with an oracle—
deemed a problem in [3]—will not be an issue practically despite that the graph
isomorphism problem is NP-complete, because the scope of an intermodel asser-
tion is a small fragment of the model localized to the entities involved in that
intermodel assertion, not the whole model. We are currently implementing the
first step—models related to the metamodel—in the ICOM tool [8].

Regarding verification of the models, it is possible to use the metamodel to
verify the models’ syntax and send the portion of the models that fall within
a suitable decidable fragment of first order logic to the automated reasoner to
detect inconsistencies and other deductions, which is already possible in ICOM
[7]. While not all language features can be formalised in a decidable language,
most of those computationally thorny features (e.g., antisymmetry) are not used
anyway [13], hence, this is a feasible solution.

Finally, while the details are becoming quite tedious, it will result in an easy
interface that hides all the technicalities, syntax, and ontological issues, so that
the modeller can focus on the universe of discourse.

6 Conclusions

Intermodel assertions are typically more equivalence than subsumption asser-
tions, and mainly among classes and among attributes. When the modeller has
the flexibility, there are also links between different types of language features,
such as attribute↔value type, attribute↔object type, and plain attribute ↔
composite attribute. To be able to handle such assertions in a modelling tool,
we availed of the unifying metamodel and creatively used the ATL language in
particular to declare rules for the intermodel assertions, thereby bridging this
semantic gap. This is achieved by transforming the relevant fragment of the
source models into a temporary ATL target model that is a proper fragment of
the metamodel in order to check whether the assertion is acceptable. We are cur-
rently implementing a proof-of-concept of this approach by extending the ICOM
tool. We also aim to work on a proof of correctness of transformation rules.

Acknowledgments This work is based in part upon research supported by
the National Research Foundation of South Africa (Project UID90041) and the
Argentinean Ministry of Science and Technology.

References

1. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB Journal 17(6), 1347–1370 (2008)

2. Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and translation
signatures in a multi-model framework. AMAI 63, 1–29 (2012)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers
to systematic model transformation testing. Comm. ACM 53(6), 139–143 (2010)

4. Cuenca Grau, B., Parsia, B., Sirin, E.: Combining OWL ontologies using ε-
connections. J. Web Sem. 4(1), 40–59 (2006)

5. Falbo, R.A., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns: clarifying
concepts and terminology. In: Proc. of OSWP’13 (2013)

6. Fillottrani, P.R., Keet, C.M.: Conceptual model interoperability: a metamodel-
driven approach. In: Proc. of RuleML’14. LNCS, vol. 8620, pp. 52–66. Springer
(2014), aug 18-20, 2014, Prague, Czech Republic

7. Fillottrani, P.R., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web J 3(3), 293–306 (2012)

8. Fillottrani, P.R., Keet, C.M.: A design for coordinated and logics-mediated con-
ceptual modelling. In: Proc. of DL’16. p. (in print). CEUR-WS (2016), 22-25 April,
2016, Cape Town, South Africa

9. Ghidini, C., Serafini, L., Tessaris, S.: Complexity of reasoning with expressive on-
tology mappings. In: Proc. of FOIS’08. FAIA, vol. 183, pp. 151–163. IOS Press
(2008)

10. Golas, U., Ehrig, H., Hermann, F.: Formal specification of model transformations
by triple graph grammars with application conditions. Elect Comm of the EASST
39, 26 (2011)

11. Grønmo, R., Møller-Pedersen, B., Olsen, G.K.: Comparison of three model transfor-
mation languages. In: Proc. of ECMDA-FA’09. LNCS, vol. 5562, pp. 2–17. Springer
(2009), 23-26 June, 2009, Enschede, The Netherlands

12. Jouault, F., Allilaire, F., Bzivin, J., Kurtev, I.: ATL: A model transformation tool.
Science of Computer Programming 72(12), 31 – 39 (2008)

13. Keet, C.M., Fillottrani, P.R.: An analysis and characterisation of publicly available
conceptual models. In: Proc. of ER’15. LNCS, vol. 9381, pp. 585–593. Springer
(2015), 19-22 Oct, Stockholm, Sweden

14. Keet, C.M., Fillottrani, P.R.: An ontology-driven unifying metamodel of UML
Class Diagrams, EER, and ORM2. Data & Knowl Eng 98, 30–53 (2015)

15. Khan, Z.C., Keet, C.M.: An empirically-based framework for ontology modular-
ization. Applied Ontology 10(3-4), 171–195 (2015)

16. Leather, S., Jeuring, J., Lh, A., Schuur, B.: Type-changing rewriting and semantics-
preserving transformation. Sci Comp Prog 112, 145–169 (2015)

17. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology,
modeling and specification language. In: Proc. of WoMo’13. CEUR-WS, vol. 1081
(2013), corunna, Spain, September 15, 2013

18. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 web ontology language: Direct
semantics. W3C recommendation, W3C (27 October 2009 2009), http://www.w3.
org/TR/owl2-direct-semantics/

19. Object Management Group: Meta Object Facility (MOF) 2.0 –
Query/View/Transformation Specification. http://www.omg.org/spec/QVT/1.2

20. Zhu, N., Grundy, J., Hosking, J.: Pounamu: a metatool for multi-view visual lan-
guage environment construction. In: Proc. of VLHCC’04 (2004), rome, 25-29 Sept.
2004

