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Abstract
Propositional Typicality Logic (PTL) is a recently
proposed logic, obtained by enriching classical
propositional logic with a typicality operator. In
spite of the non-monotonic features introduced by
the semantics adopted for the typicality operator,
the obvious Tarskian definition of entailment for
PTL remains monotonic and is therefore not appro-
priate. We investigate different (semantic) versions
of entailment for PTL, based on the notion of Ra-
tional Closure as defined by Lehmann and Magidor
for KLM-style conditionals, and constructed using
minimality. Our first important result is an impossi-
bility theorem showing that a set of proposed postu-
lates that at first all seem appropriate for a notion of
entailment with regard to typicality cannot be satis-
fied simultaneously. Closer inspection reveals that
this result is best interpreted as an argument for ad-
vocating the development of more than one type of
PTL entailment. In the spirit of this interpretation,
we define two primary forms of entailment for PTL
and discuss their advantages and disadvantages.

1 Introduction
Propositional Typicality Logic (PTL) [Booth et al., 2012;
2013] is a recently proposed logic allowing for the represen-
tation of an explicit notion of typicality. It is obtained by
enriching classical propositional logic with a typicality oper-
ator ‚, the intuition of which is to capture the most typical
(or normal) situations in which a given sentence holds. PTL
is characterised using a preferential semantics similar to that
proposed by Shoham [1988] and extensively developed by
Kraus et al. [1990] and by Lehmann and Magidor [1992].

In spite of the non-monotonic features introduced by the
adoption of a preferential semantics for ‚, the obvious defini-
tion of entailment for PTL (based on Tarskian consequence)
remains monotonic. Such a notion of entailment is inappro-
priate in non-monotonic contexts, in particular when reason-
ing about typicality, as is already clear from an enriched ver-
sion of the classical Tweety example: If birds typically fly,
and penguins are birds, we would expect to be able to con-

clude that typical penguins are typical birds, and therefore
that typical penguins fly. Learning that penguins typically do
not fly should lead us to conclude that penguins are not typical
birds, and to retract the conclusions about typical penguins
being typical birds, and about typical penguins flying.

In this paper, we investigate two semantic versions of en-
tailment for PTL, constructed using two different forms of
minimality. Both of these are based on the notion of Ratio-
nal Closure as defined by Lehmann and Magidor [1992] for
KLM-style conditionals in a propositional setting. We show
that they can be viewed as distinct definitions of Rational
Closure, equivalent with respect to the conditional language
originally proposed by Kraus et al., but different in the PTL
framework.

We study the different forms of entailment in an abstract
formal setting, obtained by proposing a set of postulates that,
at first glance, seem appropriate for any notion of entailment
with regard to typicality. Our first important result is a neg-
ative one, though. It is an impossibility result proving that
the set of postulates cannot all be satisfied simultaneously.
A more detailed analysis of the result shows that, instead of
being viewed as negative, this result should rather be inter-
preted as an indication that PTL allows for different types of
entailment, corresponding to different subsets of the full set
of postulates we provide. In line with this argument, we de-
fine two types of entailment for PTL corresponding to two
subsets of the postulates, referred to as LM-entailment and
PT-entailment. Our argument for more than one type of en-
tailment for the same logic is in line with the proposal put
forward by Lehmann [1995] in the context of entailment for
conditional knowledge bases.

The remainder of the paper is structured as follows. Sec-
tion 2 provides the background and notation for the rest of
the work. In Section 3 we discuss the complexities surround-
ing a notion of entailment for PTL. In Section 4 we put for-
ward our postulates and show the impossibility result. Sec-
tion 5 outlines LM-entailment while Section 6 describes PT-
entailment. Section 7 addresses the implications of the im-
possibility result, making the case for two forms of PTL en-
tailment. Section 8 concludes and discusses future work.
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2 Background
Let P be a finite set of propositional atoms. We use p, q, . . .
as meta-variables for atoms. Propositional sentences (and in
later sections, sentences of the richer language we shall in-
troduce below) are denoted by α, β, . . ., and are recursively
defined in the usual way: α ::“ p |  α | α ^ α | J | K. All
the other Boolean connectives (_, Ñ, Ø, . . . ) are defined in
terms of  and ^ in the standard way. With L we denote the
set of all propositional sentences.

We denote by U the set of all propositional valuations v :
P ÝÑ t0, 1u. Sometimes we shall represent valuations as
sets of literals (i.e., atoms or negated atoms), with each literal
indicating the truth-value of the respective atom. Thus, for the
logic generated from P “ tp, qu, the valuation in which p is
true and q is false will be represented as tp, qu. Satisfaction
of a sentence α P L by v P U is defined in the usual truth-
functional way and is denoted by v , α.

2.1 KLM-Style Rational Conditionals
In the conditional logic investigated by Kraus et al. [1990],
often referred to as the KLM approach, one is interested in
(defeasible) conditionals of the form α |„ β, read as “typi-
cally, if α, then β”. For instance, if P “ tb, f, pu, where b,
f and p stand for, respectively, being a bird, being able to fly,
and being a penguin, the following are examples of defeasi-
ble conditionals: b |„ f (birds typically fly), p ^ b |„  f
(penguins that are birds typically do not fly).

The authors have put forward the following list of prop-
erties that the conditional |„ ought to satisfy in order to be
considered as appropriate in a non-monotonic setting:

pRefq α |„ α pLLEq
|ù αØ β, α |„ γ

β |„ γ

pAndq
α |„ β, α |„ γ

α |„ β ^ γ
pOrq

α |„ γ, β |„ γ

α_ β |„ γ

pRWq
α |„ β, |ù β Ñ γ

α |„ γ
pCMq

α |„ β, α |„ γ

α^ β |„ γ

A conditional satisfying such properties is called a preferen-
tial conditional. We can require |„ to satisfy other properties
as well, one of which is rational monotonicity:

(RM)
α |„ γ, α |  β

α^ β |„ γ

A preferential conditional also satisfying (RM) is called a ra-
tional conditional.

The semantics of KLM-style rational conditionals is given
by ordered structures called ranked interpretations [Lehmann
and Magidor, 1992]:
Definition 1 A ranked interpretation R is a pair xV,ăy,
where V Ď U and ă Ď V ˆ V is a modular order over V .

Given a set X , ă Ď X ˆ X is modular if and only if there
is a ranking function rk : X ÝÑ N s.t. for every x, y P X ,
x ă y if and only if rkpxq ă rkpyq. Note modular orders can
be obtained from total preorders by imposing anti-symmetry.

Given R “ xV,ăy and α P L, we let JαKR :“ tv P
V | v , αu. In a ranked interpretation R, the intuition is
that valuations lower down in the ordering are deemed more
normal (or typical) than those higher up. Given α, β P L, we

say R satisfies (is a ranked model of) the conditional α |„ β
(denoted R , α |„ β) if and only if minăpJαKRq Ď JβKR.
We say R is a ranked model of a set of conditionals C if and
only if R , α |„ β for every α |„ β P C.

We can write a ranked interpretation R “ xV,ăy alterna-
tively as a partition R “ pL1, . . . , Lnq of V , where v ă v1 if
and only if v P Li, v1 P Lj and i ă j.

For a better understanding of the reasons behind the afore-
mentioned properties and the semantic constructions, the
reader is referred to the work of Kraus et al. [1990; 1992].

2.2 Rational Closure
Given a set of conditionals C, reasoning in the KLM frame-
work amounts to the derivation of new conditionals from C.
Towards this end, Lehmann and Magidor [1992] proposed the
rational closure construction. Their idea was to define a pref-
erence relation ĲLM over the set of possible ranked interpre-
tations and then to base entailment on choosing only the most
preferred, i.e., minimal, ranked models of C. The relation
ĲLM can be described as follows. For any pair of ranked in-
terpretations R1 “ pL1, . . . , Lnq and R2 “ pM1, . . . ,Mnq

(we can assume they are of the same length, fill up the tail
withH otherwise), we set:

R1 ĲLM R2 iff either Li “Mi for all i
or for the first j s.t. Lj ‰Mj

we have Lj ĚMj

This is not exactly the way it was defined by Lehmann and
Magidor, but this representation can easily be derived from
other work on rational closure such as that of Booth and
Paris [1998] and Giordano et al. [2012]. The idea is that
those ranked interpretations should be preferred in which as
many valuations as possible are judged to be as plausible as
the background knowledge C allows.

Clearly ĲLM forms a partial order over ranked interpreta-
tions. Lehmann and Magidor showed that for every set of
conditionals C, there exists a unique ĲLM-minimum element
RrcpCq among all the ranked models of C. We will refer to
this element as the LM-minimum. Then the rational closure
of C is the set |„rc

C :“ tpα, βq | RrcpCq , α |„ βu. Rational
closure is commonly viewed as the basic (although certainly
not the only acceptable) form of entailment over propositional
conditional knowledge bases, on which other, more ventur-
ous forms of entailment can be constructed. It is therefore an
appropriate choice on which to base our investigations into
versions of entailment for PTL.

2.3 Propositional Typicality Logic
PTL [Booth et al., 2012] is a logical formalism explicitly
allowing for the representation of a notion of typicality. It
extends classical propositional logic with a typicality opera-
tor ‚, the intuition of which is to capture the most typical (or
normal) situations or worlds. Here we shall briefly present
the main results about PTL relevant for our purposes.

The language of PTL, denoted by L‚, is recursively defined
by: α ::“ p |  α | α^ α | J | K | ‚α. As before, p denotes
an atom and all the other Boolean connectives are defined in
terms of  and ^.

Let P “ tb, f, p, ou, where b, f and p are as before and o
represents being an ostrich. The following are examples of
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L‚-sentences: ‚b (being a typical bird), oÑ ‚b (ostriches
are not typical birds), pp_ oq Ø pb^‚ fq (being a penguin
or an ostrich is equivalent to being a bird and being a typical
non-flying creature).

Intuitively, a sentence of the form ‚α is understood to refer
to the typical situations in which α holds. Note that α can
itself be a ‚-sentence. The semantics of PTL is also in terms
of ranked interpretations (see Definition 1). Satisfaction is
defined inductively in the classical way, adding the following
condition: v , ‚α iff v , α and there is no v1 ă v s.t. v1 ,
α. That is, given R “ xV,ăy, J‚αKR :“ minăpJαKRq.

We say that R is a ranked model of α (denoted R , α)
if JαKR “ V . A PTL knowledge base is a finite set of sen-
tences K Ď L‚. We define ModpKq ”def tR | R ,

Ź

Ku.
A useful property of the typicality operator ‚ is that it al-

lows us to express KLM-style conditionals. That is, for every
ranked interpretation R and every α, β P L, R , α |„ β
if and only if R , ‚α Ñ β. The converse does not hold
since it can be shown that there are L‚-sentences that cannot
be expressed as a set of KLM-style |„-statements on L.

3 The Entailment Problem for PTL
From the perspective of knowledge representation and rea-
soning (KR&R), a central issue is that of what it means for
a PTL sentence to follow from a (finite) PTL knowledge
base K. An obvious approach to the matter is to embrace the
notion of entailment advocated by Tarski and largely adopted
in the logic-based KR&R community.

Definition 2 (Ranked entailment) Let K Ď L‚ and α P L‚.
K ranked-entails α (noted K |ù0 α) iff ModpKq Ď Modpαq.
Its associated consequence operator is defined by setting, for
K Ď L‚, Cn0pKq ”def tα P L‚ | K |ù0 αu.

To see why this version of entailment is not appropriate
in the context of PTL, consider the following definition of a
conditional induced from a set of PTL sentences.
Definition 3 (Induced conditional relation) Let X Ď L‚.
Then |„X :“ tpα, βq | α, β P L and ‚αÑ β P X u.
It is worth investigating whether |„Cn0pKq is rational, i.e.,
whether it satisfies all the KLM properties for rationality. The
following proposition, which mimics a similar result by KLM
in the propositional case, shows that this is not the case:
Proposition 1 (Booth et al. [2013]) |„Cn0pKq is a preferen-
tial conditional, but is not necessarily a rational conditional.

Hence, ranked consequence as defined above delivers an
induced defeasible conditional that is preferential but that
need not be rational. This forms an argument against ranked
entailment being an appropriate notion of entailment for PTL.

One of the principles to give serious consideration when
investigating PTL entailment is the presumption of typical-
ity [Lehmann, 1995, p. 63]. Informally, this means that one
should assume that every situation is as typical as possible.
Sections 4 and 6 contain a formalisation of this principle. For
now, we illustrate it with an example.

Example 1 Let K1 :“ tpÑ b, ‚bÑ fu (penguins are birds,
and typical birds fly). Given just this information about birds
and penguins, it is reasonable to expect both ‚pÑ ‚b (typical

penguins are typical birds) and therefore ‚p Ñ f (typical
penguins fly) to follow from K1. It is easy to see that with
ranked entailment these requirements are not met.

Certainly we require PTL entailment to be defeasible, that
is, the conclusions derived under the presumption of typical-
ity can be retracted in case of new conflicting information.
This is illustrated by the following example.

Example 2 Assume ‚p Ñ ‚b and ‚p Ñ f (somehow) could
follow from K1 in Example 1, and assume we are informed
that typical penguins do not fly. That is, let K2 :“ K1 Y

t‚p Ñ  fu. While we want p Ñ  ‚ b (penguins are not
typical birds) to follow from K2, we do not want ‚p Ñ f to
follow from K2, which is not possible with ranked entailment.

4 Towards a Notion of Entailment for PTL
We have seen that ranked entailment has some drawbacks.
Therefore, the question as to what logical consequence
in PTL should mean remains mostly unanswered. In this sec-
tion, we first specify and discuss a list of postulates that, at
first glance, seem reasonable for an appropriate notion of en-
tailment in PTL. In the subsequent section, we consider spe-
cific alternatives to ranked entailment and check them against
our postulates.

We start by introducing some notation. With |ù? Ď

PpL‚q ˆ L‚, we denote any entailment relation on the lan-
guage of PTL. Given an entailment relation |ù?, its associated
consequence operator is defined in the usual way by setting,
for each K Ď L‚, Cn?pKq ”def tα P L‚ | K |ù? αu.

The obvious starting point is to consider some of the basic
properties of classical consequence operators.

P1 K Ď Cn?pKq (Inclusion)

P2 If α P Cn?pKq, then Cn?pK Y tαuq “ Cn?pKq (Cumula-
tivity)

Ranked entailment, as defined in Section 3, satisfies Prop-
erties P1–P2. However, Cn0p¨q, the associated consequence
relation of Ranked entailment, also satisfies the classical
property of Monotonicity: If K Ď K1, then Cn0pKq Ď
Cn0pK1q. As seen in Example 1, this is a property that we
do not want Cn?p¨q to satisfy (certainly not in general).

So, we require Cn?p¨q to be a non-monotonic consequence
operator. Traditionally, this amounts to requiring Cn?p¨q to
satisfy the following two properties:

P3 Cn0pKq Ď Cn?pKq (Ampliativeness)

P4 For some K,K1 Ď L‚, K Ď K1 but Cn?pKq Ę Cn?pK1q
(Defeasibility)

Ampliativeness says that Cn?p¨q should be more venturous
than its underlying ranked entailment. In Example 1, we have
‚pÑ f R Cn0pK1q, i.e., it does not follow that “typical pen-
guins fly”. However, given the information in K1, a case can
be made for having ‚p Ñ f as a plausible (though provi-
sional) conclusion, e.g. in the absence of information to the
contrary.

Defeasibility specifies that Cn?p¨q should be flexible
enough to disallow previously derived conclusions in the light
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of new (possibly conflicting) information. In Example 1, as-
suming ‚p Ñ f P Cn?pK1q is the case, then ‚p Ñ f should
no longer be concluded if ‚pÑ  f is added to K1.

Similarly to KLM in the propositional case, we would ide-
ally like the defeasible conditional induced by Cn?pKq (see
Definition 3) to satisfy all the rationality properties:
P5 |„Cn?pKq is a rational conditional relation on L (Condi-

tional Rationality)
It is easy to see that P5 implies P4. The following ‘sin-

gle model’ property can be straightforwardly shown to be a
strengthening of P5:
P6 For every K Ď L‚, there is a ranked interpretation R s.t.

for all α P L‚, α P Cn?pKq iff R , α (Single Model)
In the special case when K is a (propositional) conditional

knowledge base (i.e., when K is of the form t‚αÑ β | α, β P
Lu), the result should coincide with Lehmann and Magidor’s
definition of rational closure:
P7 If K is a conditional knowledge base, then |„Cn?pKq“|„

rc
K

(Extends Rational Closure)
The following property was shown by Lehmann and Magi-

dor to be satisfied by the rational closure for conditional
knowledge bases.
P8 Let α P L. Then α P Cn?pKq if and only if α P Cn0pKq

(Strict Entailment)
It states that Cn?p¨q should coincide with ranked entailment
for those sentences not involving typicality. The motivation
for Strict Entailment is that ranked entailment, being Tarskian
in nature, already deals adequately with such sentences.

We are also interested in a couple of progressively weaker
versions of Strict Entailment. The first restricts it to hold only
when K is a conditional knowledge base.
P9 Let K be a conditional knowledge base and α P L. Then

α P Cn?pKq if and only if α P Cn0pKq (Conditional
Strict Entailment)

Note that P7 implies both P4 and P9. The latter requires en-
tailment for PTL to coincide with classical propositional en-
tailment in the case of propositional knowledge bases.
P91 Let K Ď L and α P L. Then α P Cn?pKq iff K entails α

in classical propositional logic. (Classical Entailment)
Since for every KY tαu Ď L, K entails α in classical propo-
sitional logic if and only if α P Cn0pKq, and any α P L is
equivalent ‚ αÑ K, P91 is indeed a weakening of P9.

Finally, we consider another property shown by Lehmann
and Magidor to be satisfied by the rational closure for condi-
tional knowledge bases.
P10 Let α P L. Then ‚J Ñ α P Cn?pKq if and only if

‚J Ñ α P Cn0pKq (Typical Entailment)
Considering the ‘if’ part of P10, any appropriate entailment
relation for PTL should go beyond ranked entailment in terms
of the consequences it produces. Conversely, for the ‘only
if’ part, consequences of the form ‚J Ñ α are those for
which α holds in the most typical situations, and for those
cases, ranked entailment is sufficient. Put another way, it is
only when dealing with atypical situations that ranked entail-
ment, being Tarskian in nature, is not always sufficient.

Although these postulates all seem reasonable on their
own, it turns out that they cannot all be satisfied simultane-
ously. In fact, this impossibility result already holds for a
strict subset of the postulates.
Theorem 1 There is no PTL consequence operator Cn?p¨q
satisfying all of P1, P6, P8 and P10.
Proof: (Outline) Assume Cn?p¨q satisfies the given proper-
ties. Let K “ t‚J Ñ p, ‚ p Ñ ‚qu. By Strict En-
tailment (P8), p R Cn?pKq (because of e.g. the 2-layered
ranked model pttp, quu, tt p, quuq of K). By Typical En-
tailment (P10), ‚J Ñ  q R Cn?pKq (because of e.g. the
1-layered ranked model pttp, qu, tp, quuq of K). By Inclu-
sion (P1), t‚J Ñ p, ‚ pÑ ‚qu Ď Cn?pKq. Then by Single
Model (P6), there is a ranked model R such that R . p,
R . ‚J Ñ  q, R , ‚J Ñ p and R , ‚ p Ñ ‚q, but no
such model can possibly be constructed.

While, at first glance, this seems to be a negative result, our
contention is that it should be interpreted as an indication that
a logic as expressive as PTL admits more than one form of en-
tailment. We elaborate directly on this point in Section 7, and
indirectly in Sections 5 and 6, where we define and discuss
two instances of entailment for PTL.

5 LM-Entailment
We now come to our first construction of an entailment re-
lation in PTL. The idea is to try to lift the rational closure
construction from conditional knowledge bases to arbitrary
knowledge bases in L‚. We first observe that there is noth-
ing to stop us from using the preference relation ĲLM (see
Section 2.2) to compare ranked interpretations of any PTL
knowledge base K. The question is, does there always exist a
unique LM-minimum element of the ranked models of K, as
there does in the restricted conditional case? And if so, how
can we construct it? We now answer these questions.

We assume as input a PTL knowledge base K “

tα1, . . . , αnu, where each sentence αj is in normal form:
Definition 4 (Normal form) α P L‚ is in normal form iff it
is of the form

Ź

iďt ‚θi Ñ pφ _
Ž

iďs ‚ψiq, where t, s ě 0
and the θi, φ and ψi are all purely propositional sentences.
It can be shown that for every sentence α in L‚ there is a
(finite) set of sentences S in normal form such that Modpαq “
Modp

Ź

Sq. That is, the normal form is complete for L‚. For
any ranked interpretation R “ xV,ăy and S Ď V , we define
R Ó S (the restriction of R to S) as xV X S,ă XpS ˆ Sqy.

We construct a sequence pR0,R1, . . .q of ranked interpre-
tations as follows, where Ri “ xU ,ăiy (i.e., the set of valua-
tions V is always the full set of all valuations):
Step 1 Initialise ă0:“ H (start with an initial ranked inter-

pretation in which all valuations are equally preferred.)
Step 2 Si`1 :“ JKKRi (separate the valuations which satisfy

K w.r.t. the current ranked interpretation Ri from those
that do not.)

Step 3 If Si`1 “ Si then STOP and return R˚pKq “ Ri Ó

Si`1 (if the division is the same as in the previous round
then eliminate completely from the current ranked inter-
pretation those valuations that do not satisfy K w.r.t. Ri

and return the interpretation that remains.)
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Step 4 Otherwise ăi`1:“ăi YpSi`1 ˆ Sc
i`1q, i :“ i ` 1

and go to Step 2 (otherwise create a new ranked inter-
pretation Ri`1 by making every valuation not in Si`1

less plausible than every valuation in Si`1. Note that
Sc here denotes UzS.)

Example 3 Let us assume, for the sake of the example, that
we are only talking about birds. Let K :“ t‚J Ñ p p ^
 paq, ‚p Ñ ‚ f, ‚pa Ñ ‚fu (the most typical things are
neither penguins nor parrots, typical penguins are typical
non-flying birds, and typical parrots are typical flying birds).

The procedure initialises with ă0“ H. The only val-
uations that satisfy all three sentences w.r.t. R0 are those
satisfying both  p and  pa. Thus S1 :“ JKKR0 “

tt p, pa, fu, t p, pa, fuu and so we obtain R1 by set-
ting ă1 to be the 2-layer modular order with S1 as the
lower layer. Note that J‚ fKR1 “ tt p, pa, fuu and
J‚fKR1 “ tt p, pa, fuu, so we can see that none of the
valuations in Sc

1 is able to satisfy either ‚pÑ ‚ f or ‚paÑ
‚f w.r.t. R1. As a consequence, S2 :“ JKKR1 “ S1 and
so the procedure terminates here with R˚pKq “ R1 Ó S2.
That is, R˚pKq is the ranked interpretation consisting of just
a single layer containing the valuations t p, pa, fu and
t p, pa, fu.

We now need to show: (i) the algorithm always terminates;
(ii) it returns a ranked model of K, and (iii) for any other
ranked model R of K, we have R˚pKq ĲLM R. We know
the following about (i) and (ii):

Lemma 1 Assuming each sentence in K is in normal form,
the following hold for each i ě 0:
(i) Si Ď Si`1, i.e., JKKRi´1 Ď JKKRi ,
(ii) For all v1, v2 P U , if v1 ăi v2 then v1 P JKKRi ,
(iii) Ri`1 is a ranked interpretation, i.e., ăi`1 is modular.

From (i) above we know the algorithm terminates, since
it generates a sequence of ranked (by (iii)) interpretations in
which the set of valuations satisfying K increases monotoni-
cally from one ranked interpretation to the next. Since each of
these is finite, the stopping criterion in Step 3 of the algorithm
is guaranteed to occur eventually.

To show that the algorithm returns a ranked model of K it
suffices to show the following.

Lemma 2 Assuming each sentence in K is in normal form,
for each i ě 0, Ri Ó Si`1 is a model of K.

So at each stage of the algorithm, the current ranked in-
terpretation, when those valuations not satisfying K are ex-
cluded, forms a ranked model of K. Since the output R˚pKq
takes precisely this form we have the following result.

Proposition 2 Assuming each sentence in K is in normal
form, we have R˚pKq ,

Ź

K.

Next we want to show that for any other ranked model R
of K, we have R˚pKq ĲLM R. Let R˚pKq :“ pS1, . . . , Smq

and let R :“ pT1, . . . , Tmq be any other ranked model of K.
If one of the two sequences is shorter than the other, we sim-
ply fill its tail with an appropriate number of empty sets to
ensure the sequences have equal length.

Lemma 3 Let i ě 1. If Tj “ Sj for all j ă i then Ti Ď Si.

From this lemma we can state:
Proposition 3 Assume each sentence in K is in normal form
and let R be a ranked model of K. Then R˚pKq ĲLM R.
Given this, we define LM-entailment, denoted by |ùĲLM , as
follows: K |ùĲLM α if and only if R˚pKq , α. Its corre-
sponding consequence operator is defined as CnLMpKq ”def
tα P L‚ | R˚pKq , αu. The next result outlines which prop-
erties from the previous section are satisfied by CnLMp¨q.
Theorem 2 CnLMp¨q satisfies P1–7 , P9, P10, but not P8.
Thus the only property that fails is Strict Entailment. This
can be seen in Example 3. There we have  p P CnLMpKq
(there is no penguin) because  p holds in both of the valua-
tions occurring in R˚pKq. But  p R Cn0pKq because there
does exist a ranked model R of K for which JpKR ‰ H, for
instance the model R2 appearing in Example 4 below. Thus
LM-entailment forces us, unjustifiably, to infer  p from K.

In summary then, LM-entailment satisfies all our postu-
lates, except for Strict Entailment (P8). Lest this be seen as
a negative result, bear in mind that LM-entailment satisfies
Conditional Strict Entailment (P9), the weakened version of
Strict Entailment, and therefore also Classical Entailment.

In the next section we turn to a form of entailment satis-
fying Strict Entailment, but at the price of having to forego
Conditional Rationality, and therefore the Single Model pos-
tulate as well.

6 PT-Entailment
In this section we consider another option for entailment
based on a version of minimality, and derived from the char-
acterisation of rational closure by Giordano et al. [2012]. The
general idea is to respect the presumption of typicality. Se-
mantically, given the ranked models of a given K, this corre-
sponds to considering only those models in which every val-
uation is taken as typical as possible, that is, it is ‘pushed
downward’ in the interpretation as much as possible, modulo
the satisfaction of K.

In order to identify the interpretations that can be interest-
ing for the definition of a notion of entailment, we introduce
a preference relation ĲPT between the ranked interpretations
that follows directly from the presumption of typicality. To
do that, we need a way to compare the relative positions of
the valuations between the models of a knowledge base.

Definition 5 (Height function) For a ranked interpreta-
tion R “ pL1, . . . , Lnq and v P V , the height hRpvq of v
corresponds to the number of the layer in R in which v is
positioned, or to 8, if it is not in the interpretation. That is
hRpvq “ i if v P Li, for 0 ď i ď n, hRpvq “ 8 otherwise.

The lower the height of a valuation in an interpretation,
the more typical such a valuation is considered in the ranked
interpretation, while the height value is 8 if the valuation
does not appear in the interpretation at all. Using the height of
a valuation, we can define a preorder over the interpretations.
Definition 6 (Relation ĲPT) For two ranked interpretations
R “ xVR,ăRy and R1 “ xVR1 ,ăR1y, R ĲPT R1 if and
only if for every w P U , hRpwq ď hR1pwq. R ŸPT R1 if and
only if R ĲPT R1 and not R1ĲPTR.
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It is easy to check that ĲPT is a preorder. Consistent with
the presumption of typicality, we choose the models of K in
which the valuations are presumed to be as typical as possi-
ble, that is, minĲPT

pModpKqq. Then, K entails α if and only
if α holds in all the (preferred) models in minĲPT

pModpKqq.
If we consider knowledge bases composed only of classical

non-monotonic conditionals α |„ β, it corresponds exactly
to LM-minimality as defined in the previous sections [Gior-
dano et al., 2012]. However, due to the expressivity of our
language, we obtain the surprising result that the two seman-
tic constructions are not equivalent anymore. Moreover, in
the present context, this notion of minimality can give back a
number of minimal models, as the following example shows.

Example 4 Consider the knowledge base K from Example 3.
Then minĲPTpModpKqq “ tR1,R2,R3u, where:

R1 L1 : t p, pa, fu t p, pa, fu

R2

L3 : tp, pa, fu
L2 : t p, pa, fu tp, pa, fu
L1 : t p, pa, fu

R3

L3 : t p, pa, fu
L2 : t p, pa, fu t p, pa, fu
L1 : t p, pa, fu

Note that R1 is the LM-minimum of K. In fact it is easy
to check from the characterisation of rational closure in Sec-
tion 3 and Definition 6 that the LM-minimum of K is always
in minĲPT

pModpKqq.
Proposition 4 For every knowledge base K, the LM -
minimum of K is in minĲPT

pModpKqq.
Given this, we define PT-entailment, denoted by |ùĲPT

,
as follows: K |ùĲPT

α if and only if minĲPT
pModpKqq Ď

Modpαq. Its corresponding consequence operator CnPTp¨q is
inferentially weaker than CnLMp¨q, since it is defined on a
possibly larger set of models.
Proposition 5 CnPTp¨q satisfies P1–4, P7, and P8–P10.

Unfortunately, Conditional Rationality (P5) is not valid
and therefore, neither is the Single Model postulate.
Theorem 3 There is some K such that the conditional in-
duced by CnPTpKq is not a rational conditional.

To see this, consider Example 4: we have ‚ p Ñ  q P
CnPTpKq (typical non-penguins are not parrots—since we
know the most typical things are not parrots), but neither
‚ p Ñ t P CnPTpKq, nor ‚p p ^  tq Ñ  q P CnPTpKq.
On the other hand, unlike with CnLMp¨q,  p R CnPTpKq.

7 Making Sense of the Impossibility Result
Theorem 1 in Section 4 shows that there is no PTL conse-
quence operator satisfying all of our postulates—more specif-
ically, none satisfying P1, P6, P8, and P10. This raises the
important question of which of these postulates ought to be
foregone in the search for an appropriate form of PTL entail-
ment. In trying to find an answer to this question, it is useful
to consider the two forms of entailment we proposed in the
previous sections. The answer seems to be that it makes sense

to consider two forms of entailment for PTL, represented here
by LM-entailment and PT-entailment. In essence, it comes
down to a choice between having a form of entailment that
satisfies Strict Entailment (PT-entailment), and one that satis-
fies the Single Model postulate and Conditional Rationality,
i.e., is based on a rational conditional (LM-entailment).

The advantage of LM-entailment is that it satisfies all pos-
tulates except for Strict Entailment, which includes not only
Single Model and Conditional Rationality, but also Condi-
tional Strict Entailment and Classical Entailment, the weak-
ened versions of Strict Entailment. On the other hand, the
argument for PT-entailment is that the Single Model property
is too restrictive in the context of full PTL, and ought to be
dropped. That is, in a logic as expressive as PTL in which
there are not any restrictions on the typicality operator, any
form of entailment based on minimality, and adhering to the
presumption of typicality, as outlined in Section 6, is likely to
violate the Single Model property.

The point of view that different forms of entailment can be
appropriate in enriched versions of propositional logic, par-
ticularly enriched versions dealing with aspects of typical-
ity, is not surprising, nor new. Lehmann [1995], makes the
case for two forms of entailment for the conditional logic dis-
cussed in Section 2.1 on which PTL is based. He draws a
distinction between prototypical reasoning, corresponding to
Rational closure as discussed in Section 2.2, and presumptive
reasoning. The details of the differences between prototyp-
ical and presumptive reasoning is not that important for our
purposes here. The important point is that differences in con-
text will determine which form of entailment is appropriate.
It is our contention that the same principle applies to the dif-
ferences between LM-entailment and PT-entailment.

8 Conclusion
The focus of this paper is an investigation into the entail-
ment problem for the logic PTL. We approached the problem
from two angles: an abstract formal perspective, in which a
set of appropriate postulates were presented and discussed,
and a constructive perspective, in which two specific entail-
ment relations were defined and studied. The primary con-
clusion to be drawn from this investigation is that a logic as
expressive as PTL supports more than one form of entailment.
This conclusion is supported from the abstract perspective
via an impossibility result, as well as through the construc-
tive approach via the definition of two distinct types of PTL
entailment. While both forms of entailment are generalisa-
tions of rational closure, only one, LM-entailment, retains
all the rationality properties associated with Rational clo-
sure, formalised as the Conditional Rationality postulate (P5).
However, it does not satisfy Strict Entailment (P8), a postu-
late which requires an entailment relation to remain Tarskian
for conclusions not involving typicality, although it satisfies
weakened versions of Strict Entailment (P9 and P91). On
the other hand, the other form of entailment we studied, PT-
entailment, satisfies P8, but not Conditional Rationality, and
therefore not the Single Model postulate (P6) either.

The framework of Booth et al. [2012; 2013] is, to the best
of our knowledge, the first attempt to introduce a full-fledged
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typicality operator into propositional logic. In terms of other
related work, the closest we are aware of is the restricted form
of typicality for description logics by Giordano et al. [2009].
However, a consequence of their restricted use of typicality is
that a propositional version of their logic would correspond
to a KLM-style conditional logic in which rational closure
behaves well, and which is much less expressive than PTL.

Britz et al. [2009] and Giordano et al. [2009] have investi-
gated the connection between the KLM approach and Gödel-
Löb modal logic, which is closely related to PTL. Exploiting
this connection should deliver an axiomatisation of an infer-
ence relation corresponding to ranked entailment, but it does
not seem useful for modelling entailment relations based on
minimisation as LM- and PT-entailment.

For future work, an obvious open question is whether our
conjecture, that the subsets of postulates satisfied by LM-
entailment and PT-entailment respectively provide appropri-
ate abstract formalisations of two distinct forms of PTL en-
tailment, can be formalised through representation theorems.
From a computational perspective, it is worth investigating
whether, as is the case for rational closure for conditional
logics, the computation of (the different forms of) PTL entail-
ment can be reduced to a series of classical entailment checks.

Our results in the propositional setting pave the way for
an investigation of appropriate forms of entailment in other,
more expressive, preferential approaches, such as preferential
description logics [Britz et al., 2011b; 2013; Giordano et al.,
2013] and modal logics of defeasibility [Britz et al., 2011a;
Britz and Varzinczak, 2013]. The move to logics with more
structure is of a challenging nature, and a simple rephrasing
of our approach to these logics may not deliver the expected
results. We are currently investigating these issues.
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