

Scaffolding Java Programming on a

Mobile Phone for Novice Learners

By

Charity Chao Mbogo

A Dissertation Submitted For the Degree of

Doctor of Philosophy in the Department of Computer Science, Faculty of Science,

University of Cape Town

September 2015

Supervised by:

Edwin Blake

Hussein Suleman

Copyright © 2015 Charity Chao Mbogo

ii

Declaration

I declare that this dissertation is my own original work. Where collaborations with other researchers

are involved, or materials generated by other researchers are included, the parties and/or materials are

acknowledged or are explicitly referenced as appropriate.

This work is being submitted for the degree of Doctor of Philosophy in Computer Science at the

University of Cape Town, South Africa. This thesis has not been submitted to any other university or

institution for any other degree or examination.

Date Signature

Charity Chao Mbogo

iii

Publications

Some ideas, figures and tables of this dissertation have previously appeared in the following five

publications:

Mbogo, C., Blake, E., & Suleman, H. (2013, December 7 - 9). A Mobile Scaffolding Application to Support

Novice Learners of Computer Programming. In Proceedings of the Sixth International Conference on

Information and Communications Technologies and Development: Notes-Volume 2 (p. 84-87). ACM.

Mbogo, C., Blake, E., & Suleman, H. (2014, Feb 28 – Mar 2). Initial Evaluation of a Mobile Scaffolding

Application that seeks to Support Novice Learners of Programming. In Proceedings of the 10th

International Conference on Mobile Learning: (p. 175 – 182).

Mbogo, C., Blake, E., & Suleman, H. (2014, April 7- 9). Supporting the Construction of Programs on a

Mobile Device: A Scaffolding Framework. In Proceedings of 4th International Conference on M4D Mobile

Communication for Development: (p. 155).

Mbogo, C. (2014, October 8-10). Scaffolding Java Programming on a Mobile Phone for Novice Learners.

In Poster session at Grace Hopper Conference, 2014.

Mbogo, C., Blake, E., & Suleman, H. (2015, Mar 14 – 16). Scaffolding Java Programming on a Mobile

Phone for Novice Learners. In Proceedings of the 11th International Conference on Mobile Learning.

iv

Dedication

To my family:

To mom for her love, patience and unwavering support.

To all of you for your love and laughter:

Mariam, Daniel, Jennifer, Shali, Hannah, Benjamin, Alice, Geoffrey, Joel, Shali, Naomi, Enoch,

Shalom, Precious, Neema, James, Tabitha, Job, Hebron, Sarah, Ronnie, Mercy and Neema.

 To my late father:

I miss you every day. I have not forgotten the values you taught me of being teachable, hard work

and persistence, all of which have seen me to this.

v

Acknowledgements

Heartfelt appreciation to my supervisors, Professor Edwin Blake and Associate Professor Hussein

Suleman, for their invaluable support, guidance and mentorship right from the start. I am especially

grateful that all our meetings always left me a better and more enlightened student. Special thanks to

the late Gary Marsden for his support and guidance right from the time of applying to join the PhD.

The PhD and fieldwork was funded by the Hasso Plattner Institute, and for the last part, by Google

Anita Borg (EMEA) scholarship. I also received funding for conference facilitation from IPID, Google,

ACM-W, Schlumberger’s Faculty for the Future and the Department of Computer Science at UCT. I

am immensely grateful for their financial support. Special thanks to the three examiners who took the

time to read and review my thesis.

I appreciate the institutions that allowed access to their learners and to the learners who

participated in the experiments at University of Cape Town, University of Western Cape, Kenya

Methodist University and Jomo Kenyatta University of Agriculture and Technology. I would like to

specifically thank the lecturers in the respective institutions for permission to access their learners:

Audrey Mbogho, Bill Tucker, Robert Mutua, and John Njue.

All my colleagues in the ICTD lab have accompanied me on this journey through the hard days,

lamentations, serious discussions and laughter. Special thanks to Chris Chepken, Mvurya Mgalla,

Fiona Ssozi, Nasubo Ongoma, George Ng’ethe, Josiah Chavula, Aderonke Sakpere, Sinini Ncube and

Lighton Phiri for their feedback on papers and posters. I thank the lecturers in the ICTD group for their

constructive feedback during workshops and presentations. I am also thankful for Eve Gill for her

support in arranging for conference travels.

Notable appreciation to Kenya Methodist University. Special thanks to Professor Robert

Gateru, Dr Salesio Kiura, Ronald Wanyonyi, Lawrence Mwenda, Miriam Mwirebua, Daniel Muendo

and Philip Oyier for their support and unselfish facilitation during my fieldwork in Kenya.

My love to my family whose unwavering love has been my rock and comfort. To my friends

for their devotion and loyalty: Mercy Gacheri, Jemimah Nzale, Martha Mwangome, Vivian Ntinyari,

Krystal Ndinda, and Doreen Areri. Thank you all for still being there even after my extended periods

of silence while I was buried in work. I am grateful for my friends (Brian Laung, Krystal, Richard,

Vivian, Doreen, Josh, and Michael), my brother James, and Professor Wallace Chigona, who took time

to read sections of my thesis.

Most importantly, I thank God for the blessings that have been the last three years of good

health, mental acuity, opportunities, rewards, great lessons, and the energy and ability to work on the

project conscientiously, sometimes for long, long hours.

vi

Table of Contents

Declaration .. ii

Publications ...iii

Dedication .. iv

Acknowledgements .. v

Table of Contents .. vi

List of Tables ... xi

List of Figures ..xiii

List of Abbreviations Used .. xvii

Abstract ..xviii

Chapter 1 Introduction .. 1

1.1 Scope of the Study ... 4

1.2 Problem Statement ... 4

1.3 Research Questions .. 4

1.4 Research Design and Approach ... 5

1.5 Research Contributions .. 8

1.6 Thesis Outline .. 9

Chapter 2 Constructivism and Programming ... 11

2.1 Choice of Constructivist Theory .. 11

2.2 Constructivist Theory .. 13

2.3 Constructivism in Programming .. 15

2.4 Scaffolding ... 16

2.5 Chapter Summary .. 18

Chapter 3 Related Work ... 20

3.1 Difficulties Faced by Novice Learners of Programming ... 20

3.2 Scaffolding Programming on PCs ... 23

3.2.1 New programming languages ... 23

3.2.2 Stand-alone applications ... 24

3.2.3 Teacher-learner architecture ... 25

3.2.4 Web-based applications .. 26

3.3 Using Mobile Phones for Learning ... 27

3.3.1 Limitations of mobile phones ... 29

3.4 Learning Programming using Mobile Phones ... 30

3.5 Summary of Gaps and Opportunities .. 33

Chapter 4 Design and Implementation of Scaffolding Techniques ... 36

4.1 Learner-Centered Design ... 36

vii

4.2 Requirements ... 39

4.2.1 Learner-cited challenges ... 39

4.2.2 Limitations of mobile phones ... 42

4.3 Six-Level Scaffolding Framework .. 43

4.4 Implementation of Scaffolding Techniques .. 45

4.4.1 Learner challenge 1: Difficulty in connecting program parts into one 45

4.4.2 Learner challenge 2: Difficulty in debugging errors in programs 49

4.4.3 Learner challenge 3: Small screen size and small keypad of a mobile phone 51

4.4.4 Summary of scaffolding techniques ... 53

4.5 System Overview ... 55

4.5.1 First prototype ... 55

4.5.2 Second prototype .. 58

4.6 Example of a Simple Program Created Using the Scaffolding Techniques 60

4.7 Non-Scaffolded System Implementation ... 63

4.8 Chapter Summary .. 64

Chapter 5 Evaluation ... 65

5.1 Study Participants .. 65

5.2 Data Collection Methods ... 67

5.2.1 Electronic questionnaires .. 67

5.2.2 Computer logs ... 67

5.2.3 Video and image recordings ... 68

5.3 Internet-enabled mobile phones ... 68

5.4 Experiment Design .. 69

5.4.1 Programming tasks ... 69

5.4.2 Experiment procedure ... 70

5.5 Criteria to Address the First Research Question ... 71

5.5.1 Which scaffolding techniques were used to construct programs? 71

5.5.2 How were scaffolding techniques used to construct programs? 72

5.5.3 Qualitative Feedback .. 73

5.6 Criteria to Address the Second Research Question ... 73

5.6.1 Task Success ... 73

5.6.2 Time-on-task ... 74

5.6.3 Efficiency .. 75

5.6.4 Errors .. 75

5.6.5 Learnability ... 76

5.7 Summary of Criteria to Address Research Questions ... 76

5.8 Chapter Summary .. 77

viii

Chapter 6 Results and Discussion .. 79

6.1 Participants and Experiments .. 79

6.1.1 First Experiment ... 79

6.1.2 Second Experiment ... 81

6.1.3 Third Experiment .. 81

6.2 Task Success .. 84

6.2.1 First Experiment ... 84

6.2.2 Second Experiment ... 89

6.2.3 Third Experiment .. 92

6.2.4 Summary of Task Success Results from all the Experiments 94

6.3 Time-on-task .. 96

6.3.1 Second Experiment ... 96

6.3.2 Third Experiment .. 101

6.3.3 Summary of Time-on-Task Results .. 106

6.4 Efficiency ... 107

6.5 Errors ... 109

6.5.1 Second Experiment ... 110

6.5.2 Third Experiment .. 113

6.5.3 Discussion: Error Results from the Second and Third Experiments 114

6.6 Scaffolding Techniques Used .. 115

6.6.1 Use of Static Scaffolding .. 116

6.6.2 Use of Automatic Scaffolding .. 120

6.6.3 User-initiated Scaffolding Techniques ... 123

6.6.4 Summary of Results on which Scaffolding Techniques were used 125

6.7 How the Scaffolding Techniques were used to Create Programs 126

6.7.1 Time-based Outliers ... 126

6.7.2 Learners who attempted to edit a chunk repeatedly before proceeding to the next

one ………………………………………………………………………………….. 126

6.7.3 Learners who cancelled the use of scaffolding techniques 127

6.7.4 Learners who unlocked the advanced interface .. 127

6.7.5 Summary of how scaffolding techniques were used .. 129

6.8 Chapter Summary .. 129

Chapter 7 Conclusion .. 132

7.1 Synthesis of Empirical Findings .. 132

7.1.1 Which of the theoretically-derived scaffolding techniques support construction of

Java programs on a mobile phone? .. 132

7.1.2 What is the effect of using the scaffolding techniques to construct Java programs

on a mobile phone? .. 132

ix

7.2 Implications of the Study ... 133

7.2.1 Theory of constructivism .. 133

7.2.2 Design process .. 135

7.2.3 Novel scaffolding techniques and fading mechanisms ... 136

7.2.4 Understanding how learners use scaffolding techniques 137

7.2.5 Contribution to the field of ICT4D ... 137

7.3 Limitations of Research ... 138

7.4 Opportunities for Future Work .. 139

7.1.1 Extension of the system .. 139

7.1.2 Additional experiments ... 140

7.1.3 Evaluation with other existing tools ... 140

7.1.4 Model on fading of scaffolding .. 140

7.1.5 Use of the system to teach a class ... 140

REFERENCES ... 141

APPENDICES .. 152

Appendix A: Table of the Scaffolding Framework .. 152

Appendix B: Summary of Scaffolding Design Framework ... 158

Appendix C: Ethical Clearances ... 159

Appendix C1: Ethical clearance from University of Cape Town .. 159

Appendix C2: Permission to access learners at University of Cape Town 160

Appendix C3: Ethical clearance from Kenya Methodist University 161

Appendix D: Consent form signed by learners before participating in study 162

Appendix E: Questionnaires ... 163

Appendix E1: Experiment 1 questionnaire .. 163

Appendix E2: Experiment 2 and 3 questionnaire .. 172

Appendix E3: Experiment 3 questionnaire for control group.. 175

Appendix F: Screenshots of the second prototype with modifications 177

Appendix F1: Screenshot showing use of tabs in the main interface, a green run button at the

top of the screen, and addition of ‘other class’ chunk ... 177

Appendix F2: Screenshot showing use of tabs in the editor .. 177

Appendix F3: Screenshot showing ‘public class’ keyword in main class disabled, showing

menu options that can be selected to enable (left figure) or disable it (right figure) 178

Appendix F4: Screenshot showing instructions in the main class indicating that a user can

proceed without creating the main class .. 178

Appendix F4: Screenshot showing a header dialog (left figure) that can be enabled using a

menu option (right figure) ... 179

Appendix F5: Screenshot showing the Scanner class option (left figure) and the

corresponding default text (right figure) that is to be edited and reused 179

x

Appendix F6: Screenshot showing the import statements that are automatically inserted in

the imports chunk (left figure) and the resulting dialog box for user input when the program

is compiled (right figure) ... 180

Appendix G: Raw Data for Number of Tasks .. 181

Appendix G1: Number of tasks attempted and completed per user for KeMU, Experiment 2

 ... 181

Appendix G2: Number of tasks attempted and completed per user for UWC, Experiment 2

 ... 181

Appendix G3: Number of tasks attempted and completed per user for JKUAT, Experiment 2

 ... 182

Appendix G4: Number of tasks attempted and completed per user for KeMU, Experiment 3

 ... 182

Appendix G5: Number of tasks attempted and completed per user for JKUAT, Experiment 3

 ... 183

Appendix H: Raw Data for Time-on-Task ... 184

Appendix H1: Time-on-task data for learners in Control and Experimental groups at UWC

Experiment 2 .. 184

Appendix H2: Time-on-task data for learners in Control and Experimental groups at

JKUAT Experiment 2 .. 186

Appendix H3: Time-on-task data for learners in Control and Experimental groups at KeMU

Experiment 3 .. 188

Appendix H4: Time-on-task data for learners in Control and Experimental groups at

JKUAT Experiment 3 .. 189

Appendix I: Raw Data for Verbatim User Feedback ... 191

Appendix I1: Survey responses at UWC, Experiment phase 2 ... 191

Appendix I2: Survey responses at JKUAT, Experiment phase 2 .. 192

Appendix I3: Survey responses at KeMU and JKUAT, Experiment phase 3 193

Appendix J: ERROR ANALYSIS .. 194

Appendix J1: Raw data showing error analysis of UWC data from the experimental group in

the second Experiment ... 194

Appendix J2: Raw data showing error analysis of JKUAT data from the experimental group in

the second Experiment ... 195

Appendix J3: Raw data showing error analysis of JKUAT data from the experimental group in

the third Experiment ... 198

xi

List of Tables

Table 2.1: Differences between behaviorism, cognitivism, and constructivism for learning 12

Table 4.1: Differences between User-Centered design and Learner-Centered design 37

Table 4.2: Table showing the designed scaffolding techniques, associated scaffolding type, fading

capability and the related constructivist principle ... 54

Table 5.1: Total number of participants across the four institutions and the number of experiments

conducted at each institution .. 66

Table 5.2: Number of experiments conducted at the four universities, the number of learners at each

of the experiments, the groups involved in each experiment, and the data collection methods used at

each experiment ... 70

Table 5.3: Summary of criteria to evaluate use of scaffolding techniques .. 72

Table 5.4: Table showing number of experiments, number of learners at each of the experiments,

groups involved in each and the evaluation criteria addressed at each experiment 78

Table 6.1: Distribution of learners in the control and experimental groups across three experiments at

four institutions .. 79

Table 6.2: Number of learners who completed each task at UCT, UWC and KeMU in the first

experiment .. 84

Table 6.3: How UCT and UWC learners rated the different scaffolding techniques in terms of

desirability to support construction of programs on a mobile phone ... 85

Table 6.4: How KeMU learners rated the different scaffolding techniques in terms of desirability to

support construction of programs on a mobile phone .. 85

Table 6.5: Number of learners who attempted and completed each task in the Experimental groups at

KeMU, UWC and JKUAT in the second Experiment ... 90

Table 6.6: Number of learners who attempted and completed each task in the Control groups at

KeMU, UWC and JKUAT in the second Experiment ... 90

Table 6.7: Statistical task success results for attempted and completed tasks in the second Experiment

 .. 90

Table 6.8: Number of learners who attempted and completed tasks in the Experimental groups at

KeMU and JKUAT in the third Experiment .. 93

Table 6.9: Number of learners who attempted and completed each task in the Control groups at

KeMU and JKUAT in the third Experiment .. 93

Table 6.10: Statistical task success results for attempted and completed tasks in the third Experiment

 .. 93

xii

Table 6.11: Statistical task success results in the second and third Experiments for attempted and

completed tasks in Experimental and Control groups ... 95

Table 6.12: Statistical time-on-task results for all complete and incomplete tasks in the second

Experiment ... 97

Table 6.13: Statistical time-on-task results per completed task in the second Experiment 99

Table 6.14: Statistical time-on-task results for all complete and incomplete tasks in the third

Experiment ... 102

Table 6.15: Statistical time-on-task results per completed task in the third Experiment 105

Table 6.16: Statistical time-on-task results in the second and third Experiments for attempted and

completed tasks in Experimental and Control groups ... 106

Table 6.17: Task completion rate, Average task time and Efficiency calculations for UWC,

Experiment 2 .. 108

Table 6.18: Task completion rate, Average task time and Efficiency calculations for JKUAT,

Experiment 2 .. 108

Table 6.19: Task completion rate, Average task time and Efficiency calculations for KeMU,

Experiment 3 .. 108

Table 6.20: Task completion rate, Average task time and Efficiency calculations for JKUAT,

Experiment 3 .. 109

Table 6.21: Statistical results on the mean number of errors for all tasks, first task, and second task at

UWC and JKUAT in the second experiment ... 110

Table 6.22: Mean number of run-time errors and scaffolded errors in attempted tasks (per task) at

UWC and JKUAT Second Experiment ... 112

Table 6.23: Statistical results on the mean number of errors for all tasks, first, second and third tasks

at JKUAT in the third experiment ... 113

Table 6.24: Average number of run-time errors and scaffolded errors in attempted tasks in control

and experimental groups, JKUAT Third Experiments .. 114

Table 6.25: Statistical error results from the second and third Experiments at UWC and JKUAT

across all tasks and the first three tasks ... 115

Table 6.26: Summary of the sequence of program creation in the advanced interface by learners at

JKUAT, Experiment 3 ... 128

xiii

List of Figures

Figure 1.1: Graph showing percentage of respondents (Ghana N=2051, Kenya = 2000) who have the

item at home in working order ... 2

Figure 1.2: Graph showing mobile phone ownership among Kenyan respondents (N = 2000) by

education category ... 3

Figure 1.3: Flowchart showing mixed methods research design and research approach followed in

the study ... 7

Figure 2.1: Comfort zone of proximal development (Anderson & Gegg-Harrison 2013) 17

Figure 3.1: TouchDevelop interface on a mobile device ... 32

Figure 3.2: Example of an AppInventor program .. 32

Figure 3.3: SAND IDE .. 32

Figure 3.4: Java Editor ... 32

Figure 4.1: LCD methodology followed in this study as adapted from the TILT model 39

Figure 4.2: Distribution of all respondents according to university .. 40

Figure 4.3: Distribution of all respondents according to course of study .. 40

Figure 4.4: Distribution of all respondents according to degree of study .. 41

Figure 4.5: Main interface showing only the main class activated .. 47

Figure 4.6: Main class default code ... 47

Figure 4.7: Creating the main class .. 47

Figure 4.8: Method default code .. 47

Figure 4.9: Creating a method ... 47

Figure 4.10: dialog for default statements ... 47

Figure 4.11: Main class completed (in green) and header button activated .. 49

Figure 4.12: Unrestricted interface .. 49

Figure 4.13: Error prompt .. 51

Figure 4.14: Incorrect creation of return statement ... 51

Figure 4.15: Error prompt indicating incorrect use of return statement .. 51

Figure 4.16: Hints displayed when creating main class ... 51

Figure 4.17: Main Class example displayed after clicking on a menu item .. 51

Figure 4.18: Creating method .. 53

Figure 4.19: Full program as was last saved .. 53

Figure 4.20: Prompt for unchanged main class ... 53

xiv

Figure 4.21: System overview of the first prototype showing the scaffolding techniques in blue at the

main interface and at the editor .. 56

Figure 4.22: System overview of the second prototype showing the scaffolding techniques in blue at

the main interface and the editor .. 59

Figure 4.23: Screenshot showing the main interface of the second prototype with three tabs, a button

for other class, and a quick-access run button ... 60

Figure 4.24: Editor with three tabs for instructions, editing and full program 60

Figure 4.25: The header dialog in the editor .. 60

Figure 4.26: Restricted main class keywords at the editor .. 60

Figure 4.27: Main class active ... 61

Figure 4.28: Main class clicked ... 61

Figure 4.29: Editing main class ... 61

Figure 4.30: Error prompt .. 62

Figure 4.31: Header activated .. 62

Figure 4.32: Saved on device ... 62

Figure 4.33: Header clicked ... 62

Figure 4.34: Full program .. 62

Figure 4.35: Creating header .. 62

Figure 4.36: Main method clicked ... 62

Figure 4.37: Default statements ... 62

Figure 4.38: Edit main method .. 62

Figure 4.39: Completed program parts .. 63

Figure 4.40: Completed full program .. 63

Figure 4.41: Output of program after compilation ... 63

Figure 4.42: Interfaces for the non-scaffolded application .. 63

Figure 5.1: Samsung Galaxy Pocket S5300 used during the experiments .. 68

Figure 6.1: First Experiment session at UCT ... 80

Figure 6.2: First Experiment session at UWC ... 80

Figure 6.3: Programming task attempted by learners in the first experiment 80

Figure 6.4: Class session at KeMU during the first experiment .. 81

Figure 6.5: Second Experiment session at KeMU ... 82

Figure 6.6: Second Experiment session at UWC ... 82

Figure 6.7: Programming tasks attempted by learners in the second Experiment at UWC, KeMU and

JKUAT ... 82

xv

Figure 6.8: Third Experiment session at KeMU .. 83

Figure 6.9: Third Experiment session at JKUAT .. 83

Figure 6.10: Programming tasks attempted by learners in the third Experiment 83

Figure 6.11: Full program written within the main class chunk where only the class name is required

 .. 87

Figure 6.12: Inappropriate completion of the main class .. 87

Figure 6.13: Dialog box showing default statements ... 87

Figure 6.14: Learner typing statement from scratch .. 87

Figure 6.15: Video screenshot of a learner at the main interface of the application 87

Figure 6.16: Video screenshot showing soft keypad covering half the screen 87

Figure 6.17: Box plots showing time-on-task for incomplete tasks, completed tasks and total time for

Experimental and Control group at UWC, Experiment 2 .. 96

Figure 6.18: Box plots showing time-on-task distribution for incomplete tasks, completed tasks and

total time on task for Experimental and Control groups at JKUAT, Experiment 2 97

Figure 6.19: Box plot showing time on completed tasks per-task in the Experimental and Control

group at UWC, Experiment 2 .. 98

Figure 6.20: Box plot showing time on completed tasks per-task for Experimental and Control group

at JKUAT, Experiment 2 ... 99

Figure 6.21: Box plots showing time-on-task distribution for incomplete tasks, completed tasks and

total time on task for Experimental and Control groups at KeMU, Experiment 3 101

Figure 6.22: Box plots showing time-on-task distribution for all incomplete tasks, completed tasks

and total time on task for Experimental and Control groups of JKUAT, Experiment 3 102

Figure 6.23: Box plot showing task completion rates across completed tasks for Experimental and

Control groups at KeMU, Experiment 3 .. 104

Figure 6.24: Box plot showing task completion rates across completed tasks for Experimental and

Control groups at JKUAT, Experiment 3 .. 104

Figure 6.25: Error prompt showing incorrect creation of the main class .. 112

Figure 6.26: Error prompt showing incorrect completion of the for-loop ... 112

Figure 6.27 A program showing the Keywords ‘String’ and ‘System’ written in lower case ‘s’ (in

bold) ... 112

Figure 6.28: Error prompts encountered within the main class in italics .. 114

Figure 6.29: Error prompts encountered within the main method in italics 114

Figure 6.30: Comparison of use of static scaffolding techniques between incomplete and complete

programs at UWC, KeMU and JKUAT in Experiments 2 and 3 ... 116

xvi

Figure 6.31: A section of a learner’s logs showing several attempts at adding an extra line within the

main class chunk .. 118

Figure 6.32: Progression of use of static scaffolding techniques in incomplete and complete programs

at JKUAT Experiment 3 .. 119

Figure 6.33: Use of automatic scaffolding techniques in incomplete and complete programs at

JKUAT Experiment 3 .. 121

Figure 6.34: Sequence of program creation showing the statement dialog cancelled twice while

creating the main method, and then enabled on the third attempt ... 121

Figure 6.35: Progression of use of automatic scaffolding techniques in incomplete and complete

programs at JKUAT Experiment 3 .. 123

Figure 6.36 : Use of user-initiated scaffolding techniques in all programs across the four experiment

sessions .. 124

Figure 6.37: Graph showing when the full program was viewed and the average view per learner at

UWC, Experiment 2 ... 124

Figure.6.38: Graph showing when the full program was viewed and the average view per learner at

JKUAT, Experiment 3 ... 125

xvii

List of Abbreviations Used

IT – Information Technology

PC – Personal Computer

3D – Three-dimensional

IDE – Integrated Development Environment

LCD – Learner-Centered Design

UCD – User-Centered Design

API – Application Programing Interface

CSE – Computer Science Education

ZPD – Zone of Proximal Development

CZPD – Comfort Zone of Proximal Development

GUI – Graphical User Interface

ICT – Information Communication Technology

ACM – Association for Computing Machinery

IEEE – Institute of Electrical and Electronics Engineers

ICT4D – Information and Communication Technologies for Development

xviii

Abstract

The ubiquity of mobile phones provides an opportunity to use them for learning programming beyond

the classroom. This would be particularly useful for novice learners of programming in resource-

constrained environments. However, limitations of mobile phones, such as small screens and small

keypads, impede their use as typical programming environments. This study proposed that mobile

programming environments could include scaffolding techniques specifically designed for mobile

phones, and designed based on learners’ needs.

 A six-level theoretic framework was used to design scaffolding techniques to support

construction of Java programs on a mobile phone. The scaffolding techniques were implemented on

an Android platform. Using the prototype, three experiments were conducted with 182 learners of

programming from four universities in South Africa and Kenya. Evaluation was conducted to

investigate: (i) which scaffolding techniques could support the construction of Java programs on a

mobile phone; and (ii) the effect on learners of using these scaffolding techniques to construct Java

programs on a mobile phone. Data was collected using computer logs, questionnaires, and image and

video recordings.

 It was found that static scaffolding, such as a program overview and constructing a program

one part at a time, supported the construction of programs on a mobile phone. It was also found that

automatic scaffolding, such as error prompts and statement dialogs, and user-initiated scaffolding, such

as viewing of the full program while creating parts of a program, supported learners to construct

programs on the mobile phone. The study also found that the scaffolding techniques enabled learners

to attempt and complete more tasks than a non-scaffolded environment. Further, the scaffolding

techniques enabled learners to complete programs efficiently, and captured syntactical errors early

during program creation. The results also indicated that after the initial familiarization with the

scaffolded environment, the scaffolding techniques could enable faster completion of programs.

Learners’ feedback indicated that they found the scaffolding techniques useful in supporting

programming on a mobile phone and in meeting learners’ needs.

This study provides empirical evidence that scaffolding techniques specifically designed for

mobile phones and designed based on learners’ needs could support the construction of programs on a

mobile phone.

1

Chapter 1 Introduction

Computer programming is a difficult subject for most learners of programming. Research indicates

this to be a universal problem, especially among novice learners (Piteira & Costa 2012; Watson & Li

2014). Novice learners of programming may be defined as learners enrolled in a university-level,

introduction to programming course (Maleko et al. 2012). This research adopts this definition of a

novice learner. The learning difficulties in the subject indicate that some programming skills are

beyond the novice learners’ efforts. Scaffolding refers to support provided so that the learner can

engage in activities that would otherwise be beyond their abilities or their unassisted efforts (Jackson

et al. 1998; Wood et al. 1976). For example, an adult could support a child who is learning how to

walk by holding the child’s hands. Likewise, support structures erected around an upcoming building

enable a construction worker to access a higher part of the building. Both the adult’s hands and the

building’s support structures offer scaffolding. Thus, a novice’s learning process can also be scaffolded

in different ways.

A child learns how to walk by actually trying to walk. Similarly, programming is best learnt by

attempting to write programs and not just reading or memorizing programs. This principle of learning

by writing programs is embedded in the constructivist theory of knowledge building, which focuses

on learning through doing (Fosnot 2005). As a child is learning to walk, the adult’s hands can be

withdrawn when the child is more stable on their feet, but the adult’s hands should be available to the

child if they still need support. Thus, the constructivist theory supports the notion of scaffolding

because, as learners construct programs, they can be provided with support that could later fade away.

Because it underlies the principles of learning by doing and scaffolding, constructivism was used as

the theoretical framework for this research.

In order to contribute towards tackling learning difficulties in programming, novice learners

can be supported to construct programs while they are outside the classroom. This makes any such

support to be additional to the learner’s classroom learning, and not a replacement. Further, learners

may not always have access to the school’s computer laboratories where they can practice

programming. Support to learners outside the classroom can be provided using PC-based applications.

Indeed, several studies have offered scaffolded environments on PC platforms targeting novice

learners of programming, for example, 3D environments such as Alice (Dann et al. 2011), and teacher-

learner assessment environments such as Test My Code (Vihavainen et al. 2013).

However, most learners who are in resource-constrained environments, such as in parts of

Africa, have limited access to PCs while they are outside the classroom. In fact, in many developing

2

countries, people are much more likely to use computers at school or at work than to own them at

home. For example, a survey conducted in Ghana and Kenya to investigate the ownership of

information and communication technologies at home showed that only 10% of respondents in Ghana

and 5% in Kenya have a computer at home (Bowen & Goldstein 2010). This is illustrated in Figure

1.1. The limited access to PCs outside the classroom aggravates the learning difficulties faced by such

learners because resource constraints present their own challenges in developing a good programming

foundation (D’Souza et al. 2008). Further, research conducted in Tanzania highlights that one of the

contributors to learners struggling in programming is lack of adequate access to computers, which

limits hands-on learning (Apiola et al. 2011).

The ubiquity of mobile devices provides an opportunity to use them as a resource to support

learning of programming beyond the classroom. This is especially because, in developing countries,

mobile devices hold enormous promise as the single ICT most likely to deliver education, and to do

so in a sustainable, equitable and scalable basis (Traxler 2011). Mobile devices include laptops, tablets

and mobile phones. Of these, mobile phones are the most widely used mobile devices among learners

in developing countries (Kafyulilo 2012). Further, Figure 1.1 shows that the percentage of respondents

in Ghana and Kenya who own mobile phones was higher in comparison to the percentage of

respondents who own computers at home. In addition, Figure 1.2 shows a graph from a study

conducted in Kenya, indicating that most of the respondents studying for university degrees or higher

own mobile phones (Hannah 2010). For these reasons, the mobile phone was selected as the resource

that could be used to construct programs outside the classroom.

Figure 1.1: Graph showing percentage of respondents (Ghana N=2051, Kenya = 2000) who

have the item at home in working order

Source of Data: (Bowen & Goldstein 2010)

87%

41%

5%
11%

2%

71%

9%

86%

59%

10%
4% 6%

72%

8%

Radio TV Computer Internet Landline Mobile Phone MP3 Player

Ghana Kenya

3

Figure 1.2: Graph showing mobile phone ownership among Kenyan respondents (N = 2000) by

education category

Source of Data: (Hannah 2010)

However, limitations of mobile phones, such as a small screen size and a small keypad, impede

their use as typical programming environments. To deal with these limitations, and for handheld

devices to become effective learning tools, the unique design challenges inherent in such a system

must be understood (Luchini et al. 2002). In fact, even when designing for Web-based GUIs that run

on a mobile device, it has been suggested that interfaces on mobile devices should be tailored for such

devices (Alonso-Ríos et al. 2014; Zimmerman & Yohon 2009).

There are mobile programming environments that can be used by novice learners. Some, such

as SAND IDE1, can be used to create standard programs. Others, such as App Inventor2, can be used

to create mobile applications. However, mobile programming environments such as SAND IDE mostly

mimic PC IDEs and do not address the limitations of mobile phones. Further, it was not the aim of this

study to support the creation of mobile applications, but to support the creation of standard programs

that would typically be created in an introduction to programming class.

In addition to addressing limitations of mobile phones, the challenges faced by learners of

programming should be considered. This is because addressing these challenges maximizes the

potential of meeting learners’ needs. The aim of this research was to support novice learners by

1 http://goo.gl/708IuE

2 http://appinventor.mit.edu/explore/

97%

91%

69%

49%

24%

University Degree or Higher

Post-Secondary, Vocational

Secondary (complete or incomplete)

Primary (complete or incomplete)

No Formal Education

4

scaffolding the construction of programs. Therefore, in providing scaffolding, the needs of learners

can be placed at the center of the design process. Such an approach was defined as learner-centered

design, which claims that software can embody scaffolding that can address learners’ needs (Soloway

et al. 1996). Further, learner-centered design understands learners as a unique group of novices who

are trying to learn the content and work practices of unfamiliar domains (Luchini et al. 2002). In

addition, learner-centered design should provide tools that provides learners with an active process of

learning by doing where learners manipulate the material they are learning (Quintana et al. 2000;

Soloway et al. 1996). Such an approach is embodied in the constructivist theory, which is the

underlying theoretical framework for this research.

Consequently, this research proposed that programming environments on mobile phones could

include scaffolding techniques that are specifically designed for mobile phones, and designed based

on learners’ needs.

1.1 Scope of the Study

The study focused on introduction to programming courses taught using Java. Java was selected as the

language for construction of programs because it was the common language taught across the

institutions that participated in this research. In addition, most novice learners learn an introductory

programming course using object-oriented programming languages such as Java (Black et al. 2013).

Further, the programs that were used in the study are programs that were created in an introduction to

programming class. This focus was deemed appropriate because the aim of the study was to support

novice learners of programming. The learners who participated in the study were from institutions in

South Africa and Kenya. The institutions from these two locations were selected because of their

convenience in terms of having established contacts. Further, the two locations were deemed

appropriate since they are both developing countries where learners could have limited access to PCs

and laptops outside the classroom. Lastly, the focus of the study was on the use of a mobile phone as

a programming environment and not the use of other mobile devices such as tablets, or the use of

desktops and laptops.

1.2 Problem Statement

The aim of this research was to identify which scaffolding techniques could support Java programming

on a mobile phone and, further, to evaluate the effect on learners of using these scaffolding techniques

to construct Java programs on a mobile phone.

1.3 Research Questions

To address the research problem, two research questions were posed:

5

1. Which of the theoretically-derived scaffolding techniques support construction of Java programs

on a mobile phone?

To design scaffolding techniques that could support construction of Java programs on a mobile phone,

a six-level scaffolding framework was used. This framework consisted of theoretical guidelines that

were followed in order to design specific scaffolding techniques. This scaffolding framework is

discussed in Chapter 4. To address this research question, first, an analysis was conducted to identify

which of the scaffolding techniques were used to construct programs. Then the scaffolding techniques

were analyzed to identify how learners used them to construct programs. Further, learners were asked:

if they found the scaffolding techniques useful; which scaffolding techniques they found useful; and

to comment on their experiences while using the scaffolding techniques.

2. What is the effect on learners of using the scaffolding techniques to construct Java programs on a

mobile phone?

By learners constructing programs using the derived scaffolding techniques and some constructing

programs using a non-scaffolded environment, the study investigated the effect of the scaffolding

techniques. The data from the two groups of learners was analyzed to measure: the number of tasks

completed; the amount of time spent on the tasks; the errors encountered while constructing the tasks;

and the efficiency with which the programs were constructed. In addition, the learnability of the

scaffolded environment was analyzed.

1.4 Research Design and Approach

To conduct the research, a mixed methods design was used. Mixed methods research involves

collecting, analyzing, and interpreting quantitative and qualitative data in a single study or in a series

of studies that investigate the same underlying phenomenon (Leech & Onwuegbuzie 2007). Mixed

methods research is based on the idea that the use of quantitative and qualitative approaches in

combination provides a better understanding of a research problem than either approach alone (Azorín

& Cameron 2010).

To address the first research question, qualitative data was collected in order to analyze which

of the specifically-designed scaffolding techniques were used to construct programs. Further,

qualitative data was collected in order to understand the perception of learners of the scaffolding

techniques, and their experiences while using the scaffolding techniques. In addition, quantitative data

was collected in order to analyze the frequency of use of the scaffolding techniques.

6

To address the second research question, data was collected to measure quantities such as

number of completed tasks and time-on-task. Collectively, both research questions were addressed

using both quantitative and qualitative data.

This study followed a combination of a multiphase design and embedded design of the mixed

methods research. A multiphase design combines both sequential and concurrent use of qualitative and

quantitative data over a period of time (Creswell & Clark 2007). An embedded design collects and

analyzes both quantitative and qualitative data within a traditional quantitative or qualitative design

(Creswell & Clark 2007). Figure 1.3 shows these phases in blue. First, qualitative data was collected

during the design phase. This qualitative data informed the design of the scaffolded environment.

Thereafter, both qualitative and quantitative data was collected and analyzed in the evaluation phase.

Further, Figure 1.3 summarizes the overall research approach as described next.

The aim of this research was to contribute towards tackling learning difficulties in

programming. Therefore, the first step was to understand the challenges that learners face in the

subject. These challenges were elicited from learners of programming using an online survey and were

used as part of the requirements in the design process. The elicited learner challenges and limitations

of mobile phones were integrated within a six-level scaffolding framework to select scaffolding

techniques that could support Java programming on a mobile phone. The framework was based on a

theory-driven model that has four main levels (Quintana et al. 2004): challenges experienced by

learners; cognitive type of the learning challenges; scaffolding guidelines; and scaffolding strategies

that implement the guidelines. In addition to these four levels, two other levels were added in order to

accommodate: a model for categorizing the type of scaffolding to use (Jackson et al. 1998); and

selection of specific scaffolding techniques that could support construction of Java programs on a

mobile phone (Mbogo et al. 2014).

To implement the selected scaffolding techniques in a mobile programming environment, an

Android prototype was developed. Android was selected as the platform of implementation because it

is open source, and it has an 85% market share among smartphone users (Hornyak 2014). Apart from

the scaffolded environment, a non-scaffolded prototype was designed to be used in the experiments.

These prototypes were used in three experiments with a total of 182 learners of introductory

programming courses taught using Java, from four institutions in South Africa and Kenya. In these

experiments, learners attempted Java programming tasks and data was collected using computer logs,

questionnaires, video recordings and image recordings. In the first experiment, only an experimental

group participated in the study, where all the learners used the scaffolded environment. In the second

7

Figure 1.3: Flowchart showing mixed methods research design and research approach followed in

the study

Identify research problem

Formulate research questions

Gather requirements

Conduct Experiments (Three)

Design

phase

Evaluation

phase

Time

Online survey

Follow a six-level scaffolding framework

to design scaffolding techniques

Collect data

using computer

logs,

questionnaires,

image and video

recordings

Analyse data

Findings Thesis

Qualitative and

Quantitative data

Challenges faced by

learners of

programming and

limitations of

mobile phones

AA scaffolded mobile

programming

environment

Programming

tasks

8

and third experiments, control and experimental groups participated in the study, where the control

group used the non-scaffolded environment.

Evaluation was conducted while learners used the mobile programming environments to

construct programming tasks. Conducting evaluation while considering data about learners’ interaction

is encouraged in educational evaluation models such as the micro-meso-macro framework (Vavoula

& Sharples 2009) and the CIAO model (Jones et al. 1999). Following this recommendation, the

evaluation criteria derived from the research questions were used to analyze the data. For example, to

identify which scaffolding techniques were used to construct the programs, first, task success was

measured by analyzing if a programming task was successfully completed or not. Thereafter, analysis

was conducted on which scaffolding techniques were used to construct the complete and incomplete

tasks. This evaluation process led to the research findings.

1.5 Research Contributions

In addressing the research questions, it was expected that this research would make the following five

contributions:

1. Application of constructivist principles in designing scaffolding techniques on mobile

programming environments.

2. A theory-driven process of designing scaffolding techniques for a mobile programming

environment.

3. A proof-of-concept prototype with which novice learners can construct Java programs while

supported by scaffolding techniques.

4. Empirical evidence about which scaffolding techniques could support Java programming on a

mobile phone.

5. Empirical evidence about the effect on learners of using scaffolding techniques to support Java

programming on a mobile phone.

It was anticipated that making the above contributions would generate interest among educators

and researchers working on designing mobile-based tools that support learning, especially in subjects

such as programming that require a hands-on approach.

In addition, the study would contribute towards tackling the challenges in learning programming

among novice learners, especially in resource-constrained environments where learners own mobile

phones but could have limited access to PCs or laptops outside the classroom. In using ICT (scaffolding

techniques on a mobile phone) to foster development (improving skills by learning), the results of this

study would be relevant to the field of ICT for Development. Further, this study showed a theoretic

9

and methodological process for designing a programming environment on a mobile phone; such a

methodological process was emphasized as important in conducting Mobile for Development research

(Svensson & Wamala 2012).

1.6 Thesis Outline

Chapter 2: Constructivism and Programming

In this chapter, the constructivism theory and its use in programming is discussed. Other learning

theories are presented, leading to a discussion on the choice of constructivism as a grounding theory

for this research. Finally, scaffolding as a principle of constructivism is discussed.

Chapter 3: Related Work

Previous work that relates to the use of scaffolding in programming is discussed in this chapter. In

order to guide the structure of the chapter, discussion is divided into four parts: difficulties faced by

novice learners of programming; scaffolding programming on PCs; using mobile phones for learning

and the limitations of mobile phones; and learning programming using mobile phones. The chapter

concludes with a summary of gaps and opportunities that have been identified in related work.

Chapter 4: Design and Implementation

The design of a prototype that offers scaffolding techniques to construct Java programs on a mobile

phone is presented in this chapter. A six-level scaffolding framework that culminates in the choice of

scaffolding techniques guides the design process. How the scaffolding techniques were implemented

on a mobile phone is discussed, followed by a summary of the scaffolding techniques. Thereafter, the

system overview is presented followed by an example of how a simple program can be created on the

scaffolded environment. The chapter concludes by describing a non-scaffolded environment that was

used by learners in a control group.

Chapter 5: Evaluation

This chapter discusses how evaluation was conducted in order to address the two research questions.

The chapter describes the participants who took part in the study, and the data collection methods and

materials used. Further, the chapter discusses the number of experiments that were conducted and how

they were conducted. Thereafter, the evaluation criteria derived to address the research questions and

the related hypotheses are presented. The chapter concludes with a summary of the criteria used to

address the two research questions.

Chapter 6: Results

In this chapter, the results and analyses of the collected quantitative and qualitative data as per the

evaluation metrics used to address the research questions are presented and discussed. The chapter

starts with a discussion of the participants who took part in the study and a review of how they

10

participated in the experiments. Thereafter, results and related discussions are presented for each of

the three experiments. The chapter concludes with a summary of the research findings.

Chapter 7: Conclusion

This chapter begins by restating the research problem and the research questions. A synthesis follows

of how the empirical findings addressed the research questions. Thereafter, the chapter discusses the

implications of the study. Finally, the chapter discusses the limitations of the study and ideas for future

research.

11

Chapter 2 Constructivism and Programming

The previous chapter introduced the purpose and motivation of the research and briefly showed that

the constructivist theory supports learning by doing and scaffolding. This chapter describes the

constructivist theory and its application to programming. Thereafter, scaffolding is described as a

principle of constructivism.

2.1 Choice of Constructivist Theory

The need to choose a learning theory was influenced by two factors: to select a learning theory that

supports the nature of programming as a practical course; and to select a learning theory that can

underlie the concept of supporting learners. There are several learning theories such as behaviorism,

cognitivism, and constructivism. Table 2.1 shows the differences among these three learning theories

as outlined by Ertmer & Newby (2008) using the five definitive questions described by Schunk and

Dale (2011). Further, using the example of a child learning how to walk, the last row of Table 2.1

illustrates how each of the theories could be applied to this example.

As illustrated in the table, behaviorism and cognitivism focus on response to stimuli and internal

mental processes, respectively, while constructivism focuses on interaction between the learners and

the environment. In this research, new learners of programming interact with a programing

environment in order to learn a programming skill. In addition, since the aim was to support learners

outside the classroom, there was need for a learning theory that emphasizes on individual learning

since the learners are assumed to be working on their own. This made constructivism the appropriate

choice of a theoretical framework.

 However, one criticism of constructivism is that it is relativist, where anyone’s constructions

are as good as anyone else’s and where we are unable to judge the value or truth of constructions with

any degree of certainty (Cunningham & Duffy 1996). While this is a genuine criticism, its negativity

is lessened in the context of programming by using correct outcomes of programs as the criteria for

validity. A second concern is that the individualistic nature of constructivism leads to an inability to

communicate (Cunningham & Duffy 1996). That is, learners are unable to talk to one another because

learning occurs through personal experience. Since the aim of this research was to provide support

outside the classroom alongside other modes of learning, there was room for learners to communicate.

A third criticism of constructivism is that researchers attempt to implement the theory by promoting

active knowledge construction while giving minimal guidance (Kirschner et al. 2006). Such minimal

guidance is only provided if the learner needs it, hence the learner is required to construct most of the

new knowledge on their own. It seems that such a constructivist approach reflects how programming

12

Table 2.1: Differences between behaviorism, cognitivism, and constructivism for learning

 Behaviorism

(Response to stimuli)

Cognitivism

(Mental processing)

Constructivism

(creating meaning

from ones

experiences)

How does

learning occur?

When a proper response is

demonstrated to specific stimuli.

Learning focuses on what

learners know.

Emphasis is on

creating meaning.

What factors

influence

learning?

External stimuli. Environmental

conditioning.

Learner and

environmental factors.

What is the role

of memory?

Emphasis is placed more on habit

rather than reliance on memory.

Learning results when

information is stored in the

memory in an organized

manner.

Understanding is

developed through

continual use.

How does prior

learning affect

new learning?

Through generalization. Retrieving knowledge

from memory.

Engaging the learner

in actual use of tools in

real world situations.

What types of

learning are

best explained

by the theory?

Recalling facts, generalizations,

associations, and chaining

(automatically performing a

specified procedure).

Reasoning, problem

solving, information

retrieval.

Transitional learning

that equips new

learners with skills

they can use to become

advanced learners.

Theory applied

to example of a

child learning to

walk.

The stimuli could be the adult

holding out his hands in front of

the child and encouraging the

child to reach out.

A child learns how to walk

depending on the stage of

their cognitive

development. (Piaget

1964)

An adult holding the

child’s hands learns

how to walk by using

the adult’s hands as

support as they take

one step after another.

13

is taught, where the emphasis is that people should learn programming by constructing programs from

the basic information of the language, and they should do it in the same way that experts do (Guzdial

2015). Such an approach capitalizes on the learners’ working-memory (and not the long-term

memory), which retains information only temporarily, if at all (Kirschner et al. 2006). This study

addressed this criticism of constructivism in two ways. First, the aim of the study was to provide a

scaffolded environment alongside a classroom learning experience. This way, the learners could still

receive active instructions in the classroom, which they could then apply in creating programs using

the scaffolding techniques. Secondly, the scaffolding techniques were designed to provide strongly

guided learning while learners construct programs. Such an approach was recommended as one that

enables deeper learning than one with minimal guidance (Moreno 2004). Further, some forms of

strongly guided learning approaches are worked examples or process worksheets (Kirschner et al.

2006). In the design of the scaffolding techniques in this study, such approaches were considered.

2.2 Constructivist Theory

Constructivism stems from the field of cognitive science, particularly the work of Jean Piaget and the

socio-historical work of Lev Vygotsky (Fosnot & Randall 1996). In addition, Seymour Papert

developed a theory of learning based on Piaget’s constructivism (Ackermann 2001). A description

follows on how Piaget, Papert, and Vygotsky described constructivism.

Piaget’s constructivism suggests that knowledge expands from within according to complex

laws of self-organization (Ackermann 2001). As such, children’s perceptions of the world are

determined by innate processes and not what an adult says is wrong or right. However, this does not

mean that children’s perceptions do not change. Indeed, they are continually evolving as they interact

with their environment. But, for a child to abandon their current view, they must go through

experiences and actions in the world (Ackermann 2001). Piaget’s view describes two implications on

education: (i) learning is not a direct process that is influenced by external factors, but one that happens

innately from within; and (ii) a learner grows from their innate knowledge by going through an

experience. It is this focus on internal cognition by Piaget that Papert diverts from.

Papert’s description of constructivism focuses on learning through making rather than overall

cognitive potentials (Ackermann 2001). Papert’s view stresses that learning happens through context

and knowledge is acquired when a learner expresses himself, which in turn makes that idea tangible

and therefore can be shared. Stressing the importance of a learner expressing themselves to an external

environment is not new; Vygotsky stressed on social interaction to foster learning.

Vygotsky’s theory focuses on socially elaborated learning where he emphasized that it is in the

course of interaction between children and adults that young learners identify effective means for

14

remembering (Vygotsky 1978). He further argued that the lack of recognition among educators of the

ways in which an experienced learner can share his knowledge with a less advantaged learner, limits

the intellectual development of many learners (Vygotsky 1978). Therefore, people gain by receiving

guidance from others. This is a notion that had been discussed by Bruner.

In the book Toward a Theory of Instruction, Jerome Bruner talks about how instruction is

achieved through showing and not telling (Bruner 1966). In the final chapter of this book, he tells of a

scenario observed between children and adults of a hunter-gatherer community where there were very

few instances of ‘telling’ or teaching as we know it, but children imitated what they saw adults do.

This book could be said to have begun the first illustrations of application of constructivism in

education, without explicitly calling it so.

Despite the different definitions, they seem to all share three key characteristics that form the

core of constructivism:

(i) knowledge is gained when a learner goes through an experience that enables them to

learn;

(ii) learners are active builders of their own knowledge through expression and interaction

with other people or other things in their environment; and

(iii) there is a relation between existing knowledge and any new knowledge that is acquired

by the learner.

Constructivism has been applied to many domains, including education and educational

software. However, it is noted that constructivism is a theory about learning, not a description of

teaching (Fosnot & Randall 1996). This distinction stems from the illustration that knowledge cannot

be merely copied from a teacher to a learner. Instead, knowledge is acquired when learners are given

an opportunity for meaningful experience based on the information given by the teacher, through

which they can ask questions, interact with the information and create their own mental models.

In order to practically apply constructivism to the design of applications, some researchers

derived a set of constructivist principles (Winterbottom & Blake 2004; Winterbottom 2010). These

principles are:

i. Atomic simplicity, where new pieces of information are kept as simple as possible and

the complexity of knowledge can be built through links between the simpler parts, and

there is provision for incremental building of knowledge.

ii. Multiplicity, which encourages multiple perspectives on concepts and methods of

approaching a problem.

iii. Active exploration, which supports the active learning nature of constructivism. Part of

exploration is making mistakes and learning from them. Therefore, errors can be seen

15

as a mechanism for users to gain insight, and this means that they should be easily

identified.

iv. Reflection, which can enable people to form viable theories about their knowledge and

how it fits together. The process of constructing knowledge requires acting with

reflection so as to build effective connections between bits of knowledge.

v. User control, which implies that active construction is the idea of personal control

where people gain power over their learning processes by actively constructing their

own knowledge. While learners have control over their learning process, they could be

provided with support that facilitates this learning that with time, adjusts according to

their needs. Such support is known as scaffolding.

vi. Scaffolding, which describes guidance provided in the form of artefacts, advice and

tutorials, which allow learners to perform tasks that would normally be beyond their

ability, but which fall away when learners have constructed the knowledge and skill to

accomplish the task alone.

These six principles could be applied to programming. Programming being a complex subject,

the aim must be to simplify as much as possible the interface that is presented to a new learner. In so

doing, a programming environment can provide multiple views of a program and then support the

learner to connect them into a single unit. Further, a programming environment could provide feedback

when errors are encountered. In addition, programming learners need to be supported to think about

the programs they are creating. This can be achieved by providing multiple representation and

feedback mechanisms. Lastly, while learners construct programs, they could be provided with support

that adjusts over time.

The definitions of constructivism, and the aforementioned characteristics and constructivist

principles, illustrate the suitability of the constructivist theory for application to learning of

programming. If knowledge is acquired through doing, then it is possible to conclude that if learners

are adequately supported while constructing programs, they will be able to learn programming. The

next section discusses the application of constructivism in programming.

2.3 Constructivism in Programming

One of the widely cited papers that examines the application of constructivism in Computer Science

Education (CSE) indicates that, at the time it was written, the constructivist theory had been widely

influential in science and mathematics education but not in CSE (Ben-Ari 1998). This paper asserted

that the application of constructivism to CSE must take into account two characteristics that do not

appear in natural sciences: (i) a novice CSE student does not come to the course with a mental model

16

of how to work with a computer or how a computer works; and (ii) a computer forms an accessible

source of correct answers with its own feedback system.

Therefore, since a new CSE learner does not come to the course with a preconceived model, a

viable model must be constructed in order to guide the learner in acquiring new knowledge. Further,

application of the constructivist theory to programming suggests that some knowledge must first be

shared with the learner (perhaps through teaching) in order for the learner to use that knowledge to

create their own experience (perhaps through trying out exercises). This research aims at providing

support outside the classroom, alongside a learner’s classroom experience, thereby meeting this

characteristic of constructivism in CSE.

In the last decade, there has been significant interest in studying the application of

constructivism in programming. There have been different ways that constructivism has been applied

to programming. Some of these are:

(i) programming as a collaborative effort between learners, for example, where learners are

engaged in a collaborative code development environment using a smartphone interface,

which allows for individualized feedback (Pears & Rogalli 2011);

(ii) programming where another resource is needed, for example, where a learner is required

to first open a textbook and then use an environment that provides guides and prompts on

how to complete examples from the textbook (Esper et al. 2012); and

(iii) teaching programming based on questions from learners, for example, where learners ask

questions and post this to a Blackboard portal and then the next lesson is taught based on

the questions that the learners thought were most relevant (Boyer et al. 2008).

What is similar across these different approaches is the focus on learners working on the

programs themselves and the availability of some kind of support that guides the learner. In addition,

and to emphasize Ben-Ari’s assertion, such support should enable a new learner to create the correct

mental model. Such support is known as scaffolding.

2.4 Scaffolding

Vygotsky illustrated the concept of scaffolding when he defined the Zone of Proximal Development

(ZPD) in relation to support that a child receives from an adult (Vygotsky 1978). However, Vygotsky

did not explicitly call this support ‘scaffolding’ but he implied it from his description of two types of

school-going children.

 Suppose there are two children, both of them 10-year old chronologically and 8-years old in

terms of mental development. These two children can be said to be of the same age mentally because

they can independently deal with tasks up to the degree of difficulty that has been standardized for an

17

8-year old. Suppose that these two children are thereafter shown various ways of dealing with a

particular problem by a tutor. For example, one way might be to ask a child to repeat some words after

the tutor, another might be to initiate a solution and then ask the child to finish it. Under these

circumstances, it may turn out that the first child can deal with problems up to a 12-year old’s level

and the second child up to a 9-year old’s level. So at this point it can be concluded that these children

do not have the same mental capacity (Vygotsky 1978).

 Borrowing from this analogy of two children, suppose we have two novice learners of

programming, both of whom have no prior experience in programming and are both taking their first

class of programming. At this point, these two learners can be said to be at the same level. Suppose

that these two learners are thereafter provided with different ways to tackle programming exercises.

For example, they could be provided with a programming environment that provides coaching, such

as in Emile (Guzdial 1994), or one that provides small incremental steps to complete a program, such

as in Test My Code (Vihavainen et al. 2013). While working in these environments, it then turns out

that the first learner is able to progress quickly to work on more advanced programs, and the second

learner takes more time on simpler programs. The difference between these two learners is the ZPD.

 Therefore, ZPD can be defined as ‘the distance between the actual development as determined

by independent problem solving and the level of potential development as determined through problem

solving while under adult guidance or in collaboration with more capable peers.’ (Vygotsky 1978).

ZPD has been applied to an introduction to programming course by combining ZPD and a comfort

zone to result in the comfort zone of proximal development (CZPD) as shown in Figure 2.1 (Anderson

& Gegg-Harrison 2013). In this particular example, the zone of proximal development was the

concepts taught in an introductory object oriented programming course. The comfort zone was an

extra-credit course that introduced the learners to the development of iPhone applications. Therefore,

CZPD combined the provided support by the teachers and resources in the course (ZPD) with an

approach that was deemed interesting to the learners (comfort zone).

Figure 2.1: Comfort zone of proximal development (Anderson & Gegg-Harrison 2013)

18

In both ZPD and CZPD, it seems that learners are provided with an additional entity that aims

to support their learning. Further, both ZPD and CZPD illustrate that a learner has greater potential

that can be arrived at with extra support. Thus, scaffolding refers to support provided so that the learner

can engage in activities that would otherwise be beyond their abilities or their unassisted effort (Wood

et al. 1976; Jackson et al. 1998). In addition, scaffolding involves providing learners with supportive

aids in the form of tools, strategies, and guides within the parameters of their ZPDs, to assist them in

progressing to their next, potential level of development (Saye & Brush 2001).

Bruner jointly wrote a paper with Wood (Wood et al. 1976) where they illustrated the concept

of scaffolding in an experiment where children were required to arrange blocks into a pyramid with

the tutor’s assistance; as the child became more proficient, the tutor provided less assistance. Further,

while the child assembled the blocks, the tutor would provide assistance depending on how the child

progressed. For example, if the child had tried to assemble pieces for himself but had overlooked a

feature, then the tutor would verbally draw his attention to the fact that the construction was not

complete (Wood et al. 1976). In addition, the tutor finally left the child to his own devices. It is only

if the tutor noticed that the child was struggling, would the tutor intervene to offer guidance. This

illustrates a critical component of scaffolding known as fading. However, even after the scaffolding

has faded, support should still be available to the learner should they still need it.

From these descriptions, three characteristics of scaffolding emerge:

(i) Scaffolding should be provided while a learner is performing a task.

(ii) Scaffolding should be suited to the different needs of individual learners.

(iii) Scaffolding needs to fade, but with possibility of the learner enabling it.

In addition, scaffolding addresses the proposed principles of constructivism. Scaffolding provides

learners with control over the tasks that they perform by supporting them to actually perform a task. It

also enables exploration by providing support such as feedback from errors. By offering different kinds

of scaffolding, multiplicity is offered. Finally, as scaffolding supports a learner to complete a task, it

enables reflection of the process.

2.5 Chapter Summary

This chapter has described the constructivist theory, its origins and application to learning of

programming. The choice of constructivism as a theoretical framework was justified by comparing it

to behaviorism and cognitivism theories. Further, criticisms of constructivism were addressed in four

ways: (i) the aim of the study was to provide additional support to construction of programs, alongside

active class instruction; (ii) the designed scaffolding techniques aimed to provide guided support to

creating programs; (iii) the correct output of programs could be used as a criterion for validity; and

19

(iii) since learners were to use the scaffolded environment alongside other resources and classroom

experience, there was room for learners to communicate. The different definitions of constructivism

from Piaget, Papert, Vygotsky and Bruner led to three common characteristics of constructivism: (i)

knowledge is gained through experience; (ii) learners are active builders of knowledge; and (iii)

existing knowledge is used to create new knowledge. Thereafter, the discussion of scaffolding from

the works of Vygotsky, Bruner and other researchers showed that: support to learners needs to enable

active constructions of programs; this support should fit different learners’ needs and fade over time;

and this support should provide atomic simplicity, support different representations, enable user

control, and support reflection.

The following chapter provides a synthesis and analysis of previous work that relates to this

research.

20

Chapter 3 Related Work

Scaffolding has been used to support learning of various subjects such as physics (Guzdial 1994), bird

watching (Yuh-Shyan Chen et al. 2002), chemistry (Girault & D’Ham 2013), and programming

(Vihavainen et al. 2013). The aim of this research was to contribute towards tackling learning

difficulties in programming. Therefore, this chapter focuses on programming and begins by reviewing

previous work on difficulties faced by novice learners in the subject.

Support to learners of programming can be provided by humans, such as by mentors (D’Souza

et al. 2008), or by software. This chapter focuses the discussion on related work that proposed software-

based support. Significant work has been done on scaffolding learners while they use PCs to program

in various programming languages. Therefore, this chapter reviews how scaffolding has been used to

support learning of programming on PCs. Thereafter, this chapter reviews the use of mobile phones as

learning environments, especially in resource-constrained environments. The discussion reviews the

limitations of mobile phones and design recommendations by several researchers. This is followed by

a discussion on related works that use mobile phones as programming environments. This chapter

concludes with a summary of the gaps and opportunities identified in the related work.

3.1 Difficulties Faced by Novice Learners of Programming

It takes ten years for a novice programmer to become an expert (Winslow 1996). If true, this claim

implies that novice learners require a significant amount of effort to learn programming. In fact, a

study conducted at the University of Cape Town shows that programming elicits feelings of fear among

learners (Rogerson & Scott 2010). This study conducted several interviews where participants

described how the word “programming” evoked feelings of apprehension or discomfort. Further, the

study stated that one of the causes of this feeling could be that many learners are first exposed to

programming at the beginning of their tertiary level studies, or that those with prior experience of

programming may be confronted with a very different level of expectation. The study established that

the fear factor has implications such as a low level of comfort and self-confidence and increased levels

of anxiety that inhibit the appreciation of programming. Indeed, when learners struggle in

programming, it affects most facets of their study, for example: their progress through their study

program, their study habits, their confidence, and their time management (D’Souza et al. 2008). These

studies emphasize the need to provide support to novice learners.

Several factors contribute towards the difficulties in learning programming (Jenkins 2002):

programming requires multiple skills; programming involves multiple processes; the language used

21

for teaching; the novelty of programming; lack of interest by the learner; reputation of programming

as difficult; and the pace of teaching programming.

Programming requires multiple skills and processes. Apart from learning the novel syntax of

the programming language itself, learners have to learn how to create algorithms, how to write code

using proper style, and how to identify bugs in their programs. Novice learners struggle with these

skills and most times with problem solving. Yet, there is a positive correlation between a learner’s

problem solving ability and programming performance (Pillay & Jugoo 2005). Further, studies

concluded that novice programmers may know the syntax and semantics of individual statements but

they do not know how to combine these features into valid programs (Winslow 1996). Therefore,

there is need to support novice learners to build on fundamental skills such as how to combine different

parts of a program into a working program.

There has been debate on which language should be used to teach novice learners of

programming. Some have argued that Python is a suitable language for novice learners (Grandell et al.

2006), others have recommended the use of Scratch to introduce programming (Wolz et al. 2009),

while others have experimented with more than one language at the same time (DeClue et al. 2012).

Yet, studies have shown that the pass rate in introductory programming is largely unaffected by the

programming language taught in the course (Bennedsen & Caspersen 2007; Watson & Li 2014). This

could be because the purpose of an introductory programming course is to teach the students to

program; the intention is not to, for example, "teach them Java" (Jenkins 2002).

Java emerged as the most widely used first programming language beyond 2006, whereas C++

remained the runner-up throughout this time, with Python showing an increase in use from 2006 to

2011 (Farooq et al. 2014). A recent survey indicates Python as the leading language in use in

introductory programming courses in parts of the world such as in the US (Shein 2015; Guo 2014).

The survey indicated that 27 of the top 39 universities in the US teach Python in introductory

programming courses. This trend was rightly predicted by Guzdial (2011). However, some universities

in developing countries do not yet offer Python at all in the introductory courses. For example, two of

the four universities that participated in this research (both from Kenya) do not currently offer any

programming course using Python. One of the recommendations from a research conducted in

Tanzania was that perhaps there should be a move from Java to a simpler language such as Python for

introductory programming courses (Apiola & Tedre 2012). Yet, Java is still widely used to teach

introductory programming. Therefore, there is a need to still contribute towards tackling learning

difficulties in courses taught using object oriented languages. The research in this thesis focuses on

Java.

22

Programming has been considered as a boring subject (Jenkins 2002; Ibrahim et al. 2010), with

learners having negative perceptions about it because of the difficulty in the subject and from external

feedback from others (Rogerson & Scott 2010). Unfortunately, such views are shared among learners

and, as a result, novice learners expect to struggle in the subject. To aggravate this perception,

programming at university-level is taught within a fixed set of time, following a set curriculum. This

means that the learner is unable to learn at his or her own pace and is required to pass programming

assessments at set periods. However, since it is more difficult to change the pace of an existing

curriculum than it is to offer additional support to novice learners, this research aims at providing

additional support.

There have been a significant number of tools created to support novice learners of

programming. However, a recent study (Watson & Li 2014), which extended the work by Bennedsen

and Caspersen (2007), shows that despite the increase in the number of tools available to support

learning of programming, the average pass rates have not improved over the years. This asserts the

need to continually experiment with new and existing pedagogical approaches in order to contribute

towards tackling the learning difficulties in programming.

The studies by Bennedsen and Caspersen (2007) and Watson and Li (2014) consisted of data

with at most 2% representation from Africa, specifically from South Africa. This is a minimal

representation of the African context. Perhaps the reason for this could be that there is little research

conducted on novice learners’ programming experiences in developing countries. Therefore, there is

need for further research to understand the specific issues and provide solutions to learners in a

developing country’s context. Indeed, applying western pedagogies to developing countries’ context

may prove counterproductive and there is a call for contextualized curricula to fit resource-constrained

environments (Apiola et al. 2011). Even though the research in this thesis does not focus on

contextualizing an existing curriculum, it contributes towards filling this gap since it was conducted

within a developing country’s context, specifically in Kenya and South Africa.

Irrespective of the causes of difficulties in programming or the context in terms of country and

availability of resources, related studies stress the importance of learning programing by doing. The

more practical and concrete the learning situations and materials are, the more learning takes place.

Learning by doing should be a part of the studies all the time (Lahtinen et al. 2005). Further, studies

indicate that learners of programming consider learning by doing as motivating and rewarding

(Vihavainen et al. 2011). This is in line with the constructivist theory, which is the underlying theory

of this research.

Learning programing by doing requires access to resources such as PCs and laptops. However,

most learners at institutions in parts of Africa are in resource-constrained environments where they

23

have limited access to such resources, especially while they are outside the classroom. Even within the

institutions, the available computer laboratories are sometimes used for lectures and tutorials, as

opposed to individual practice sessions. Further, some schools have a limited number of desktop

computers that could be shared among learners. For example, even in a relatively well-resourced

developing country like South Africa, it is not uncommon for a school of 1,000 learners to have only

one computer room with 30 PCs (Traxler & Vosloo 2014). The lack of adequate resources is a concern

because research conducted at a university in Tanzania proves that difficulties in programming are

aggravated in resource-constrained environments where learners do not have easy access to computers

(Apiola et al. 2011). Similarly, research conducted at an institution in Ethiopia found that learning

difficulties among novice learners were aggravated by lack of practice; instead, learners solved

programs on paper and rarely used the computer laboratory (Bati et al. 2014). Indeed, poor

infrastructure and facilities is one of the major challenges faced by higher education in Africa

(Yizengaw 2008). The research in this thesis was motivated by the resource constraints in a developing

country’s context.

In order to tackle the learning difficulties in programming in resource-constrained

environments, some pedagogical approaches have been proposed: redesigning the ACM/IEEE IT

curriculum to fit within a Tanzanian context (Apiola & Tedre 2011); and a blended learning approach

that combined face-to-face and technology-supported instructions to tackle the problem of large

programming classes in an Ethiopian context (Bati et al. 2014). These approaches differ with the one

in this study since this study focused only on provision of software-related support, and not change of

curriculum or inclusion of a face-to-face approach. To begin the discussion on software-related

support, the next section reviews scaffolding programming on PCs.

3.2 Scaffolding Programming on PCs

There have been a significant number of studies that tap into the computational powers of PCs and the

Web in order to support novice learners of programming. To focus the discussion, this section reviews

these works in four categories: (i) new programming languages; (ii) Web-based applications; (iii)

stand-alone applications; and (iv) applications based on teacher-learner architectures.

3.2.1 New programming languages

The need for a new language to teach introduction to programming is not a new concept. For instance,

Turing was designed to overcome some of the weaknesses of Pascal in order to enable ease of learning

as one of its goals (Holt & Cordy 1988). Indeed, a ‘Hello world’ program written in Turing is merely

one line long, as opposed to at least seven lines long in Java. However, a criticism of Turing is that it

24

was not a useful language in the real world (Chatley 2001). To address this criticism, Kenya was

designed as a language that is simple enough to use to create programs, but which the development

environment translates into Java code (Chatley 2001). In addition, Kenya was designed to reduce some

of the syntax that was found in Java. For example, programs written in Kenya did not require the use

of the ‘main’ line declaration that is required in Java. This approach was later shared by designers of

a new programming language, Grace, who asserted that there is no good reason to subject novices to

‘public static void main(String [] args)’ early in a first course, or to have them obsess over which lines

should end with semicolons (Black et al. 2013).

Consequently, Grace was designed to provide a language that represents the key concepts

underlying object-oriented programming in a way that can be easily explained. Grace involved the

design of a programming environment and language specifically to support novices. On the contrary,

further work with Kenya integrated it with Eclipse in order to provide a trimmed down workbench for

a new learner (Chatley & Timbul 2005). Indeed, several Eclipse plug-ins have been designed to

overcome the overhead of programming within a complicated IDE, especially for novice learners

(Mueller & Hosking 2003; Storey et al. 2003; Reis & Cartwright 2004). These examples show that

most existing desktop IDEs are complex for a novice learner.

3.2.2 Stand-alone applications

Earlier work on scaffolding programming on PCs provided environments where the process of creating

a program could be done on a single interface. For example, the Goal-Plan-Code editor (GPCEditor)

enabled construction of Pascal programs on a single interface in three steps: creating a goal, planning,

and composition (Guzdial et al. 1998). Although the evaluation of GPCeditor showed that it effectively

supported the construction of programs on a PC, the use of such a single interface for all the processes

may not be suitable for the small screens of mobile phones.

 However, GPCEditor utilised some techniques that could be explored for use on a mobile

programming environment. For instance, in the planning stage of the GPCEditor the menu items

associated with the plans were disabled until a goal was created (Guzdial et al. 1998). Further, the

editor constrained the order of how the plans could be assembled. Such restrictions in code construction

could be useful on a mobile programming environment because different sections of a program could

be decomposed and presented one at a time. Decomposition of tasks was suggested as a suitable

scaffolding technique for handheld devices (Luchini et al. 2004). In addition, on first use of the

GPCeditor, there was provision of some basic Pascal statements that learners could reuse. This was

also implemented in the Code Restructuring Tool (CORT) (Garner 2004), which allowed part complete

solutions to programming problems to be displayed in one window and possible lines of code to be

25

inserted into the solution within another window. Such a technique could be useful on a mobile

programming interface because provision of some default statements makes small interfaces usable by

limiting user input (Luchini et al. 2003).

Over the years, visual environments such as Alice (Cooper et al. 2000), JELIOT (Ben-Bassat

Levy et al. 2003), and BlueJ (Kölling et al. 2010) have been developed to enable novices to learn

programming within 3D environments. For example, Alice provides a drag-and-drop development

environment to prevent students from making syntax errors. It also enables the writing of simple scripts

in which its users can control 3D object appearance and behavior. The benefit of using Alice is that it

allows students to be involved and at the same time have the ability to develop an intuitive

understanding of basic concepts in a visual feedback environment (Cooper et al. 2000; Dann et al.

2011; Dann et al. 2001). However, environments such as Alice are highly graphical and take advantage

of the computing power of PCs. Given the limitations of mobile phones, such a highly animated

environment may not be suitable for a mobile programing environment. Further, it was observed that

learners who could program within the Alice environment had difficulties programming when

presented with a textual programming environment (Powers et al. 2007). In addition, it was observed

that learners became so engrossed in manipulating the 3D objects that they would overlook the more

important goal of learning basic programming concepts (Powers et al. 2007). Therefore, perhaps

programming environments on mobile phones could use a combination of less graphical visual objects

and text input.

3.2.3 Teacher-learner architecture

Some recent studies have focused on teacher-learner environments where an instructor can track the

learners’ solution to a programming problem. Test My Code (TMC) (Vihavainen et al. 2013), the

programming exercise teaching assistant (PETCHA) (Queirós & Leal 2012), and Java Programming

Laboratory (JPL) (Pullan et al. 2013), are such environments that were used alongside existing IDEs

to support learners to program on PCs.

Test My Code (TMC) is a NetBeans plugin that is part of a client-server architecture, which

enables learners to submit code to a remote server, from which instructors can perform code reviews

(Vihavainen et al. 2013). The NetBeans plugin retrieves and updates programming exercises from an

assessment server, displays built-in scaffolding messages during the coding process, submits exercises

to the assessment server, allows giving and receiving direct feedback during the exercise, and gathers

data from learners’ programming courses. TMC offers scaffolding in the form of pre-designed

exercises that contain code snippets, a set of tests provided to enable incremental completion of the

program, and the expected output of the program. In TMC, fading of scaffolding was provided using

26

open exercises that do not enforce any specific program structure or approach. For example, before

fading is implemented an exercise could contain sample input/output and code snippets. When fading

is implemented the exercises does not contain code snippets, but could contain only a program

description and sample/input output. This approach could be useful in fading the scaffolding on a

mobile programming environment.

PETCHA is a programming exercise teaching assistant that enabled exercise authoring by a

teacher and exercise solving by a learner (Queirós & Leal 2012). PETCHA works with an IDE where

the learner reads the exercise description on PETCHA and solves it on an IDE. PETCHA is part of a

learning management system that includes an automatic evaluator of the learners’ code. After testing

the code, the learner submits the solutions to an evaluation engine that checks the solutions against the

teacher’s test cases. PETCHA was evaluated by comparing its use and that of a traditional classroom,

which had no software support. The results indicated that users of PETCHA were able to attempt and

solve a significantly higher number of tasks. Similar to TMC, PETCHA was used alongside an IDE to

create the exercises. However, using a PC based IDE alongside a supporting tool may not be a suitable

approach for construction of programs on a mobile programming environment that could be used by

learners outside the classroom, away from PCs or laptops.

The Java Programming Laboratory (JPL) is a cloud-based integrated environment that contains

video tutorials, a website that contains programming problems, and is integrated with an IDE based on

the Dr Java IDE (Pullan et al. 2013). Like TMC and PETCHA, the integrated use of an IDE may not

be suitable away from PCs or laptops. An integral part of JPL is the use of short video tutorials

explaining programming concepts and problem solving techniques. Further, JPL offers scaffolding by

providing different ways of completing programs depending on the level of the learner. These include

multiple choice questions and ‘fill-in-the-blank’ exercises that provide templates for learners to

complete. The learner then uses the JPL automated testing to check for correct logic. The use of

multiple choice questions and ‘fill-in-the-black’ exercises differs with the aim of this study, which is

enabling learners to construct programs as opposed to completing exercises.

3.2.4 Web-based applications

There has been a trend to move IDEs from the desktop to the cloud. The Java Wiki Integrated

Development Environment (JavaWIDE) is one of the new online IDEs (Jenkins et al. 2010; Jenkins et

al. 2012). However, environments like JavaWIDE have been criticized as being similar to desktop

IDEs with a plethora of menus, toolbar buttons, tabs, and docked views for project management and

program input/output (Edwards et al. 2014). To address such a criticism, Pythy was designed to provide

a cleaner web-based environment with a complete ecosystem for learners of Python (Edwards et al.

27

2014). A different application for Python is an interactive textbook that incorporates a number of active

components such as video, code editing and execution, and code visualization as a way to enhance the

typical static electronic book format (Miller & Ranum 2012). Whereas such integrated environments

could be suitable for larger interfaces such as PCs and perhaps tablets, they may not be suitable on a

mobile phone. Indeed, although excellent in desktop environments, the usability of such systems is

lacking on mobile touch devices where the screen space is limited (Ihantola et al. 2013).

Ideone3 is a free online compiler and debugging tool that allows online creation, compilation

and execution of source code in more than 60 programming languages. In addition, Ideone offers a

sphere engine that enables remote execution of code. For this reason, it can be used alongside the

relevant APIs to implement programming environments on a mobile phone. This way, a program can

be created on a mobile programming environment and then sent to ideone for compiling, with the

output received on the mobile phone. For example, Ideone has been used by IDEdroid4, a mobile

programming environment. Therefore, ideone was selected as the compiler to use in this research.

Lastly, Codecademy5 and Khan Academy6 are online platforms where learners can write

programs regardless of location. For example, Khan Academy enables creation of Python and

JavaScript programs. When creating JavaScript programs in Khan Academy, each change to the code

is executed immediately and the output is seen on the right hand side of the interface. Khan academy

offers scaffolding in the form of hints and error checks. Whereas these environments provide useful

tools for programming on the Web, their interfaces were not designed for mobile programming

environments.

3.3 Using Mobile Phones for Learning

With increased mobile phone penetration, it is hardly surprising that the use of mobile phones for

learning has attracted considerable attention in recent years. In Africa, factors such as the general lack

of infrastructure, sporadic supply of electricity, lack of skilled technical support, the high cost of

installing and maintaining a network and the easy to use interface of mobile phones have contributed

to the high rate of adoption of mobile technology (Traxler & Leach 2006).

Despite the penetration of mobile devices in most parts of the world, their use in learning is

underexplored in developing countries. For example, most of the eLearning technologies implemented

in higher education in East Africa are based on desktop computers (Mtebe & Raisamo 2014). Yet,

3 https://ideone.com/sphere-engine

4 http://goo.gl/U53s4o

5 http://www.codecademy.com/

6 https://www.khanacademy.org/

28

studies conducted in developing countries show that learners in higher education believe that learning

using mobiles is useful, and could enable them to accomplish their learning activities faster and more

efficiently (Mtebe & Raisamo 2014; Ibrahim et al. 2010; Kafyulilo 2012). This shows that there is a

gap in providing learning environments on mobile phones in developing regions.

Despite the claim that there is little implementation of learning using mobiles, there are some

related studies conducted within developing countries. For example, an SMS-based mobile learning

application was tested at University of Cape Town; it enabled learners to ask questions and get

responses from the teacher and from each other (Ng’ambi 2005). Similarly, a study in Tanzania

implemented a mobile Web-based system to facilitate the dissemination of course information

including reading materials and assessments (Ajayi et al. 2011). While such SMS and text-based

approaches enabled instructors to provide individualized effort and information that could reach many

learners at the same time, they may not be suitable in a course such as programming where the learner

needs to write programs as opposed to sending queries or receiving text-based information.

Dr Math is a mobile tutoring service that provides access to credible personal on-demand

tutoring in Mathematics (Butgereit 2012). The service is accessed through the MXit mobile social

networking service. Dr Math links South African primary and secondary school pupils to university

students for help with their mathematics homework. Feedback support is provided using chat messages

on MXit where a learner sends a mathematics question and the tutor responds through chat and guides

the learner towards an answer. While the approach used by Dr Math has been successful in supporting

learners of mathematics (Butgereit 2012), the aim of this research was to enable learners to construct

their own programs, and therefore no tutors were involved.

The mobile applications in these examples were all designed with the aim of supporting

learners. Indeed, the advent of mobile phones for learning offers new opportunities to extend the

benefits of learner-centered design software to mobile learning tools (Luchini et al. 2002). Learner-

centered design focuses on a learner as a user who has changing needs due to learning, and who needs

support to learn by doing (Soloway et al. 1994; Guzdial et al. 1995). By involving the learner in the

design and consequently the evaluation phase, the potential of meeting the learners’ needs is

maximized. This research was guided by the principles of learner-centered design.

A concern among researchers is the evaluation of mobile technologies for learning (Traxler &

Kukulska-Hulme 2005; Taylor 2006; Vavoula & Sharples 2009; Jones et al. 1999). One framework

that was proposed was the three-level evaluation framework (Vavoula & Sharples 2009). These levels

are Micro, Meso and Macro levels. The micro level evaluates the usability of the application and seeks

to find out if the application is designed in such a way that it is usable. The meso level evaluates the

user experience and seeks to find out if the use of the application is effective and what the learners’

29

experiences were while using the application. Indeed, evaluation models such as the CIAO model

(Jones et al. 1999) have outlined that while evaluating educational technology one should consider

data about learners’ interaction with the software. This can be evaluated using log analysis that yields

data about learners’ interaction with the tool (Taylor 2006). Lastly, the macro level evaluates the

impact of the application on learning practices. This research considered these aspects during

evaluation.

Undoubtedly, mobile phones provide an opportunity to be used as programming environments

and there are existing recommendations for design and evaluation of these technologies. Yet, the idea

that mobile platforms are more attractive for programming based on the belief that learners like mobile

platforms was challenged when learners indicated a preference of the desktop to the mobile

environment for programming (Azadmanesh et al. 2014). Their arguments against smartphones

included the small screen size, limited performance and battery life, and feature limitations in mobile

apps (Azadmanesh et al. 2014). The research in this thesis was motivated by such limitations of mobile

phones.

3.3.1 Limitations of mobile phones

Despite the advantages of ubiquity and flexibility that mobile phones present, they also pose several

limitations. The key limitation of handheld technology for the delivery of learning objects is the small

screen that is available (Churchill & Hedberg 2008). Consequently, there are recommended guidelines

for designing scaffolds for handheld learning tools.

The first recommendation is to sequence the learning task into multiple handheld screens

(Luchini et al. 2002). This design guideline is supported by using activity decomposition that develops

separate workspaces for each component task (Luchini et al. 2004) to package contents in small chunks

(Elias 2011). As earlier noted, implementation of programming processes in a single interface such as

in GPCEditor (Guzdial et al. 1998) is more suitable for PC programming environments than mobile

environments.

A second recommendation is to tightly couple tools and scaffolds to the current activity

(Luchini et al. 2002). This guideline addresses the challenge of making scaffolds visible onscreen while

not displaying so much information that the handheld tool becomes unusable (Luchini et al. 2003).

Indeed, it was recommended that when developing educational software for handheld computers with

small screens, whenever possible design interface elements should serve a dual role by providing both

functionality and scaffolding (Luchini et al. 2004). This study explored these guidelines in designing

scaffolding techniques for a mobile programming environment.

30

In addition to these recommendations, other works indicate that the following strategies could

address the small screen sizes of mobile phones while designing for learning:

i. Minimize scrolling as much as possible (Churchill & Hedberg 2008). Scrolling can be

reduced by placing navigational features near the top of the pages in a fixed place (M.

Jones et al. 1999). Touch screen devices also enable swiping across, which could be

used to move between different page views and hence minimize scrolling downwards.

ii. Provide one step interaction, which can be achieved by immediate update upon

interacting with a widget or a button (Churchill & Hedberg 2008).

iii. Use focus and content visualization technique. Users can view local information they

are interested in (focus) in detail on a segment of the screen, while other peripheral

information (context) is shown in the surrounding area with the reduced granularity of

detail (Adipat & Zhang 2005).

Related to the limitation of small screen sizes, especially on touch-screen mobile phones, is the

soft keypad that pops up when typing, hence literally covering nearly half the screen. The small size

of the keypad also presents a limitation for those with poor manual dexterity or fat fingers and those

who have difficulty in selecting tiny buttons on mobile devices (Siek et al. 2005). While typing is

needed to write a program, automating some tasks could minimize the disadvantage of having to type

on a small keypad. However, care should be taken not to have an interface that is too automated such

that students complete the task by rote rather than mindfully engaging and learning about the task

(Luchini et al. 2004).

These design recommendations were explored while designing the scaffolding techniques for

a mobile programming environment, as discussed in the next chapter.

3.4 Learning Programming using Mobile Phones

The ubiquity of mobile phones provides an opportunity to use them as programming environments

outside the classroom, especially in resource-constrained environments. There are some existing

applications that enable learning of programming using mobile phones by providing static text, visual

environments or ability to construct programs.

Some applications enable learning of programming using tutorials and exercises on the mobile

phone. For example, mJeliot enable learners to make predictions about execution behavior of code

(Pears & Rogalli 2011). Another example is Sortko that was designed for learning sorting, where the

learner selects a sorting algorithm and then applies it on a sequence of numbers. In addition, algorithm

visualization has been implemented on mobile devices (Hürst et al. 2007). Recently, a study

31

investigated the use of mobile technology and Facebook as tools to support the learning of

programming through discussions, chats and brainstorming among novices (Maleko 2014). However,

the constructivist theory dictates that learning of programming requires a more active role by the

learner than just viewing content. Further, it was not the aim of this research to incorporate the use of

a social media tool such as Facebook.

Some mobile programming environments enable creation of GUIs (such as Mobidev (Seifert

et al. 2011)), others enable creation of mobile applications (such as TouchDevelop (Tillmann et al.

2011)), while others enable creation of standard programs that can run on a PC (such as Sand IDE7).

Mobidev (Seifert et al. 2011) is a mobile programming environment that was developed to create

simple GUI applications in three ways: by defining the UI in code; by using a graphical GUI designer;

and by drawing a sketch of the desired UI on a piece of paper that is photographed with the mobile

phone’s camera and further transformed into a UI. However, despite acknowledging that mobile

phones have limitations, MobiDev did not offer design techniques to overcome these limitations.

Evaluation of Mobidev measured time-on-task and used the t-test to calculate the significance between

creating a UI using the GUI designer and creating one using a sketch builder. These metrics provided

an indication of what could be evaluated to measure the effect of using scaffolding techniques on a

mobile programming environment. The results showed that participants preferred taking photographs

of drawn sketches that were then translated into UI than they did creating one using the GUI designer.

However, the application of Mobidev differs from the one of this study since the aim was not to

transform paper prototypes into executable code.

Recent work by Microsoft enables development of mobile apps using a new language -

TouchDevelop - on the TouchDevelop programming environment where much of the code is created

by tapping through menus (Tillmann et al. 2011). TouchDevelop is intended to let users customize

their phone’s behavior to provide real-time support for their personal lives (Athreya et al. 2012).

TouchDevelop also provide fading mechanism such as providing instructional prompts in the first

program, then encouraging the user to try and complete the program on their own in the second

program. However, TouchDevelop (Figure 3.1) is a specialized language that was designed for a visual

programming environment that creates mobile applications. In contrast, this study does not develop a

specialized language.

App Inventor (Figure 3.2) is a visual “blocks” programming language designed to introduce

learners to programming through creation of mobile applications (Wolber 2011). Learners create

applications by dragging and connecting various blocks. App Inventor has been successful in

7 http://goo.gl/708IuE

32

Figure 3.1: TouchDevelop

interface on a mobile device

(Source:

https://www.touchdevelop.com/)

Figure 3.2: Example of an AppInventor program

Source: (Wolber 2011)

Figure 3.3: SAND IDE

(Source: Google Play Store)

Figure 3.4: Java Editor

(Source: Google Play Store)

motivating learners to create real world applications and has been widely used (Wolber 2011; Wagner

et al. 2013; Roy 2012). In contrast, the aim of this research is to support construction of programs that

are typically taught in an introductory course using Java, as opposed to creating mobile apps such as

in TouchDevelop and App Inventor.

There are several mobile IDEs for Java programming available on the Google Play store, such

as Sand IDE (Figure 3.3) and Java Editor (Figure 3.4). However, the interfaces of these IDEs mostly

mimic PC-based IDEs and they do not offer scaffolding techniques that could support a novice learner

https://www.touchdevelop.com/

33

or address the limitations of mobile phones. Similarly, mobProg was designed to offer a platform for

creating Java programs on a mobile phone (Hashim 2007). The design of mobProg was based on

scenarios and much of the testing was done using an emulator and not with real learners. Further,

mobProg enabled writing of Java programs much the same as a PC IDE would, with the addition of

syntax highlighting and ability to compile and run the program.

Existing programming environments on mobile phones seem to be based on mobile

applications, specialized languages, viewing static material, block-based languages, or exporting IDE

concepts and environments directly from desktop environments to the mobile context. Mobile

programming environments that use less graphical displays or text to create Java programs and that

address the limitations of mobile phones seem to be missing. This study aimed to addresses this gap.

3.5 Summary of Gaps and Opportunities

The related work highlighted some gaps that motivated this study. These are summarized below.

i. There is need to support novice learners of programming in:

a. Resource constrained environments such as in developing countries.

b. Object oriented courses taught using programming languages such as Java.

c. Fundamental programming skills such as combining different parts of a program into a

working program. This implies that the needs of learners should be understood.

ii. Most existing PC IDEs are complex, use highly graphic interfaces, or work in integrated

architectures that may not be suitable to implement as is on a mobile programming

environment.

iii. Use of mobile phones for learning is underexplored in developing countries, especially in

subjects such as programming. Further, existing techniques for supporting learners, such as

using SMSs and chats, may not fully support learning through doing which is encouraged

in learning programming.

iv. Existing mobile programming environments have some limitations, while some differed

with the aim of this study:

a. The IDEs that are used to create standard programs mostly mimic PC IDEs and they do

not provide scaffolding techniques that are specifically designed to address the

limitations of mobile phones.

b. Some IDEs are used to convert paper prototypes into user interfaces, which was not the

aim of this study.

c. Some IDEs enable creation of mobile applications, which was not the aim of this study.

34

d. Some IDEs use specialized languages that cannot be trivially applied to Object Oriented

languages such as Java.

These gaps implied that there was need to provide a programming environment on a mobile

phone that included scaffolding techniques specifically designed for mobile phones and designed based

on learners’ needs. Therefore, the next logical question was, which scaffolding techniques would

support Java programming on a mobile phone? Once such scaffolding techniques were designed, it

was deemed important to establish their effect on constructing Java programs on a mobile phone.

Consequently, and as described in Section 1.3, the following two research questions were posed:

1. Which of the theoretically derived scaffolding techniques support Java programming on a

mobile phone?

2. What is the effect of using scaffolding techniques to construct Java programming on a

mobile phone?

This study was conducted to address these research questions.

The related work provided some opportunities that could be explored when designing

scaffolding techniques on a mobile phone. These are summarized below.

i. When designing scaffolding techniques on a mobile programming environment, consider:

a. Decomposition the tasks;

b. Constraining the order of program creation;

c. Providing default statements that learners can reuse;

d. Using a text based environment;

e. Not using a single interface for all the processes, due to the small size of the screen;

f. Minimizing scrolling as much as possible;

g. Provide one step interaction;

h. Include movable, collapsible, overlapping and semi-transparent interactive panels; and

i. Use focus and content visualization technique.

ii. Fading of scaffolding can be provided by removing the restriction to the structure of a

program.

iii. Use of ideone as a compiler.

iv. Design of scaffolding techniques could follow a learner-centered design and consider

recommended guidelines for designing on mobile environments.

v. Evaluation could consider the following:

a. Use of a three-level framework that addresses micro, macro and meso levels;

b. Using log-analysis to measure user interactions;

c. Measuring metrics such as time-on-task; and

35

d. Use of t-test.

The following chapter discusses the design and implementation of scaffolding techniques for a

mobile programming environment and indicates how the identified opportunities were integrated

within the design process.

36

Chapter 4 Design and Implementation of Scaffolding Techniques

The proposition of this research is that programming environments on mobile phones could include

scaffolding techniques that are specifically designed for mobile phones, and designed based on

learners’ needs. Therefore, the first step was to understand the needs of programming learners. To

achieve this, an online survey was used to elicit the challenges that learners face in the subject. These

learner-cited challenges informed the design of the mobile intervention. Such a learner-centered design

(LCD) approach recognizes that learner-centered software incorporates scaffolding to support learners

as they do new work (Quintana et al. 2001). LCD was relevant to this study since programming is

learnt by doing, and the aim was to scaffold learners as they construct programs. This chapter begins

by describing LCD.

Apart from considering challenges that are faced by learners, limitations of mobile phones were

considered. Using specific examples, this chapter reports on learner-cited challenges and mobile phone

limitations. Thereafter, these challenges and limitations are used as requirements in the first phase of

a six-level scaffolding framework. The requirements are then applied to the second to fifth levels of

the framework, leading to the selection of specific scaffolding techniques. The second to fifth levels

of the scaffolding framework are: categorizing the challenges into cognitive types (Quintana et al.

2004); selecting the type of scaffolding to use to address the challenges (Jackson et al. 1998); selecting

scaffolding guidelines that could address the challenges; and selecting scaffolding strategies that

implement the guidelines (Quintana et al. 2004). The sixth level consists of selecting specific

scaffolding techniques that could support construction of Java programs on a mobile phone. This

chapter shows how these scaffolding techniques were implemented on an Android platform. The

designed scaffolding techniques were of three types: (i) static scaffolding; (ii) automatic scaffolding:

(iii) and user-initiated scaffolding. The chapter then presents a system overview of the developed

mobile application, discussing its various modules. Using an example, the chapter then shows how a

program can be created using the designed scaffolding techniques. The chapter concludes by

describing a non-scaffolded environment that was used in the experiments.

4.1 Learner-Centered Design

To differentiate between user-centered design (UCD) and learner-centered design, a structured

definition for learner-centered design was provided (Quintana et al. 2000). The differences were

described along three aspects: the targeted audience; the central problem being addressed; and the

underlying approach that each paradigm takes. Table 4.1 shows the differences between UCD and

LCD as described by Quintana, Krajcik and Soloway (Quintana et al. 2000).

37

Table 4.1: Differences between User-Centered design and Learner-Centered design

 User-Centered Design Learner-Centered Design

Targeted audience Users are assumed to

understand the work domain

in which they are working.

Users often perform tasks

that are similar. Hence the

design of tools can rely on a

representative user.

Users often need tools to

complete their work, not

trying to learn about their

work using the tools.

Learners are assumed to have no

knowledge about their work

domain.

Learners often have different

skills and backgrounds and

perform varying tasks.

Learners often need tools to learn

about their work, and not just to

complete the work. Hence the

tools need to change as a

learner’s skills grow.

Central problem being

addressed

The user uses a tool to

execute a series of action

towards a specific goal. Once

the actions are executed the

user evaluates the tool’s

resulting state in terms of

their goals.

In addition to a learner using a

tool to execute a series of actions

towards a specific goal, the

learner uses a tool to gain skills

in the work domain and build on

their expertise.

Underlying approach Using a theory of action that

explains how users generally

perform tasks in a given

scenario.

In addition to understanding how

learners generally perform tasks

in a given scenario, LCD uses

existing theories that support

learning through active

engagement, such as

constructivism or social

constructivism.

Learners need additional support

to understand the work domain.

38

Table 4.1 indicates three key differences between UCD and LCD:

i) The focus of UCD is to support users who are knowledgeable about their work and who

often perform similar tasks, to complete their tasks. The focus of LCD is to support learners

with varying learning skills who often perform different tasks, to gain knowledge in a new

work domain.

ii) In UCD, the aim is to have a usable tool that supports a user to reach a specific goal. In

LCD, the aim is not only to have a usable tool, but also one that enables a learner to build

their skills.

iii) In UCD, design of tools is based on how users generally perform a task. In LCD, in addition

to designing tools based on how learners generally perform a task, the focus is on designing

tools that provide support while learners actively engage in a task.

In relation to these three differences, LCD was suitable to this research in the following ways: (i) the

aim of the research was to support novice learners of programming who have different abilities; (ii)

the aim of the research was to enable learners to actively construct programs; and (iii) the aim of the

research was to provide support (scaffolding) to learners as they construct programs. Further, it has

been emphasized that the focus of an eLearning system should be to support the learning process,

motivate the learners, and adapt itself to the needs of the learners (Dhar & Yammiyavar 2012).

The LCD methodology that this research used relates to the TILT model (Tools, Interfaces,

Learners’ needs, Tasks) (Soloway et al. 1994). Figure 4.1 shows the overall structure of the LCD model

adapted in this study. The learners’ needs were placed at the center of the design process and include

the challenges faced by learners of programming, the limitations of mobile phones and the feedback

obtained during evaluation of the designed prototype. The tasks refer to activities that need to be

undertaken in the software; tools must be adaptable in order to support a learner to grow in expertise;

and interfaces designed must take into account the use of different media and modes of expression

(Soloway et al. 1994). The scaffolding techniques are used by the learners to complete programming

tasks. From the review of related work, some scaffolding techniques such as decomposing tasks into

smaller parts, and constraining the order of program creation and provision of default code, were

recommended. The designed scaffolding techniques should be adaptable. The programming

environment offered a text-based interface and required the use of the Internet in order to use the online

compiler, ideone. The TILT model has also been adopted in other studies such as one that designed an

adaptive phone interface for low-literate users (Lalji & Good 2008).

Following the LCD methodology, the first step was to understand the needs of programing

learners as discussed in the next section.

39

Figure 4.1: LCD methodology followed in this study as adapted from the TILT model

4.2 Requirements

4.2.1 Learner-cited challenges

In order to understand the needs of learners of programming, an online survey was conducted among

160 learners of programming from three universities: University of Cape Town (UCT) (61 learners);

University of Western Cape (UWC) (37 learners); and Kenya Methodist University (KeMU) (62

learners). The three universities were chosen because of their convenience in terms of having

established contacts. This survey was conducted in April 2013. Although the study targeted 210

participants (70 from each institution), 160 complete submissions were received, a response rate of

76%. Participation in the survey was voluntary.

An electronic questionnaire was sent to students. At UCT, the invitation to participate in the

survey was sent to Computer Science class groups via the local learning management system. At UWC,

Learners’ needs

Overcome challenges faced by

learners, consider limitations of

mobile phones, and address learners’

feedback during evaluation

Tasks

Construct Java programs

Compile and run programs

Interface

 Textual interface

 Internet access

Tools

Decompose tasks

Constrain the order

of program creation

 Provide default

statements etc

Scaffolding

techniques

Scaffolding:

Adaptability

Scaffolding:

 Different Media

40

the invitation to participate in the survey was sent to first year Computer Science students’ email

addresses by their lecturer. At KeMU, the invitation to participate in the survey was sent to the

students’ online forum.

The questionnaire had four sections:

1. Demographic information;

2. Learners’ experience and challenges with programming;

3. Access to and ownership of technology; and

4. Experience with using mobile devices to construct programs.

The survey responses were anonymous and no incentives were offered to the respondents.

Respondents Demographics

The distribution of the respondents over the participating universities is presented in Figure 4.2. The

distributions of the respondents according to course of study and degree of study are presented in

Figures 4.3 and 4.4 respectively. The distributions are shown in both percentages and absolute numbers

of total respondents.

Figure 4.2: Distribution of all respondents according to university

 Figure 4.3: Distribution of all respondents according to course of study

41

 Figure 4.4: Distribution of all respondents according to degree of study

Learners from computing related courses were specifically targeted because programming is

part of their curriculum. Other respondents were learners in courses such as Information Science,

Engineering and Actuarial Science (Figure 4.3). The learners in these other courses learn basic

programming courses as indicated in their course curricula. A high number of respondents in Computer

Science (CS) can be explained by the targeted announcements via emails and class announcements to

undergraduate Computer Science groups and classes at UCT and UWC. Further, the lecturers at UWC

who emailed their students were lecturers of undergraduate programming courses.

This also explains the high number of undergraduate participants in Figure 4.4. KeMU offers

both Computer Information Systems (CIS) and Business Information Technology (BIT), which

explains the almost equal distribution in the two courses in Figure 4.3. KeMU also offers other courses

such as Health Systems Management and Business Administration, which had a few respondents who

took part in the survey. Such respondents formed part of the other courses in Figure 4.3, and indicated

having learnt programming out of personal interest.

Findings

64% of the learners who responded to the survey indicated that they had not studied any programming

course prior to joining university. This indicates that most of the learners join higher education without

any experience in programming. 98% of the respondents indicated that they own mobile phones. The

learners were also asked if they had constructed programs on a mobile phone. 91% of the total

respondents indicated that they had never constructed programs on a mobile phone. This indicates that

the use of mobile phones as programming environments is underexplored. Of the remaining 9%, some

indicated that they had used QPython, which is a Python script engine that can run on Android devices.

The learners who had used QPython cited challenges such as: no allowance for indentation of code;

small screen size, which is restrictive; and not being able to transfer the code to a computer in the

required format.

42

76% of the total respondents indicated one challenge or the other that they face while learning

programming. These challenges are shown in the second column of the table in Appendix A. For the

sake of providing detailed illustration, the three challenges below are selected from the ones cited, and

will be used as running examples for the rest of the chapter.

i. Difficulty in combining required program parts into a working program and hence making

logic or sense out of a program is challenging. This challenge is further supported by

research pointing to two key problems preventing success at programming among novice

learners (Guzdial et al. 1998).

a. Decomposition problem: Learners have difficulty choosing which of the available

program components are needed for problem solution.

b. Composition problem: Even when learners identify program components, they have

difficulty assembling the modules into a proposed solution.

ii. Unclear error messages while debugging. This challenge is supported by a study that

indicated that even though compilers may flag some of the error messages while

programming, often the error messages are so cryptic to students that they have a hard time

understanding them (Hristova et al. 2003). Importantly, what some may assume as basic

and simple in programming may be complex and misunderstood by others (Mohamed et al.

2011). This is illustrated by a study in which only a handful of learners managed to discover

that Java is case sensitive, and a number of learners indicated that the purpose of

‘import.java.io’ is to import the input and output of the program to other systems (Mohamed

et al. 2011).

iii. Small screens of mobile devices pose a challenge in using them to learn programming.

4.2.2 Limitations of mobile phones

As indicated above, a majority of the surveyed learners indicated that they had never constructed

programs on a mobile phone. Some of the reasons given as barriers to using these devices for

programming were:

i. A preference for bigger screens.

ii. Programming on a phone would require having knowledge of the language since it would

be difficult to refer to help when stuck.

iii. Learner not aware of any mobile IDEs.

iv. Not having a smartphone.

v. Typing on the small keyboards would be difficult.

vi. Phone has minimal memory hence storage and compilation would be a problem.

43

vii. Data and airtime costs would be expensive.

viii. Learner has never had the need to write programs on a mobile phone.

ix. Programs would load slowly because even currently available apps take a while to load.

x. Accessing the special characters needed for programming would be too cumbersome and

time-consuming on a mobile phone.

Certainly, many factors have to be taken into considerations when it comes to mobile phones

since they present potential usability problems (Kukulska-Hulme 2005; Kukulska-Hulme 2007).

However, to define the scope of which mobile limitations to consider, and as pointed out by the

learners, this chapter will look at the small screen size and the small keypad. Considering these

limitations is crucial because, in writing a program, a learner must see on a screen display what they

are constructing using the mobile phone keypad. Further, as was discussed in the related work, some

design recommendations were provided to overcome these two limitations. These recommendations

were considered while designing scaffolding techniques using a six-level scaffolding framework.

4.3 Six-Level Scaffolding Framework

A six-level scaffolding framework was used to select scaffolding techniques that could support Java

programming on a mobile phone (Mbogo et al. 2014). The framework was based on a theory-driven

model which has four main phases (Quintana et al. 2004): challenges experienced by learners;

cognitive type of the learning challenges; scaffolding guidelines; and scaffolding strategies that

implement the guidelines. In this study, the learner challenges included limitations of mobile phones.

In addition to these four phases, two other phases were added in order to accommodate: a model for

categorizing the types of scaffolding to use (Jackson et al. 1998); and selection of scaffolding

techniques that could support construction of Java programs on a mobile phone. The combination of

the four-phase model, categorizing the types of scaffolding, and the process of selecting scaffolding

techniques form a six-level framework that was used in this study.

Having identified learners’ challenges and mobile phone limitations, the next step was to

integrate them within a scaffolding framework. The aim of this exercise was to guide the selection of

scaffolding techniques that could be implemented on a mobile phone to support construction of Java

programs. This was done by following the six-level framework in the following steps:

i. Step 1: Identify learner challenges and limitations of mobile phones. These have been

identified in the previous section.

ii. Step 2: Categorize each learner challenge into either of three types of cognitive

challenges (Quintana et al. 2004):

a. Sense making, which involves the basic operations of interpreting data.

44

b. Process management, which involves strategic decisions in controlling an inquiry

process.

c. Articulation and reflection, which is the process of constructing, evaluating and

articulating what has been learnt.

iii. Step 3: Identify what kind of scaffolding the learner challenge may need, from three

types (Jackson et al. 1998):

a. Supportive scaffolding, which offers support for doing the task while the task itself

remains unchanged.

b. Reflective scaffolding, which offers support for thinking about the task.

c. Intrinsic scaffolding, which offers support that changes the task itself and reduces

complexity.

iv. Step 4: Identity the scaffolding guideline that specify ways in which tools can modify

tasks to help learners overcome the learning challenges. Seven scaffolding guidelines

have been recommended to address the learner cognitive challenges (Quintana et al.

2004). These were redefined to fit into this study.

To address sense making, these guidelines were recommended (Quintana et al. 2004):

a. Guideline 1: Use representation and language that bridge learners’ understanding

of programming.

b. Guideline 2: Organize the scaffolding techniques around the semantics of the

programming language.

c. Guideline 3: Use representations that learners can inspect in different ways to reveal

important properties about underlying data.

To address process management, these guidelines were recommended:

d. Guideline 4: Provide structure for complex tasks and functionality.

e. Guideline 5: Embed expert guidance about programming practices.

f. Guideline 6: Automatically handle routine tasks.

To address articulation and reflection, this guideline was recommended:

g. Guideline 7: Facilitate on going articulation and reflection during program

construction.

v. Step 5: Associate each guideline with proposed scaffolding strategies that could support

construction of programs on a mobile phone. These scaffolding strategies were

recommended to provide specific types of implementation approaches that could

achieve a given guideline (Quintana et al. 2004). For example, in order to provide

structure for complex tasks and functionality (guideline 4), a scaffolding strategy that

45

could be used is to restrict a complex task by setting useful boundaries for learners.

Appendix B contains the complete table that shows the recommended strategy for each

guideline.

vi. Step 6: Following the selected scaffolding strategies in step 5, propose specific

scaffolding techniques that could support constructions of Java programs on a mobile

phone.

The next section describes how steps 2 to 6 were applied to the three learner challenges selected

as examples. In order to implement the selected scaffolding techniques in a mobile programming

environment, an Android application was developed for Android version 2.2 and later.

4.4 Implementation of Scaffolding Techniques

4.4.1 Learner challenge 1: Difficulty in connecting program parts into one

Step 2: Categorizing challenge into a cognitive type

This learner challenge is one of sense making because it involves being able to make sense out of a

program and its constituent parts. It is also one of process management because it requires scaffolding

strategies that can control the learner’s inquiry process so that the learner can effectively make sense

of how the different program parts connect into one.

Step 3: Identifying the scaffolding types that the learner challenge may need

Supportive scaffolding can provide support while the learner is attempting to make sense of the

different parts and functionality of a program. At the same time, intrinsic scaffolding can reduce the

complexity while creating the program.

Step 4: Identifying scaffolding guidelines that may address challenge cognitive type

In order to support sense making, using representation and language that bridge learners’

understanding was selected as a scaffolding guideline. In order to support process management,

providing structure for complex tasks and functionality was selected as a scaffolding guideline. These

two scaffolding guidelines can be met by the scaffolding strategies described next.

Step 5: Select scaffolding strategies that implement the scaffolding guidelines

In order to provide representation and language that bridge learners’ understanding, the following two

scaffolding strategies were selected (Quintana et al. 2004)

a) Provide visual organizers to give access to functionality.

b) Embed expert guidance to help learners use the content.

46

The first strategy was selected because it offers supportive scaffolding. By providing a visual

organizer, learners could access and interact with the software functionality in a way that allows them

to think about the deeper concepts and structure (Quintana et al. 2004). Such a visual organizer could

enable the learner to see the different parts of a program, and through interaction with these parts, see

how these parts connect with each other. The second strategy was selected because it offers intrinsic

scaffolding. Using embedded expert guidance, learners could be prompted towards proper creation of

the program parts, and how to connect the program parts into a full program.

In order to provide structure for complex tasks and functionality, the following scaffolding strategy

was selected (Quintana et al. 2004)

c) Restrict a complex task by setting useful boundaries for learners.

This strategy was selected because it offers intrinsic scaffolding. By restricting the process of

completing a task, learners could systematically move from one part to another and therefore learn

how to combine different program parts into one. This could reduce the complexity of program

creation. The discussion below addresses each of these three strategies and the associated scaffolding

techniques that were selected and implemented on a mobile phone.

Step 6: Propose and implement specific scaffolding techniques that could support constructions

of Java programs on a mobile phone

Provide visual organizers in order to give access to functionality

This strategy was implemented by providing a layout of the parts of a Java program in order to give

an overview of the program. The order of the parts in the interface was guided by standard Java coding

guidelines (Sun-Microsystems 1997), where a Java source file has the following ordering: beginning

comments, package and import statements, and class and interface declarations. Figure 4.5 shows the

designed main interface with parts of a Java program.

This layout at the main interface uses clickable buttons that provide additional functionality:

(i) collapsible and expandable views; (ii) access to create individual chunks of the program. Further,

the use of expandable and collapsible buttons is intuitive to learners who have used PC IDEs, such as

Eclipse, that provide foldable interfaces. Besides, such a collapsible and expandable interface was

recommended for small screens (Churchill & Hedberg 2008). In addition, the use of the buttons for

both the layout and the additional functions provides a dual role of functionality and scaffolding, which

was recommended as a way of designing handheld devices (Luchini et al. 2004).

Provision of a program layout is a static scaffolding technique since it does not change or fade away

with time. Further, while creating a program, this overview has to be used in order to access the

47

different parts of a program. Such scaffolds were termed as ‘essential’ and the design of essential

scaffolds was encouraged because, if designed as optional, learners may bypass them and miss the

support needed to perform certain tasks (Quintana et al. 2002b).

This scaffolding technique provides atomic simplicity, a characteristic of constructivism, by

providing a visual layout showing the most basic units of Java programs. Further, the interface was

designed in a simple layout that supports learners to see the different parts of a Java program. Through

interaction, learners are able to create code that combines these parts into a simple program.

Figure 4.5: Main

interface showing only

the main class activated

Figure 4.6: Main class

default code

Figure 4.7: Creating the

main class

Figure 4.8: Method default

code

Figure 4.9: Creating a

method

Figure 4.10: dialog for

default statements

48

Embed expert guidance to help learners use content

This strategy was implemented in two ways: (i) providing supportive guidance to enable use of the

scaffolded environment; and (ii) providing default code related to specific parts of a program. Figure

4.5 and Figure 4.6 show steps at the top of the screen that guide the learner on which button to click.

Both figures show instructions at the bottom of the screen. Steps and instruction were faded after the

second program, after which they could be viewed by selecting related menus. Steps and instructions

are automatic scaffolding techniques that fade with time. Figure 4.6 shows implementation of default

code in creating the main class (revealed when the button is clicked), which the learner could then edit

(as in Figure 4.7). Figure 4.8 shows a method’s default code, which the learner could then edit (as in

Figure 4.9). Figure 4.10 shows a dialog box that pops up when creating the main method and the

method. On selection of any of these, the related default code is populated in the text field. These

default statements were based on standard coding guidelines. For example, there should be no space

between a method name and the parenthesis “(“ starting its parameter list (Sun-Microsystems 1997) as

shown in Figure 4.9. Provision of default code is automatic scaffolding that is provided by default.

Provision of examples is user-enabled scaffolding since a learner has to initiate its use. Provision of

default code supports active exploration by supporting correct construction of program parts.

Restrict a complex task by setting useful boundaries for learners

This strategy was implemented by restricting a learner to complete a program in a certain order. First,

the main class is completed because it is also used as the name of the program. Then the header

comment is completed in order to guide the learner to give the description of the program. Then the

main method is completed as the entry point of the program. Then the methods and import sections

can be completed if needed. Figure 4.5 shows only the main class activated when the program is

started, while Figure 4.11 shows the main class completed (in green) and the header comment

activated.

After successful completion of three programs in this restricted order, a learner is presented

with an interface where all the parts are enabled and the learner is able to complete the program in any

order (Figure 4.12). A similar technique was used in a recent study where fading of scaffold was

realized by using open exercises that do not enforce any specific program structure or approach

(Vihavainen et al. 2013). While the learner can work with the interface in Figure 4.12, they are able to

go back to the restricted interface if they wish to. This also provides structure to complete the task

using ordered decomposition (restricted) and unordered decomposition (unrestricted) (Quintana et al.

2004).

49

Figure 4.11: Main class completed (in

green) and header button activated

Figure 4.12: Unrestricted interface

Restriction of a program’s creation is automatic scaffolding that then fades over time. This scaffolding

technique provides atomic simplicity, which is a characteristic of constructivism, by providing an

incremental process of creating the program, one unit at a time. Further, this scaffolding technique

provides active exploration by guiding the learner on the order of interaction with the program parts.

In addition, after the learner reaches the unrestricted interface, they gain user control such that they

can choose which interface to work on. User control is a characteristic of constructivism.

4.4.2 Learner challenge 2: Difficulty in debugging errors in programs

Step 2: Categorizing challenge into a cognitive type

This learner challenge is one of process management because it requires scaffolding strategies that can

contribute to the learner’s inquiry process while debugging a program. It is also one of articulation and

reflection because it contributes to thinking about and evaluating what is been constructed.

Step 3: Identifying the scaffolding types that the learner challenge may need

Intrinsic scaffolding could be provided to reduce the complexity while creating or debugging the

program. Reflective scaffolding could be provided to enable the learner to think about the program.

Step 4: Identifying scaffolding guidelines that may address challenge cognitive type

In order to support process management, the intervention should embed expert guidance about the

scientific practice, in this case being Java coding guidelines. In order to support articulation and

reflection, the intervention should provide ongoing articulation and reflection during completion of the

program. These two scaffolding guidelines were met by the scaffolding strategies described next.

50

Step 5: Select scaffolding strategies that implement the scaffolding guidelines

In order to embed expert guidance and to facilitate a learner to reflect about the task, the selected

scaffolding strategy is one that embeds expert guidance to clarify characteristics of Java practices

(Quintana et al. 2004). This scaffolding strategy was selected because expert guidance that relates to

standard Java guidelines could be suitable to support learners to debug programs.

The discussion below addresses this strategy and the associated scaffolding techniques that

were selected and implemented on a mobile phone.

Step 6: Propose and implement specific scaffolding techniques that could support constructions

of Java programs on a mobile phone

Embed expert guidance to clarify characteristics of Java practices

This scaffolding strategy was implemented in three ways: (i) provision of error prompts; (ii) provision

of hints; and (iii) provision of examples.

While a novice learner constructs a program, they inevitably make mistakes that lead to

compile time or run time errors. While it was not possible to predict all the types of mistakes that

learners could make, this study attempted to address Java syntax related issues. This is because several

learners indicated syntax to be a difficulty in the subject. Further, several studies have shown that

learners often express difficulties related to the syntax of the language they are using (Apiola et al.

2011; Gaspar & Langevin 2007). Figure 4.13 shows creation of a main class, albeit using an incorrect

syntax of starting a Java class name using lower case. If the learner proceeds with this class name

creation, then an error message is displayed indicating the same as shown in Figure 4.13. Figure 4.14

shows creation of a main method. Assuming a learner writes the return statement here, an error prompt

indicates this error (Figure 4.15). These error prompts are based on standard coding guidelines. For

example, a main method should not contain a return statement.

Figure 4.16 shows implementation of hints for the main class. These hints were based on

standard coding guidelines. For example, class names should be written with the first letter of each

internal word capitalized (Sun-Microsystems 1997). Figure 4.17 shows implementation of examples

for the main class. Examples pop up when the example menu is selected.

Error prompts are automatic scaffolding techniques that are displayed when a syntactical error

is encountered. They support reflection since the learner is supported to think about the task to correct

the error. Hints are automatic scaffolding techniques that are provided by default. Provision of

examples is user-enabled scaffolding since a learner has to initiate its use. Error prompts, hints and

examples support reflection by enabling the learner to think about how to correct or construct the

content of the part they are creating. Reflection is a characteristic of constructivism.

51

Figure 4.13: Error prompt

Error prompt indicating

incorrect completion of main

class

Figure 4.14: Incorrect

creation of return

statement

Figure 4.15: Error prompt

indicating incorrect use of

return statement

Figure 4.16: Hints displayed when creating

main class

Figure 4.17: Main Class example displayed

after clicking on a menu item

4.4.3 Learner challenge 3: Small screen size and small keypad of a mobile phone

Step 2: Categorizing the learner challenge into a cognitive type

This learner challenge is one of process management because it requires scaffolding strategies that can

support the learner’s inquiry process on a mobile device, which has screen size and input limitations.

Step 3: Identifying the scaffolding types that the learner challenge may need

Supportive scaffolding can provide support while the learner is using the small screen size and small

keypad to construct a program.

52

Step 4: Identifying scaffolding guidelines that may address challenge In order to support process

management, providing structure for complex tasks and automatically handling routine tasks were

selected as scaffolding guidelines. The first scaffolding strategy was selected because in defining the

structure of how a program should be created the limitations of mobile phones could be addressed. The

second strategy was selected because automating some tasks could minimize the disadvantage of

having to type on a small keypad.

The discussion below addresses each of these strategies and the associated scaffolding

techniques that were selected and implemented on a mobile phone.

Step 5: Select scaffolding strategies that implement the scaffolding guidelines

In order to provide structure for complex tasks, three scaffolding strategies were recommended

(Quintana et al. 2004): (i) restrict a complex task by setting useful boundaries; (ii) describe a complex

task by using ordered and unordered task decomposition; and (iii) constraining the space of activities

by using functional modes. In order to handle routine tasks, it was recommended to automate non

salient portions of tasks to reduce cognitive demands (Quintana et al. 2004).

Step 6: Propose and implement specific scaffolding techniques that could support constructions

of Java programs on a mobile phone

Setting boundaries, using ordered and unordered decomposition, and constraining the space of

activities by using functional modes

This strategy was implemented in two ways: (i) constructing a program one part at a time; and (ii)

viewing the full program.

In the main interface, the learner clicks on the button that relates to the part they wish to work

on. This opens an interface with an editor that provides creation of only the selected chunk. For

example, Figure 4.18 shows creation of a method. Ability to work on a part of the program at a time

uses activity decomposition to package small chunks (Luchini et al. 2004; Elias 2011). This could

assist in working with the small screen. Enabling completion of the program one part of a time provides

atomic simplicity, which is a characteristic of constructivism. Because of the restriction of a small

screen size, which remains unchanged, this scaffold is static and does not fade.

Figures 4.18 shows how working on one program part at a time could assist in addressing the

soft keypad taking up nearly half the screen, and hence minimize scrolling. By placing the task to be

edited near the top of the screen, the soft keypad does not cover much of the task, if at all. The interfaces

show use of navigation labels at the top of the screen as was recommended for small interfaces (Jones

et al. 1999). However, for a learner to have a mental image of how the different parts of the program

work together, learners should be able to inspect the task they are working on in multiple ways.

53

Figure 4.18: Creating method Figure 4.19: Full program as

was last saved

Figure 4.20: Prompt for

unchanged main class

In this case, while working on a program part (for example editing the main method in Figure 4.18, a

learner could click on the full program menu and view the whole program (Figure 4.19) at the state at

which it was last saved. This ability to move between a program part and the whole promotes cognitive

growth by keeping the learner connected to the chunks, while at the same time being able to appreciate

existence of the whole problem (Ackermann 1996). Viewing of the full program while working on one

part supports multiplicity, which is a characteristic of constructivism. Multiplicity encourages

provision of multiple perspective of a concept.

Automate non-salient portions of tasks

Because of provision of some default code, the learner is spared from typing all the code from scratch

using the small keypad. However, the learner is still required to complete the program parts and hence

they need to mindfully engage and hence learn the task, as recommended (Luchini et al., 2004).

Further, the learner should be able to exit without completing a program part, but a message indicating

that the task has not been changed could assist in making sure that a learner actually completes a task

for it to be created in the program (Figure 4.20).

4.4.4 Summary of scaffolding techniques

The design process in the previous subsections has shown how the learner challenges and limitations

of mobile phones guided the selection of scaffolding techniques. With each selection, the scaffolding

technique was described as either static, automatic or user-enabled. Further, the technique’s fading

characteristic, if any, was also described. In addition, the related constructivist characteristic was

defined. Table 4.2 shows a summary of the derived scaffolding techniques and their associated

characteristics. The next section presents an overview of the system.

54

Table 4.2: Table showing the designed scaffolding techniques, associated scaffolding type,

fading capability and the related constructivist principle

Scaffolding Technique Scaffolding

type

Fading capability Related constructivist

principle

Java program overview showing

parts of a Java program: header,

imports, method, main class,

main method.

Related to restriction of the order

of program creation.

Static None Atomic simplicity

Restrict program creation in the

order: main class, header, main

method, method and/or imports

Automatic Fades after three

successful tasks

Atomic simplicity

Active exploration

User control

Steps and instructions Automatic Fade after the first

program

Active exploration

Default code Automatic None Active exploration

Hints Automatic None Reflection

Examples User initiated None - back button

removes it from

the screen

Reflection

Create program a part at a time Static None Atomic Simplicity

Viewing full program while

working on program parts

User-initiated None - back button

removes it from

the screen

Multiplicity, Reflection

Error prompts Automatic None, pressing the

OK button

removes it from

the screen

Reflection

55

4.5 System Overview

The scaffolding techniques designed in the previous section were implemented on an Android

platform. Eclipse was used to write the code for the interface, and PHP and JSON scripts were used to

send data to and from the databases. This section presents an overview of the designed mobile

programming environment. Two prototypes were used in this study. Figure 4.21 shows an overview

of the first prototype with the scaffolding techniques designed in the previous subsections shown in

blue. The next subsection presents the second prototype.

4.5.1 First prototype

4.5.1.1 Registration and login

First, the user registered using their email address and created a password. If either the email address

or the password fields were empty, an error message was displayed. The purpose of registration was

to keep track of the number of users and also to uniquely identify each user for the purpose of computer

logs. The users’ data were stored in a secure server at the department of Computer Science at

University of Cape Town. Using the registered username, the user could log into the application. If

the email address or password fields were empty, or the password was incorrect, or the username was

not registered, a relevant error message was displayed. Upon successful login, the main interface was

displayed. The user’s login state was retained unless they logged out.

4.5.1.2 Main interface

The main interface shows steps and instructions. Steps are displayed at the top of the screen while

instructions are displayed at the bottom of the screen. The instructions and steps are automatically

displayed in the first two programs. In subsequent programs, these can be accessed through a menu.

The main interface also shows a layout of five parts of a Java program: header comments, imports,

main class, method and main method. This layout provides clickable buttons that expand to reveal

default code and allows access to creation of individual chunks. The buttons could also be collapsed

to hide the default code. In the first three programs, a learner is restricted to construct a program in a

certain order: main class, header, main method, and then method and/or imports. After a learner

successfully completes three programs, the main interface changes to one which allows creation of a

program in any order after creation of the main class. The full program can be viewed by clicking on

a menu. A program is compiled by pressing on a run menu. The output of the program is displayed on

a new screen. To exit the output screen, the phone’s back button is pressed to return to the main

interface. Clicking on any active button related to a program chunk takes the user to the editor.

56

Figure 4.21: System overview of the first prototype showing the scaffolding techniques in blue

at the main interface and at the editor

Learner

Registration

and Login

Data stored in a

secure server at

UCT

Online

compiler,

ideone

Main interface with one

tab

Steps displayed at the

top

Collapsible and expandable

program layout : header,

imports, methods, main

class, main method

Full program by

clicking a menu

Run menu opens an

output screen

Program

output screen

Editor with one tab

Create program one

part at a time

Hints displayed below

the editor

Examples viewed by

clicking a menu

Full program by

clicking a menu

 Steps displayed at the

top

Dialog box showing

default code for ouput,

for-loop, and input

(BufferedReader)

Programs

saved in

phone

memory

Instructions displayed

at the bottom

Instructions displayed

at the bottom

Restricted order of

creating a program

Default code

After three successful

programs

Advanced main interface

with unrestricted order of

creating a program

Error prompts

57

4.5.1.3 Editor interface

The editor shows steps and instructions. Steps are displayed at the top of the screen while instructions

are displayed at the bottom of the screen. The instructions and steps are automatically displayed in the

first two programs. In subsequent programs, these can be accessed through a menu. At the editor, each

program is created only one part at a time. Default code is provided in the form of a statement dialog

box that allows selection of three default statements: System.out.println(); for-loop; and

BufferedReader. On selection of any of these default statements, the related default code is populated

in the editor. Hints are displayed below the editor and are specific to the program part that is being

created. Examples can be accessed by clicking on a menu, and are also specific to the program part

that is being created. Error prompts are also part-specific and only pop up if a program part has a syntax

error. The full program can be viewed by clicking on a menu. To go back to the main interface, the

user presses on the phone’s back button. This operation also automatically saves the program.

4.5.1.4 Program storage

The application saves the program in the phone’s internal memory. These programs can be reopened

by clicking on a related menu. This opens a screen with a list of all the saved programs. Upon clicking

the required program, the user is asked if they want to load the program or to delete it. When the user

clicks on the required program it is loaded back to the main interface. Upon reopening, the program

is split into the program parts in order to correctly display it using the program layout. For example, if

the main method was already edited in the saved program, the program layout should show the main

method in green. Upon expanding the main method’s button, the code underneath should display the

last saved state of the program’s main method.

4.5.1.5 The ideone online compiler

To compile and run the programs, this application used the free ideone online compiler (Sphere

Research Labs 2010). This is because at the time of development of the application in this study, there

was no free Java compiler that could be installed and run on a phone. Further, ideone had been used

successfully by several mobile programming environments.

To use ideone, an online account was required in order to receive a unique username and API

password that was to be used to link the application with the registered account. Thereafter, several

methods were implemented to indicate the use of Java (ideone implements 60+ languages), and to send

the code to the online server each time the run button was clicked. However, there were challenges

experienced in using ideone that required the development of additional algorithms to suit this study.

For example, the Web-based ideone interface requires that the input is typed at the console before the

program is run. Therefore, this was expected even on a mobile programming environment. However,

58

IDEs such as JCreator or Eclipse, which learners use in the classroom, first run the program and then

ask the user for input. This was the desired approach. In addition, there was a need to design an

appropriate way to display the input message to the user and to fetch the input from the user on a

mobile phone. Therefore, a solution was implemented to suit these requirements. As soon as the

program was run, a dialog box with the appropriate message was displayed and the dialog box was

used to fetch the user input. Another challenge was that ideone requires the class name of the main

class to be ‘Main’. Therefore, a solution was implemented that extracted all the class names and

replaced them with ‘Main’ before the program was sent to the ideone compiler.

4.5.2 Second prototype

Figure 4.22 shows an overview of the second prototype showing some modifications from the first

prototype. These modifications resulted from feedback from the first experiment. The details of the

results that led to the modifications are discussed in Section 6.2.1. The registration, login, program

storage, and use of ideone compiler are the same as in the first prototype. The modifications to the

main interface and the editor are described next.

4.5.2.1 Modifications to the main interface

The main interface of the second prototype was modified to contain three tabs: one for instructions,

one for the program layout, and one for the full program. In the first program, the instructions tab is

automatically displayed. A user can then swipe to the required tab. A button for creating other classes

was added to the program layout. Further, instead of accessing the run option via a menu, a quick-

access run button was provided at the top of the screen. These modifications are shown in Figure 4.23.

4.5.2.2 Modifications to the editor

The editor of the second prototype was modified to contain three tabs: one for instructions, one for the

editor, and one for the full program. A user can then swipe to the required tab. These modifications are

shown in Figure 4.24. Further, a header dialog box is automatically provided in the first two programs

to guide the creation of the header comments. Thereafter, the header dialog can be accessed via a

related menu. The header dialog is a type of automatic scaffolding. The header dialog provides active

exploration by supporting correct construction of the header comments. Active exploration is a

characteristic of constructivism. Figure 4.25 shows the header dialog. In the second prototype the

default main class code was disabled from being edited. Figure 4.26 shows that the default code ‘public

class’ is locked from editing and the user needs to only create the classname. The main class keyword

restriction can be disabled by the user via a menu. Figure 4.26 also shows the menus to access examples

and hints. Lastly, the second prototype provided the use of the Scanner class for input.

59

Figure 4.22: System overview of the second prototype showing the scaffolding techniques in

blue at the main interface and the editor

Learner

Registration

and Login

Data stored in a

secure server at

UCT

Online

compiler,

ideone

Main interface with three

tabs

Steps displayed at the

top

Collapsible and expandable

program layout: header,

imports, methods, main

class, main method, other

class

Full program displayed

at a tab

Run button opens an

output screen

Program

output screen

Editor with one tab

Create program one

part at a time

Hints displayed via a

menu

Examples viewed via a

menu

Full program displayed

at a tab

 Steps displayed at the

top

Dialog box showing

default code for ouput,

for-loop, and input

(Scanner)

Programs

saved in

phone

memory

Instructions displayed

at a tab

Instructions displayed

at a tab

Restricted order of

creating a program

Default code

After three successful programs

Advanced main interface with

unrestricted order of creating a

program

Error prompts

Header dialog box

Restricted main class

code

60

Figure 4.23: Screenshot showing the main

interface of the second prototype with three

tabs, a button for other class, and a quick-

access run button

Figure 4.24: Editor with three tabs for

instructions, editing and full program

Figure 4.25: The header dialog in the editor

Figure 4.26: Restricted main class keywords

at the editor

Using a simple example, the next section illustrates how the designed scaffolding techniques are used

to write the program on the mobile programming environment.

4.6 Example of a Simple Program Created Using the Scaffolding Techniques

Problem: Write a program called ‘Testing’ that prints the words ‘This works!’.

Upon successful login, the learner is presented with the main interface as shown in Figure 4.27. On

start, the main class is the only one enabled. Figure 4.28 shows the main class clicked and steps are

61

shown at the top of the screen that instructs the learner on what to do next. On clicking inside the

expanded area of the main class, the learner is taken to the code editing screen as shown in Figure 4.29,

where the step at the top of the screen guides the user on what to do next. If the learner completes the

class name starting with a lower case letter, an error prompt is displayed (Figure 4.30). On successful

creation of class name and on pressing the phone back button, the main interface is displayed (Figure

4.31) and the program is saved onto device (Figure 4.32). The main class is highlighted in green to

indicate completion and header comments part is now activated. The header comment shows the name

of the program as created after creation of the main class (Figure 4.33). On selecting a menu to view

full program, the full program is displayed as it was last saved (Figure 4.34). Figure 4.35 shows the

code editor when the learner creates the header comment. On getting back to the main interface, the

header comment is updated and main method is now activated (Figure 4.36).

On pressing the main method button, the default code for main method is revealed (Figure

4.36), and on pressing inside this expanded area the learner is shown some options to select (Figure

4.37). This problem requires display of output, hence the learner can select the System.out.println()

option. This takes them to the code editor (Figure 4.38) and the learner can type what is required within

the brackets of System.out.println(). On pressing the back button, the three completed sections are all

green, as shown in Figure 4.39. The completed full program can now be viewed and seen as complete

(Figure 4.40). To compile the program, the user selects the related menu after clicking on the phone

menu button. On compilation, the output is shown in Figure 4.41.

Figure 4.27: Main class

active

Figure 4.28: Main class

clicked

Figure 4.29: Editing main

class

62

Figure 4.30: Error prompt
Figure 4.31: Header activated Figure 4.32: Saved on device

Figure 4.33: Header clicked Figure 4.34: Full program Figure 4.35: Creating header

Figure 4.36: Main method

clicked

Figure 4.37: Default

statements

Figure 4.38: Edit main

method

63

Figure 4.39: Completed

program parts

Figure 4.40: Completed full

program

Figure 4.41: Output of

program after compilation

4.7 Non-Scaffolded System Implementation

In order to make a comparison between the use of scaffolding techniques and use of a non-scaffolded

mobile environment, a separate application was developed. This application had none of the

scaffolding techniques that were designed in section 4.4. Figure 4.42 shows the resulting application,

which had two interfaces, one showing instructions and the other where code could be typed. In order

to maintain uniformity, this application was used for the sake of comparison with the scaffolded

environment, as opposed to using one of the existing non-scaffolded mobile programming

environments, such as SAND IDE. The non-scaffolded environment also used the ideone compiler for

running and compiling programs.

Figure 4.42: Interfaces for the non-scaffolded

application

64

4.8 Chapter Summary

This chapter has illustrated how a six-level scaffolding framework has been used to select scaffolding

techniques to address the learner challenges. The chapter has followed a learner-centered methodology

where the learners’ needs and limitations of mobile phones drove the choice of scaffolding techniques.

Also, the chapter illustrated how the scaffolding techniques have been implemented on a mobile phone

to scaffold the construction of Java programs. Therefore, this chapter has concretely shown a theoretic

derivation of scaffolding techniques, and consequently their implementation on a mobile phone.

The use of the scaffolding framework has resulted in the choice of specific scaffolding

techniques such as: providing a visual representation of a Java program by showing an overview of

the program parts; enabling interaction with these parts using collapsible and expandable buttons and

clickable parts; providing some default code; enabling completion of the program one part at a time

while being able to view the full program; providing error prompts; providing hints and examples; and

providing instructions and steps that support the use of the scaffolded environment. These scaffolding

techniques were designed to address the three selected challenges cited by learners and also the small

screen size and small keypad of mobile phones. Appendix A shows the other learner-cited challenges

that were not illustrated in this chapter. A similar six-level approach was applied to these challenges

and the process resulted in similar scaffolding techniques described in this chapter.

The chapter also presented an overview of the two prototypes and the use of ideone online

compiler. Using an example, the chapter has shown how a simple program can be created using the

scaffolding techniques. Finally, the chapter described a non-scaffolded environment that was designed

by removing the scaffolding techniques. Using these prototypes, evaluation was conducted with

learners of programming. The evaluation process is presented in the next chapter.

65

Chapter 5 Evaluation

The purpose of this study was to investigate which scaffolding techniques could support Java

programming on a mobile phone, and to investigate the effect of using these scaffolding techniques to

construct Java programs on a mobile phone. The design process led to the implementation of

scaffolding techniques on a mobile programming environment (Mbogo et al. 2014; Mbogo et al. 2013),

and a non-scaffolded mobile programming environment. To address the purpose of the study, learners

of programming participated in experiments where they used the prototypes to construct Java

programs.

Evaluation was conducted while learners constructed programs on the mobile environments.

Evaluation models such as the CIAO model (Jones et al. 1999) have outlined that while evaluating

educational technology one should consider data about learners’ interaction with the software. Further,

such evaluation is recognized in the micro and meso levels of the M3 evaluation framework, which

examine individual activities of the technology users, and the learners’ experience as a whole,

respectively (Vavoula & Sharples 2009). In addition, a recommendation from both the CIAO and the

M3 frameworks is consideration of learners’ attitudes and outcomes. Learners’ attitudes on the use of

scaffolding techniques were measured by analyzing qualitative feedback. The outcomes were

measured by analyzing log data from learners’ interactions with the scaffolding techniques to construct

programs.

In this chapter, the evaluation process used in this study is discussed by first describing the

study participants. Thereafter, the data collection methods are described, followed by a discussion on

the design of the experiments. The chapter concludes with a discussion on the criteria used to address

the research questions and a summary of these criteria. The details of the experiments and the results

are presented in Chapter 6.

5.1 Study Participants

Participants in the experiments were learners enrolled in an introduction to programming course taught

using Java. Since the aim of the study was to support novice learners, such participants were deemed

appropriate. Participation was voluntary. This means that learners participated in the study by choice

and could withdraw at any time. In order to minimize the number of participants who would not turn

up for the experiment sessions, two approaches were taken: (i) recruitment was conducted as close as

possible to the time of the experiments; and (ii) participants were given incentives in the form of R50

per hour or provision of lunch.

66

Table 5.1 summarizes the number of learners who participated in the study per institution. A

total of 182 learners from four universities participated in the study: 8 from University of Cape Town

(UCT); 37 from University of Western Cape (UWC); 60 from Kenya Methodist University (KeMU);

and 77 from Jomo Kenyatta University of Agriculture and Technology (JKUAT). These institutions

were selected because there had been prior contact with the respective heads of departments and

teachers of programming. The total number of learners depended on the availability of learners who

volunteered to participate in the experiments and the total number of experiments that were carried out

at that institution. For example, only one experiment session was conducted at UCT, while a total of

three experiment sessions were conducted at KeMU. Table 5.1 shows the number of experiments that

were conducted at each institution. The details of these experiments are discussed in Section 5.4.

Before conducting the experiments, ethical clearance was obtained from UCT (Appendix C1)

and permission was sought to access learners from UCT (Appendix C2) and KeMU (Appendix C3).

UWC and JKUAT recognized the ethical clearance from UCT and did not require a separate approval.

The experiments took place at different times depending on the availability of learners of Java

programming at the four institutions. For example, the programming course taught using Java at UWC

was not offered during all the terms, so there was a need to wait until when such a course was offered.

Further, the times also depended on the ability to travel to Kenya, for the Kenyan experiments. The

experiments were conducted during these times: August 2013 at UCT and UWC; September 2013 at

KeMU; June 2014 at UWC; July 2014 at KeMU and JKUAT; and October 2014 at KeMU and JKUAT.

Table 5.1: Total number of participants across the four institutions and the number of

experiments conducted at each institution

Institution Total number

of

Participants

Total number of

experiment

sessions

Experiment

number

Total number of

learners at each

experiment

UCT 8 1 one 8

UWC 37 2 one 10

two 27

KeMU 60 3 one 22

two 14

three 24

JKUAT 77 2 two 29

three 48

67

5.2 Data Collection Methods

The research questions influenced the choice of the data collection methods. For example, in order to

address the first research question, an analysis of the scaffolding techniques used to construct programs

was required; this called for the use of computer logs. On the other hand, questionnaires were used to

collect qualitative feedback from learners. The methods used were: electronic questionnaires;

computer logs; and video and image recordings.

5.2.1 Electronic questionnaires

The electronic questionnaire method was used because it has the advantages of decreased cost, faster

response times and increased response rates (Lazar & Preece 1999). Critical issues that must be

addressed while using electronic questionnaires are: survey design, participant privacy and

confidentiality, sampling and subject solicitation, distribution methods and response rates, and survey

piloting (Andrews et al. 2010). These issues were addressed as follows:

i. LimeSurvey8 was used to design the questionnaires. LimeSurvey is an open source online

survey application. It is supported on multiple platforms and browsers, and automatically

transferred the responses to a database that is hosted on a secure server at the department of

Computer Science at UCT.

ii. The intent of the questionnaires was clearly outlined in the introduction, enabling well-

informed participation and consent.

iii. The participants’ privacy and confidentiality was ensured by not asking for personal

information such as names or registration numbers.

iv. The respondents were learners in institutions of higher learning who had access to computers

with Internet connections.

v. Questionnaires were activated on computers that were available in the rooms where the

experiments took place.

vi. The first questionnaire was piloted with five learners at UCT.

Questionnaires were used throughout the study.

5.2.2 Computer logs

Computer logs can be used to yield information about learners’ interaction with an application (Taylor

2006). Google Analytics9 (GA) was used to collect data on learners’ interactions with the mobile

programming environment. GA is free and provides Application Programming Interface (API)

8 http://www.limesurvey.org/

9 http://www.google.co.za/analytics/

http://www.limesurvey.org/
http://www.google.co.za/analytics/

68

libraries that integrate easily with Eclipse and Android. Eclipse was used as the development

environment to develop the application. The disadvantage of using GA is that it requires an Internet

connection in order to send the data to the GA Web server. The experiments were conducted within

the institutions’ premises, where wireless connectivity was available. In cases where wireless

connectivity was not available (as was the case at KeMU and JKUAT), participants were issued with

airtime to cater for data costs. Computer logs were used after the first experiment.

5.2.3 Video and image recordings

The video and image recordings gave insight to some tacit information while learners interacted with

the application. Not all participants’ interactions were video recorded. Participants whose interactions

were recorded on video were randomly selected. The video camera was close enough to capture the

learners’ interaction with the application, but not too close to interfere with the interaction. Video

recordings were used only in the first experiment. Thereafter, computer logs were used to collect data

on learners’ interaction with the scaffolding techniques.

Pictures were taken while learners took part in the experiments. In the first experiment,

computer logs were not used and so participants had to report the completion of each task. When a

participant reported completion of a task, pictures were taken of the mobile application interface. In

addition, pictures were taken of the groups of participant during all the experiments. The participants

were asked for their consent before taking videos and pictures.

5.3 Internet-enabled mobile phones

The application was developed for the Android platform. Therefore, learners who did not own Android

phones were issued with such phones during the experiment sessions. The majority of the phones

issued were the Samsung Galaxy Pocket S5300 phones that run Android version 2.3 (Figure 5.1).

Figure 5.1: Samsung Galaxy Pocket S5300 used during the experiments

69

The Samsung Galaxy Pocket has a display size of 2.8 inches and contains 3GB of internal memory.

The application was pre-installed on the phones and used during the experiments.

5.4 Experiment Design

Three experiments were conducted to address the two research questions. Table 5.2 shows a summary

of which experiment was conducted at the four institutions, and a breakdown of the number of learners

at each experiment. The number of experiments depended on the availability of learners, and the need

to make stronger conclusions if an experiment indicated the need to collect more data.

 In the first experiment, all the participants used the scaffolded environment and therefore only

an experimental group was used. In the second and third experiments, the between-groups design was

used, where participants were randomly split into the control and experimental groups and each group

was exposed once to either the non-scaffolded environment (control) or the scaffolded environment

(experimental). Participants in the control and experimental groups worked on the same programming

tasks. The choice of the between-groups design countered any learning effect that would have occurred

if learners were first exposed to the scaffolded environment and then to the non-scaffolded

environment, using the same programming tasks. Table 5.2 shows which group was involved at each

experiment.

The pre-test for this experiment was done by selecting learners who were at the same level of

learning Java programming. The post-test was the collective measurements that compared performance

between the control and experimental groups. In order to ensure non-contamination between the

control and experimental groups, experiments were carried out at the same time, with the help of

research assistants. Therefore, the second and third experiments were true experiments, where the

features of a true experiment are (Cohen et al. 2007): (i) has one or more control groups; (ii) has one

or more experimental groups; (iii) uses random allocation to control and experimental groups; (iv)

contains pre-test of the groups to measure parity; (v) contains post-test of the groups to see the effect

of the dependent variable; (vi) issues one or more interventions to the experimental group; (vii)

observes isolation, control and manipulation of independent variables; and (viii) observes non-

contamination between the control and experimental groups.

5.4.1 Programming tasks

During the entire study, five different sets of programming exercises were used: one set of similar

exercises for the first experiments at UCT, UWC and KeMU; three different exercises for the second

experiments at UWC, KeMU and JKUAT; and one set of similar exercises for the third experiments

at KeMU and JKUAT.

70

Table 5.2: Number of experiments conducted at the four universities, the number of learners at

each of the experiments, the groups involved in each experiment, and the data collection

methods used at each experiment

Institution Total number

of

Participants

in all

experiments

Total

number of

experiment

sessions

Experiment

number

Total

number of

learners at

each

experiment

Groups

involved in

the

experiment

Data

collection

methods

used

UCT 8 1 one 8 Experimental Image/video

recording

Questionnaire

UWC 37 2 one 10 Experimental

two 27 Experimental

and control

Image

Logs

Questionnaire

KeMU 60 3 one 22 Experimental Image/video

recording

Questionnaire

two 14 Experimental

and control

Image

Logs

Questionnaire

three 24

JKUAT 77 2 two 29 Experimental

and control three 48

In the first experiments, the exercises were similar because it was anticipated that results from

the learners at KeMU (Kenya) would be different from results from the learners at UWC and UCT

(South Africa) due to the different backgrounds. In the second experiments, the exercises were

obtained from the different teachers of the courses in their respective institutions. In the third

experiments, learners from both KeMU and JKUAT had covered similar topics in introduction to Java

programming. Therefore, the exercises from the respective teachers were combined into one set.

Despite the differences in the first, second and third sets of exercises, all the exercises covered

introductory topics in Java. These tasks are presented in the next chapter that discusses the results.

5.4.2 Experiment procedure

At each experiment session, the procedure was as follows:

i. Participants were introduced to the purpose of the research and the experiment.

71

ii. Participants were guided through completion of the consent form (Appendix D).

iii. In the second and third experiments, participants were randomly divided into control and

experimental groups.

iv. Participants were issued with Android phones containing the application.

v. Due to the use of the Internet for collecting computer logs and use of the ideone online

compiler, participants were issued with airtime to cover data costs where there was no Wi-

Fi.

vi. Participants were issued with printouts containing the programming tasks.

vii. During the experiment sessions, image/video and computer logs were used. Table 5.2

shows which data collection method was used in the different experiments.

viii. After the experiment sessions, participants were asked to fill out the online questionnaire.

ix. Participants returned the phones that were issued.

Following this experiment protocol, evaluation was conducted while learners interacted with

the mobile programming environment. When considering data about learners’ interaction,

performance is evaluated because performance is all about what the user actually does in interacting

with the product and consists of five types of metrics: task success; time-on-task; errors; efficiency;

and learnability (Albert & Tullis 2008). A discussion follows on how these metrics and qualitative

feedback were used as evaluation criteria in order to address each research question.

5.5 Criteria to Address the First Research Question

Which of the theoretically derived scaffolding techniques support programming on a mobile

phone?

This research question led to four sub-questions:

i. Which scaffolding techniques were used to construct programs?

ii. How were scaffolding techniques used to construct programs?

iii. Which scaffolding techniques did learners find useful?

iv. What were the learners’ experiences while using the scaffolding techniques?

Sub-questions (iii) and (iv) were subjective qualitative feedback.

5.5.1 Which scaffolding techniques were used to construct programs?

To address this sub-question, first, task success was measured by analyzing the level of completion of

tasks. This means that each program was examined for the extent to which it was completed and if it

produced the required output. A complete programming task is one that met all three criteria:

i. had all the required program parts completed;

ii. successfully compiled after completion of the required parts; and

72

iii. produced the required output.

Consequently, four metrics measured task success: (i) which tasks were attempted; (ii) which tasks

were not attempted; (iii) which tasks were incomplete; and (iv) which tasks were completed.

Incomplete tasks are tasks that failed to meet at least one of the criteria for completeness. Completed

tasks met all the criteria for completeness. Attempted tasks are the combination of incomplete and

completed tasks. Some tasks were not attempted. After measuring task success, analysis was conducted

on which scaffolding techniques were used to construct the complete and incomplete programming

tasks.

5.5.2 How were scaffolding techniques used to construct programs?

Measurement of how learners used scaffolding techniques involved an analysis of how scaffolding

techniques were used to construct each program. This is called the “effects-with” evaluation (Quintana,

Fretz, et al. 2000) and was defined as evaluation that looks at how learners work with the scaffolds in

the software to do their work (Quintana et al. 2002a). Guided by the effects-with criteria, Table 5.3

shows a summary of criteria used to evaluate the scaffolding techniques designed in this study.

Initial use measured the first time a scaffolding technique was used. Reuse measured if a

scaffold was used after its initial use. Therefore, use of a scaffolding technique was a measurement of

both its initial use and reuse. Some scaffolds could be disabled automatically or by a user.

A faded out scaffold could be enabled (faded in) by a learner. Therefore, measurement was

conducted on how the scaffolds were faded out and if they were faded in. Each attempted program was

analyzed by following two steps: (i) extracting the sequence of steps that were followed to construct

each program, in order to identify where a scaffolding technique was used; and (ii) where a scaffolding

technique is used, evaluating it against the criteria in Table 5.3. Lastly, analysis was conducted on how

scaffolding techniques were used differently over time (progression).

Table 5.3: Summary of criteria to evaluate use of scaffolding techniques

Criteria Purpose

Use Measurement of the initial use and reuse of the scaffolding technique.

Fading out Measurement when a scaffold was disabled automatically or disabled by the

learner.

Fading in Measurement when a scaffold was enabled after fading.

Progression How learners progressed through their work using scaffolding and whether

they worked differently over time (Quintana, Fretz, et al. 2000).

73

5.5.3 Qualitative Feedback

Qualitative feedback was collected using self-reported data and by observing learners’ experiences.

Self-reported data was collected in two ways: (i) given a list of the scaffolding techniques, learners

indicated the extent to which each feature supports the construction of programs on a mobile phone;

and (ii) by learners reflectively indicating which scaffolding techniques they felt supports the

construction of programs on a mobile phone. Learners’ experiences were measured by recording

learners’ overall perceptions and observing their interaction with the scaffolded environment.

5.6 Criteria to Address the Second Research Question

What is the effect on learners of using the scaffolding techniques to construct Java programs

on a mobile phone?

To address the second research question, learners were randomly divided into two groups: one group

used a scaffolded mobile programming environment (experimental group); and the other group used a

non-scaffolded mobile programming environment (control group). Therefore, the independent variable

is the set of scaffolding techniques. The data from these two groups was analyzed to measure: task

success; time-on-task; errors; and efficiency. Further, learnability was measured for only the

experimental group in which learners used the scaffolded environment. Considering these metrics, this

research led to sub-questions related to each metric. These sub-questions will be discussed in the

relevant subsections.

The five metrics are the dependent variables. In manipulating the independent variable by

providing some learners with a scaffolded environment and some learners with a non-scaffolded

environment, the effects on the dependent variables were measured in order to test effectiveness of the

scaffolding techniques.

The control and experimental groups were independent as each was subjected to one treatment

(scaffolded or non-scaffolded environment). Therefore, the two-sample t-test was used to determine if

the unknown means of the various metrics are different from each other (Elliott & Woodward 2007).

In addition, t-tests are often used when only small samples are available (n <30) (Harmon 2011). Since

analysis was conducted per university, per experiment, the sample sizes in all the cases were less than

30.

5.6.1 Task Success

Following the definition in 5.5.1, task success was measured for all the attempted tasks in the

experimental and control groups. This led to the first sub-question:

 What is the effect of using the scaffolding techniques on task success?

74

To address this sub-question, task success results from the control group and the experimental group

were compared. Some tasks could be attempted but not completed. Therefore, the hypotheses derived

for task success for attempted but incomplete tasks were:

H0: The mean number of attempted tasks in the experimental group is not larger than the mean number

of attempted tasks in the control group.

H1: The mean number of attempted tasks in the experimental group is larger than the mean number of

attempted tasks in the control group.

Some tasks could be attempted and completed. Therefore, the hypotheses derived for task

success for attempted and completed tasks were:

H0: The mean number of completed tasks in the experimental group is not larger than the mean number

of completed tasks in the control group.

H1: The mean number of completed tasks in the experimental group is larger than the mean number of

attempted tasks in the control group.

A one-tailed t-test was used to test these hypotheses.

5.6.2 Time-on-task

Time-on-task was the duration between the start and end of a program for both complete and

incomplete programs. The end-time for complete programs referred to the first time the program

compiled successfully and produced the desired output. The end-time for incomplete programs referred

to the time the user quit working on the program. Data for time-on-task was measured by considering

three criteria (Sauro & Lewis 2012): (i) task completion time for completed tasks; (ii) time until failure

for incomplete tasks; (iii) and total time per user for both incomplete and completed tasks. Time-on-

task was measured for all the attempted tasks in the experimental and control groups. Therefore, this

led to the second sub-question:

 What is the effect of using the scaffolding techniques on time-on-task?

To address this sub-question, time-on-task results between the control group and the experimental

group were compared. Time-on-task represents either time on an incomplete task or time on a

completed task. The hypotheses derived for time on completed tasks were:

H0: The mean completion time in the experimental group is not less than the mean time on complete

tasks in the control group.

H1: The mean completion time in the experimental group is less than the mean time on complete tasks

in the control group.

The hypotheses derived for time on incomplete tasks were:

75

H0: The mean time on incomplete tasks in the experimental group is not less than the mean time on

incomplete tasks in the control group.

H1: The mean time on incomplete tasks in the experimental group is less than the mean time on

incomplete tasks in the control group.

A one-tailed t-test was used to test these hypotheses.

5.6.3 Efficiency

The Common Industry Format for Usability Test Reports (NIST 2001) specifies efficiency as the ratio

between task completion rate and the mean time-on-task. Task completion rate is the percentage of

participants who completed each task. Mean time-on-task is the average time that was taken on each

task. This calculation of efficiency specifies the percentage of users who were successful for every unit

of time(NIST 2001). Such measurement of efficiency has been utilized in other studies such as one on

the use of an adaptive user interface for service-oriented architectures (Senga 2010). Task completion

rate and mean time-on-task was measured for all the attempted tasks in the experimental and control

groups. This led to the third sub-question:

What is the effect of using the scaffolding techniques on the ratio between task completion rate

and mean time-on-task?

To address this sub-question, task completion rates and mean time-on-task results between the control

groups and the experimental groups were compared.

5.6.4 Errors

Two types of errors were evaluated: (i) the number of run-time errors for all the programs in the control

and experimental groups; and (ii) errors that triggered scaffolding techniques that offered support for

error detection, only for the experimental group. This led to the fourth sub-question:

What is the effect of using the scaffolding techniques on the number of errors?

To address this sub-question, the number of errors between the control groups and the experimental

groups were compared. The hypotheses that were derived for errors were:

H0: The mean number of run-time errors encountered in the experimental group is not lower than the

number of run-time errors encountered in the control group.

H1: The mean number of run-time errors encountered in the experimental group is lower than the

number of run-time errors encountered in the control group.

A one-tailed t-test was used to test these hypotheses.

76

5.6.5 Learnability

The data from time-on task was used to evaluate learnability. A comparison was made between time-

on-task from one task to the next. This analysis considered only the experimental group because the

aim was to investigate the learnability of the scaffolded environment. This led to the fifth sub-question:

What is the effect of using the scaffolding techniques on time-on-task over time?

5.7 Summary of Criteria to Address Research Questions

Table 5.4 at the end of this chapter shows a combined overall picture of the number and distribution

of the experiments, and the evaluation criteria for each experiment. Not all evaluation criteria were

addressed in the first experiment. However, by the end of the third experiment, all metrics had been

collectively measured. For example, the first experiment did not measure time-on-task, but the second

and third experiments measured time-on-task (alongside all other metrics) in the experimental and the

control groups. A summary of the two research questions, their sub-questions and the criteria that were

derived to address them is presented next.

Which of the theoretically derived scaffolding techniques support construction of Java programs on a

mobile phone?

 To address this research question, the following sub-questions are posed:

i. Which scaffolding techniques were used to construct programs?

ii. How were scaffolding techniques used to construct programs?

iii. Which scaffolding techniques did learners find useful?

iv. What were the learners’ experiences while using the scaffolding techniques?

To address these sub-questions, three metrics were measured: (i) task success; (ii) which

scaffolding techniques were used to construct the complete and incomplete programming tasks;

(iii) how the scaffolding techniques were used, considering their use, fading, and progression; and

(iv) qualitative feedback considering ratings of the desirability of scaffolding techniques, learners’

reflections on the use of scaffolding techniques and learners’ experiences while using the

scaffolding techniques.

What is the effect of using the scaffolding techniques to construct Java programs on a mobile phone?

To address this research question, the following sub-questions are posed:

i. What is the effect of using the scaffolding techniques on task success?

ii. What is the effect of using the scaffolding techniques on time-on-task?

iii. What is the effect of using the scaffolding techniques on the ratio between task completion

rate and mean time-on-task?

iv. What is the effect of using the scaffolding techniques on the number of errors?

77

v. What is the effect of using the scaffolding techniques on time-on-task over time?

To address these sub-questions, five metrics were measured: (i) task success; (ii) time-on-task; (iii)

ratio between task completion rate and mean-time-on task, which calculates the efficiency; (iv)

errors; and (v) time-on-task over time, which calculates learnability.

5.8 Chapter Summary

182 learners from four universities participated in three experiments. Participation in the experiments

was voluntary and learners signed consent forms prior to the start of each experiment session. Learners

were issued with phones to use and they used the pre-installed application to complete programming

tasks during the experiments. Questionnaires, computer logs and image and video recordings were

used to collect data. The first experiment consisted of only experimental groups, and the last two

experiments consisted of control groups and experimental groups. This chapter has discussed the

evaluation criteria that were derived in order to address the two research questions: (i) which

scaffolding techniques support Java programming on a mobile phone; and (ii) the effect of using the

scaffolding techniques to construct Java programs on a mobile phone. These criteria are: task success;

time-on-task; errors; efficiency; learnability; qualitative feedback; and the use of scaffolding

techniques. The results obtained from collecting data are described in the next chapter.

78

Table 5.4: Table showing number of experiments, number of learners at each of the experiments, groups involved in each and the

evaluation criteria addressed at each experiment

Institution Total

number of

Participants

Total number

of experiment

sessions

Experiment

number

Total number

of learners at

each

experiment

Groups

involved in the

experiment

Data collection

methods used

Evaluation criteria addressed

UCT 8 1 one 8 Experimental Image/video

recording

Questionnaire

Task success

Qualitative feedback UWC 37 2 one 10 Experimental

two 27 Experimental

and control

Image

Logs

Questionnaire

Task success, Time-on-task,

Errors, Efficiency, Learnability,

Qualitative feedback, use of

scaffolding techniques

KeMU 60 3 one 22 Experimental Image/video

recording

Questionnaire

Task success

Qualitative feedback

two 14 Experimental

and control

Image

Logs

Questionnaire

Task success, Time-on-task,

Errors, Efficiency, Learnability,

Qualitative feedback, use of

scaffolding techniques

three 24 Experimental

and control

JKUAT 77 2 two 29 Experimental

and control three 48

79

Chapter 6 Results and Discussion

Data was collected while learners interacted with the scaffolded and non-scaffolded mobile

programming environments. This chapter discusses the results and analyses of these data as per the

evaluation metrics used to address the research questions, namely task success, time-on-task, errors,

efficiency, learnability, use of scaffolding techniques, and qualitative feedback. Appendix I contains

the raw data from learners’ verbatim feedback. First, the following section presents the participants

who took part in the study and a review of how they participated in the experiments.

6.1 Participants and Experiments

182 learners from four institutions participated in three experiments: 111 learners in experimental

groups; and 71 learners in control groups. There were more learners in the experimental groups because

the first experiment did not have a control group. Table 6.1 shows the distribution of the learners in

the experimental and control groups at each experiment, across the four participating institutions. Each

experiment session involved an introduction to the purpose of the research with learners signing

consent forms, learners tackling the programming tasks, and completion of a post-experiment

questionnaire.

Table 6.1: Distribution of learners in the control and experimental groups across three

experiments at four institutions

6.1.1 First Experiment

40 learners participated in the first experiment: 8 from UCT; 10 from UWC; and 22 from KeMU. At

UCT and UWC, 17 of the learners studied Computer Science and one learner studied Electrical and

Computer Engineering; all were at Bachelors level. At UCT, the learners participated in three 1-hour

Experiment Institution Number of learners in

experimental groups

Number of learners

in control groups

one UWC 10 -

UCT 8 -

KeMU 22 -

two UWC 14 13

KeMU 7 7

JKUAT 13 16

three KeMU 13 11

JKUAT 24 24

80

long experiment sessions in groups of three, two and three learners, respectively. At UWC, all 10

learners participated in a single experiment session during a 1-hour lunch break. Figure 6.1 shows

some participants in the session at UCT. Figure 6.2 shows some participants in the session at UWC.

Learners attempted the programming tasks in Figure 6.3 using the first prototype of the mobile

application. At the end of the experiment, learners completed the questionnaire in Appendix E1. The

questionnaire collected demographic information and user feedback.

The final session of the first experiment was conducted at KeMU with 22 learners. All the

learners studied Computer Information Systems at Bachelors level. The 22 learners were taking a

course in ‘Introduction to Object Oriented Programming using Java, and participated in a two-week

class session. Figure 6.4 shows some participants in the class session at KeMU. During the class

sessions, learners were taught topics on Java syntax, Loops, Input and Output using Scanner and

BufferedReader, and Classes. Learners were required to use only the scaffolded environment to

complete programming exercises and not use any PC IDEs. At the end of the two-week class session,

learners attempted the programming exercises in Figure 6.3. Thereafter, some of the learners

completed the questionnaire in Appendix E1.

The first experiment at UCT, UWC and KeMU measured the number of tasks completed,

learners’ perceptions of using the scaffolding techniques to construct programs on a mobile phone, and

general usability of the application.

/

Figure 6.1: First Experiment session at UCT Figure 6.2: First Experiment session at UWC

Figure 6.3: Programming task attempted by learners in the first experiment

81

Figure 6.4: Class session at KeMU during the first experiment

6.1.2 Second Experiment

The second experiment was conducted at UWC, KeMU and JKUAT. 70 learners participated in the

experiment: 34 in the experimental groups; and 36 in the control groups. The distribution of the number

of learners in the three universities is as shown in Table 6.1. All the learners at UWC were studying

towards a Postgraduate Diploma in Software Development. All the learners at KeMU were studying

towards a Bachelor’s degree in either Computer Information Systems or in Business Information

Technology. All the learners at JKUAT were studying towards a Bachelor’s degree in Information

Technology. Figure 6.5 and Figure 6.6 show a section of some of the learners during the experiments

at KeMU and UWC, respectively.

At KeMU and JKUAT, learners took part in 2-hour experiment sessions. At UWC, learners

took part in a 1-hour experiment session. The difference in time was dependent on how long the groups

of learners were available. The programming tasks attempted by learners in the three universities are

shown in Figure 6.7. Learners used the second prototype of the application. At the end of the

experiment, all the learners completed the questionnaire in Appendix E2, which collected demographic

information and user feedback. This second experiment measured task success, time-on-task, errors,

efficiency, learnability, use of scaffolding techniques, and learners’ perceptions.

6.1.3 Third Experiment

The third experiment was conducted at KeMU and JKUAT with a total of 72 learners: 37 learners in

the experimental groups; and 35 learners in the control groups. The distribution of the number of

learners in the two universities is as shown in Table 6.1. All the learners at KeMU were studying

towards a Bachelor’s degree in either Computer Information Systems or in Business Information

Technology. All the learners at JKUAT were studying towards a Bachelor’s degree in Information

Technology.

82

Figure 6.5: Second Experiment session at

KeMU

Figure 6.6: Second Experiment

session at UWC

Figure 6.7: Programming tasks attempted by learners in the second Experiment at

UWC, KeMU and JKUAT

Programming Task for UWC group in Experiment 2

1. Write a program that calculates the total cost of an item that is R159.72 and incurs a

VAT of 14%.

2. Write a program that uses a for-loop to calculate the sum of the numbers from 1 to 50

and displays the sum and average.

3. Write a program that uses a method name() to print out your name.

4. Write a program that uses the Scanner input to ask for the user’s name and age, and

prints

 “Hello “ + name “ your age is “+ age;

5. Write a program that uses a method input() to ask for height and width of a rectangle,

and calculate and display the area using height x width.

6. Write a program that determines if a number input by a user is odd or even.

Programming Task for KeMU group in Experiment 2

1. Write a program that initialises x to 10 and prints out its double value.

2. Use the appropriate control structures to print out the first 10 numbers.

3. Write a program that accepts two numbers as input and calculates the average.

4. Overload a method to print one and two integer values. Call these methods from the

main method to output the number 34, and 12 and 24, respectively.

5. Write a program that creates a class that contains the constructor below:

Item(int id, String title) { }

Programming Task for JKUAT group in Experiment 2

1. Write a program that output ‘Scaffolding at JKUAT’.

2. Write a program that computes the sum and average of the number 1-20.

3. Write a program that captures and displays the ages of two students.

4. Write a program that uses a method to capture two integers and outputs their sum.

5. Write a program that initialises default values of name and age in a constructor and

outputs these in a main class.

83

1. Write a program that initialises x to 10 and prints out its double value. Save this program as

XValue.java

2. Using a for-loop print the first 10 natural numbers. Save this program as Natural.java

3. Write a program that accepts input from the user and displays this as

 “Your input is “ + input. Save this program as Natural.java

4. Write a program that uses a method input() to capture and display the names of two

students. Save this program as MethSt.java

5. Write a program that creates two classes. The second class contains the constructor below.

Access this constructor from the main class

Output()

{

 System.out.println(“Constructor called”);

}

Save this program as Constructor.java

6. Write a program that uses a for-loop within a method avg() to calculate the sum of the

numbers 20-100 and displays the sum. Call this method from the main method. Save this

program as AvgMeth.java

Figure 6.8 and Figure 6.9 show a section of some of the learners during the experiments at

KeMU and JKUAT, respectively. Learners took part in 2-hour experimental sessions at both KeMU

and JKUAT. Figure 6.10 shows the programming tasks attempted by learners in this experiment.

Learners used the second prototype of the application. At the end of the session, learners in the

experimental groups completed the questionnaire in Appendix E2, while learners in the control groups

completed the questionnaire in Appendix E3. These questionnaires collected demographic information

and user feedback. This third experiment measured task success, time-on-task, errors, efficiency,

learnability, use of scaffolding techniques, and learners’ perceptions.

Figure 6.8: Third Experiment session at

KeMU

Figure 6.9: Third Experiment session at

JKUAT

Figure 6.10: Programming tasks attempted by learners in the third Experiment

84

6.2 Task Success

This section discusses the task success results from the three experiments, and highlights some of the

issues that affected task completion based on observations and user feedback. For each experiment,

results are presented first, followed by a discussion. In the first experiment, task completion was

manually recorded and observations were made using video and image recordings. In the second and

third experiments, computer logs were used to record task completion.

6.2.1 First Experiment

6.2.1.1 Results: Task Success

Table 6.2 shows the number of learners who completed each task at UCT, UWC and KeMU in the first

experiment. At UWC and UCT, only two learners completed the third exercise that required the use of

the BufferedReader class to accept user input. At KeMU, no learner completed the third task.

In the post-experiment questionnaire, learners were asked to indicate the extent to which they

agreed that the scaffolding techniques support the construction of programs on the mobile phone. All

the 18 learners at UCT and UWC completed this questionnaire. 10 learners at KeMU completed this

questionnaire. Table 6.3 shows how learners at UWC and UCT rated the different scaffolding

techniques and Table 6.4 shows how learners at KeMU rated the different scaffolding techniques. The

last column shows a combined value of agree and strongly agree. Due to the small number of learners

who completed the questionnaire at KeMU, Table 6.4 shows results in numbers and not percentages.

The scaffolding techniques with the highest values in the last column were perceived to most

effectively support constructions of programs on a mobile phone.

Presentation of the program in chunks received a high rating from learners at UCT, UWC and

KeMU. Availability of hints had a high rating among UCT and UWC learners, with a slightly lower

rating among KeMU learners. Despite some learners appreciating the error prompts and provision of

default code, they both received lower ratings from both groups in comparison to the rest of the

features. Steps, dialog prompts, examples and viewing of the full program had almost similar

desirability preferences from both groups.

Table 6.2: Number of learners who completed each task at UCT, UWC and KeMU in the first

experiment

Task
Learners who completed the tasks at

UWC and UCT (out of 18)

Learners who completed the tasks at

KeMU (out of 22)

1 18 14

2 12 16

3 2 0

85

Table 6.3: How UCT and UWC learners rated the different scaffolding techniques in terms

of desirability to support construction of programs on a mobile phone

Scaffolding features Strongly

Disagree

Disagree Neither

agree

nor

disagree

Agree Strongly

agree

Combination

of Agree &

Strongly

Agree

Presentation in chunks 0% 12% 0% 63% 25% 88%

Completion part at a time 0% 13% 6% 38% 43% 81%

Steps to interact with

application

0% 0% 12% 63% 25% 88%

Availability of hints 0% 0% 6% 38% 56% 94%

Error prompts 13% 12% 6% 44% 25% 69%

Dialog prompt of options e.g

‘System.out.println()’,

13% 0% 0% 31% 56% 87%

Provision of default code 0% 19% 19% 31% 31% 62%

Provision of examples 0% 6% 18% 38% 38% 76%

View of full program at any

time

0% 0% 19% 38% 43% 81%

Table 6.4: How KeMU learners rated the different scaffolding techniques in terms of

desirability to support construction of programs on a mobile phone

Scaffolding features Strongly

Disagree

Disagree Neither

agree

Nor

disagree

Agree Strongly

agree

Combination

of Agree &

Strongly

Agree

Presentation in chunks 0 0 0 5 5 10

Completing a chunk at a time 0 0 1 5 4 9

Steps 0 0 2 3 5 8

Availability of hints 0 2 1 2 5 7

Error prompts 0 1 2 2 5 7

Dialog prompt of options 0 0 1 4 5 9

Provision of default code 1 0 2 2 5 7

Provision of examples 1 1 1 3 4 7

View full program at any

time

1 0 0 3 6 9

6.2.1.2 Discussion: Task Success

Results from the first experiment indicate that learners could complete programming tasks using the

scaffolding techniques. For the third task, learners at UCT and UWC indicated that they had not learnt

the use of the BufferedReader but had learnt the use of the Scanner class for input. Therefore, this

affected their ability to complete the third task. Similarly, learners at KeMU indicated that they would

86

prefer to use the Scanner class since they found the Scanner class simpler for input than the

BufferedReader. The preference by learners to use the Scanner class over the BufferedReader indicates

that the choice of the latter in the design was inappropriate. Further, this indicates that even while

providing scaffolding techniques on mobile phones, it is important to keep the gap between what is

learnt in the classroom and outside the classroom as small as possible, and this is encouraged by many

learning theories that stress the principle of starting where the students are at (Carter 2010).

Some learners completed a full program within the main class chunk where only the class name

is required (for example, in Figure 6.11). On pressing the back button to go back to the main interface,

a prompt appeared indicating that the class declaration required only one line of code. On the other

hand, some learners deleted the provided default code and then typed their own code from scratch,

often leading to errors. Figure 6.12 shows inappropriate code within the main class written after

deletion of the default code ‘public class Yourclassname’. The learner was to replace only

‘Yourclassname’ with the required class name. These observations indicate that the application needed

improvement to provide immediate prohibition on writing code that is not required for the given chunk.

Further, additional scaffolding was required to prevent editing of default code, especially in the main

class chunk.

Despite provision of a dialog box that provided some default statements to use within the main

method and the method chunks (Figure 6.13), some learners opted to ignore the prompt and type the

statements on their own. A commonly occurring instance was in preselecting ‘System.out.println()’

where the learner was required to write the output inside the ‘println()’ brackets. However, some

learners opted out of the dialog box by pressing ‘Cancel’ and typed the statement from scratch (for

example, in Figure 6.14). This sometimes led to incorrect completion of such code. This observation

suggests that additional scaffolding was needed that provides an alert on how to re-enable the dialog

box, should it be required.

The video recordings showed that learners hardly scrolled to view information that was not

readily visible on the screen. Figure 6.15 shows a video screenshot of a learner at the main interface

of the application. This learner continued to work on the visible interface and hardly scrolled up or

down to view instructions that were below the last visible tab. In several instances, learners kept

clicking on a non-active button, while the instruction on what to do next was at the bottom of the

screen, which would have been visible upon scrolling downward. Further, a challenge observed was

the soft keypad that covered nearly half of the screen while typing (Figure 6.16). This blocked some

of the instructions and the hints that were placed on the lower half of the screen, and therefore some

learners missed these. Indeed, feedback given by some of the learners stated that, ‘The instructions

87

Figure 6.11: Full program written within the

main class chunk where only the class name

is required

Figure 6.12: Inappropriate completion of the

main class

Figure 6.13: Dialog box showing default

statements

Figure 6.14: Learner typing statement from

scratch

Figure 6.15: Video screenshot of a learner at

the main interface of the application

Figure 6.16: Video screenshot showing soft

keypad covering half the screen

88

were hidden and I didn’t know where to look to get the next one. I suggest using a tabbed interface

and not a list view.’ This sentiment is supported by a study that suggested that scrolling can be reduced

by placing navigational features in the fixed place near the top of a presented resource, and by placing

key information at the top (Jones et al. 1999).

Learners rated the desirability of the scaffolding techniques to support construction of programs

on a mobile phone. The highly rated scaffolding techniques are: (i) the program overview that presents

a layout of the program; (ii) completing one chunk of a program at a time; (iii) the ability to view the

full program while working on the individual chunks; (v) dialog prompts that provide default

statements that can be reused; and (vi) steps that guide the user on how to interact with the application.

Despite the challenges that affected the completion of programs, the scaffolding techniques

supported the construction of Java programs on a mobile phone. Indeed, below are some of the

verbatim remarks by learners on their reflections on using the scaffolded environment to create

programs:

‘The main interface is simple and direct’

‘Very easy to use especially with assistance of the hints and the examples’

‘It simplifies the idea of programming as one does not have to keep on remembering the basic codes

which are already in the program.’

‘The fact that it has steps and guidelines. It's hard for a new user to have a hard time using it.’

Further, learners recommended that the link to run the program should be more accessible, as opposed

to accessing it through a menu.

The feedback obtained from the first experiment was implemented on the first prototype.

Appendix F shows screenshots of the second prototype with these modifications. The modifications

were in three forms. First, to minimize text on the screen, several modifications were implemented: (i)

separate tabs at the main interface that display instructions, the program overview and the full program;

(ii) separate tabs at the editor to display instructions, the coding screen and the full program; (iii) a

cancellable header dialog box for creating header comments with a related menu that could enable it;

and (iv) links to hints and examples via a menu that opened these on separate screens. Second, some

additions to the interface were implemented: (i) a run button was created at the top of the main interface

for easy access; (ii) a button to enable creation of another class for programs that required more than

one class; and (iii) one-time instructions to indicate that a chunk could be exited without being created.

Third, some modifications to scaffolding techniques were implemented: (i) the main class’ default

text, ‘public class’, was disabled to prevent editing in the first program and enabled in the second

program but could be enabled or disabled via a menu; and (ii) use of the Scanner class with a dialog

box to enable user input. The modified prototype was used in the second and third experiments.

89

Although the findings from the first experiment were encouraging and useful, they contained

certain limitations that required further research. Firstly, the programming exercises used were simple

and therefore presented a limitation in the extent to which the application could be used to support

tasks that were more difficult. Secondly, the number of participants in the evaluation was small and

some key feedback could have been missed. Thirdly, since only an experimental group was used, the

effect of using the scaffolding techniques to construct Java programs was not evaluated. Consequently,

a second experiment was conducted.

6.2.2 Second Experiment

6.2.2.1 Results: Task success

Due to a technical challenge, the logs from KeMU’s second experiment session were not recorded.

However, the number of tasks that were completed was recorded manually and the learners completed

the questionnaire at the end of the session. For this reason, KeMU’s data for the second experiment

was analyzed to measure only task success and qualitative feedback.

To recap, the hypotheses derived for attempted tasks were:

H0: The mean number of attempted tasks in the experimental group is not larger than the mean number

of attempted tasks in the control group. This is the first null hypothesis.

H1: The mean number of attempted tasks in the experimental group is larger than the mean number of

attempted tasks in the control group. This is the first alternate hypothesis.

The hypotheses derived for completed tasks were:

H0: The mean number of completed tasks in the experimental group is not larger than the mean number

of completed tasks in the control group. This is the second null hypothesis.

H1: The mean number of completed tasks in the experimental group is larger than the mean number of

attempted tasks in the control group. This is the second alternate hypothesis.

Table 6.5 shows the number of tasks attempted and completed in the experimental groups at

KeMU, UWC and UCT. Table 6.6 shows the number of tasks attempted and completed in the control

groups at KeMU, UWC and UCT. The raw data for the number of tasks attempted and completed per

user at KeMU, UWC and JKUAT are shown in Appendices G1 to G3, respectively. An independent

sample t-test was conducted to compare the number of attempted tasks for the experimental groups

and the number of attempted tasks for the control groups. Similarly, an independent sample t-test was

conducted to compare the number of completed tasks for the experimental groups and the number of

completed tasks for the control groups. Table 6.7 shows the statistical results for attempted and

completed tasks in the second experiment.

90

Table 6.5: Number of learners who attempted and completed each task in the Experimental

groups at KeMU, UWC and JKUAT in the second Experiment

 KeMU UWC JKUAT

 Attempted Completed Attempted Completed Attempted Completed

Task 1 7 6 14 12 13 9

Task 2 7 4 10 7 10 5

Task 3 4 1 6 3 5 1

Task 4 0 0 2 0 2 1

Task 5 0 0 0 0 1 0

Table 6.6: Number of learners who attempted and completed each task in the Control groups

at KeMU, UWC and JKUAT in the second Experiment

 KeMU UWC JKUAT

 Attempted Completed Attempted Completed Attempted Completed

Task 1 7 3 12 7 11 9

Task 2 7 1 6 2 14 11

Task 3 2 1 1 0 12 2

Task 4 0 0 1 0 2 1

Task 5 0 0 0 0 1 0

Table 6.7: Statistical task success results for attempted and completed tasks in the second

Experiment

 Attempted Tasks Completed Tasks

Institution Statistical

Metric

Experimental

Group

Control

Group

Experimental

Group

Control

Group

KeMU

M 2.57 2.29 1.57 0.71

SD 0.53 0.49 0.53 0.75

t t (12) = 1.04 t (11) = 2.44

p 0.16 0.02

UWC

M 2.29 1.54 1.57 0.69

SD 1.07 0.88 1.02 0.63

t t (25) = 1.99 t (22) = 2.72

p 0.03 0.006

JKUAT

M 2.38 2.50 1.23 1.44

SD 1.04 -0.33 1.17 0.89

t t (22) = 1.04 t (22) = 0.52

p 0.37 0.30

91

At KeMU, there was no significant difference between the mean number of attempted tasks in

the experimental group and the mean number of attempted tasks in the control group. With a p-value

of 0.16, the first null hypothesis cannot be rejected. Therefore, the mean number of attempted tasks in

the experimental group is not larger than the mean number of attempted tasks in the control group.

However, there was a significant difference between the mean number of completed tasks in

the experimental group at KeMU and the mean number of completed tasks in the control. With a p-

value of 0.02, the second null hypothesis is rejected in favour of the second alternate hypothesis.

Therefore, the mean number of completed tasks in the experimental group is larger than the mean

number of completed tasks in the control group.

The learners at KeMU were not able to attempt the last two tasks and they indicated that they

struggled with topics of methods, classes and constructors in the classroom, considering that for most

of them this was the first time to learn programming using Java.

At UWC, there was a significant difference between the mean number of attempted tasks in

the experimental group and the mean number of attempted tasks in the control group. With a p-value

of 0.03, the first null hypothesis is rejected in favour of the first alternate hypothesis. Therefore, the

mean number of attempted tasks in the experimental group is larger than the mean number of attempted

tasks in the control group.

Similarly, there was a significant difference between the mean number of completed tasks in

the experimental group at UWC and the mean number of completed tasks in the control group. With a

p-value of 0.006, the second null hypothesis is rejected in favour of the second alternate hypothesis.

Therefore, the mean number of completed tasks in the experimental group is larger than the mean

number of completed tasks in the control group. Further, some learners in the experimental group at

UWC were able to complete the third task, while no learner in the control group was able to complete

this task. Lastly, no learner was able to attempt the last program, perhaps due to the time constraint of

the experiment session being in just 1 hour.

At JKUAT, there was no significant difference between the mean number of attempted tasks

in the experimental group and the mean number of attempted tasks in the control group. With a p-value

of 0.37, the first null hypothesis cannot be rejected. Therefore, the mean number of attempted tasks in

the experimental group is not larger than the mean number of attempted tasks in the control group.

Similarly, there was no significant difference between the mean number of completed tasks in

the experimental group and the mean number of completed tasks in the control group. With a p-value

of 0.30, the second null hypothesis cannot be rejected. Therefore, the mean number of completed tasks

in the experimental group is not larger than the mean number of completed tasks in the control group.

92

6.2.2.2 Discussion: Task Success in the second Experiment

Of the three experiment sessions at UWC, KeMU and JKUAT, one resulted in a significantly higher

number of attempted tasks in the experimental group than in the control group, and two resulted in

significantly higher number of completed tasks in the experimental groups than in the control groups.

Further, some learners at UWC’s experimental group were able to complete the third task while no

learner in the control group completed the same task. These results indicate that the scaffolding

techniques enabled completion of more programming tasks than the non-scaffolded environment.

A further analysis was conducted to understand the results at JKUAT. It was noted that learners

in the control group accessed previously attempted programs that were stored on the mobile phone,

and reloaded them to the interface to edit them. This could be because learners found it cumbersome

to type each program from scratch on the small interface of the mobile phone. It could also be attributed

to how leaners construct programs on a PC by copying old programs to the programming environment

and editing them to suit a new program.

These results warranted further study where learners in both the control and experimental

groups could write the programming tasks from scratch, and hence provide a uniform baseline for both

groups. Further, in order to understand why learners were not able to attempt all tasks, the post-

experiment questionnaire was redesigned to include a relevant question. In addition, since the results

from KeMU were not used for the entire analysis, there was a need to conduct additional experiments

in order to strengthen the conclusions. Consequently, a third experiment was conducted.

6.2.3 Third Experiment

6.2.3.1 Results: Task success

In this experiment, explicit instructions were issued to learners to write all programs from scratch.

Examination of the logs revealed that learners in both groups followed this instruction, which

eliminated the bias of one group simply editing previously completed programs.

Table 6.8 shows the number of learners who attempted and completed each task in the

experimental groups at KeMU and JKUAT. Table 6.9 shows the number of learners who attempted

and completed each task in the control groups at KeMU and JKUAT. The raw data for the number of

tasks attempted and completed per user at KeMU and JKUAT are shown in Appendices G4 and G5,

respectively. An independent sample t-test was conducted to compare the number of attempted tasks

for the experimental groups and the number of attempted tasks for the control groups. Similarly, an

independent sample t-test was conducted to compare the number of completed tasks for the

experimental groups and the number of completed tasks for the control groups. Table 6.10 presents the

statistical results for attempted and completed tasks in the third experiment.

93

Table 6.8: Number of learners who attempted and completed tasks in the Experimental groups

at KeMU and JKUAT in the third Experiment

 KeMU JKUAT

 Attempted Completed Attempted Completed

Task 1 13 9 24 18

Task 2 11 8 19 17

Task 3 7 5 20 12

Task 4 1 0 12 7

Task 5 0 0 6 3

Task 6 0 0 5 3

Table 6.9: Number of learners who attempted and completed each task in the Control groups

at KeMU and JKUAT in the third Experiment

 KeMU JKUAT

 Attempted Completed Attempted Completed

Task 1 11 3 24 9

Task 2 8 1 14 8

Task 3 1 0 11 4

Task 4 0 0 4 0

Task 5 0 0 2 0

Task 6 0 0 2 0

Table 6.10: Statistical task success results for attempted and completed tasks in the third

Experiment

 Attempted Tasks Completed tasks

Institution Statistical

Metric

Experimental

Group

Control

Group

Experimental

Group

Control

Group

KeMU

M 2.46 1.82 1.69 0.36

SD 0.97 0.60 1.03 0.50

t t (20) = 1.8 t (18) = 4.10

p 0.03 0.0003

JKUAT

M 3.58 2.36 2.50 0.86

SD 1.56 1.41 1.87 1.19

t t (46) = 2.82 t (39) = 3.59

p 0.004 0.0004

At KeMU, there was a significant difference between the mean number of attempted tasks in

the experimental group the mean number of attempted tasks in the control group. With a p-value of

0.03, the first null hypothesis is rejected in favor of the first alternate hypothesis. Therefore, the mean

number of attempted tasks in the experimental group is larger than the mean number of attempted tasks

in the control group. Similarly, there was a significant difference between the mean number of

94

completed tasks in the experimental group at KeMU and the mean number of completed tasks in the

control group. With a p-value of 0.0003, the second null hypothesis is rejected in favor of the second

alternate hypothesis. Therefore, the mean number of completed tasks in the experimental group is

larger than the mean number of completed tasks in the control group.

At JKUAT, there was a significant difference between the mean number of attempted tasks in

the experimental group and the mean number of attempted tasks in the control group. With a p-value

of 0.004, the first null hypothesis is rejected in favor of the first alternate hypothesis. Therefore, the

mean number of attempted tasks in the experimental group is larger than the mean number of attempted

tasks in the control group.

Similarly, there was a significant difference between the mean number of completed tasks in

the experimental group than in the control group. With a p-value of 0.0004, the second null hypothesis

is rejected in favor of the second alternate hypothesis. Therefore, the mean number of completed tasks

in the experimental group is larger than the mean number of attempted tasks in the control group.

6.2.3.2 Discussion: Task Success in the third Experiment

The two experiment sessions at KeMU and JKUAT both resulted in a significantly higher number of

attempted tasks in the experimental group than in the control group. Similarly, both experiment

sessions resulted in a significantly higher number of completed tasks in the experimental groups than

in the control groups. The results from both KeMU and JKUAT indicate that the scaffolding techniques

enabled learners to attempt and complete more programming tasks than the non-scaffolded

environment.

At KeMU, only one learner from both groups was able to attempt any of the last three tasks.

At JKUAT, fewer learners were able to attempt the last three tasks than the first three. At the end of

the experiment session, learners were asked to indicate reasons why they could not attempt all the

tasks. Collectively, the reasons that the learners gave are:

‘time could not allow’, ‘the tasks were a bit challenging for me’, ‘I have very limited Java

knowledge’, ‘I came late to the session so I had limited time to attempt all.’

These reasons indicate that with more time and with sufficient programming background, learners may

be able to attempt, and perhaps complete, more programming tasks using the scaffolding techniques.

6.2.4 Summary of Task Success Results from all the Experiments

Learners in the first experiment were able to complete tasks using the scaffolding techniques. Learners

indicated their most desirable scaffolding techniques as: the program overview that presents a program

in chunks, completing one chunk of a program at a time, the ability to view the full program while

working on the individual chunks, provision of steps that enable the user to interact with the

95

application, dialog prompts that provide default statements that can be reused, and steps that guide the

user on how to interact with the application.

Learners’ experiences and feedback indicated additional scaffolding techniques that could

support programming on a mobile phone and meet learners’ needs: (i) disabling of keywords in the

first few programs; (ii) use of the Scanner class for input; and (iii) use of tabs, dialogs and menu links

that open separate screens for additional scaffolds such as hints and examples. These were

implemented on a second prototype.

Table 6.11 shows the consolidated statistical task success results from the second and third

experiments. Of the five experiment sessions in the second and third experiments, three resulted in a

significantly higher number of attempted tasks in the experimental groups than in the control groups,

and four resulted in a significantly higher number of completed tasks in the experimental groups than

in the control groups.

Collectively, the results for task success indicate that the theoretically-derived scaffolding

techniques enable learners to attempt and complete more programming tasks on a mobile phone than

when using a non-scaffolded environment.

Table 6.11: Statistical task success results in the second and third Experiments for attempted

and completed tasks in Experimental and Control groups

 Second Experiment Third Experiment

 Attempted Tasks Completed Tasks Attempted Tasks Completed Tasks

Insti-

tution

Statistical

Metric

Experi-

mental

Control Experi-

mental

Control Experi-

mental

Control Experi-

mental

Control

KeMU

M 2.57 2.29 1.57 0.71 2.46 1.82 1.69 0.36

SD 0.53 0.49 0.53 0.75 0.97 0.60 1.03 0.50

t t (12) = 1.04 t (11) = 2.44 t (20) = 1.8 t (18) = 4.10

p 0.16 0.02 0.03 0.0003

UWC

M 2.29 1.54 1.57 0.69

SD 1.07 0.88 1.02 0.63

t t (25) = 1.99 t (22) = 2.72

p 0.03 0.006

JKUAT

M 2.38 2.50 1.23 1.44 3.58 2.36 2.50 0.86

SD 1.04 -0.33 1.17 0.89 1.56 1.41 1.87 1.19

t t (22) = 1.04 t (22) = 0.52 t (46) = 2.82 t (39) = 3.59

p 0.37 0.30 0.004 0.0004

96

6.3 Time-on-task

Time-on-task was measured in the second and third experiments in four ways: (i) time on incomplete

tasks; (ii) time on complete tasks; (iii) total time on tasks; and (iv) comparison of times on complete

tasks from one task to another. For each experiment, results are presented first, followed by a

discussion. In all the experiments, computer logs were used to record time-on-task.

To recap, the derived hypotheses for complete tasks were:

H0: The mean completion time in the experimental group is not less than the mean completion time

in the control group. This is the first null hypothesis.

H1: The mean completion time in the experimental group is less than the mean completion time in the

control group. This is the first alternate hypothesis.

The derived hypotheses for incomplete tasks were:

H0: The mean time on incomplete tasks in the experimental group is not less than the mean time on

incomplete tasks in the control group. This is the second null hypothesis.

H1: The mean time on incomplete tasks in the experimental group is less than the mean time on

incomplete tasks in the control group. This is the second alternate hypothesis.

An independent sample t-test was conducted to compare the completion time for the

experimental groups and the completion time for the control groups. Similarly, an independent sample

t-test was conducted to compare the time on incomplete tasks for the experimental groups and the time

on incomplete tasks for the control groups.

6.3.1 Second Experiment

6.3.1.1 Results: Time-on-Task

Figure 6.17 shows the time-on-task distributions for experimental and control groups at UWC.

Figure 6.17: Box plots showing time-on-task for incomplete tasks, completed tasks and total

time for Experimental and Control group at UWC, Experiment 2

Time on

incomplete tasks

Time on complete

tasks

Total time on

tasks

Time on

incomplete tasks

Time on complete

tasks

Total time on

tasks

0

10

20

30

40

50

60

70

T
im

e
in

 m
in

u
te

s

Experimental Group Control Group

Mean

97

Figure 6.18: Box plots showing time-on-task distribution for incomplete tasks, completed tasks

and total time on task for Experimental and Control groups at JKUAT, Experiment 2

Table 6.12: Statistical time-on-task results for all complete and incomplete tasks in the second

Experiment

 Completed tasks Incomplete tasks

Institution Statistical

Metric

Experimental Control Experimental Control

UWC

M 20.76 22.18 7.51 21.70

SD 9.99 8.05 6.34 12.74

t t(18) = 0.41 t(15) = -3.27

p 0.34 0.003

JKUAT

M 22.46 22.44 34.00 30.86

SD 17.77 13.00 28.27 21.74

t t(26) = 0.004 t(26) = 0.34

p 0.49 0.37

The Raw data for UWC is in Appendix H1. Figure 6.18 shows the time-on-task distributions for

experimental and control groups at JKUAT (Raw data in Appendix H2). Table 6.12 shows the

statistical results for all complete and incomplete tasks in the second experiment.

There was no significant difference in mean completion time between the experimental group

and the control group at UWC. With a p-value of 0.34, the first null hypothesis cannot be rejected.

Therefore, the mean completion time in the experimental group is not less than the mean completion

Time on

incomplete

tasks

Time on

complete tasks

Total time on

tasks

Time on

incomplete

tasks

Time on

complete tasks

Total time on

tasks

0

20

40

60

80

100

120

140

160

T
im

e
in

 m
in

u
te

s

Experimental Group Control Group

98

time in the control group. There was a significant difference between the mean time on incomplete

tasks in the experimental group at UWC and the mean time on incomplete tasks in the control group.

With a p-value of 0.003, the second null hypothesis is rejected in favor of the second alternate

hypothesis. Therefore, the mean time on incomplete tasks in the experimental group is less than the

mean time on incomplete tasks in the control group.

There was no significant difference in mean completion time between the experimental group

and the mean completion time in control group at JKUAT. With a p-value of 0.49, the first null

hypothesis cannot be rejected. Therefore, the mean completion time in the experimental group is not

less than the mean completion time in the control group.

The experimental group at JKUAT had an outlier who completed tasks in longer times than

normal. To determine whether the outlier influenced results for completion rates, the analysis was

conducted twice, with the outlier and without the outlier. Both analyses concluded that there was no

significant difference in in mean time on completed tasks between the experimental and control groups.

Both p-values were above a significance level of 0.05 (p = 0.49 with outliers and p = 0.32 without

outliers).

There was no significant difference between the mean time on incomplete tasks in the

experimental group at JKUAT and the mean time on incomplete tasks in the control group. With a p-

value of 0.37, the second null hypothesis cannot be rejected. Therefore, the mean time on incomplete

tasks in the experimental group is not less than the mean time on incomplete tasks in the control group.

Figure 6.19 shows the time-on-task for each of the completed tasks in the experimental and

control groups at UWC. These three tasks are considered because they were the ones completed by

more than one learner in either of the groups. Figure 6.20 shows the time distributions for the first two

Figure 6.19: Box plot showing time on completed tasks per-task in the Experimental and

Control group at UWC, Experiment 2

Task 1

Task2

Task 3

Task 1

Task 2

5

15

25

35

45

T
im

e
in

 m
in

u
te

s

Experimental Group Control Group

Mean

99

Figure 6.20: Box plot showing time on completed tasks per-task for Experimental and Control

group at JKUAT, Experiment 2

Table 6.13: Statistical time-on-task results per completed task in the second Experiment

 Task 1 Task 2 Experimental Control

Instit

ution

Statistical

Metric

Experiment

al

Control Experiment

al

Control Task

1

Task

2

Task

1

Task

2

UWC

M 26.2 22.71 15.61 20.33 26.2 15.61 22.71 20.33

SD 9.90 9.07 2.99 4.12 9.90 2.99 9.07 4.12

t t(14) = 0.78 t(1) = -1.63 t (14) = 3.57 t (4) = 0.53

p 0.22 0.17 0.002 0.31

JKU

AT

M 13.92 15.86 35.11 28.96 13.92 35.11 15.86 28.96

SD 8.90 8.25 24.31 14.89 8.90 24.31 8.25 14.89

t t(16) = -0.48 t(5) = 0.52 t (5) = -1.88 t (16) = -2.49

p 0.32 0.31 0.06 0.01

completed tasks in the experimental and control groups at JKUAT. These two tasks are considered

because they were the ones completed by more than one learner in both groups. Table 6.13 shows the

statistical results per completed task at UWC and JKUAT. In this table, the first two tasks are

considered because they were the ones completed in both the control and experimental groups at UWC

and JKUAT.

There was no significant difference in mean completion time for the first two tasks in both

groups at UWC. For example, there was no significant difference in mean completion time for the first

task in the experimental group and the first task in the control group. Similarly, there was no significant

difference in mean completion time for the second task in the experimental group and the second task

Task 1

Task 2

Task 1

Task 2

0

10

20

30

40

50

60

70

80

90

T
im

e
in

 m
in

u
te

s

Experimental Group Control Group

Mean

100

in the control group. With both p-values > 0.05, the first null hypothesis cannot be rejected. Therefore,

the mean completion time per task in the experimental group is not less than the mean completion time

per task in the control group.

At UWC, learners in the experimental group spent a significantly shorter time on the second

task than the first task. For example, there was a significant difference in mean completion time on the

second task (M = 15.61, SD = 2.99) in comparison to the first task (M = 26.2, SD = 9.90), t (14) = 3.57,

p = 0.002. On the other hand, the control group showed a non-significant difference in mean

completion time in the second task (M = 20.33, SD = 4.12) in comparison to the first task (M = 22.71,

SD = 9.07), t (4) = 0.53, p = 0.31. Therefore, the mean completion time for subsequent tasks after the

first in the experimental group is less than the mean completion time for subsequent tasks after the first

in the control group.

At JKUAT, there was no significant difference in the mean completion time for the first two

tasks in both groups. For example, there was no significant difference in mean completion time for the

first task between the experimental group and the first task in the control group. Similarly, there was

no significant difference in mean completion time for the second task in the experimental group and

the second task in the control group. With both p-values > 0.05, the first null hypothesis cannot be

rejected. Therefore, the mean completion time per task in the experimental group is not less than the

mean completion time per task in the control group.

At JKUAT, there was no significant difference between the mean completion time in the first

task in the experimental group (M = 13.92, SD = 8.90) and the mean completion time in the second

task in the experimental group (M = 35.11, SD = 24.31), t (5) = -1.88, p = 0.06. On the other hand,

there was a significant difference between the mean completion time in the first task in the control

group (M = 15.86, SD = 8.25) and the mean completion time in the second task in the control group

(M = 28.96, SD = 14.89) t (16) = -2.49, p = 0.01. Therefore, the mean completion time for subsequent

tasks after the first in the experimental group is not less than the mean completion time for subsequent

tasks after the first in the control group.

6.3.1.2 Discussion: Time-on-Task in the second Experiment

Results from UWC and JKUAT indicate that the mean completion time in the experimental group is

not less than the mean completion time in the control group. This is supported by results that indicate

that the mean completion time per task in the experimental group is not less than the mean completion

time per task in the control group. This shows that the scaffolding techniques did not enable faster

completion times than the non-scaffolded environment. Further, as reported in the results for task

success for JKUAT, the learners in the control group edited previously completed programs as opposed

101

to starting programs from scratch. This shows that for the second experiment, learners in the control

group had an advantage over learners in the experimental group.

Results from UWC indicate that the mean time on incomplete tasks in the experimental group

is less than the mean time on incomplete tasks in the control group. This shows that learners using the

scaffolding techniques were able to reach failure states quicker and could move on to other tasks, as

opposed to learners in the control group who spent longer on unsuccessful tasks. However, results

from JKUAT indicate that the mean time on incomplete tasks in the experimental group is not less

than the mean time on incomplete tasks in the control group. This shows that the scaffolding techniques

did not enable learners to reach failure states quicker than the non-scaffolded environment.

Lastly, results from UWC indicate that learners in the experimental group spent significantly

shorter times in subsequent tasks after the first task. In comparison, learners in the control group did

not show this trend. This indicates the learnability of the scaffolded environment. However, results

from JKUAT indicate that there was no significant difference between the mean completion time in

the first task in the experimental group and subsequent tasks. On the other hand, learners in the control

group took a significantly longer time on the second task than on the first task. This shows that the

scaffolding techniques did not enable faster completion times in subsequent tasks after the first.

6.3.2 Third Experiment

6.3.2.1 Results: Time-on-Task

Figure 6.21 shows the time-on-task distributions for experimental and control groups at KeMU

including all incomplete tasks (Raw data in Appendix H3). Figure 6.22 shows the time-on-task

Figure 6.21: Box plots showing time-on-task distribution for incomplete tasks, completed tasks

and total time on task for Experimental and Control groups at KeMU, Experiment 3

Time on all

incomplete

tasks

Time on

complete tasks

Total time on

tasks

Time on

incomplete

tasks

Time on

complete tasks

Total time on

tasks

0

10

20

30

40

50

60

70

80

90

100

T
im

e
in

 m
in

u
te

s

Experimental Group Control Group

Mean

Outliers(1)

Outliers(2)

102

Figure 6.22: Box plots showing time-on-task distribution for all incomplete tasks, completed

tasks and total time on task for Experimental and Control groups of JKUAT, Experiment 3

Table 6.14: Statistical time-on-task results for all complete and incomplete tasks in the third

Experiment

 Completed tasks Incomplete tasks

Institution Statistical

Metric

Experimental Control Experimental Control

KeMU

M 20.88 27.36 30.65 33.39

SD 15.01 13.59 21.41 16.77

t t (4) = 0.86 t (16) = -3.44

p 0.22 0.37

JKUAT

M 15.82 18.75 22.84 31.39

SD 11.15 7.51 17.66 19.92

t t (52) = 1.34 t (57) = -1.78

p 0.09 0.04

distributions for experimental and control groups at JKUAT, including all incomplete tasks (Raw data

in Appendix H4). Table 6.14 shows the statistical results for all complete and incomplete tasks in the

third experiment.

 There was no significant difference in mean completion time between the experimental group

at KeMU and the control group. With a p-value of 0.22, the first null hypothesis cannot be rejected.

Time on all

incomplete

tasks

Time on

complete tasks

Total time on

tasks

Time on

incomplete

tasks

Time on

complete tasks

Total time on

tasks

0

20

40

60

80

100

120

140

T
im

e
in

 m
in

u
te

s
Experimental Group Control Group

Mean

103

Therefore, the mean completion time in the experimental group is not less than the mean completion

time in the control group.

There was no significant difference between the mean time on incomplete tasks in the

experimental group at KeMU and the mean time on incomplete tasks in the control group. With a p-

value of 0.37, the second null hypothesis cannot be rejected. Therefore, the mean time on incomplete

tasks in the experimental group is not faster than the mean time on incomplete tasks in the control

group.

There were two kinds of incomplete tasks: those that had all parts completed but contained

errors; and those that had only some parts completed. An additional analysis was conducted on the

data from KeMU to examine if there was a significant difference on time of incomplete programs

between the two types. Both analyses concluded that there was no significant difference in mean time

on incomplete tasks between the experimental and control groups for the two types of incomplete

programs.

There was no significant difference in mean completion time at JKUAT between the

experimental group and the control group. With a p-value of 0.09, the first null hypothesis cannot be

rejected. Therefore, the mean completion time in the experimental group is not faster than the mean

completion time in the control group.

There was a significant difference between the mean time on all incomplete tasks in the

experimental group at JKUAT and the mean time on all incomplete tasks in the control group. With a

p-value of 0.04, the second null hypothesis is rejected in favor of the second alternate hypothesis.

Therefore, the mean time on incomplete tasks in the experimental group is faster than the mean time

on incomplete tasks in the control group. A further analysis was conducted with only full incomplete

tasks on the data from JKUAT. The analysis concluded that there was also no significant difference in

mean time on incomplete tasks between the experimental and control groups for the full incomplete

programs.

Figure 6.23 shows the time-on-task for each of the completed tasks in the experimental and

control groups at KeMU. Figure 6.24 shows the time-on-task for each of the completed tasks in the

experimental and control groups at JKUAT. Table 6.15 shows the statistical results per completed task

at KeMU and JKUAT in the third experiment.

There was no significant difference between the mean completion time for the first task in the

experimental group at KeMU and the mean completion time for first task in the control group. With a

p-value of 0.40, the first null hypothesis cannot be rejected. Because only one learner completed the

second task in the control group at KeMU, no further statistical analysis could be performed on the

second task.

104

Figure 6.23: Box plot showing task completion rates across completed tasks for Experimental

and Control groups at KeMU, Experiment 3

Figure 6.24: Box plot showing task completion rates across completed tasks for Experimental

and Control groups at JKUAT, Experiment 3

Task 1

Task 2 Task 3

Task 1

Task 2

0

10

20

30

40

50

60

70

80
T

im
e

in
 m

in
u

te
s

Experimental Group Control Group

Mean

Outliers(1)

Outliers(2)

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 1

Task 2

Task 3

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 i

n
 m

in
u

te
s

Experimental Group Control Group

Mean

105

Table 6.15: Statistical time-on-task results per completed task in the third Experiment

 Task 1 Task 2 Task 3

Institution Statistical

Metric

Experimental Control Experimental Control Experimental Control

KeMU

M 34.99 33.35 11.83 9.39 9.97 -

SD 13.47 7.86 3.45 0 5.40 -

t t (6) = 0.26 t(8) = 1.87 -

p 0.40 - -

JKUAT

M 23.53 19.56 9.42 15.56 15.16 24.25

SD 10.69 7.79 5.59 6.99 13.00 5.66

t t (21) = 1.09 t (11) = -2.18 t (12) = -1.93

p 0.14 0.03 0.04

There were outliers in the mean completion time for the first task. To determine whether the outliers

influenced results for the first task, the analysis was conducted twice, with outliers and without outliers.

The second analysis (without outliers) concluded there was still no significant difference in mean

completion time on the first task between the experimental and control groups.

Figure 6.24 shows the time distributions for only the completed tasks in the experimental and

control groups at JKUAT. There was no significant difference in the mean completion time in the first

task in the experimental group and the mean completion time in the first task in control group. With

a p- value of 0.14, the first null hypothesis cannot be rejected. Therefore, the mean completion time

for the first task in the experimental group is less than the mean completion time for the first task in

the control group.

However, there was a significant difference in the mean completion time in the second task in

the experimental group and the mean completion time in the second task in the control group.

Similarly, there was a significant difference in the mean completion time in the third task in the

experimental group and the third task in the control group. With both p-values < 0.05 in the second

and third tasks, the first null hypothesis is rejected for these tasks in favor of the alternate hypothesis.

Therefore, the mean completion time for the second task in the experimental group is less than the

mean completion time for the second task in the control group. Similarly, the mean completion time

for the third task in the experimental group is less than the mean completion time for the third task in

the control group.

106

6.3.2.2 Discussion: Time-on-Task in third Experiment

Results from KeMU and JKUAT indicate that the mean completion time in the experimental group is

not less than the mean completion time in the control group. This is supported by results from KeMU

that indicate that the mean completion time per task in the experimental group is not less than the mean

completion time per task in the control group. This shows that the scaffolding techniques did not enable

faster completion times than the non-scaffolded environment.

However, results from JKUAT indicate that the mean completion times for the second and third

tasks in the experimental group are less than the mean completion time for the second and third tasks

in the control group. These results indicate that after the initial familiarization with a new environment,

learners using the scaffolding techniques were able to complete tasks significantly faster than learners

using the non-scaffolded environment. This indicates the learnability of the scaffolded environment.

Lastly, results indicate that the mean time on incomplete tasks in the experimental group is not

less than the mean time on incomplete tasks in the control group. This shows that the scaffolding

techniques did not enable learners to reach failure states quicker than the non-scaffolded environment.

6.3.3 Summary of Time-on-Task Results

Table 6.16 shows the consolidated statistical time-on-task results in the second and third experiments.

Table 6.16: Statistical time-on-task results in the second and third Experiments for attempted

and completed tasks in Experimental and Control groups

 Second Experiment Third Experiment

 Completed tasks Incomplete tasks Completed tasks Incomplete tasks

Insti-

tution

Statistical

Metric

Experi-

mental

Control Experi-

mental

Control Experi-

mental

Control Experi-

mental

Control

UWC

M 20.76 22.18 7.51 21.70

SD 9.99 8.05 6.34 12.74

t t(18) = 0.41 t(15) = -3.27

p 0.34 0.003

KeMU

M 20.88 27.36 30.65 33.39

SD 15.01 13.59 21.41 16.77

t t (4) = 0.86 t (16) = -3.44

p 0.22 0.37

JKUAT

M 22.46 22.44 34.00 30.86 15.82 18.75 22.84 31.39

SD 17.77 13.00 28.27 21.74 11.15 7.51 17.66 19.92

t t(26) = 0.004 t(26) = 0.34 t (52) = 1.34 t (57) = -1.78

p 0.49 0.37 0.09 0.04

107

In all the four experiment sessions, the mean completion time in the experimental group was not less

than the mean completion time in the control group. This was supported by results from UWC, JKUAT

and KeMU that indicated that that the mean completion time per task in the experimental group is not

less than the mean completion time per task in the control group. These results indicate that the

scaffolding techniques did not enable faster completion times than the non-scaffolded environment.

Results from the second experiment at UWC and the third experiment at JKUAT indicated that

learners using the scaffolding techniques may reach failure states quicker than those who used the non-

scaffolded environment.

Lastly, results from the second experiment at UWC and the third experiment at JKUAT indicate

that after the initial familiarization with a new environment, learners using the scaffolding techniques

are able to complete tasks significantly faster than learners using the non-scaffolded environment. This

also indicates the learnability of the scaffolded environment.

6.4 Efficiency

Efficiency was measured by calculating the ratio of task completion rate and the mean time-on-task,

where task completion rate is the percentage of participants who completed each task. Mean time-on-

task is the average time spent on all tasks, complete and incomplete. Therefore, for each of the four

experiment sessions that contained experimental and control groups, the number of completed tasks

and the mean time on all tasks were used to calculate efficiency for each task.

Table 6.17 and Table 6.18 show the efficiency calculations for UWC and JKUAT in the second

experiment. Table 6.19 and Table 6.20 show the efficiency calculations for KeMU and JKUAT in the

third experiment. The efficiency ratio was calculated for all the tasks completed by at least one learner,

in both control and experimental groups. The dashes in the tables indicate where there was no learner

who completed the task. For example, to calculate the efficiency for the first task in the second

experiment at UWC, the number of learners who completed the tasks in the control group was 7 out

of 12 while that in the experimental group was 12 out of 14. The completion rates are 58% for control

group and 85% for experimental group. The mean time for the first task (including incomplete and

complete attempts) in the control and experimental group was 26.20 minutes and 23.93 minutes,

respectively. Therefore, the efficiency ratios for the first task for the control group and the experimental

group are 2.21 and 3.55 respectively. This shows that learners in the experimental group were more

efficient in completing the first task than learners in the control group.

108

Table 6.17: Task completion rate, Average task time and Efficiency calculations for UWC,

Experiment 2

 Experimental Group Control Group

 Completion

rate %

Mean task

time on all

tasks

Efficiency Completion

rate %

Mean task time

on all tasks

Efficiency

Task 1 85 23.93 3.55 58 26.20 2.21

Task 2 70 13.45 5.20 33 19.57 1.69

Task 3 50 9.12 5.48 - - -

Table 6.18: Task completion rate, Average task time and Efficiency calculations for JKUAT,

Experiment 2

 Experimental Group Control Group

 Completion

rate %

Mean task

time on all

tasks

Efficiency Completion

rate %

Mean task time

on all tasks

Efficiency

Task 1 69 18.75 3.68 82 16.55 4.95

Task 2 50 45.61 1.09 79 31.97 2.47

Task 3 20 17.49 1.14 17 30.07 0.57

Task 4 50 31.35 1.59 50 22.00 2.27

Table 6.19: Task completion rate, Average task time and Efficiency calculations for KeMU,

Experiment 3

 Experimental Group Control Group

 Completion

rate %

Mean task

time on all

tasks

Efficiency Completion

rate %

Mean task time

on all tasks

Efficiency

Task 1 69 36.29 1.90 27 37.96 0.71

Task 2 72 13.43 5.36 13 27.32 0.47

Task 3 71 11.69 6.07 - - -

109

Table 6.20: Task completion rate, Average task time and Efficiency calculations for JKUAT,

Experiment 3

 Experimental Group Control Group

 Completion

rate %

Mean task

time on all

tasks

Efficiency Completion

rate %

Mean task time

on all tasks

Efficiency

Task 1 75 29.17 2.57 38 34.92 1.09

Task 2 89 9.40 9.47 57 21.00 2.71

Task 3 60 16.73 3.59 36 20.27 1.78

Task 4 58 18.86 3.08 - - -

Task 5 50 5.91 8.46 - - -

Task 6 60 15.47 3.87 - - -

The results show that, apart from the second experiment at JKUAT, the ratios between task

completion rate and the mean time-on-task in the experimental groups are higher than the ratios

between task completion rate and the mean time-on-task in the control groups. Therefore, the

efficiency ratio is higher in all these experimental groups than in the control groups.

The results from the second experiment at JKUAT could be explained by learners in the control

group completing more tasks. As was explained in the results for task success, this was attributed to

learners in the control group editing previously completed programs as opposed to starting them from

scratch.

These results indicate that the scaffolding techniques enabled learners to complete

programming tasks more efficiently than the non-scaffolded environment.

6.5 Errors

Errors were measured by investigating the number of run-time errors for all the programs in the control

and experimental group and the errors that triggered scaffolding techniques that offered support for

error detection, only for the experimental group.

To recap, the derived hypotheses were:

H0: The mean number of run-time errors encountered in the experimental group is not lower than the

mean number of run-time errors encountered in the control group. This is the null hypothesis.

H1: The mean number of run-time errors encountered in the experimental group is lower than the mean

number of run-time errors encountered in the control group. This is the alternate hypothesis.

110

An independent sample t-test was conducted to compare the number of run-time errors in the

experimental group and the number of run-time errors in the control group.

 Results from the second and third experiments are presented first, followed by a discussion.

6.5.1 Second Experiment

Table 6.21 shows the statistical results on the mean number of errors for all tasks, first task and second

tasks in the second experiment. The first analysis was conducted on the mean number of errors for all

the tasks. There was a significant difference between the mean number of run-time errors encountered

on all the tasks in the experimental group at UWC and the mean number of run-time errors encountered

on all the tasks in the control group. With a p-value of 0.0004, the null hypothesis is rejected in favor

of the alternate hypothesis. Therefore, the mean number of run-time errors encountered in the

experimental group at UWC is lower than the mean number of run-time errors encountered in the

control group.

On the contrary, there was no significant difference between the mean number of run-time

errors encountered on all the tasks in the experimental group at JKUAT and the mean number of run-

time errors encountered on all the tasks in the control group. With a p-value of 0.41, the null hypothesis

cannot be rejected. Therefore, the mean number of run-time errors encountered in the experimental

group at JKUAT is not lower than the mean number of run-time errors encountered in the control

group.

A second analysis was conducted on the mean number of run-time errors per task, as shown in

Table 6.22. There was a significant difference between the mean number of run-time errors

encountered on the first task in the experimental group at UWC and the mean number of run-time

Table 6.21: Statistical results on the mean number of errors for all tasks, first task, and second

task at UWC and JKUAT in the second experiment

 All tasks Task 1 Task2 Task 3

Institution Statistical

Metric

Experi

mental

Control Experi

mental

Control Expei

mental

Control Experi

mental

Control

UWC

M 1.93 6.41 1 7.61 3 3

SD 1.43 4.38 0 4.33 1.41 2.64

t t(20) = -3.97 t (12) = -5.50 t (3) = -5.50

p 0.0004 p = 0.00006 p = 0.05

JKUAT

M 5.5 5.11 4 3.55 7.57 5.66 3 5.66

SD 5.70 3.61 3.60 2.00 7.36 4.37 2.82 3,91

t t(17) = 0.23 t (2) = 0.20 t (9) = 0.62 t (2) = -1.16

p 0.41 0.42 0.27 0.18

111

errors encountered on the first task in the control group. With a p-value of 0.00006, the null hypothesis

is rejected in favor of the alternate hypothesis. Therefore, the mean number of run-time errors

encountered in the experimental group at UWC is lower than the mean number of run-time errors

encountered in the control group.

However, there was no significant difference between the mean number of run-time errors

encountered in the second task in the experimental group at UWC and the mean number of run-time

errors encountered on the second task in the control group. With a p-value of 0.05, the null hypothesis

cannot be rejected. Therefore, the mean number of run-time errors encountered in the experimental

group at UWC is not lower than the mean number of run-time errors encountered in the control group.

Statistical analysis was not performed on the third and fourth tasks because these had only one learner

each attempting these tasks in the control group.

At JKUAT, there was no significant difference between the mean number of run-time errors

encountered in the first three tasks in the experimental group and the mean number of run-time errors

encountered in the first three tasks in the control group. With all p-values > 0.05, the null hypothesis

cannot be rejected for these tasks. Therefore, the mean number of run-time errors encountered in the

experimental group is not lower than the mean number of run-time errors encountered in the control

group. Statistical analysis was not performed on the fourth and fifth tasks because these had only one

learner with errors each in the experimental group.

Table 6.22 shows that most of the error prompts were encountered in the first three programs.

A further analysis was conducted on UWC’s and JKUAT’s experimental group data to investigate

which parts of the programs that the error prompts occurred. Appendices K1 and K2 contain the raw

data that was used to conduct this analysis. The results revealed that most of the error prompts occurred

in the main class chunk. Examples of the error prompts displayed to the learners are when the main

class does not begin with an upper case letter (Figure 6.25 in italics) and some in the main method

where a learner did not correctly complete the for-loop declaration (Figure 6.26 in italics).

Additional analysis on the data from the second experiment revealed that learners in the control

group had syntactical errors that could be reduced by scaffolding techniques found in the scaffolded

environment. For example, Figure 6.27 shows a program of a learner in the control group in which the

keywords ‘String’ and ‘System’ were written with a lower case ‘s’ (in bold). In the scaffolded

environment, a scaffolding technique that provides default statements such as ‘System.out.println()’

reduces the occurrence of such syntax errors. It was noted that none of the programs written by learners

in the control group contained header comments (as can be seen from Figure 6.27); this is as opposed

to the scaffolded environment that guides the learner to create header comments.

112

Table 6.22: Mean number of run-time errors and scaffolded errors in attempted tasks

(per task) at UWC and JKUAT Second Experiment

 UWC JKUAT

Average number of

errors per learner

Average

number of

error prompts

per learner

Average number of

errors per learner

Average

number of

error

prompts per

learner

Experimental Control Experimental Experimental Control Experimental

Program 1 1 8 1 4 4 2

Program 2 3 3 1 8 6 2

Program 3 3 2 2 3 6 1

Program 4 3 2 - 4 5 -

Program 5 - - - 2 7 -

Figure 6.25: Error prompt showing incorrect creation of the main class

Figure 6.26: Error prompt showing incorrect completion of the for-loop

Figure 6.27 A program showing the Keywords ‘String’ and ‘System’ written in lower case ‘s’

(in bold)

Main Class Button Pre

Main Class Child

Started at Basic Interface

Editor

Main class Error classname does not begin with an upper case

Main Method Button Pre

Main Method Child

Editor

System.out.println selected from statement dialog

for-loop selected from statement dialog

Main Method Error: A for loop syntax doesnt have two

commas within the declaration

113

6.5.2 Third Experiment

For the third experiment, JKUAT is used to illustrate the results on errors since it had the highest

number of participants in both the control and the experimental groups. Table 6.23 shows the statistical

results on the mean number of errors for all tasks, first, second and third tasks in the third experiment

at JKUAT.

There was a significant difference between the mean number of run-time errors encountered in

all the tasks in the experimental group at JKUAT and the mean number of run-time errors encountered

on all the tasks in the control group. With a p-value of 0.0003, the null hypothesis is rejected in favor

of the alternate hypothesis. Therefore, the mean number of run-time errors encountered in the

experimental group at is lower than the mean number of run-time errors encountered in the control

group.

Table 6.23 shows that the average number of run-time errors encountered per task in the non-

scaffolded environment is significantly higher than the average number of run-time errors encountered

in the scaffolded environment. For example, there was a significant difference between the mean

number of run-time errors encountered in the first, second and third tasks in the experimental group

and the mean number of run-time errors encountered in these tasks in the control group. With p-values

< 0.05, the null hypothesis is rejected in favor of the alternate hypothesis. Therefore, the mean number

of run-time errors encountered in the experimental group for these tasks is lower than the mean number

of run-time errors encountered in the control group.

A further analysis was conducted on JKUAT’s experimental group data to investigate where

most of the error prompts occurred. Appendix K3 shows the raw data that was used to conduct this

analysis. Table 6.24 shows that most of the error prompts were encountered in the first program, at

two error prompts on average per learner. The additional analysis revealed that most of the error

prompts were encountered within the main class chunk. Examples of the error prompts displayed to

Table 6.23: Statistical results on the mean number of errors for all tasks, first, second and

third tasks at JKUAT in the third experiment

 All tasks Task 1 Task2 Task 3

 Statistical

metric

Experi

mental

Control Experi

mental

Control Experi

mental

Control Experi

mental

Control

JKUAT

M 1.78 5.02 2.05 5.83 1.6 3.83 1.75 7

SD 1.08 5.39 1.16 7.03 0.91 3.15 1.30 3.42

t t (40) = -3.64 t (18) = -2.24 t (14) = -2.28 t (4) = -3.97

p 0.0003 0.018. 0.019 0.008

114

Table 6.24: Average number of run-time errors and scaffolded errors in attempted tasks in

control and experimental groups, JKUAT Third Experiments

 JKUAT

Average number of errors per

learner

Average number of error prompts

per learner

Experimental Control Experimental

Program 1 2 6 2

Program 2 2 4 1

Program 3 2 6 1

Program 4 1 5 1

Program 5 1 1 1

Program 6 1 1 1

Figure 6.28: Error prompts encountered within the main class in italics

Figure 6.29: Error prompts encountered within the main method in italics

the learners are the main class containing special characters (Figure 6.28 in italics) and some in the

main method where a learner wrote public, void or return statement within the main method (Figure

6.29 in italics).

6.5.3 Discussion: Error Results from the Second and Third Experiments

Table 6.25 shows the error results from the second and third experiments at UWC and JKUAT on all

tasks and the first three tasks. Of the three experiment sessions, two resulted in a significantly lower

mean number of errors across all the tasks in the experimental group than in the control group. Further,

the first task at UWC (second experiment) and the first three tasks at JKUAT (third experiment)

resulted in a significantly lower mean number of errors in the experimental group than in the control

115

group. The results indicate that scaffolding techniques may lead to fewer run-time errors. Further,

additional analyses indicate that the scaffolding techniques may capture some syntactical errors that a

non-scaffolded environment may not.

Table 6.25: Statistical error results from the second and third Experiments at UWC and

JKUAT across all tasks and the first three tasks

 All tasks Task 1 Task2 Task 3

 Statistical

metric

Experi

mental

Control Experi

mental

Control Experi

mental

Control Experi

mental

Control

UWC

(Exp 2)

M 1.93 6.41 1 7.61 3 3

SD 1.43 4.38 0 4.33 1.41 2.64

t t(20) = -3.97 t (12) = -5.50 t (3) = -5.50

p 0.0004 p = 0.00006 p = 0.05

JKUAT

(Exp 2)

M 5.5 5.11 4 3.55 7.57 5.66 3 5.66

SD 5.70 3.61 3.60 2.00 7.36 4.37 2.82 3.91

t t(17) = 0.23 t (2) = 0.20 t (9) = 0.62 t (2) = -1.16

p 0.41 0.42 0.27 0.18

JKUAT

(Exp 3)

M 1.78 5.02 2.05 5.83 1.6 3.83 1.75 7

SD 1.08 5.39 1.16 7.03 0.91 3.15 1.30 3.42

t t (40) = -3.64 t (18) = -2.24 t (14) = -2.28 t (4) = -3.97

p 0.0003 0.018 0.019 0.008

6.6 Scaffolding Techniques Used

This section and the next will present which and how scaffolding techniques were used. To organize

the discussion on which scaffolding techniques were used, the three criteria mentioned in the

evaluation chapter (Section 5.5.2) will be used, namely use (initial and reuse), fading of the scaffolds

if any, and how the scaffolding was used from one program to another (progression). Verbatim

feedback is used to illustrate some of the results. In some of the graphs, UWC-2 means the second

experiment at UWC, KeMU-3 means the third experiment at KeMU, and so on.

As was described in Chapter 4, the scaffolded environment provided three kinds of scaffolding

techniques: (i) scaffolding that was static and had to be used to complete a program; (ii) scaffolding

that was automatically provided but could be cancelled or faded over time; and (iii) scaffolding that

was not automatically activated and the learner needed to initiate its use. This section discusses the use

of scaffolding techniques based on these three categories.

116

6.6.1 Use of Static Scaffolding

Static scaffolding was provided using two techniques: (i) a program overview at the main interface;

and (ii) editing of a program one chunk at a time at the editor. The program overview offered a structure

that provided a layout of the program and restricted the construction of a program in a certain order.

The editing screen enabled construction of the program only one part at a time. The program overview

and the editing screen were used to navigate between the program parts and edit them, respectively.

Consequently, these two scaffolding techniques were mostly used to create the programs. Figure 6.30

shows a comparison of the use of static scaffolding techniques in complete and incomplete programs

across the four experiment sessions in the second and third experiments.

Figure 6.30 reveals that there was variation in use of the static scaffolding across the

experiments. For example, in the second experiments at UWC and JKUAT, learners who completed

programs edited the program chunks more than the learners who did not complete programs. Whereas

in the third experiment at KeMU, learners who did not complete programs edited the program chunks

more than the learners who completed programs. This variation in use could be because learners had

to interact with the static scaffolds to construct the programs, whether or not they completed the

programs successfully.

Figure 6.30: Comparison of use of static scaffolding techniques between incomplete and

complete programs at UWC, KeMU and JKUAT in Experiments 2 and 3

0 2 4 6 8 10 12 14 16 18

Complete programs

Incomplete programs

Complete programs

Incomplete programs

Complete programs

Incomplete programs

Complete programs

Incomplete programs

U
W

C
-2

JK
U

A
T

-

2

K
eM

U
-

3

JK
U

A
T

3

Average use per learner

editing program one part at a time program overview

117

Further analysis revealed that the static scaffolds support correct construction of programs on

a mobile phone. Figure 6.31 is used to explain this point. The lines indicate the sequence of interaction

in this section of the learner’s logs. The learner started by clicking on the main class button (line 1)

and then clicked on the main class’ expanded view (main class child) that links to the editor. While at

the editor, the learner attempted to add an extra line while creating the class name. The learner correctly

created the class name and returned to the main interface that contained the program overview (line 6

and 7), and again clicked the main class button and its child to go back to the editor. At the editor, the

learner attempted to add an extra line (line 11) and then deleted the class name that was previously

created, which then restored the main class to the default text (line 12 and 13). Thereafter, the learner

returned to the editor to edit the main class chunk three times, including two more attempts at adding

extra code. The learner eventually proceeded to create the header comment as shown in line 37. This

example has shown that editing a program one part at a time, while providing some restrictions,

enabled the learner to work correctly on only that program part. After the header chunk was unlocked,

the restricted interface enabled the learner to proceed to the next part.

Additional analysis was conducted on the use of static scaffolding across the different tasks.

The results from the third experiment at JKUAT are used to illustrate this because it is the group where

the most number of tasks were attempted and completed. Figure 6.32 shows the progression of use of

static scaffolding from the first program to the sixth program in the third experiment at JKUAT.

Learners used the static scaffolding nearly two times less in the second program than in the first. The

reduced use of the static scaffolding in the second program could be due to learners having familiarized

themselves with the interface, than when they encountered it for the first time in the first program.

These results indicate that the static scaffolding was mostly used in the first program than in subsequent

programs for both incomplete and complete programs. Some of the programs that were completed in

the fourth task were constructed at the advanced interface. This explains the increased use of static

scaffolding since learners encountered this interface for the first time. Further, all the tasks that were

completed in the sixth program were completed within the advanced interface. These tasks required

the construction of a method in addition to the main class, header and main method. This explains the

increased use of static scaffolds at the sixth program.

118

Figure 6.31: A section of a learner’s logs showing several attempts at adding an extra line

within the main class chunk

Line 1 Main Class Button before first edit

Line 2 Main Class Child to editor

Line 3 Editor Instructions at mainclass

Line 4 Editor

Line 5 attempt to add extra line at main class

Line 6 Program overview

Line 7 YourClassnam.java created

Line 8 Main Class Button Post edit

Line 9 Main Class Child to editor

Line 10 Editor

Line 11 attempt to add extra line at main class

Line 12 Classname deleted

Line 13 Main class restored to default value

Line 14 Program overview

Line 15 Main Class Button before first edit

Line 16 Main Class Child to editor

Line 17 Editor

Line 18 Editor Full Program

Line 19 Editor

Line 20 Program overview

Line 21 Main Class Button Post edit

Line 22 Main Class Child to editor

Line 23 Editor

Line 24 Program overview

Line 25 Main Class Button Post edit

Line 26 Main Class Child to editor

Line 27 Editor

Line 28 Classname edited

Line 29 attempt to add extra line at main class

Line 30 Program overview

Line 31 Main Class Button Post edit

Line 32 Main Class Child to editor

Line 33 Editor

Line 34 attempt to add extra line at main class

Line 35 Editor Full Program

Line 36 Program overview

Line 37 Header Button Pre

Line 38 Header Child

119

Figure 6.32: Progression of use of static scaffolding techniques in incomplete and complete

programs at JKUAT Experiment 3

Further evidence that static scaffolding supported construction of programs on a mobile phone

was observed by how learners edited programs after they encountered run-time errors. After learners

encountered run-time errors, they were able to go directly to the program chunk that contained the

erroneous code in order to edit it.

Importantly, learners found the two static scaffolding techniques useful as evidenced by the

verbatim feedback:

‘I really enjoyed the program, because it has made my life easy. It is structured; there is a tab for

methods, a tab for main, a tab for classes, a tab for documentation. And it allows you to go through

them by order.’

‘The application divides the program or code into sections then one can then track and write the code

properly by following the sections.’

‘It is well constructed in that, it clearly states on where to start first.”

“The sections are well laid out.’

‘The separate segments of program are useful.’

‘How the codes are divide into chunks making the application easier to use.’

‘The chunks made it easier to construct the program’

0 2 4 6 8 10 12 14 16 18 20

completed

incomplete

completed

incomplete

completed

incomplete

completed

incomplete

completed

incomplete

completed

incomplete

T
as

k
 1

T
as

k
 2

T
as

k
 3

T
as

k
 4

T
as

k
 5

T
as

k
 6

Average use

editing program one part at a time program overview

120

In summary, the results show that by guiding the learner to create the program in a certain

order, the restricted interface enabled correct construction of a program. Further, by editing one part

at a time while checking that the correct code for that part is created, learners were guided towards

correct completion of code. The learner’s positive feedback on the use of these scaffolding

techniques further indicates their usefulness in supporting construction of programs on a mobile phone.

6.6.2 Use of Automatic Scaffolding

Automatic scaffolding was provided using seven techniques: (i) main interface instructions that were

automatically displayed the first time the main interface was arrived at; (ii) steps instructions that were

automatically displayed in the first two programs to guide the learner on which button to click at the

program overview; (iii) editor instructions that were automatically displayed at a tab the first time the

editor was used; (iv) the header dialog that was automatically displayed in the first two programs while

creating the header chunk; (v) the statement dialog that was automatically displayed in the first two

programs and provided default statements to use; (vi) the automatic restriction of the keywords within

the main class in the first program; and (vii) error prompts that were automatically displayed when

some syntactical errors in the program were encountered. It is worth noting that after the initial

automatic provision of these scaffolding techniques, the learner has to initiate their use except for error

prompts that are always automatic.

The third experiment at JKUAT will be used to illustrate the use of the automatic scaffolds

because it had the highest number of learners in the experiment group. Figure 6.33 shows the average

use of automatic scaffolding in incomplete and complete programs at JKUAT, in the third experiment.

The graph reveals that the average use for main interface instructions, editor instructions and

statement dialog was the same at twice per program. This indicates that after the initial automatic

provision, they were used at least once more. Further, feedback from a learner indicated that they found

‘the instructions on which parts of the interface to begin with’ useful. Learners who completed

programs used the header dialogs more than learners who did not complete programs. Learners found

it useful to ‘assist with the writing of the comments’. The statement dialog was used twice per program

on average.

It was noted that some learners who cancelled the initial automatic provision of the statement

dialog did not edit the program chunk and instead, exited the editor interface. For example, Figure 6.34

shows a sequence of program creation showing the statement dialog cancelled twice (in italics), and

thereafter the learner went back to the main interface without editing the main method. The learner

then enabled the statement dialog on the third attempt (in red). This shows that the statement dialog is

useful at least at the initial point when a program chunk is created for the first time.

121

Figure 6.33: Use of automatic scaffolding techniques in incomplete and complete programs at

JKUAT Experiment 3

Figure 6.34: Sequence of program creation showing the statement dialog cancelled twice while

creating the main method, and then enabled on the third attempt

Learners who completed programs encountered more error prompts than learners who did not

complete programs. This indicates that the error prompts were effective scaffolding techniques that

guided the learner on correct program completion. Further, learners found the error prompts useful as

0 0.5 1 1.5 2 2.5

main interface instructions

editor instructions

header dialog

statement dialog

error prompt

steps switched on

restricted keywords at main class

Average use

incomplete complete

…..

Editor

Statements Dialog Cancelled at main method

Main method not edited

Program overview at main interface

Main Method Button Clicked

Main Method child button clicked to editor

Editor

Statements Dialog Cancelled at main method

Main method not edited

Program overview at main interface

Main Method Button Clicked

Main Method child button clicked to editor

Editor

Statements Dialog Cancelled at main method

main method Statements dialog Enabled

….

122

evidenced by feedback such as, ‘the error handling is accurate in pinpointing errors’ and learners

appreciated ‘its ability to detect and in most cases correct errors’.

 After the step instructions automatically faded, learners who completed programs switched

them on once on average. Similarly, learners who completed programs enabled the restricted keywords

at the main class once on average. This indicates that both were effective scaffolding techniques to

guide the learner on the use of the interface for the step instructions, and to enable correct completion

of the main class for the restricted keywords.

In order to understand the progression of use of automatic scaffolding, analysis was conducted

on how they were used on all the tasks. Figure 6.35 shows the progression of use of automatic

scaffolding from the first program to the sixth program in the third experiment at JKUAT. In the first

program, all the automatic scaffolding was provided by default, except the error prompts. Some, like

the statement and header dialogs, were also provided by default in the second program. The use of

these scaffolding after the first two programs (except for error prompts) were purely user-initiated. The

graph in Figure 6.35 shows that the automatic scaffolding was used mostly in the first three programs

than in the last three programs. This is especially so for the main interface instructions that seemed not

to be needed until at the sixth task when all the learners were working at the advanced interface. This

shows that the main interface instructions were useful for learners when they encountered a new

interface and needed information on how to use it.

The header dialog was used to complete tasks until the third program. After this, learners opted

to use the provided text boxes to create header comments. This could mean two things: (i) the header

dialog provided sufficient support and guidance within the first three programs and learners knew what

to do thereafter; and (ii) that the provided text boxes effectively enabled construction of the header

comments on the mobile phone’s small screen. Both reasons support the propositions that: (i) provision

of the header dialog meets learners’ needs and once it fades, they are able to continue on the task

without it; and (ii) enabling construction of a program one part at a time supports construction of

programs on a mobile phone.

The statement dialog was used in all the programs, both complete and incomplete. This

indicates that providing default text that learners can reuse supports construction of programs. In fact,

the statement dialog was one of the most preferred scaffolding techniques as evidenced by the

feedback:

‘The statements dialog really makes work easier…’, ‘It helped that some of the system’s code (e.g.

for loop, system.out) were already created.’, ‘The features of this application which were helpful was

the fact that the statements were there already.’, ‘Preset statement helped in typing.’

123

Figure 6.35: Progression of use of automatic scaffolding techniques in incomplete and complete

programs at JKUAT Experiment 3

Finally, learners who completed programs in the second and third tasks enabled the restricted

keywords at the main class, and enabled the steps instructions; these were not enabled thereafter. This

could mean that learners had already understood how to navigate the interface and no longer needed

the steps instructions. Further, it shows that the restricted keywords in the first three programs provided

guidance on correct construction of the class name, and learners proceeded to create correct programs

without these restrictions.

6.6.3 User-initiated Scaffolding Techniques

User-initiated scaffolding was provided using three techniques: (i) view of the full program; (ii)

examples; and (iii) hints. These were not automatically provided and required a user to swipe to the

interface to view the full program, and to click on provided menus to access examples and hints. Figure

6.36 shows the use of these scaffolds in incomplete and complete programs across the four experiment

sessions.

0 0.5 1 1.5 2 2.5 3 3.5

completed

incomplete

completed

incomplete

completed

incomplete

completed

incomplete

completed

incomplete

completed

incomplete

T
as

k
 1

T
as

k
 2

T
as

k
 3

T
as

k
 4

T
as

k
 5

T
as

k
 6

Average use

restricted keywords at main class steps switched on

error prompt statement dialog

header dialog editor instructions

main interface instructions

124

The graph shows that learners who completed programs used all the three user-initiated

scaffolding techniques, at all the four institutions. In three out of the four institutions, learners who

completed programs viewed the full program more than those who did not complete programs.

Learners could view the full program from two points: at the editor while working on the program

parts, and at the main interface. Further analysis revealed that learners viewed the full program at three

instances: before creating any program parts; during creation of the program chunks; and after they

completed the program. The results show that learners who completed programs viewed the full

program more during creation of the program parts than learners who did not complete programs.

Figure 6.37 and Figure 6.38 are used to illustrate this.

Figure 6.36 : Use of user-initiated scaffolding techniques in all programs across the four

experiment sessions

Figure 6.37: Graph showing when the full program was viewed and the average view per

learner at UWC, Experiment 2

0 0.5 1 1.5 2 2.5 3 3.5

Complete

Incomplete

Complete

Incomplete

Complete

Incomplete

Complete

Incomplete

U
W

C
-2

JK
U

A
T

-2

K
eM

U
-

3

JK
U

A
T

-3

Average use

hints examples view Full Program

0

0.5

1

1.5

2

2.5

after

creating full

program

before

creating any

part

during

creation of

program

A
v
er

a
g
e

u
se

 p
er

 l
ea

rn
er

Incomplete

Complete

125

Figure.6.38: Graph showing when the full program was viewed and the average view per

learner at JKUAT, Experiment 3

Figure 6.37 shows when learners at the second experiment at UWC viewed the full program.

The results show that learners who completed programs viewed the full program at all three points,

with more instances during creation of the program. Figure 6.38 shows when learners at the third

experiment at JKUAT viewed the full program. The results show that learners who completed

programs viewed the full program at all three points, with more instances during creation of the

program. Both examples indicate that viewing the full program, while working on the program parts,

potentially supports successful construction of programs on a mobile phone.

6.6.4 Summary of Results on which Scaffolding Techniques were used

All the scaffolding techniques were used at least once on average. The static scaffolding techniques

enabled learners to correctly create programs, with evidence that the learners found them useful. There

was varied use of the automatic scaffolding across the incomplete and complete programs. However,

the results indicate that scaffolding techniques such as the statement dialog were always used

throughout all programs. Further, learners viewed the instructions when they encountered a new

interface. In addition, when learners cancelled the use of a scaffolding technique, such as the header

dialog, they tended to enable it again in order to use it to create the header comments. This indicates

that after the initial automatic provision of such scaffolding, learners still found these techniques useful

in constructing program parts. User-initiated scaffolding was mostly utilized in viewing the full

program. Results indicate that learners who completed programs viewed the full program more during

creation of the program parts. This indicates that viewing the full program while working on the

different chunks is an effective scaffolding technique for constructing programs on a mobile phone.

These results have shown that learners were able to correctly construct programs using the three types

0

0.5

1

1.5

2

2.5

3

3.5

after

creating full

program

before

creating any

part

during

creation of

program

complete

incomplete

126

of scaffolding techniques. Importantly, the verbatim feedback indicate that learners found these three

types of scaffolding techniques useful to support construction of Java programs on a mobile phone.

6.7 How the Scaffolding Techniques were used to Create Programs

The previous section discussed which scaffolding techniques were used to attempt and complete

programs. This section examines how these scaffolding techniques were used to create programs. In

order to understand how learners used scaffolding, several characteristics were identified based on

learners’ behavior during creation of the programs.

6.7.1 Time-based Outliers

While analyzing data for the time-on-tasks, it was observed that some learners spent significantly

longer times on tasks than the rest of the group. An analysis was conducted in order to understand how

such learners used scaffolding techniques to create programs.

The most amount of time spent on a program by a time-based outlier was 1 hour and 48 minutes.

The least was 48 minutes. The common pattern displayed by the time-based outliers was that they

initially created the main class, header and main method correctly and then spent a significant amount

of time correcting run-time errors, mostly by editing the main method. Further, some of the outliers

repeatedly edited the main class (at least 5 times) before they proceeded to create the header. For the

learners who spent time repeatedly editing the main class, they encountered several error prompts.

Such error prompts included notifications on use of a lower case to start the class name and a

notification when they attempted to add extra code (other than the class name) within the main class.

In addition, while repeatedly editing the main class, one of the outliers viewed examples severally.

The learners who spent more than one hour on a program viewed the full program at least nine times

while editing the main method.

Of the six time-based outliers, four eventually completed the programs correctly. This shows

that despite the long length of time that these learners spent on the program, the scaffolding techniques

that they used (examples, full program and error prompts) supported them to eventually successfully

complete the program.

6.7.2 Learners who attempted to edit a chunk repeatedly before proceeding to the next one

While creating a program part for the first time, some learners repeatedly went back to the

editor on the same program chunk, before proceeding to the next one. It was observed that most of the

repeated visits happened in the main class within the first program. For example, seven learners in the

second experiment at UWC exhibited this characteristic, with six of them within the main class and

only one within the main method; all in the first program. Further, it was observed that most of the

127

learners who repeatedly edited a program chunk in the first program did not display this behavior in

subsequent programs. This shows that learners could have been familiarizing themselves with the new

interface in the first program.

Four scenarios were observed on how learners treated the code within the editor when they

repeatedly worked on the same program chunk: (i) no code is created and the default code is restored

when the learner goes back to the main interface; (ii) code is created and on repeated visits left un-

edited; (iii) code is deleted, which restores the chunk to the default code; and (iv) code is edited on

repeated visits.

A common characteristic that was displayed by most of the learners who made repeated visits

on a single chunk, is that to get out of this ‘loop’ they enabled a scaffolding technique that they could

use to construct that part of the program. For example, a learner who repeatedly went back to the main

method without editing it first continually cancelled the statement dialog. This learner eventually

enabled the statement dialog and used one of the default statements to create code within the main

method.

In contrast, there were learners who initially worked on each program chunk just once or made

at most two attempts before proceeding to the next chunk. The common characteristic among such

learners is that they mostly used only the static scaffolding techniques and the provided automatic

scaffolding techniques to create the programs with very little use of user-enabled scaffolding. This is

further evidence that the static and automatic scaffolding techniques support construction of programs

on a mobile phone.

6.7.3 Learners who cancelled the use of scaffolding techniques

It was observed that several learners cancelled some provided scaffolding techniques. For instance,

when a statement dialog was used and the for-loop or the Scanner option was selected for the first time,

a suggestion to view an example was provided. It was observed that several learners opted not to view

these examples. For example, of the 24 learners in the third experiments at JKUAT’s experimental

group, 18 of them cancelled the use of one scaffolding technique or another, with 11 of these learners

rejecting a suggestion to view an example. However, it was noted that all of these cancelations occurred

when learners were in the third program or above. This suggests that at this stage of creating programs,

learners may not have required extra support such as viewing of examples, but found it sufficient to

use the static scaffolding to create programs.

6.7.4 Learners who unlocked the advanced interface

After creating three successful programs, learners could unlock the advanced interface that provided

an unrestricted interface on which a program could be created in any order, starting with the main

128

class. After unlocking the advanced interface, a learner could continue working on this interface or

switch back to the basic restricted interface. All the learners who unlocked the advanced interface

continued to create programs on this interface. JKUAT’s experimental group from the third

experiment is used for illustration because it had the highest number of participants who created

programs on the advanced interface. Of the 24 learners in the experimental group, eight unlocked the

advanced interface. 13 programs were attempted on this interface, with nine of them successfully

completed. This shows that the advanced interface enabled construction of successful programs.

In order to understand how learners created the program in this unrestricted interface, in

comparison to the restricted interface, an analysis was conducted on the sequence of program creation

that learners followed. To recap, the basic interface order of program creation was: main class; header;

main method; and then imports; other classes and methods could be created in any order. Table 6.26

shows a summary of the sequence of program creation per chunk in the advanced interface for the

learners at JKUAT’s third experiment.

This table shows that, after creation of the main class, all the learners created the header chunk.

This is similar to the order that was provided in the basic interface. The learners opted to still follow

Table 6.26: Summary of the sequence of program creation in the advanced interface by

learners at JKUAT, Experiment 3

Learner Programming Task and status Sequence of program creation per chunk

User3 Program 5, Completed main class, header, other class, main method

User11 Program4, Completed

Program 5, Completed

Program6, Completed

Main class, header, main method

main class, header, Other class, Main method

main class, header, main method, method

User12 Program 4, Completed

Program 5, Completed

main class, header, imports, other class, main

method

main class, header, method, main method

User13 Program, Incomplete main class, header , method, main method

User19 At program4, Completed

Program 5, Completed

Program 6, Incomplete

main class, header, method, main method

main class, header, method, main method

main class, header, other class, method

User20 Program4, Completed main class, header, main method, method

User21 Program 4, Incomplete main class, header, other class

User22 Program 4, Incomplete main class, header, main method

129

this order in the unrestricted interface. Thereafter, for the third part of the sequence, four of the learners

worked on the additional class, four worked on the main method, and four worked on the method. Only

one worked on the imports chunk. These results indicate three things: (i) all the learners working on

the header chunk after the main class is an indication that the basic interface provided an effective

guidance that learners followed in the advanced interface; (ii) that some learners still followed the

order of the basic interface and constructed the main class after constructing the header also indicates

that the basic interface provided an effective guidance; and (iii) learners who worked on the additional

class and the methods before proceeding to the main method showed that the advanced interface

offered sufficient flexibility that enabled learners to construct programs in any order.

6.7.5 Summary of how scaffolding techniques were used

Time-based outliers viewed the full program more than the learners who constructed programs within

the normal time. Such learners also encountered error prompts that guided them towards correct

construction of programs. Learners who initially worked on program chunks repeatedly before moving

on to the next one did this mostly within the main class, and in the first program. In subsequent

programs, most learners did not exhibit this characteristic. Such learners who worked repeatedly on

program chunks enabled scaffolds such as the statement dialog; such use enabled them to correctly

create the program chunk and move on the next one. Learners cancelled the use of provided scaffolds

mostly from the third program onwards, indicating that at this stage most of the learners did not need

additional scaffolding. Lastly, some learners who constructed programs at the advanced interface

displayed a sequence of program creation that was similar to the one provided at the basic interface.

In summary, these results show that despite the different characteristics exhibited by learners

while creating programs, the provided scaffolding techniques enabled the learners to navigate in the

scaffolded environment, to get out of repeated construction of chunks, and to create the program with

some flexibility at the advanced level.

6.8 Chapter Summary

Three experiments were conducted with a total of 182 learners of programming from four institutions.

In all the experiments, learners constructed programming tasks and completed questionnaires at the

end of the sessions. In addition, a video recording was taken in the first experiment, and image

recordings were used in all the experiments.

The first experiment was conducted at UWC, UCT and KeMU. Results from these sessions

indicate that the scaffolding techniques enabled completion of programming tasks. Learners

experienced some challenges that were discussed to explain the outcome of the results. Further,

130

feedback from the learners in this experiment was implemented on a second prototype before using it

in the second and third experiments.

The second experiment was conducted at UWC, JKUAT and KeMU. Of the three experiment

sessions, one resulted in a significantly higher number of attempted tasks in the experimental group

than in the control group, and two resulted in a significantly higher number of completed tasks in the

experimental groups than in the control groups. The last experiment was conducted at JKUAT and

KeMU. Both experiment sessions resulted in a significantly higher number of attempted and completed

tasks in the experimental group than in the control group.

The results indicate that the mean time on complete tasks in the experimental group was not

less than the mean time on complete tasks in the control group. This shows that the scaffolding

techniques did not enable faster completion times than the non-scaffolded environment. Results from

the second experiment at UWC and the third experiment at JKUAT indicated that learners using the

scaffolding techniques may reach failure states quicker than those who used the non-scaffolded

environment. Results from the second experiment at UWC, the third experiment at KeMU and the

third experiment at JKUAT indicate that after the initial familiarization with a new environment,

learners using the scaffolding techniques are able to complete tasks significantly faster than learners

using the non-scaffolded environment.

Results from the second experiments (except from JKUAT) and the third experiments indicate

that learners using the scaffolding techniques were able to complete the programs more efficiently than

those using the non-scaffolded environment.

Results from the second experiment at JKUAT indicate that the number of run-time errors

encountered in the experimental group is not lower than the number of run-time errors encountered in

the control group. In contrast, results from the second experiment at UWC and the third experiment at

JKUAT indicate that the number of run-time errors encountered in the experimental group is lower

than the number of run-time errors encountered in the control group. These results show that the

scaffolding techniques may lead to lower run-time errors. Further, the results indicated that the

scaffolding techniques capture some syntactical errors that a non-scaffolded environment may not.

The chapter used verbatim feedback from learners to illustrate some of the results. The

verbatim feedback indicated that learners found the scaffolding techniques useful to support

construction of Java programs on a mobile phone.

Lastly, this chapter has discussed which and how scaffolding techniques were used to construct

programs. The results indicate that learners appreciated the use of static scaffolding. Further, results

indicate that the mostly used automatic scaffolding was the statement dialog. In addition, results

indicate that the mostly used user-enabled scaffolding was the full program. Results show that despite

131

the different characteristics exhibited by learners while creating programs, the provided scaffolding

techniques enabled the learners to navigate in the scaffolded environment in both the basic and

advanced level.

The next chapter presents a synthesis of how these empirical findings have addressed the two

research questions, and then concludes the thesis.

132

Chapter 7 Conclusion

The proposition of this research was that programming environments on mobile phones could include

scaffolding techniques that are specifically designed for mobile phones, and designed based on

learners’ needs. To address this proposition, two research questions were posed:

Which of the theoretically-derived scaffolding techniques support construction of Java programs

on a mobile phone?

What is the effect on learners of using the scaffolding techniques to construct Java programs on a

mobile phone?

This chapter begins with a synthesis of how the empirical findings addressed the research

questions. Thereafter, a discussion follows on the implications of the study. Finally, the chapter

discusses the limitations of the study and recommendations for future research.

7.1 Synthesis of Empirical Findings

7.1.1 Which of the theoretically-derived scaffolding techniques support construction of Java

programs on a mobile phone?

The findings indicated that all the theoretically-derived scaffolding techniques were used at least once.

However, some of the scaffolding techniques showed more frequent use than others and were highly

rated by learners. First, the program overview and constructing a program one chunk at a time enabled

effective support and guidance towards correct creation of programs. Learners also rated these

techniques as most useful. Secondly, the statement dialog was used at least once to construct all

programs, even after the first two programs where learners had to initiate its use. In addition, it was

one of the most preferred scaffolding techniques by learners. Third, most learners viewed the full

program while working on program chunks. In addition, even learners who took the longest times to

work on programs viewed the full program frequently. Fourth, the high frequency of error prompts

experienced in the first programs indicated that these are useful to capture basic syntactical errors.

7.1.2 What is the effect of using the scaffolding techniques to construct Java programs on a
mobile phone?

The synthesis in this section is presented as per the sub-questions that were posed to address the second

research question.

 What is the effect of using the scaffolding techniques on task success?

Scaffolding techniques enable learners to attempt and complete more programming tasks than a non-

scaffolded environment.

133

What is the effect of using the scaffolding techniques on time-on-task?

The scaffolding techniques do not enable faster average task completion times than a non-scaffolded

environment. However, after the initial familiarization with the scaffolded environment, the

scaffolding techniques may enable faster completion of tasks than a non-scaffolded environment.

Further, the scaffolding techniques may enable learners to reach failure states quicker than those who

use a non-scaffolded environment.

What is the effect of using the scaffolding techniques on the ratio between task completion rate

and mean time-on-task?

The scaffolding techniques result in a higher ratio between task completion rate and mean time-on-

task. This means that learners using the scaffolding techniques are able to complete the tasks more

efficiently that those using a non-scaffolded environment.

What is the effect of using the scaffolding techniques on the number of errors?

The scaffolding techniques may lead to fewer run-time errors. Further, the scaffolding techniques

capture some syntactical errors that a non-scaffolded environment may not.

What is the effect of using the scaffolding techniques on time-on-task over time?

Learners using the scaffolding techniques spend shorter times in subsequent tasks after the previous

tasks.

7.2 Implications of the Study

7.2.1 Theory of constructivism

Constructivism formed the underlying theoretical framework for this research since it embodies the

principles of learning by doing and scaffolding. The focus was on designing support for programming

environments on devices with limited capabilities, such as mobile phones. The question then is how

should constructivism be applied to the design of programming environments on such devices?

Desktop IDEs provide complex environments where a large amount of information is exposed

to the learner at the same time, because this is possible on such large screens. This also means that it

is possible to provide support to the learner all in one place without the learner having to leave the

screen. Further, the learner has to often remember how to navigate through the complex interface, in

addition to working on the task at hand. However, providing all the functionality in one place does not

work well on small screens. In addition, the intention for small screens is often to provide the user with

a simple interface enough such that they can focus on the task at hand. One technique that was used in

this study to address the small screen is the static scaffolding technique of completing a program one

134

part at a time. For example, a learner is presented with only the main class chunk to work on. This

way, the learner is able to focus on only the small part of the main class and correctly create it before

working on the next small part. Such an approach provides atomic simplicity. Constructivism underlies

the principle of atomic simplicity, while enabling active interaction with the content at hand. This

shows that constructivism can be applied to the design of programming environments on such limited

devices.

Section 2.1 indicated that one of the major arguments against the constructivist approach is that

learners are expected to construct new knowledge with minimal guidance. Such an approach may be

problematic because evidence has shown that novice learners may struggle to build skills if they are

not provided with strong guidance while creating new knowledge (Kirschner et al. 2006). This

criticism was discussed by Guzdial (2015), where he posed the question: how then should

programming be taught considering that the emphasis has been to learn programming by constructing

programs? This study provides two possible answers.

 First, the scaffolded environment developed in this study was to be used in addition to the

classroom learning; it was not intended to be used on its own. The expectation was that the skills gained

from the programming class would be applied when using the scaffolded environment. In the first

experiment, learners preferred to use as input a class library they had learnt in the classroom. Further,

in the second experiment at KeMU, learners could not attempt two of the tasks since they struggled to

understand the related topics in the classroom. Therefore, the first answer to Guzdial’s question is:

programming can be taught by supporting learners to construct programs on their own, alongside active

class teaching that could have other checks to track learners’ progress and skill acquisition. A

combination of extra support for construction of programs and active instruction could prove more

fruitful in teaching programing, than learners applying their programming knowledge alone. It would

be a mistake to assume that instruction should exclusively focus on application (Kirschner et al. 2006).

 Secondly, the scaffolding techniques designed in this study provide strong guides for the

construction of programs. Some recommended techniques that could overcome the criticized unguided

nature of constructivism are examples and process worksheets (Kirschner et al. 2006). In this study,

these were provided in the form of default code, examples, hints, and a guided process to follow in

creating a program. Further, two types of static scaffolding were provided that never faded: the

program overview, and completing a program one part at a time. The provision of static scaffolding

ensured that there was always support available that addressed the limitations of mobile phones and

learners’ needs. In addition, the two static scaffolds were among the scaffolding techniques that were

highly rated by learners. This leads to the second answer to Gudzial’s question: programming can be

supported by providing some static scaffolding techniques that are always present to support

135

construction of programs, and additional scaffolding techniques that provide strongly guided learning.

 Thus, the contributions of this study are two recommendations on how to apply the

constructivist theory when designing mobile programming environments: (i) the mobile programming

environment should be provided in addition to active classroom learning, not as the only platform of

constructing programs; and (ii) the mobile programming environment should provide some static

scaffolding techniques that never fade, which address the limitations of mobile phones and guide the

learner on correct program creation.

7.2.2 Design process

Chapter 4 presented a detailed design process that led to the selection of scaffolding techniques that

could support construction of Java programs on a mobile phone. This design process was guided by

limitations of mobile phones, challenges faced by learners of programming, and theoretic scaffolding

guidelines recommended by several researchers. The challenges faced by learners of programming

were specifically elicited for this study. However, these challenges could be applicable to most learners

of programming. Further, the two limitations of mobile phones that were considered are standard

limitations that present challenges in using most mobile phones. Therefore, this study provides a strong

theory-based scaffolding framework that could be used to design mobile programing environments to

support construction of programs in other object oriented languages.

 The design of some of the scaffolding techniques was influenced by standard Java coding

guidelines. For example, the order of the program layout on the main interface was influenced by how

a typical Java program would be ordered. All programming languages have coding guidelines.

Therefore, the selection of such a scaffolding technique could be replicated when designing for other

languages by following their respective coding guidelines.

Two prototypes were designed in this study, the second of which contained modifications from

feedback by learners in the first experiment. This follows the learner-centered design process, which

is highly recommended when designing for novice learners. Apart from the addition of a header dialog,

a chunk for another class, and use of the Scanner class instead of the BufferedReader, the designed

scaffolding techniques in the second prototype remained the same as the first prototype. Further, there

were some interface related changes, such as provision of a run button and use of tabs, but these did

not affect the scaffolding techniques that were designed in the first prototype. Therefore, learners in

the first experiment still benefited from the use of the designed scaffolding techniques, as evidenced

by a majority of these learners completing the first two tasks. Thus, both prototypes supported the

learners to construct Java programs on the mobile phone. This shows that the learner-centered design

process can be applied to the design of programming environments on the mobile phone.

136

Thus, the design contributions of this study are: (i) a theoretic scaffolding framework that could

be applied to the design of other mobile programing environments; (ii) a selection process of

scaffolding techniques that could apply coding guidelines in other languages; and (iii) a learner-

centered design process that includes initial requirements from learners and subsequent feedback used

to modify a prototype.

7.2.3 Novel scaffolding techniques and fading mechanisms

The three types of scaffolding techniques that were designed in this study provided a novel way to

support construction of Java programs on a mobile phone. The positive feedback from learners

indicated that such scaffolding techniques could address the limitations of mobile phones and also

meet learners’ needs. Some of the scaffolding techniques, such as provision of default code, exist in

most of the current IDEs and may be argued as not novel. However for this study, the findings

highlighted two things related to provision of default code that could be applied to the design of other

mobile programming environments: (i) if the default code is programming keywords, these could be

restricted from being edited; and (ii) if the default code can be edited it could be at an advanced level

after the learner has gone past the ‘beginner’ stage.

 Some of the scaffolding techniques, like examples and hints, were not as frequently used or as

highly rated by learners as the ones described above. In a reputedly difficult programming language

such as Java this was surprising. Perhaps the provision of default code and a strongly guided interface

minimized the need to view the examples and hints. The design of examples and hints can still be

experimented with in different ways. One way is to reuse the learners’ successfully created programs

as future examples.

One of the characteristics of scaffolding is the fading of scaffolds as the learner acquires skills.

This study implemented four fading approaches: (i) Fading of automatically provided steps and

instructions after the first two programs; (ii) fading of automatically provided header dialog and

statement dialog after the first two programs; (iii) fading of the restricted keywords in the main class

after the first two programs; and (iv) fading of the restricted interface after three successful programs.

After fading, these scaffolding techniques could be enabled by the user if they wished to. After the

fading of the instructions, most of the learners enabled them when they reached the advanced interface.

This shows that instructions could be designed to be automatically provided whenever learners

encounter a new interface. Learners who reached the advanced interface after creating three successful

programs continued to work on that interface. This is a good indication that fading a restricted interface

after three successful programs could be used as a design technique for other mobile programming

environments. Further, some applications, such as TouchDevelop, provide prompts that guide a user

137

on where to click in order to create code in the first program. Thereafter, the prompts fade and the user

is asked to attempt to create the code on their own. Such fading mechanisms and the ones applied in

this study could be extended elsewhere. Nevertheless, there is still room to conduct research on suitable

fading models that could be applied to mobile programming environments that use languages such as

Java.

7.2.4 Understanding how learners use scaffolding techniques

Results in Section 6.7 provided novel information that could be used to further design scaffolding

techniques to support programming on a mobile phone. These results showed various characteristics

exhibited by learners as they used the scaffolding techniques.

 The findings indicated that the learners who spent a long time on tasks did so while repeatedly

correcting code in the main method. Therefore, the design of mobile programming environments could

provide more support on creation of the main method. Further, since such learners encountered error

prompts that guided them towards correct program creation, automatic prompts with hints could be

provided at a certain point when a learners spends a significantly long time on a program.

Some learners repeatedly went back and forth on the same chunk and eventually got out of this

‘loop’ by enabling a scaffolding technique such as the statement dialog. Therefore, the design of mobile

programming environments could provide automatic scaffolds to learners who appear to be moving

back and forth on the same chunk without proceeding to the next.

Analysis of how learners used the scaffolds indicates that learners cancelled the use of

automatically provided scaffolds mostly from the third program onwards. This gives an indication that

automatic fading of scaffolds after two or three successful programs could be appropriate when

designing for mobile programming environments.

7.2.5 Contribution to the field of ICT4D

Information and communication technologies for development (ICT4D) is the name given to a range

of activity which considers how electronic technologies can be used towards socio-economic

development of developing communities worldwide (Donner & Toyama 2009). In this study, the ICT

techniques are the designed scaffolding techniques and the Development aspect is in the contribution

towards enhancing a skill in a complex subject such as programming.

 In developing countries where there may not be a large capital outlay to acquire new equipment

for learners, such as desktops and laptops, the solution could be to use the devices that the learners

already have and design applications that consider both the limitations of the available devices and

learners’ needs. This study has shown that this is possible. The prototype developed in this study could

be used in future studies that seek to understand the long-term impact of the use of mobile phones in

138

learning complex subjects such as programming, in the context of a developing country. This is

especially because, non-formal learning efforts are a viable means of delivering non-formal learning

in a developing country via a smartphone (Jobe 2014).

ICT4D research not only focuses on the rural poor but also on the urban poor (Chepken et al.

2012), who may experience resource constrains. In addition, research indicates there is a gap in studies

that consider users who live in urban areas, with a lot more studies conducted with the rural poor

(Chepken et al. 2012). The learners who participated in this research were all from universities that

were located in urban areas in developing countries, thus representing urban users who nevertheless

may be in resource constrained environments. However, even learners who are not necessarily in

resource-constrained environments may sometimes find themselves in situations where they may not

be able to use a desktop or a laptop. Therefore, this study contributes towards research that provides

solutions to the urban poor or those who find themselves in resource-constrained situations while in

urban areas.

Mobile for Development research should be conducted using sound conceptual foundation,

proven theories, conceptual frameworks or models (Duncombe 2010). The development of the

scaffolding techniques in this research were based on a rigorous process using existing scaffolding

guidelines. Further, the six-level scaffolding framework used in this study can easily be replicated to

design scaffolding techniques that support programming on a mobile phone, in other programming

languages.

Lastly, there is a tendency to portray mobile phones as an end, rather than a means to specific

social improvements (Burrell 2010). This study has emphasized the fact that the mobile phone can be

used as a vehicle for delivering education in resource-constrained environment. Importantly, this study

has shown that mobile applications for learning complex subjects that require a practical approach, can

be specifically designed to address the limitations of mobile phones and also meet learners’ needs.

7.3 Limitations of Research

In this research, the emphasis was on providing scaffolding techniques intended to be used by learners

who were just beginning to learn programming using Java. Therefore, they were not used to create

complex or high-level programs such as those that develop graphical user interfaces (GUIs). Hence,

the simplicity of the programs used in the study may be limiting. However, early success in simple

programs allows learners to build both self-confidence and their programming routine, which helps

them to transition towards seeing more than simple syntax (Vihavainen et al. 2013).

The choice of Android as an implementation platform means that only specific phones could

be used during the experiments. Further, this means that users of other platforms cannot use the

139

application. Further, there are other limitations of mobile phones, such as limited memory, that were

not considered. This study focused on the limitations of small keypads and small screens.

 There seemed to be minimal research conducted that provides explicit models on fading

mechanisms, especially for mobile programming environments. The fading mechanisms implemented

on the scaffolded environment were based on some existing programming environments and some on

learners’ feedback. This means that the fading mechanisms designed in Chapter 4 may not be

exhaustive.

Finally, this research did not evaluate the long-term learning impact of the use of the

scaffolding techniques on the eventual performance of students in their programming course, say at

the end of the term. This was not evaluated because learners were already exposed to other learning

resources and tools for programming and it would have been difficult to determine whether the use of

the scaffolding techniques is what directly influenced their eventual success or failure in programming.

Nevertheless, given more time and resources, such a long-term study is possible and it is part of future

work.

7.4 Opportunities for Future Work

7.1.1 Extension of the system

The application developed in this research is a proof-of-concept prototype that addresses the use of

scaffolding techniques to support construction of Java programs on a mobile phone. Future work could

add to the system. Possible additions include: the use of syntax coloring; application of automatic code

indentation; increasing the complexity of the programs that can be constructed by introducing more

scaffolding techniques; development for other mobile platforms apart from Android; and enabling

users to store their programs on the cloud directly from the applications, should they wish to. In

addition, the error prompts that were used to check for syntax errors were by no means exhaustive.

Future work could extend the implementation of error prompts following a more extensive

consideration of possible syntax errors. Further, the hints and examples that were provided were based

on existing standard coding guidelines. Future work could enable the use of successfully created

programs in the system to be used as future examples. With such additions, the application could

become more than a tool for novice learners of programming, and be useful to more advanced learners

as well.

140

7.1.2 Additional experiments

Once the above extensions have been implemented in the system, additional experiments could be

conducted. Further, in this study, the participants were learners of programing enrolled in introductory

programming courses. If extended to suit use by advanced users, such users could be involved in the

experiments.

7.1.3 Evaluation with other existing tools

Since the focus of this research was on testing the effect of the scaffolding techniques, evaluation was

conducted without comparisons with other available tools. A specific non-scaffolded environment was

designed for this study. Other methods of evaluation could be to compare the use of the application

developed in this study with the use of existing mobile programing environments such as SAND IDE.

Further, the effectiveness of the scaffolding techniques could also be tested by comparing its use with

a desktop environment.

7.1.4 Model on fading of scaffolding

Another way that the system could be extended is to implement a more elaborate mechanism for fading

scaffolds. There seems to be scarce literature that present elaborate models on when to reduce or

remove the level of support as learners progress in working on the task, especially for mobile

programming environments. For example, should they stop receiving hints on the second program?

On the third? Should they always receive examples in the first program? This presents an opportunity

for further work because one key characteristic of scaffolding is fading. In addition, this prototype can

be used to conduct experiments specifically targeted at understanding how and when learners prefer to

fade scaffolds. Such data could be used to design models on fading of scaffolding in mobile

programming environments.

7.1.5 Use of the system to teach a class

In this study, the researcher worked with learners who were already using other tools in their respective

programming classes. However, a controlled longitudinal study where learners use the scaffolded

environment over an extended period of time is possible. This can be carried out by teaching a class

where learners use the mobile programming environment as one of the main resources. This way, it

would be possible to test the long-term impact of the scaffolding techniques on the learners’

programming skills.

141

REFERENCES

Ackermann, E., 2001. Piaget’s constructivism, Papert’s constructionism: What’s the difference.

Future of learning group publication, 5(3), p.438. Available at:

http://learning.media.mit.edu/content/publications/EA.Piaget _ Papert.pdf [Accessed June 9,

2014].

Ackermann, E.K., 1996. Perspective-Taking and object Construction. In Constuctionism in Practice:

Designing, Thinking, and Learning in a Digital World. pp. 25–37. Available at:

http://web.media.mit.edu/~edith/publications/1996-persp.taking.pdf [Accessed March 11,

2014].

Adipat, B. & Zhang, D., 2005. Interface Design for Mobile Applications, Available at:

http://aisel.aisnet.org/amcis2005/494 [Accessed January 19, 2015].

Ajayi, A.O. et al., 2011. A Low Cost Course Information Syndication System. Journal of

Information Technology Education, 10. Available at:

http://jite.org/documents/Vol10/JITEv10IIPp105-118Ajayi947.pdf [Accessed January 15,

2015].

Albert, W. & Tullis, T., 2008. Measuring the User Experience: Collecting, Analyzing, and

Presenting Usability Metrics, Morgan Kaufmann.

Alonso-Ríos, D. et al., 2014. A user study on tailoring GUIs for smartphones. In Proceedings of the

29th Annual ACM Symposium on Applied Computing - SAC ’14. New York, New York, USA:

ACM Press, pp. 186–192. Available at: http://dl.acm.org/citation.cfm?id=2554850.2555085

[Accessed August 13, 2014].

Anderson, N. & Gegg-Harrison, T., 2013. Learning computer science in the “comfort zone of

proximal development.” In Proceeding of the 44th ACM technical symposium on Computer

science education - SIGCSE ’13. Denver, Colorado: ACM Press, p. 495. Available at:

http://dl.acm.org/citation.cfm?id=2445196.2445344 [Accessed February 19, 2014].

Andrews, D., Nonnecke, B. & Preece, J., 2010. Electronic Survey Methodology: A Case Study in

Reaching Hard-to-Involve Internet Users. Available at:

http://www.tandfonline.com.ezproxy.uct.ac.za/doi/abs/10.1207/S15327590IJHC1602_04#.U15

KMVWSzmM [Accessed April 28, 2014].

Apiola, M. & Tedre, M., 2011. Towards a contextualized pedagogy for programming education in

Tanzania. In IEEE Africon ’11. IEEE, pp. 1–6. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6072010 [Accessed May 31,

2014].

Apiola, M., Tedre, M. & Oroma, J.O., 2011. Improving programming education in Tanzania:

Teachers’ and students' perceptions. In 2011 Frontiers in Education Conference (FIE). IEEE,

pp. F3G–1–F3G–7. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6142787 [Accessed May 31,

2014].

Athreya, B. et al., 2012. End-user programmers on the loose: A study of programming on the phone

for the phone. In 2012 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, pp. 75–82. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6344486 [Accessed December

29, 2014].

Azadmanesh, M.R. et al., 2014. Mobile vs. Desktop Programming Projects. In Proceedings of the

2nd Workshop on Programming for Mobile & Touch - PROMOTO ’14. New York, New York,

USA: ACM Press, pp. 25–28. Available at: http://dl.acm.org/citation.cfm?id=2688471.2688479

[Accessed January 14, 2015].

Azorín, J.M. & Cameron, R., 2010. The application of mixed methods in organisational research: A

literature review. Electronic Journal of Business Research Methods, 8(2), pp.95–105.

142

Bati, T.B., Gelderblom, H. & van Biljon, J., 2014. A blended learning approach for teaching

computer programming: design for large classes in Sub-Saharan Africa. Computer Science

Education, 24(1), pp.71–99. Available at:

http://www.tandfonline.com/doi/full/10.1080/08993408.2014.897850#tabModule [Accessed

January 14, 2015].

Ben-Ari, M., 1998. Constructivism in computer science education. ACM SIGCSE Bulletin, 30(1),

pp.257–261. Available at: http://dl.acm.org/citation.cfm?id=274790.274308 [Accessed June 9,

2014].

Ben-Bassat Levy, R., Ben-Ari, M. & Uronen, P.A., 2003. The Jeliot 2000 program animation system.

Computers & Education, 40(1), pp.1–15. Available at:

http://www.sciencedirect.com/science/article/pii/S0360131502000763 [Accessed January 15,

2015].

Bennedsen, J. & Caspersen, M.E., 2007. Failure rates in introductory programming. ACM SIGCSE

Bulletin, 39(2), p.32. Available at: http://dl.acm.org/citation.cfm?id=1272848.1272879

[Accessed March 22, 2014].

Black, A.P. et al., 2013. Seeking grace. In Proceeding of the 44th ACM technical symposium on

Computer science education - SIGCSE ’13. New York, New York, USA: ACM Press, p. 129.

Available at: http://dl.acm.org/citation.cfm?id=2445196.2445240 [Accessed January 7, 2015].

Bowen, H. & Goldstein, P., 2010. Radio , Mobile Phones Stand Out in Africa ’ s Media

Communication Landscape,

Boyer, N.R., Langevin, S. & Gaspar, A., 2008. Self direction & constructivism in programming

education. In Proceedings of the 9th ACM SIGITE conference on Information technology

education - SIGITE ’08. New York, New York, USA: ACM Press, p. 89. Available at:

http://dl.acm.org/citation.cfm?id=1414558.1414585 [Accessed March 24, 2014].

Bruner, J.S., 1966. Toward a Theory of Instruction, Harvard University Press. Available at:

http://books.google.com/books?hl=en&lr=&id=F_d96D9FmbUC&pgis=1 [Accessed June 9,

2014].

Burrell, J., 2010. Evaluating Shared Access: social equality and the circulation of mobile phones in

rural Uganda. Journal of Computer-Mediated Communication, 15(2), pp.230–250. Available at:

http://doi.wiley.com/10.1111/j.1083-6101.2010.01518.x [Accessed April 6, 2015].

Butgereit, L., 2012. Dr Math. International Journal of Mobile and Blended Learning, 4(2), pp.15–29.

Available at: http://www.igi-global.com/article/math-mobile-scaffolding-environment/65084

[Accessed January 23, 2015].

Carter, J., 2010. The Problems of Teaching Programming: Do They Change with Time? In 11th

Annual Conference of the Subject Centre for Information and Computer Sciences. Durham

University, pp. 6–10.

Chatley, R., 2001. Java for Beginners, Available at: http://chatley.com/kenya/reports/finalreport.pdf

[Accessed January 15, 2015].

Chatley, R. & Timbul, T., 2005. KenyaEclipse. ACM SIGSOFT Software Engineering Notes, 30(5),

p.245. Available at: http://dl.acm.org/citation.cfm?id=1095430.1081746 [Accessed January 7,

2015].

Chepken, C. et al., 2012. ICTD interventions. In Proceedings of the Fifth International Conference

on Information and Communication Technologies and Development - ICTD ’12. New York,

New York, USA: ACM Press, p. 241. Available at:

http://dl.acm.org/citation.cfm?id=2160673.2160704 [Accessed March 10, 2014].

Churchill, D. & Hedberg, J., 2008. Learning object design considerations for small-screen handheld

devices. Computers & Education, 50(3), pp.881–893. Available at:

http://www.sciencedirect.com/science/article/pii/S0360131506001412 [Accessed May 13,

2014].

Cohen, L., Manion, L. & Morrison, K., 2007. Research Methods in Education 6th ed., Routledge.

143

Cooper, S., Dann, W. & Pausch, R., 2000. Alice: a 3-D tool for introductory programming concepts.

Journal of Computing Sciences in Colleges, 15(5), pp.107–107–116–116. Available at:

http://dl.acm.org/citation.cfm?id=364133.364161 [Accessed January 15, 2015].

Creswell, J. & Clark, V.P., 2007. Choosing a mixed methods design. In Designing and conducting

mixed methods research. pp. 53–106. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Choosing+a+mixed+methods

+design#0.

Cunningham, D. & Duffy, T., 1996. Constructivism: Implications for the design and delivery of

instruction. Handbook of research for educational communications and technology, pp.170–

198. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.2455&rep=rep1&type=pdf

[Accessed March 24, 2014].

D’Souza, D. et al., 2008. Transforming learning of programming: a mentoring project. , pp.75–84.

Available at: http://dl.acm.org/citation.cfm?id=1379249.1379256 [Accessed January 23, 2015].

Dann, W., Cooper, S. & Pausch, R., 2001. Using visualization to teach novices recursion. In

Proceedings of the 6th annual conference on Innovation and technology in computer science

education - ITiCSE ’01. New York, New York, USA: ACM Press, pp. 109–112. Available at:

http://dl.acm.org/citation.cfm?id=377435.377507 [Accessed January 15, 2015].

Dann, W.P., Cooper, S. & Pausch, R., 2011. Learning to Program with Alice. Available at:

http://dl.acm.org/citation.cfm?id=2011893 [Accessed January 6, 2015].

DeClue, T., Kimball, J. & Cain, J., 2012. Learning theory in Computer Science 1: an experiment

supporting the use of multiple languages. Journal of Computing Sciences in Colleges, 27(5),

pp.198–204. Available at: http://dl.acm.org/citation.cfm?id=2168874.2168919 [Accessed

January 14, 2015].

Dhar, D. & Yammiyavar, P., 2012. Design Approach for E-learning Systems: Should it be User

Centered or Learner Centered. In 2012 IEEE Fourth International Conference on Technology

for Education. IEEE, pp. 239–240. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305982 [Accessed January

19, 2015].

Donner, J. & Toyama, K., 2009. Persistent themes in ICT4D Research : priorities for inter-

methodological exchange. Proceedings of the 57th session of the International Statistics

Institute, (June), pp.1–10.

Duncombe, R., 2010. Mobiles for development research: Quality and Impact. In M4D 2010.

Available at: http://kau.diva-portal.org/smash/get/diva2:357565/FULLTEXT01#page=102.

Edwards, S.H., Tilden, D.S. & Allevato, A., 2014. Pythy. In Proceedings of the 45th ACM technical

symposium on Computer science education - SIGCSE ’14. New York, New York, USA: ACM

Press, pp. 641–646. Available at: http://dl.acm.org/citation.cfm?id=2538862.2538977

[Accessed January 6, 2015].

Elias, T., 2011. Universal instructional design principles for mobile learning. The International

Review of Research in Open and Distributed Learning, 12(2), pp.143–156. Available at:

http://www.irrodl.org/index.php/irrodl/article/view/965/1751 [Accessed January 19, 2015].

Elliott, A.C. & Woodward, W.A., 2007. Statistical Analysis Quick Reference Guidebook: With SPSS

Examples, SAGE Publications. Available at:

http://books.google.com/books?hl=en&lr=&id=SOsX0IbNxeIC&pgis=1 [Accessed December

9, 2014].

Ertmer, P.A. & Newby, T.J., 2008. Behaviorism, Cognitivism, Constructivism: Comparing Critical

Features from an Instructional Design Perspective. Performance Improvement Quarterly, 6(4),

pp.50–72. Available at: http://doi.wiley.com/10.1111/j.1937-8327.1993.tb00605.x [Accessed

March 24, 2014].

144

Esper, S., Simon, B. & Cutts, Q., 2012. Exploratory homeworks: An Active Learning Tool for

Textbook Reading. In Proceedings of the ninth annual international conference on

International computing education research - ICER ’12. Auckland, New Zealand: ACM Press,

p. 105. Available at: http://dl.acm.org/citation.cfm?id=2361276.2361297 [Accessed March 22,

2014].

Farooq, M.S. et al., 2014. An evaluation framework and comparative analysis of the widely used first

programming languages. PloS one, 9(2), p.e88941. Available at:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088941#pone.0088941-

Stroustrup1 [Accessed January 14, 2015].

Fosnot, C.T., 2005. Constructivism: Theory, Perspectives, and Practice, Second Edition, Teachers

College Press.

Fosnot, C.T. & Randall, S.P., 1996. Constructivism: A Psychological Theory of Learning. In

Constructivism: Theory, perspectives, and practice. pp. 8–33. Available at:

http://rsperry.com/fosnotandperry.pdf [Accessed March 24, 2014].

Garner, S., 2004. The CLOZE procedure and the learning of programming. In 8th WSEAS

International Conference on COMPUTERS. Available at: http://www.wseas.us/e-

library/conferences/athens2004/papers/487-324.pdf [Accessed December 29, 2014].

Gaspar, A. & Langevin, S., 2007. Restoring “coding with intention” in introductory programming

courses. In Procedding of the 8th ACM SIG-information conference on Information technology

education - SIGITE ’07. New York, New York, USA: ACM Press, p. 91. Available at:

http://dl.acm.org/citation.cfm?id=1324302.1324323 [Accessed January 14, 2015].

Girault, I. & D’Ham, C., 2013. Scaffolding a Complex Task of Experimental Design in Chemistry

with a Computer Environment. Journal of Science Education and Technology, 23(4), pp.514–

526. Available at: http://link.springer.com/10.1007/s10956-013-9481-5 [Accessed August 13,

2014].

Grandell, L. et al., 2006. Why complicate things?: introducing programming in high school using

Python. , pp.71–80. Available at: http://dl.acm.org/citation.cfm?id=1151869.1151880 [Accessed

January 14, 2015].

Guo, P., 2014. Python is Now the Most Popular Introductory Teaching Language at Top U.S.

Universities. Available at: http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-

most-popular-introductory-teaching-language-at-top-us-universities/fulltext [Accessed March

22, 2015].

Guzdial, M. et al., 1995. Learner-centered system design. In Proceedings of the conference on

Designing interactive systems processes, practices, methods, & techniques - DIS ’95. New

York, New York, USA: ACM Press, pp. 143–147. Available at:

http://dl.acm.org/citation.cfm?id=225434.225450 [Accessed January 27, 2015].

Guzdial, M., 2011. Predictions on Future CS1 Languages. Computer Education Blog. Available at:

https://computinged.wordpress.com/2011/01/24/predictions-on-future-cs1-languages/ [Accessed

March 22, 2015].

Guzdial, M., 1994. Software-Realized Scaffolding to Facilitate Programming for Science Learning.

Interactive Learning E, 4(1), pp.001–044. Available at:

http://www.tandfonline.com.ezproxy.uct.ac.za/doi/abs/10.1080/1049482940040101#.Uy5z16iS

wdY [Accessed March 23, 2014].

Guzdial, M. et al., 1998. Supporting Programming and Learning-to-Program with an Integrated CAD

and Scaffolding Workbench. Interactive Learning Environments, 6(1-2), pp.143–179. Available

at: http://www.tandfonline.com/doi/abs/10.1076/ilee.6.1.143.3609 [Accessed February 19,

2014].

Guzdial, M., 2015. What’s the best way to teach computer science to beginners? Communications of

the ACM, 58(2), pp.12–13. Available at:

http://dl.acm.org/ft_gateway.cfm?id=2714488&type=html [Accessed March 24, 2015].

145

Hannah, B., 2010. Information at the Grassroots: Analyzing the media use and communication

habits of Kenyans to support effective development, Available at:

http://www.audiencescapes.org/sites/default/files/AudienceScapes Kenya Survey Research

Report 2010.pdf.

Harmon, M., 2011. t-Tests in Excel - The Excel Statistical Master, Mark Harmon. Available at:

http://books.google.com/books?hl=en&lr=&id=C1OHSbQUvAsC&pgis=1 [Accessed

November 25, 2014].

Hashim, A., 2007. Mobile Technology for Learning Java Programming - Design and Implementation

of a Programming Tool for VISCOS Mobile. University of Joensuu. Available at:

ftp://193.167.42.127/pub/Theses/2007_MSc_Hahsim_Ahmed.pdf [Accessed March 22, 2014].

Holt, R.C. & Cordy, J.R., 1988. The Turing programming language. Communications of the ACM,

31(12), pp.1410–1423. Available at: http://dl.acm.org/citation.cfm?id=53580.53581 [Accessed

January 15, 2015].

Hornyak, T., 2014. Android grabs record 85 percent smartphone share. PCWorld. Available at:

http://www.pcworld.com/article/2460020/android-grabs-record-85-percent-smartphone-

share.html [Accessed January 28, 2015].

Hristova, M. et al., 2003. Identifying and correcting Java programming errors for introductory

computer science students. In Proceedings of the 34th SIGCSE technical symposium on

Computer science education - SIGCSE ’03. New York, New York, USA: ACM Press, p. 153.

Available at: http://dl.acm.org/citation.cfm?id=611892.611956 [Accessed January 19, 2015].

Hürst, W., Lauer, T. & Nold, E., 2007. A study of algorithm animations on mobile devices. ACM

SIGCSE Bulletin, 39(1), p.160. Available at:

http://dl.acm.org/citation.cfm?id=1227504.1227368 [Accessed January 27, 2015].

Ibrahim, R. et al., 2010. Students Perceptions of Using Educational Games to Learn Introductory

Programming. Computer and Information Science, 4(1), p.p205. Available at:

http://www.ccsenet.org/journal/index.php/cis/article/view/8246 [Accessed January 14, 2015].

Ihantola, P., Helminen, J. & Karavirta, V., 2013. How to study programming on mobile touch

devices. In Proceedings of the 13th Koli Calling International Conference on Computing

Education Research - Koli Calling ’13. New York, New York, USA: ACM Press, pp. 51–58.

Available at: http://dl.acm.org/citation.cfm?id=2526968.2526974 [Accessed February 4, 2014].

Jackson, S.L., Krajcik, J. & Soloway, E., 1998. The design of guided learner-adaptable scaffolding in

interactive learning environments. In Proceedings of the SIGCHI conference on Human factors

in computing systems - CHI ’98. Los Angeles CA USA: ACM Press, pp. 187–194. Available at:

http://dl.acm.org/citation.cfm?id=274644.274672 [Accessed March 11, 2014].

Jenkins, J. et al., 2012. Perspectives on active learning and collaboration. In Proceedings of the 43rd

ACM technical symposium on Computer Science Education - SIGCSE ’12. New York, New

York, USA: ACM Press, p. 185. Available at:

http://dl.acm.org/citation.cfm?id=2157136.2157194 [Accessed January 15, 2015].

Jenkins, J., Brannock, E. & Dekhane, S., 2010. JavaWIDE: innovation in an online IDE: tutorial

presentation. Journal of Computing Sciences in Colleges, 25(5), pp.102–104. Available at:

http://dl.acm.org/citation.cfm?id=1747137.1747155 [Accessed January 15, 2015].

Jenkins, T., 2002. On the difficulty of learning to program. In Proceedings of the 3rd Annual

Conference of the LTSN Centre for Information and Computer Sciences. p. Vol 4. Available at:

http://www.ics.heacademy.ac.uk/Events/conf2002/tjenkins.pdf [Accessed January 7, 2015].

Jobe, W., 2014. Do-It-Yourself Learning in Kenya : Exploring mobile technologies for merging non-

formal and informal learning. Department of Computer and Systems Sciences, Stockholm

University. Available at: http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A758087&dswid=8277 [Accessed April 6, 2015].

Jones et al., 1999. Contexts for evaluating educational software. Interacting with Computers, 11(5),

pp.499–516. Available at:

146

http://iwc.oxfordjournals.org.ezproxy.uct.ac.za/content/11/5/499.short [Accessed March 31,

2014].

Jones, M. et al., 1999. Improving Web interaction on small displays. Computer Networks, 31(11-16),

pp.1129–1137. Available at:

http://www.sciencedirect.com/science/article/pii/S1389128699000134 [Accessed January 19,

2015].

Kafyulilo, A., 2012. Access, use and perceptions of teachers and students towards mobile phones as

a tool for teaching and learning in Tanzania. Education and Information Technologies, 19(1),

pp.115–127. Available at: http://link.springer.com/10.1007/s10639-012-9207-y [Accessed July

30, 2014].

Kirschner, P.A., Sweller, J. & Clark, R.E., 2006. Why Minimal Guidance During Instruction Does

Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based,

Experiential, and Inquiry-Based Teaching. Educational Psychologist, 41(2), pp.75–86.

Available at: http://www.tandfonline.com/doi/abs/10.1207/s15326985ep4102_1 [Accessed

December 3, 2014].

Kölling, M. et al., 2010. The BlueJ System and its Pedagogy. Available at:

http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496#.VKz77yuVLYg [Accessed

January 7, 2015].

Kukulska-Hulme, A., 2005. Mobile usability and user experience A. Kukulska-Hulme & J. Traxler,

eds., Routledge. Available at:

http://books.google.com/books?hl=en&lr=&id=onctUPCDt3wC&pgis=1 [Accessed March 12,

2014].

Kukulska-Hulme, A., 2007. Mobile Usability in Educational Contexts: What have we learnt? The

International Review of Research in Open and Distributed Learning, 8(2). Available at:

http://www.irrodl.org/index.php/irrodl/article/view/356/901 [Accessed January 19, 2015].

Lahtinen, E., Ala-Mutka, K. & Järvinen, H.-M., 2005. A study of the difficulties of novice

programmers. ACM SIGCSE Bulletin, 37(3), p.14. Available at:

http://dl.acm.org/citation.cfm?id=1151954.1067453 [Accessed February 7, 2014].

Lalji, Z. & Good, J., 2008. Designing new technologies for illiterate populations: A study in mobile

phone interface design. Interacting with Computers, 20(6), pp.574–586. Available at:

http://iwc.oxfordjournals.org/content/20/6/574.full [Accessed March 23, 2015].

Lazar, J. & Preece, J., 1999. Designing and implementing Web-based surveys. Journal of Computer

Information Systems, 39(4), pp.63–68.

Leech, N.L. & Onwuegbuzie, A.J., 2007. A typology of mixed methods research designs. Quality &

Quantity, 43(2), pp.265–275. Available at: http://link.springer.com/10.1007/s11135-007-9105-3

[Accessed July 11, 2014].

Luchini et al., 2002. Supporting learning in context: extending learner-centered design to the

development of handheld educational software. In Proceedings. IEEE International Workshop

on Wireless and Mobile Technologies in Education. IEEE Comput. Soc, pp. 107–111. Available

at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1039230 [Accessed January

27, 2015].

Luchini, K. et al., 2002. Scaffolding in the small. In CHI ’02 extended abstracts on Human factors in

computing systems - CHI '02. New York, New York, USA: ACM Press, p. 792. Available at:

http://dl.acm.org/citation.cfm?id=506443.506600 [Accessed February 1, 2015].

Luchini, K. et al., 2002. Supporting learning in context: extending learner-centered design to the

development of handheld educational software. In Proceedings. IEEE International Workshop

on Wireless and Mobile Technologies in Education. IEEE Comput. Soc, pp. 107–111. Available

at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1039230 [Accessed

December 16, 2014].

147

Luchini, K., Quintana, C. & Soloway, E., 2004. Design guidelines for learner-centered handheld

tools. In Proceedings of the 2004 conference on Human factors in computing systems - CHI ’04.

New York, New York, USA: ACM Press, pp. 135–142. Available at:

http://dl.acm.org/citation.cfm?id=985692.985710 [Accessed February 19, 2014].

Luchini, K., Quintana, C. & Soloway, E., 2003. Pocket PiCoMap. In Proceedings of the conference

on Human factors in computing systems - CHI ’03. New York, New York, USA: ACM Press, p.

321. Available at: http://dl.acm.org/citation.cfm?id=642611.642668 [Accessed February 19,

2014].

Maleko, M., 2014. The mobile social learning environment for novice programmers. RMIT.

Available at: http://researchbank.rmit.edu.au/view/rmit:161169 [Accessed February 1, 2015].

Maleko, M., Hamilton, M. & D’Souza, D., 2012. Novices’ perceptions and experiences of a mobile

social learning environment for learning of programming. In Proceedings of the 17th ACM

annual conference on Innovation and technology in computer science education - ITiCSE ’12.

New York, New York, USA: ACM Press, p. 285. Available at:

http://dl.acm.org/citation.cfm?id=2325296.2325364 [Accessed May 31, 2014].

Mbogo, C., Blake, E. & Suleman, H., 2013. A mobile scaffolding application to support novice

learners of computer programming. In Proceedings of the Sixth International Conference on

Information and Communications Technologies and Development Notes - ICTD ’13 - volume 2.

Cape Town: ACM Press, pp. 84–87. Available at:

http://dl.acm.org/citation.cfm?id=2517899.2517941 [Accessed February 19, 2014].

Mbogo, C., Blake, E. & Suleman, H., 2014. Supporting the Construction of Programs on a Mobile

Device: A Scaffolding Framework. In Proceedings of 4th International Conference on M4D

Mobile Communication for Development. Dakar, Senegal, p. 155. Available at:

http://people.cs.uct.ac.za/~edwin/MyBib/2014-m4d.pdf [Accessed March 11, 2014].

Miller, B.N. & Ranum, D.L., 2012. Beyond PDF and ePub. In Proceedings of the 17th ACM annual

conference on Innovation and technology in computer science education - ITiCSE ’12. New

York, New York, USA: ACM Press, p. 150. Available at:

http://dl.acm.org/citation.cfm?id=2325296.2325335 [Accessed January 27, 2015].

Mohamed, S., Hamilton, M. & D’Souza, D., 2011. Understanding novice programmer difficulties via

guided learning. In Proceedings of the 16th annual joint conference on Innovation and

technology in computer science education - ITiCSE ’11. New York, New York, USA: ACM

Press, p. 213. Available at: http://dl.acm.org/citation.cfm?id=1999747.1999808 [Accessed

March 11, 2014].

Moreno, R., 2004. Decreasing Cognitive Load for Novice Students: Effects of Explanatory versus

Corrective Feedback in Discovery-Based Multimedia. Instructional Science, 32(1/2), pp.99–

113. Available at: http://link.springer.com/10.1023/B:TRUC.0000021811.66966.1d [Accessed

March 25, 2015].

Mtebe, J. & Raisamo, R., 2014. Investigating students ’ behavioural intention to adopt and use

mobile learning in higher education in East Africa Joel S . Mtebe University of Dar es Salaam ,

Tanzania Roope Raisamo University of Tampere , Finland. International Journal of Education

and Development using Information and Communication Technology, 10(3), pp.4–20.

Mueller, F. & Hosking, A.L., 2003. Penumbra. In Proceedings of the 2003 OOPSLA workshop on

eclipse technology eXchange - eclipse ’03. New York, New York, USA: ACM Press, pp. 65–68.

Available at: http://dl.acm.org/citation.cfm?id=965660.965674 [Accessed January 15, 2015].

Ng’ambi, D., 2005. Mobile Dynamic Frequently Asked Questions (DFAQ) for student and learning

support. Mobile Technology: The future of learning in your hands, pp.116–119.

NIST, 2001. Common Industry Format for Usability Test Reports, Available at:

http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/common-industry-format.pdf

[Accessed April 26, 2014].

148

Pears, A. & Rogalli, M., 2011. mJeliot. In Proceedings of the 11th Koli Calling International

Conference on Computing Education Research - Koli Calling ’11. New York, New York, USA:

ACM Press, p. 16. Available at: http://dl.acm.org/citation.cfm?id=2094131.2094135 [Accessed

February 13, 2014].

Piaget, J., 1964. Part I: Cognitive development in children: Piaget development and learning. Journal

of Research in Science Teaching, 2(3), pp.176–186. Available at:

http://doi.wiley.com/10.1002/tea.3660020306 [Accessed June 8, 2014].

Pillay, N. & Jugoo, V.R., 2005. An investigation into student characteristics affecting novice

programming performance. ACM SIGCSE Bulletin, 37(4), p.107. Available at:

http://dl.acm.org/citation.cfm?id=1113847.1113888 [Accessed March 24, 2014].

Piteira, M. & Costa, C., 2012. Computer programming and novice programmers. In Proceedings of

the Workshop on Information Systems and Design of Communication - ISDOC ’12. New York,

New York, USA: ACM Press, pp. 51–53. Available at:

http://dl.acm.org/citation.cfm?id=2311917.2311927 [Accessed May 31, 2014].

Powers, K., Ecott, S. & Hirshfield, L.M., 2007. Through the looking glass. ACM SIGCSE Bulletin,

39(1), p.213. Available at: http://dl.acm.org/citation.cfm?id=1227504.1227386 [Accessed

January 15, 2015].

Pullan, W., Drew, S. & Tucker, S., 2013. An integrated approach to teaching introductory

programming. In 2013 Second International Conference on E-Learning and E-Technologies in

Education (ICEEE). IEEE, pp. 81–86. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6644352 [Accessed May 11,

2014].

Queirós, R.A.P. & Leal, J.P., 2012. PETCHA. In Proceedings of the 17th ACM annual conference

on Innovation and technology in computer science education - ITiCSE ’12. Haifa, Israel: ACM

Press, p. 192. Available at: http://dl.acm.org/citation.cfm?id=2325296.2325344 [Accessed

February 19, 2014].

Quintana, C. et al., 2004. A Scaffolding Design Framework for Software to Support Science Inquiry.

Journal of the Learning Sciences, 13(3), pp.337–386. Available at:

http://dx.doi.org/10.1207/s15327809jls1303_4 [Accessed February 4, 2014].

Quintana, C., Fretz, E., et al., 2000. Evaluation criteria for scaffolding in learner-centered tools. In

CHI ’00 extended abstracts on Human factors in computing systems - CHI '00. New York,

New York, USA: ACM Press, p. 189. Available at:

http://dl.acm.org/citation.cfm?id=633292.633396 [Accessed May 11, 2014].

Quintana, C., Krajcik, J. & Soloway, E., 2002a. A Case Study to Distill Structural Scaffolding

Guidelines for Scaffolded Software Environments. In Proceedings of the SIGCHI conference on

Human factors in computing systems Changing our world, changing ourselves - CHI ’02. New

York, New York, USA: ACM Press, p. 81. Available at:

http://dl.acm.org/citation.cfm?id=503376.503392 [Accessed February 19, 2014].

Quintana, C., Krajcik, J. & Soloway, E., 2000. Exploring a Structure Definition for Learner-Centered

Design. In Fourth international conference of the learning sciences. Psychology Press, pp. 256–

263. Available at: https://books.google.com/books?hl=en&lr=&id=0JM5N9PUZM8C&pgis=1

[Accessed March 23, 2015].

Quintana, C., Krajcik, J. & Soloway, E., 2002b. Scaffolding Design Guidelines for Learner-Centered

Software Environments. Available at: http://eric.ed.gov/?id=ED467503 [Accessed January 28,

2015].

Reis, C. & Cartwright, R., 2004. Taming a professional IDE for the classroom. ACM SIGCSE

Bulletin, 36(1), p.156. Available at: http://dl.acm.org/citation.cfm?id=1028174.971357

[Accessed January 15, 2015].

149

Rogerson, C. & Scott, E., 2010. The Fear Factor: How It Affects Students Learning to Program in a

Tertiary Environment. Journal of Information Technology Education: Research, 9(1), pp.147–

171. Available at: http://www.editlib.org/p/111361/ [Accessed January 14, 2015].

Roy, K., 2012. App inventor for android. In Proceedings of the 43rd ACM technical symposium on

Computer Science Education - SIGCSE ’12. New York, New York, USA: ACM Press, p. 283.

Available at: http://dl.acm.org/citation.cfm?id=2157136.2157222 [Accessed January 16, 2015].

Sauro, J. & Lewis, J.R., 2012. Quantifying the User Experience, Elsevier. Available at:

http://www.sciencedirect.com/science/article/pii/B9780123849687000023 [Accessed October

26, 2014].

Saye, J. & Brush, T., 2001. The Use of Embedded Scaffolds with Hypermedia-Supported Student-

Centered Learning. Journal of Educational Multimedia and Hypermedia, 10(4), pp.333–356.

Available at: http://www.editlib.org/p/8439/ [Accessed March 22, 2015].

Schunk, Dale, H., 2011. Learning Theories: An Educational Perspective, Pearson; 6 edition.

Seifert, J. et al., 2011. Mobidev. In Proceedings of the 13th International Conference on Human

Computer Interaction with Mobile Devices and Services - MobileHCI ’11. New York, New

York, USA: ACM Press, p. 109. Available at:

http://dl.acm.org/citation.cfm?id=2037373.2037392 [Accessed January 24, 2015].

Senga, E., 2010. A Service-Oriented Approach to Implementing an Adaptive User Interface. Nelson

Mandela Metropolitan University.

Shein, E., 2015. Python for beginners. Communications of the ACM, 58(3), pp.19–21. Available at:

http://dl.acm.org/ft_gateway.cfm?id=2716560&type=html [Accessed March 22, 2015].

Siek, K.A., Rogers, Y. & Connelly, K.H., 2005. Fat finger worries: how older and younger users

physically interact with PDAs. In M. F. Costabile & F. Paternò, eds. Human-Computer

Interaction-INTERACT 2005. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 267–280. Available at:

http://www.springerlink.com/index/10.1007/11555261 [Accessed January 19, 2015].

Soloway, E. et al., 1996. Learning theory in practice: case studies of learner-centered design. In

Proceedings of the SIGCHI conference on Human factors in computing systems common

ground - CHI ’96. New York, New York, USA: ACM Press, pp. 189–196. Available at:

http://dl.acm.org/ft_gateway.cfm?id=238476&type=html [Accessed May 31, 2014].

Soloway, E., Guzdial, M. & Hay, K.E., 1994. Learner-centered design: the challenge for HCI in the

21st century. interactions, 1(2), pp.36–48. Available at:

http://dl.acm.org/citation.cfm?id=174809.174813 [Accessed May 31, 2014].

Sphere Research Labs, 2010. Ideone TM API. , pp.1–11.

Storey, M.-A. et al., 2003. Improving the usability of Eclipse for novice programmers. In

Proceedings of the 2003 OOPSLA workshop on eclipse technology eXchange - eclipse ’03. New

York, New York, USA: ACM Press, pp. 35–39. Available at:

http://dl.acm.org/citation.cfm?id=965660.965668 [Accessed January 4, 2015].

Sun-Microsystems, 1997. Java Code Conventions. Available at:

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf [Accessed January 19,

2015].

Svensson, J. & Wamala, C., 2012. M4D : Mobile Communication for Development. , p.21. Available

at: http://www.diva-portal.org/smash/record.jsf?pid=diva2:549742 [Accessed March 11, 2014].

Taylor, J., 2006. Evaluating mobile learning: What are appropriate methods for evaluating learning

in mobile enviroments. In Big issues in mobile learning. pp. 24–26.

Tillmann, N. et al., 2011. TouchDevelop. In Proceedings of the 10th SIGPLAN symposium on New

ideas, new paradigms, and reflections on programming and software - ONWARD ’11. New

York, New York, USA: ACM Press, p. 49. Available at:

http://dl.acm.org/citation.cfm?id=2048237.2048245 [Accessed February 8, 2014].

150

Traxler, J., 2011. Learning with Mobile Devices Somewhere Near the Bottom of the Pyramid

« Educational Technology Debate. Available at: http://edutechdebate.org/affordable-

technology/learning-with-mobile-devices-somewhere-near-the-bottom-of-the-pyramid/

[Accessed March 19, 2015].

Traxler, J. & Kukulska-Hulme, A., 2005. Evaluating Mobile Learning: Reflections on Current

Practice. In mLearn 2005. Available at:

http://oro.open.ac.uk/12819/1/mlearn05_Traxler&Kukulska-Hulme.pdf [Accessed January 26,

2015].

Traxler, J. & Leach, J., 2006. Innovative and Sustainable Mobile Learning in Africa. In 2006 Fourth

IEEE International Workshop on Wireless, Mobile and Ubiquitous Technology in Education

(WMTE’06). IEEE, pp. 98–102. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4032531 [Accessed January

15, 2015].

Traxler, J. & Vosloo, S., 2014. Introduction: The prospects for mobile learning. PROSPECTS, 44(1),

pp.13–28. Available at: http://link.springer.com/10.1007/s11125-014-9296-z [Accessed March

24, 2015].

Vavoula, G. & Sharples, M., 2009. Meeting the Challenges in Evaluating Mobile Learning: A 3-level

Evaluation Framework. International Journal of Mobile and Blended Learning, 1(2), pp.54–75.

Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.357.2367&rep=rep1&type=pdf

[Accessed April 17, 2014].

Vihavainen, A. et al., 2013. Scaffolding students’ learning using test my code. In Proceedings of the

18th ACM conference on Innovation and technology in computer science education - ITiCSE

’13. Canterbury, England: ACM Press, p. 117. Available at:

http://dl.acm.org/citation.cfm?id=2462476.2462501 [Accessed February 19, 2014].

Vihavainen, A., Paksula, M. & Luukkainen, M., 2011. Extreme apprenticeship method in teaching

programming for beginners. In Proceedings of the 42nd ACM technical symposium on

Computer science education - SIGCSE ’11. New York, New York, USA: ACM Press, p. 93.

Available at: http://dl.acm.org/citation.cfm?id=1953163.1953196 [Accessed February 19,

2014].

Vygotsky, L.S., 1978. Mind in Society: The Development of Higher Psychological Processes,

Harvard University Press.

Wagner, A. et al., 2013. Using app inventor in a K-12 summer camp. In Proceeding of the 44th ACM

technical symposium on Computer science education - SIGCSE ’13. New York, New York,

USA: ACM Press, p. 621. Available at: http://dl.acm.org/citation.cfm?id=2445196.2445377

[Accessed January 16, 2015].

Watson, C. & Li, F.W.B., 2014. Failure rates in introductory programming revisited. In Proceedings

of the 2014 conference on Innovation & technology in computer science education - ITiCSE

’14. New York, New York, USA: ACM Press, pp. 39–44. Available at:

http://dl.acm.org/citation.cfm?id=2591708.2591749 [Accessed January 14, 2015].

Winslow, L.E., 1996. Programming pedagogy---a psychological overview. ACM SIGCSE Bulletin,

28(3), pp.17–22. Available at: http://dl.acm.org/citation.cfm?id=234867.234872 [Accessed

January 14, 2015].

Winterbottom, C., 2010. VRBridge: A Constructivist Approach to Supporting Interaction Design and

End-User Authoring in Virtual Reality. University of Cape Town. Available at:

http://pubs.cs.uct.ac.za/archive/00000607/01/CaraWinterbottomPhDThesisFinal.pdf [Accessed

March 24, 2014].

Winterbottom, C. & Blake, E., 2004. Designing a VR interaction authoring tool using constructivist

practices. In Proceedings of the 3rd international conference on Computer graphics, virtual

reality, visualisation and interaction in Africa - AFRIGRAPH ’04. New York, New York, USA:

151

ACM Press, p. 67. Available at: http://dl.acm.org/citation.cfm?id=1029949.1029961 [Accessed

June 10, 2014].

Wolber, D., 2011. App inventor and real-world motivation. In Proceedings of the 42nd ACM

technical symposium on Computer science education - SIGCSE ’11. New York, New York,

USA: ACM Press, p. 601. Available at: http://dl.acm.org/citation.cfm?id=1953163.1953329

[Accessed January 16, 2015].

Wolz, U. et al., 2009. Starting with scratch in CS 1. ACM SIGCSE Bulletin, 41(1), p.2. Available at:

http://dl.acm.org/citation.cfm?id=1539024.1508869 [Accessed January 14, 2015].

Wood, D., Bruner, J.S. & Ross, G., 1976. The Role of Tutoring in Problem Solving. Journal of Child

Psychology and Psychiatry, 17(2), pp.89–100. Available at:

http://doi.wiley.com/10.1111/j.1469-7610.1976.tb00381.x [Accessed March 11, 2014].

Yizengaw, T., 2008. Challenges of Higher Education in Africa and Lessons of Experience for the

Africa-US Higher Education Collaboration Initiative, Available at:

http://www.uhasselt.be/Documents/UHasselt_EN/International/Lezing N-Z

2013/challegnes_in_africa.pdf [Accessed January 14, 2015].

Yuh-Shyan Chen et al., 2002. A mobile scaffolding-aid-based bird-watching learning system. In

Proceedings. IEEE International Workshop on Wireless and Mobile Technologies in Education.

IEEE Comput. Soc, pp. 15–22. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1039216 [Accessed April 26,

2014].

Zimmerman, D. & Yohon, T., 2009. Small-screen interface design: Where are we? Where do we go?

In 2009 IEEE International Professional Communication Conference. IEEE, pp. 1–5. Available

at: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5208667 [Accessed December 16,

2014].

152

APPENDICES

Appendix A: Table of the Scaffolding Framework

This table describes in detail the types of cognitive challenges that that face learners, specifying

scaffolding type and guideline and scaffolding technique that can be implemented on a mobile device

to address learner challenges in programming.

Type of

cognitive

challenge

Specific learning

challenge

Scaffolding

type

Scaffolding

guideline

Scaffolding strategy

that can be

implemented on a

Mobile Device

Sense

Making
 Unclear error

messages when

debugging

 Debugging is

sometimes

frustrating

 Sometimes it's hard

to figure out what

the error message is

trying to tell you

when you try to run

the program

 It is sometimes

difficult to

understand exactly

what is being asked

or how to correct

your program when

it does not run as

intended

Supportive Use

representation

and language that

bridge learners’

understanding of

programming.

Prompt the learner as

soon as they make a

mistake in a piece of

code instead of having

to wait till they

compile the program.

Use clear and easy to

understand language

in the prompt.

 Constructing logic

from programs is

difficult

 I struggle in

thinking logically

Reflective/ Intrinsic Structure task

and functionality

by restricting a

complex task by

setting proper

boundaries for

learners.

Use

representations

that learners can

inspect in

different ways to

reveal important

Force the learner to

complete ‘first level’

tasks before

‘unlocking’ ‘second

level tasks’ and so on.

An example of a first

level task would be in

declaring a class. A

second level task

would be to complete

the ‘main method’. A

third level task could

be to complete a

method that will be

called from the main

method.

153

Type of

cognitive

challenge

Specific learning

challenge

Scaffolding

type

Scaffolding

guideline

Scaffolding strategy

that can be

implemented on a

Mobile Device

properties about

underlying data.

Enable the learner to

‘dive in’ to specific

program parts while

they can also ‘step

out’ and view the full

program.

Provide examples that

are relevant to the part

of the program being

worked on

 The ability to join

codes or to build

objects alone

combining to form

classes and finally a

system to do a

certain task

Supportive/Intrinsic Organize the

mobile strategy

around the

semantics of the

programming

language.

Provide general

program structures

such as keywords and

opening and closing

braces that a learner

can edit. Editing

should be restricted to

be within the allowed

syntax of that

program part. For

example, in a class

declaration, public

class sum , the learner

can edit sum to their

desired name but not

be able to add any

other code after sum.

Decompose the

program into parts

and present the

program structure as it

appears on a PC IDE.

Once decomposed,

provide a visual repre-

sentation of accessible

program parts to

enable a learner to

have an overview of a

program. For

example, in Java,

program parts are ‘the

header comments’,

‘import statements’,

‘class declaration’,

‘methods’, ‘main

154

Type of

cognitive

challenge

Specific learning

challenge

Scaffolding

type

Scaffolding

guideline

Scaffolding strategy

that can be

implemented on a

Mobile Device

class’. Presenting the

program on the

mobile device in this

‘chunked’ format

could assist a learner

in logical thinking

 The simple yet

confusing rules of

programming i.e,

initialization,

breaks ups with

semicolons on

parameters,

constructors and

how they are used

etc.

Supportive Use

representation

and language that

bridge learners’

understanding of

programming.

Provide steps to

complete program

parts.

Implement

determination of the

program part that the

learner is attempting

to complete. For

example, if writing

code for a method

within a constructor

like ‘return num’,

the learner can be

prompted that the

piece of code does not

belong in a

constructor but in a

method.

 Sometimes I am not

sure how the syntax

should be done and

there are no internet

resources to help

me

 When I was

learning Java I was

struggling with the

syntax which made

it hard for me to

work the logic part

because I wasn't

sure about other

functions usage

Supportive Use

representation

and language that

bridge learners’

understanding of

programming.

Provide steps to

complete program

parts.

Guiding the learner

through subtasks by

providing messages

that appear when

appropriate.

Process

Management
 I prefer learning

through video

tutorials but the

internet is either too

slow or expensive

Supportive Embed expert

guidance about

programming

practices.

Embed information

that a learner can use

in the absence of other

resources. These

include the steps for

completing a task and

155

Type of

cognitive

challenge

Specific learning

challenge

Scaffolding

type

Scaffolding

guideline

Scaffolding strategy

that can be

implemented on a

Mobile Device

related examples that

they can access with

minimal cost.

Allow learner to save

the examples that they

wish to view later.

Enable storage of

programs on the

mobile device that

they can reuse on a

PC in the classroom

or at home.

 Poor presentation

of programs by

lecturer without

sufficient time to

practice the code

Supportive

Embed expert

guidance about

programming

practices.

Complement

classroom learning by

providing assistance

in completing the

program task.

Embed expert

guidance about

programming

practices.

Complement

classroom learning by

providing assistance

in completing the

program task.

 It takes too much

time to code

programs

 Finding ways to

accomplish a task

in the shortest way

possible

Supportive/Intrinsic

Organize the

mobile strategy

around the

semantics of the

programming

language.

Automatically

handle routine

tasks.

Decomposing the

program into parts

gives quick access to

the parts the learner

needs to work on.

Automatically

complete program

parts such as

keywords and opening

and closing braces.

Automatically

handle routine

tasks.

Automatically

complete program

parts such as

keywords and opening

and closing braces.

 Learning

programming for

the first time at

university level has

been a big

challenge espe-

cially for me

Supportive/Intrinsic Provide structure

for complex tasks

and functionality.

Decomposing the

program into parts

would assist a novice

learner to logically

follow the flow of a

program

156

Type of

cognitive

challenge

Specific learning

challenge

Scaffolding

type

Scaffolding

guideline

Scaffolding strategy

that can be

implemented on a

Mobile Device

because I am from a

rural area with no

computer back-

ground

Offer context specific

help. For example if a

learner is working on

recursion, they are

scaffolded using

expert knowledge on

recursion.

Enable the scaffolding

to fade away as the

learner progresses and

offer more ‘advanced

features’.

Provide periodic ‘self-

assessment’ so that

the learner can test

themselves.

 Programming is fun

but most students

like me loose

interest quickly.

Reflection Facilitate

ongoing

articulation and

reflection during

program

construction.

Enable the scaffolding

to fade away as the

learner progresses and

offer more ‘advanced

features’.

Provide periodic ‘self-

assessment’ so that

the learner can test

themselves.

 Coding is very

challenging

especially when

using java

programming

language

 The language is

very strict and you

really have to know

specific

instructions to

accomplish a task

Supportive Provide structure

for complex tasks

and functionality.

Decomposing the

program into parts

would assist a novice

learner to logically

follow the flow of a

program

Articulation

and Reflec-

tion

 Lack of

documentation and

practical examples

Reflective Embed expert

guidance about

programming

practices.

Provide examples that

are relevant to the

program part being

completed.

 Translating an

algorithm into

code, sometimes I

Supportive/Intrinsic Use

representation

and language that

Provide steps on the

correct syntax to

157

Type of

cognitive

challenge

Specific learning

challenge

Scaffolding

type

Scaffolding

guideline

Scaffolding strategy

that can be

implemented on a

Mobile Device

manage to solve the

problem in my head

but then

communicating it

to Python can be a

bit of a challenge

bridge learners’

understanding of

programming.

complete a program

part

 Moving from

Python to Java was

a challenge to me

because when you

are programming in

Java, you have to be

more specific in

terms of variable

types and return

value types

Supportive Embed expert

guidance about

programming

practices.

Provide steps on how

to complete subtasks

158

Appendix B: Summary of Scaffolding Design Framework

Table source (Quintana et al. 2004)

159

Appendix C: Ethical Clearances

Appendix C1: Ethical clearance from University of Cape Town

160

Appendix C2: Permission to access learners at University of Cape Town

161

Appendix C3: Ethical clearance from Kenya Methodist University

162

Appendix D: Consent form signed by learners before participating in study

163

Appendix E: Questionnaires

Appendix E1: Experiment 1 questionnaire

164

165

166

167

168

169

170

171

172

Appendix E2: Experiment 2 and 3 questionnaire

173

174

175

Appendix E3: Experiment 3 questionnaire for control group

176

177

Appendix F: Screenshots of the second prototype with modifications

Appendix F1: Screenshot showing use of tabs in the main interface, a green run button at the
top of the screen, and addition of ‘other class’ chunk

Appendix F2: Screenshot showing use of tabs in the editor

178

Appendix F3: Screenshot showing ‘public class’ keyword in main class disabled, showing menu
options that can be selected to enable (left figure) or disable it (right figure)

Appendix F4: Screenshot showing instructions in the main class indicating that a user can
proceed without creating the main class

179

Appendix F4: Screenshot showing a header dialog (left figure) that can be enabled using a
menu option (right figure)

Appendix F5: Screenshot showing the Scanner class option (left figure) and the corresponding
default text (right figure) that is to be edited and reused

180

Appendix F6: Screenshot showing the import statements that are automatically inserted in the
imports chunk (left figure) and the resulting dialog box for user input when the program is
compiled (right figure)

181

Appendix G: Raw Data for Number of Tasks

Appendix G1: Number of tasks attempted and completed per user for KeMU, Experiment 2

Appendix G2: Number of tasks attempted and completed per user for UWC, Experiment 2

user

attempted

(experimental)

 completed

(experimental) user

 attempted

(control)

 completed

(control)

user1 2 1 user1 2 1

user2 2 1 user2 2 0

user3 3 1 user3 2 0

user4 2 2 user4 3 1

user5 3 2 user5 2 0

user6 3 2 user6 2 1

user7 3 2 user7 3 2

TOTAL 18 11 TOTAL 16 5

control (number of tasks)experimental (number of tasks)

KEMU - Experiment 2

attempted tasks

(experimental)

 completed tasks

(experimental)

 attempted tasks

(control)

 completed

tasks (control)

user1 2 0 user1 1 1

user2 2 1 user2 4 0

user3 4 3 user3 2 1

user4 4 3 user4 1 1

user5 2 2 user5 1 1

user6 1 1 user6 1 0

user7 1 1 user7 1 0

user8 1 1 user8 1 1

user9 3 2 user9 1 0

user10 2 1 user10 1 0

user11 3 3 user11 2 1

user12 3 2 user12 2 1

user13 3 2 user13 2 2

user14 1 0

TOTAL 32 22 TOTAL 20 9

UWC - Experiment 2

experimental CONTROL

182

Appendix G3: Number of tasks attempted and completed per user for JKUAT, Experiment 2

Appendix G4: Number of tasks attempted and completed per user for KeMU, Experiment 3

attempted

tasks

(experimental)

 completed

tasks

(experimental)

attempted

tasks

(control)

 completed

tasks

(control)

user1 3 2 user1 2 1

user2 3 1 user2 2 0

user3 1 0 user3 3 2

user4 2 1 user4 2 0

user5 3 2 user5 2 2

user6 2 1 user6 3 2

user7 2 2 user7 3 2

user8 2 1 user8 3 3

user9 2 0 user9 2 1

user10 2 0 user10 2 1

user11 5 4 user11 2 2

user12 3 2 user12 3 2

user13 1 0 user13 2 2

user14 2 1

user15 5 2

user16 2 0

TOTAL 31 16 TOTAL 40 23

attempted tasks

(experimental)

 completed tasks

(exp)

 attempted

tasks (control)

 completed

tasks

(control)

user1 1 1 user1 2 0

user2 3 2 user2 2 1

user3 2 1 user3 2 0

user4 3 2 user4 1 0

user5 3 1 user5 1 0

user6 1 1 user6 2 1

user7 4 3 user7 1 0

user8 1 0 user8 2 1

user9 2 1 user9 3 0

user10 3 3 user10 2 0

user11 3 1 user11 2 1

user12 3 3

user13 3 3

TOTAL 32 22 TOTAL 20 4

KeMU - Experiment 3

Experimental CONTROL

183

Appendix G5: Number of tasks attempted and completed per user for JKUAT, Experiment 3

attempted tasks

(experimental)

 completed

tasks(Experimental

)

 attempted

tasks

(control)

 completed

tasks

(control)

user1 3 2 user1 2 0

user2 2 1 user2 1 0

user3 6 5 user3 2 0

user4 1 0 user4 1 0

user5 2 0 user5 2 0

user6 3 2 user6 6 2

user7 3 2 user7 1 0

user8 3 2 user8 3 1

user9 1 0 user9 1 0

user10 3 2 user10 3 2

user11 6 6 user11 2 0

user12 6 6 user12 4 3

user13 4 3 user13 3 3

user14 4 3 user14 1 0

user15 4 3 user15 1 0

user16 3 1 user16 2 0

user17 4 0 user17 2 0

user18 3 3 user18 3 3

user19 6 5 user19 3 2

user20 4 4 user20 1 0

user21 5 3 user21 3 1

user22 4 3 user22 2 0

user23 5 4 user23 2 1

user24 1 0 user24 6 3

TOTAL 86 60 TOTAL 57 21

jKUAT- Experiment 3

Experimental CONTROL

184

Appendix H: Raw Data for Time-on-Task

Appendix H1: Time-on-task data for learners in Control and Experimental groups at UWC
Experiment 2

User Task

Time on

incomplete

task

Time on

complete

task

Total time

per user

Time on

incomplete

task

Time on

complete

task

Total time per

user User task

user1 1 6.14 37.45 37.45 user1 1

user1 2 20.37 26.51 19.04 user2 1

user2 1 36.34 15.51 user2 2

user2 2 2.1 38.44 5.3 user2 3

user3 1 35.3 1.18 41.03 user2 4

user3 2 13.31 28.15 user3 1

user3 3 7.17 13.13 41.28 user3 2

user3 4 0.55 56.33 23.25 23.25 user4 2

user4 1 8.27 25.14 user5 1

user4 2 13.11 37.07 37.07 user6 1

user4 3 22.16 22.41 22.41 user7 1

user4 4 7.07 50.61 26.19 26.19 user8 1

user5 1 30.27 37.39 37.39 user9 1

user5 2 14.34 44.61 39.58 39.58 user10 1

user6 1 26.06 26.06 15.23 user11 1

user7 1 22.1 22.1 24.06 39.29 user11 2

user8 1 38.22 38.22 13.34 user12 1

user9 1 11.59 24.06 37.4 user12 2

user9 2 12 13.5 user13 1

user9 3 11.34 34.93 17.41 30.91 user13 2

user10 1 36.17

user10 2 5.48 41.65

user11 1 26.46

user11 2 15.25

user11 3 6.51 48.22

user12 1 26.49

user12 2 20.21

user12 3 0.48 47.18

user13 1 17.13

user13 2 18.31

user13 3 7.07 42.51

user14 1 14.47 14.47

experimental CONTROL

 time-on-task per user (all tasks) - UNSORTED

185

User Task

Time on

complete

task (exp)

Time on

complete task

(control) User task

user2 1 36.34 37.45 user1 1

user3 1 35.3 28.15 user3 1

user4 1 8.27 25.14 user5 1

user5 1 30.27 26.19 user8 1

user6 1 26.06 15.23 user11 1

user7 1 22.1 13.34 user12 1

user8 1 38.22 13.5 user13 1

user9 1 11.59

user10 1 36.17

user11 1 26.46

user12 1 26.49

user13 1 17.13

user3 2 13.31 23.25 user4 2

user4 2 13.11 17.41 user13 2

user5 2 14.34

user9 2 12

user11 2 15.25

user12 2 20.21

user13 2 18.31

user3 3 7.17

user4 3 22.16

user11 3 6.51

Time on complete task (exp)Time on complete task (control) t-Test: Two-Sample Assuming Unequal Variances

Mean 20.76227 Mean 22.18444444

Time

on

compl

ete

task

(exp)

Time

on

compl

ete

task

(contr

ol)

Standard Error2.128825 Standard Error2.685722596 Mean 20.76 22.18

Median 19.26 Median 23.25 Variance 99.7 64.92

Mode #N/A Mode #N/A Observations 22 9

Standard Deviation9.985076 Standard Deviation8.057167789

Hypothesized

Mean

Difference 0

Sample Variance99.70175 Sample Variance64.91795278 df 18

Kurtosis -1.01959 Kurtosis -0.08586952 t Stat -0.41

Skewness 0.371466 Skewness 0.635731812 P(T<=t) one-tail 0.342

Range 31.71 Range 24.11 t Critical one-tail 1.734

Minimum 6.51 Minimum 13.34 P(T<=t) two-tail 0.683

Maximum 38.22 Maximum 37.45 t Critical two-tail 2.101

Sum 456.77 Sum 199.66

Count 22 Count 9

Confidence Level(95.0%)4.427135 Confidence Level(95.0%)6.193287413

experimental

 time-on-task per user (completed tasks)

CONTROL

186

Appendix H2: Time-on-task data for learners in Control and Experimental groups at JKUAT
Experiment 2

User Task

Time on

incomplete

task

Time on

complete

task

Total

time per

user

Time on

incomplete

task

Time on

complete

task

Total time

per user User task

user1 1 11.54 42.55 user1 2

user1 2 18.13 12.05 54.6 user1 3

user1 3 4.13 33.8 58.34 user2 2

user2 1 21.52 22.17 80.51 user2 3

user2 2 35.26 24.4 user3 1

user2 3 2.06 58.84 10.11 user3 2

user3 1 22.36 22.36 30.43 64.94 user3 3

user4 1 5.11 34.13 user4 1

user4 2 71.08 76.19 19.47 53.6 user4 3

user5 1 7.51 18 user5 2

user5 2 45.02 15.07 33.07 user5 3

user5 3 1.4 53.93 4.2 user6 1

User6 1 20.3 32.36 user6 2

User6 4 43.27 63.57 49.49 86.05 user6 3

User7 1 6.46 15.14 user7 1

User7 2 73.27 79.73 36.39 user7 2

User8 1 10.27 43.52 95.05 user7 3

User8 2 108.11 118.38 56.5 user8 2

User9 1 24.58 23.53 user8 3

User9 3 43.03 67.61 16 96.03 user8 4

User10 1 58.53 36.13 user9 2

User10 2 20.51 79.04 31.23 67.36 user9 3

User11 1 10.53 17.08 user10 1

User11 2 15.14 20.28 37.36 user10 2

User11 3 39.05 17.25 user11 1

User11 4 19.42 36.36 53.61 user11 2

User11 5 47.38 131.52 9.45 user12 1

User12 1 32.08 13.34 user12 2

User12 2 24.03 14.53 37.32 user12 3

User12 3 15.28 71.39 22.45 user13 1

User13 1 13.02 13.02 27.5 49.95 user13 2

27.53 user14 1

50.31 77.84 user14 2

5.27 user15 1

9.41 user15 2

8.08 user15 3

28.01 user15 4

6.39 57.16 user15 5

5.11 user16 1

91.34 96.45 user16 3

 time-on-task per user (all tasks) - UNSORTED

experimental CONTROL

187

User Task

Time on

complete

task (exp)

Time on

complete

task

(control) User task

user4 1 5.11 17.08 user10 1

User7 1 6.46 17.25 user11 1

user5 1 7.51 9.45 user12 1

User8 1 10.27 22.45 user13 1

User11 1 10.53 27.53 user14 1

user1 1 11.54 5.27 user15 1

User6 1 20.3 24.4 user3 1

user2 1 21.52 4.2 user6 1

User12 1 32.08 15.14 user7 1

User11 2 15.14 42.55 user1 2

user1 2 18.13 36.36 user11 2

User12 2 24.03 13.34 user12 2

user5 2 45.02 27.5 user13 2

User7 2 73.27 9.41 user15 2

2 10.11 user3 2

2 18 user5 2

2 32.36 user6 2

2 36.39 user7 2

2 56.5 user8 2

2 36.13 user9 2

User11 3 39.05 15.07 user5 3

3 23.53 user8 3

User11 4 19.42 16 user8 4

Time on complete task (control) t-Test: Two-Sample Assuming Unequal Variances

Mean 22.461 Mean 22.4357

Time on

complete

task (exp)

Time on

complete

task

(control)

Standard Error4.4435 Standard Error2.71162 Mean 22.46125 22.43565

Median 18.775 Median 18 Variance 315.9108 169.1161

Mode #N/A Mode #N/A Observations 16 23

Standard Deviation17.774 Standard Deviation13.0045 Hypothesized Mean Difference0

Sample Variance315.91 Sample Variance169.116 df 26

Kurtosis 3.5528 Kurtosis 0.56563 t Stat 0.004917

Skewness 1.7655 Skewness 0.84474 P(T<=t) one-tail0.498057

Range 68.16 Range 52.3 t Critical one-tail1.705618

Minimum 5.11 Minimum 4.2 P(T<=t) two-tail0.996114

Maximum 73.27 Maximum 56.5 t Critical two-tail2.055529

Sum 359.38 Sum 516.02

Count 16 Count 23

Confidence Level(95.0%)9.471 Confidence Level(95.0%)5.62355

Time on complete

task (experimental)

experimental CONTROL

 time-on-task per user (completed tasks)

188

Appendix H3: Time-on-task data for learners in Control and Experimental groups at KeMU
Experiment 3

User Task

Time on

incomplete

task (exp)

Time on

complete task

(exp)

Total

time per

user

Time on

incomplet

e task

(ctrl)

Time on

complet

e task

(exp)

Total time per

user User task

user1 1 48.47 48.47 31.09 user1 1

user2 1 27.29 29.05 60.14 user1 2

user2 2 14.09 42.26 user2 1

user2 3 15.25 56.63 25.39 67.65 user2 2

user3 1 60.54 5.01 user3 1

user3 2 25.09 85.63 34.3 39.31 user3 2

user4 1 31.14 23.39 23.39 user4 1

user4 2 14.54 70.37 70.37 user5 1

user4 3 28.23 73.91 44.41 user6 1

user5 1 57.13 9.39 53.8 user6 2

user5 2 12.52 58.3 58.3 user7 1

user5 3 3.36 73.01 30.42 user8 1

user6 1 30.06 30.06 34.36 64.78 user8 2

user7 1 12.38 38.47 user9 1

user7 2 6.42 36.49 user9 2

user7 3 5.42 7.46 82.42 user9 3

user7 4 27.46 51.68 46.55 user10 1

user8 8 75.19 75.19 18.18 64.73 user10 2

user9 1 34.52 27.36 user11 1

user9 2 14.49 49.01 31.42 58.78 user11 2

user10 1 34.15

user10 2 8.08

user10 3 17.23 59.46

user11 1 36.22

user11 2 15.34

user11 3 12.04 63.6

user12 1 27.09

user12 2 8.19

user12 3 8.56 43.84

user13 1 36.56

user13 2 15.49

user13 3 3.42 55.47

 time-on-task per user (all tasks) - With all incomplete tasks

experimental CONTROL

KeMU, Experiment 3

189

Appendix H4: Time-on-task data for learners in Control and Experimental groups at JKUAT
Experiment 3

190

user13 1 29.35 32.52 76.89 user18 3

user13 2 13.17 18.8 user19 1

user13 3 4.39 12.7 user19 2

user13 4 11.01 57.92 31.2 62.7 user19 3

user14 1 29.16 45.3 45.3 user20 1

user14 2 5.05 10.62 user21 1

user14 3 17.04 20.11 user21 2

user14 4 13.04 64.29 6.23 36.96 user21 3

user15 1 22.15 28.4 user22 1

user15 2 14.09 15.7 44.1 user22 4

user15 3 30.15 15.6 user23 1

user15 4 15.46 81.85 29.3 user23 2

user16 1 32.49 13.1 user24 1

user16 3 46 7.1 user24 2

user16 2 22.5 100.99 17.2 user24 3

user17 1 36.55 14 user24 4

user17 2 15.22 12.9 user24 5

user17 3 16.19 15.8 80.1 user24 6

user17 4 23.42 91.38

user18 1 11.13

user18 2 3.12

user18 3 27.42 41.67

user19 1 40.38

user19 2 5.32

user19 3 3.22

user19 4 10.58

user19 5 11.21

user19 6 10.08 80.79

user20 1 17.13

user20 2 13.3

user20 3 7.16

user20 4 35.16 72.75

user21 1 22.4

user21 2 8.35

user21 3 38.38

user21 4 16.42

user21 5 8 93.55

user22 1 13.52

user22 2 15.49

user22 3 4.03

user22 4 7.44 40.48

user23 1 21.49

user23 2 13.34

user23 3 21.49

user23 4 24.5

user23 5 6.05 86.87

user24 3 11.32 11.32

191

Appendix I: Raw Data for Verbatim User Feedback

Appendix I1: Survey responses at UWC, Experiment phase 2

id Completed

Indicate the features of the application that most

supported your construction of programs on the mobile

device. Give as much detail as you can. Give as much detail

as you can.

In your opinion, is there anything

missing from the application that

would support construction of

programs on a mobile device?

Would you

recommend

the use of the

application to

a friend?

2 2014-06-20 15:38:16

I really enjoyed the program,because it has made my life

easy.It is structrure,there's a tab for methods,a tab for main, a

tab for classes,a tab for documentation.And it allows you to

go through the m by order,thus making me realise that

documenting your code is very important.An when it compiles

it is more like a reall "computer desk top",it highlights where

you made a mistake and allows you to go back and fix

errors.Without any lies,I love it.

Nothing missing other than the fact

that it is a reall computer but

mobile,and yehhhhhhhhh!!!!!!I can

code whereever I am,in the

bus,taxi,home,etc......

Yes

3 2014-06-20 15:39:18

It helped in that most system(e.g. for loop, sout) were already

created. It is well constructed in that, it clearly states on

where to start fist.

Well i Think not

Yes

4 2014-06-20 15:34:43 none IDE No

5 2014-06-20 15:37:38

The instructions on which parts of the interface to begin with. Yes, the fact that it was a touch screen

phone was a disadvantage. I think that

familiarity/preference for touch screens

may be a confounding variable.

No

6 2014-06-20 15:37:56

its main class is well designed jep when using other smart phone it

will be difficult to get some icons for

example other Nokia Yes

7 2014-06-20 15:38:31

The application divides the program or code into sections then

one can the track and write the code properly by following the

sections

No

Yes

8 2014-06-20 15:39:05

The features of this application which were helpful was the

fact that the statements were there already..

Yes,It is very difficult to navigate..It

must be made easy so that people can

enjoy it Yes

9 2014-06-20 15:51:20

java netbeans application Its interface must be improved so that

it could be easy to access it. the

application will be better if run on a

button touched phones Yes

10 2014-06-20 15:48:57

the menu that makes you write imports,class name main

method etc.

it would be nice if it could save

automatically Yes

11 2014-06-20 15:46:21

creating the main method automatically, and assisting with

the writing of the comments, and filling in the opening and

closing,it also is simple to save the document, since it seems

like it does it automatically

i didnt see the part that creates a

"constructor as simple as creating the

main method, and when you trying to

edit your program it should be easier to

browse and move around the

document, the double clicks makes one

loose patience....at this i can only

recommend it to a friend if they are

writing a very short program Yes

12 2014-06-20 15:45:51 The separate segments of program Spelling checks,different colors Yes

13 2014-06-20 15:38:15 methods and import java API docs Yes

14 2014-06-20 15:46:08

Preset statement helped in typing. The sections are well laid

out. The hints helped in where to type. The error handling is

accurate in pinpointing errors. Very good program,would love

to see it on a tablet.

Would be great if there were a few

imports(packages) that are commonly

used that are in the preset menu. I

think there is a memory handling error

on the device cause as I was coding the

4th program,all my code was erased

after compiling. Yes

192

Appendix I2: Survey responses at JKUAT, Experiment phase 2

USER ID Completed

Indicate the features of the application

that most supported your construction of

programs on the mobile device. Give as

much detail as you can. Give as much

detail as you can.

In your opinion, is there

anything missing from the

application that would

support construction of

programs on a mobile

device?

Would you

recommend

the use of

the

application to

a friend?

1

2 2014-07-23 16:22:56

how the codes are divide into chunks making the

application easier to use no Yes

3 2014-07-23 16:29:41

application programming interface is excellent. its

documentation is sufficient

it should also consider input

stream reader and buffered

reader for convinience Yes

4

5

6 2014-07-23 16:26:18

It has the Application Programming Interface. It is

platform independent It has the Android SDk

manager

No:Everything is available in the

application Yes

7 2014-07-23 16:27:28

Auto complete where at some point t suggested

words for easier typing. No Yes

8 2014-07-23 16:25:56 Very quick. Quick error detectioin It is awesome Yes

9 2014-07-23 16:28:40

There were available lists that made it easier to

write code in the program.

from a personal point of view,the

mobile platform is at its best. Yes

10 2014-07-23 16:25:48 easy durable accurate nothing Yes

11 2014-07-23 16:31:21 Main method. Nothing is missing. Yes

12

13 2014-07-23 16:30:55

statement dialog general organization i.e imports

,methods other classes etc printf function Yes

14 2014-07-23 16:41:54

The inbuilt java syntax really helped because for

the beginner one doesnt have to cramp the

syntax . The ability if the app to be compiled.. The lack of undo option. Yes

15

16 2014-07-23 16:34:25

scaffold: it is user friendly and has a very

beautifull GUI interface. It is very easy to use and

can be used anywhere since it is portable to my opinion i do not think so Yes

17 2014-07-23 16:34:51 scalffold application No Yes

18 2014-07-23 16:40:45

Well the organization is simple and easy to learn

plus using of main methods easy and is already

defined in the system.

Well the program would do well

to provide easier ways to save

changes. Plus the application

needs to help in GUI

programming also Yes

193

Appendix I3: Survey responses at KeMU and JKUAT, Experiment phase 3

id Completed

Indicate why you could not

attempt all the questions?

Indicate the features of the

application that most

supported your

construction of programs

on the mobile phone. Give

as much detail as you can.

1

2 2014-10-21 09:52:48

3 2014-10-21 09:52:07

4

5

6 2014-10-21 10:07:18 very little java knowledge

the chunks made it easier to

construct the program

7 2014-10-21 10:16:04 its well organised

8 2014-10-21 10:14:43

information icon on how to

start the program. run icon to

execute the program. full

program view. tutorials on

how to start a program

9 2014-10-21 19:45:15 time could not allow Statements dialog Examples

10 2014-10-21 19:43:49 i did attempt a few

Its interface is

understandable.

11

12 they were challengeing

13 2014-10-21 19:58:01

All the inbuilt features E.g

Scanner facility,tutorials and

system.out.print

14 2014-10-21 19:57:54

inbuilt features like-

scanner,tutorial,systen.out.pri

ntln,for-loops,easy to save

program and retrieve it.direct

where here is error after

excution

15 2014-10-21 20:01:49

pre-defined methods,

statements and functions

16

17

18

19 2014-10-22 11:15:15

I came to class late so had limited

time to attempt a few.

Availability of construction

codes with instructions.

20

21

22

23

24 2014-10-29 17:03:38

The statements dialog really

makes work easier removing

the need to import some

packages

25

26 2014-10-29 17:13:51 The time was limited

the instructions were clear

enough and the programs

were easy to write

27

28

29

30 2014-10-29 17:44:06

The ability to import packages

and classes and run the

programs. Its ability to detect

and in most cases correct

errors. Concise syntaxes and

easily comprehendable

instructions. Simple

navigation.

31 2014-10-29 17:46:48 The application is ready to go

32 2014-10-29 18:05:44

I was not good in classes and

methods so in such questions i had

to leave blank spaces

The compilation and

Execution of the program

looked good and also the

graphical user interface of the

program is user friendly and

well defined i.e sections of

main class,imports, methods

etc.....Atleast those who have

little knowledge about

programming can use this

application.

33

34 2014-10-29 18:43:19 The app is greate

194

Appendix J: ERROR ANALYSIS

Appendix J1: Raw data showing error analysis of UWC data from the experimental
group in the second Experiment

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

User1 Program 1 - none

Program 2 -
Main Class Error Line in wrong publi class
classname format

None

none

none

User

2

Program 1 – none

Program 2 - none

1

none

None

User

3

Program 1 -
Main class Error classname does not begin
with an upper case

1 Full program main

interface

Instructions main

interface

Program 2 - none

6 Full program main

interface

Program 3-

Main class error: line in wrong format

Program 4 - none

3 none

User

4

Program 1 – none

Program 2 – none

Program 3 & 4 - none

None

None

Program 3 & 4 – 3 each

None

None

None

User

5

Program 1 – none

Program 2 - none

Program 1 – none

Program 2 - none

None

none

User

6

Program 1 –
Classname should not contain special
character

none none

User

7

Program 1 –
Main class Error classname does not begin
with an upper case

1 Instructions main

interface

User

8

Program 1 – none

1 none

195

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

User

9

Program 1 – none

Program 2 - none

1

None

none

User

10

Program 1- none

Program 2 - none

none

User

11

Program 1- none

none none

 Program 2 - none 2 none

 Program 3 - none none none

User

12

Program 1- none

none none

 Program 2 - none 1 none

 Program 3 - none

User

13

Program 1- none

none none

 Program 2 - none none none

 Program 3 –

public,void, return, static statements in

main method (twice)

User

14

Program 1- none

1 none

Appendix J2: Raw data showing error analysis of JKUAT data from the
experimental group in the second Experiment

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

User1 Program 1-

Main Class Error: Classname does not

begin with uppercase

Program 2 -

Main method : Main Method Error: A

for loop syntax doesnt have two

commas within the declaration

Program 3 - none

None

None

1 – Cannot find variable sum

none

User

2

Program 1 - Main class attempt to add

extra line

Program 2 – none

None

4 -

none

196

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

Program 3 –

Classname does not contain public and

class keywords

RESULT: cannot find symbol average=
sum/20;

package system does not exist

system.out.println("Average" +

average); (Three times)

User

3

Program 1 - Classname does not contain

public and class keywords

none none

User

4

Program 1 - Main class attempt to add

extra line

8-
RESULT: Main.java:17: error:
<identifier> expected {int sum, double
average; ^ Main.java:17: error: not a
statement {int sum, double average; ^
Main.java:19: error: not a statement
for(I=1,I<= 20,I++); ^ Main.java:19:
error: ';' expected for(I=1,I<= 20,I++); ^
Main.java:20: error: illegal start of
expression {sum= sum+I ^ Main.java:20:
error: ';' expected {sum= sum+I ^
Main.java:29: error: class, interface, or
enum expected public static void
main(String arg[]) ^ Main.java:38: error:
class, interface, or enum expected } ^ 8
errors

none

User

5

Program 1- none

Program 2 - Main class attempt to add

extra line

Program 3 - none

None

7 - ';' expected int sum=0 ^ 1

none

User

6

Program 1 - attempt to add extra line at

main class (three times)

Program 2 - Classname does not

contain public and class keywords

(twice) - attempt to add extra line at

main class (once)

None

none

197

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

User

7

Program 1 - Main Class Error:

Classname does not begin with

uppercase

Program 2 - Classname does not contain

public and class keywords - attempt to

add extra line at main class - Classname

does not begin with uppercase

None

18 run time errors

User

8

Program 1 – none

Program 2 - none

None

18 run time errors

User

9

Program 1 - attempt to add extra line at

main class

Program 2 - none

None

2 - RESULT: illegal line end in

character literal

System.out.println("input age")'

- cannot find symbol

Scanner

in=Scanner(System.in);

User

10

Program 1 – (7)
Main Class Error: Classname does not
begin with uppercase

Main class attempt to add extra line

Main class attempt to add extra line
Main Class Line contains special
character

Program 2 – 1
Main Class Error: Classname does not begin
with uppercase

3 -
RESULT: Main.java:19: error: ')'
expected system .out (scaffolding at
jkuat) ^ Main.java:19: error: not a
statement system .out (scaffolding at
jkuat) ^ Main.java:19: error: ';' expected
system .out (scaffolding at jkuat) ^ 3
errors

3 –
RESULT: Main.java:20: error: not a
statement sum+i; ^ Main.java:22: error:
';' expected average=sum/ 20 ^
Main.java:23: error: ';' expected system
.out.println("sum is "+sum) ^ 3 errors
:23/07/2014 19:09:00:690

4

User

11

Program 1 - Main class attempt to add

extra line (twice)

Program 2 – none

Program 3 – none

None

None

5 errors

none

198

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

Program 4 – none

Program 5 - none

Program 4 – none

Program 5 – 2 - RESULT:

Main.java:15: error: '.class' expected

Init(String, int); ^ 1 error :

User

12

Program 1 - Main class attempt to add

extra line (4)

Program2 - none

Program 3 – none

Program 4 - none

None

none

1

4 errors
RESULT: Main.java:19: error: ')'
expected Scanner= Scanner(System in);
^ Main.java:19: error: illegal start of
expression Scanner= Scanner(System
in); ^ 2 errors

User

13

Program 1 - none None

Appendix J3: Raw data showing error analysis of JKUAT data from the
experimental group in the third Experiment

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

User1 PROGRAM 1 - COMPLETED

Main Class Error: Classname contains .java - 2

Main Class: Error: Line contains special

character - 2

Main class attempt to add extra line - 2

5 - '.class' expected System.Out.print

n(double(x));

Full program

 PROGRAM 2 - COMPLETED

Main Class Error: Classname does not

contain public and class keywords:

Main class attempt to add extra line:

3 - cannot find symbol Int a; None

199

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

 PROGRAM 3 – Incomplete

Main Class Error: If there are only two

words in the declaration:

2 - expected methStud() None

User

2

PROGRAM 1 – COMPLETE

Main class attempt to add extra line: - 2

1 - error: ')' expected None

 PROGRAM 2 – Incomplete None None

User

3

PROGRAM 1 – COMPLETE

Main class attempt to add extra line: - 2

2 - error: '.class' expected

error:

- variable x is already defined in

method main(String[]) double x

Full program

 PROGRAM 2 – COMPLETE

1 error: reached end of file while

parsing }

Full program

 PROGRAM 3 – COMPLETE

None None

 PROGRAM 4 – COMPLETE

None None

 PROGRAM 5 – COMPLETE

None None

 PROGRAM 6 – Incomplete

1- cannot find symbol average() None

User

4

PROGRAM 1 – InCOMPLETE

Main Class Error: If there are only two

words in the declaration:

None None

User

5

PROGRAM 1 – InCOMPLETE

Main Class Error: Classname does not

begin with uppercase:

None None

 PROGRAM 2 – InCOMPLETE 3 cannot find symbol

System.Out.Println

cannot find symbol double p=x*2;

Statement dialog

Examples

Full Program

User

6

PROGRAM 1 – COMPLETE

None None

 PROGRAM 2 – COMPLETE

None None

 PROGRAM 3 – INCOMPLETE

None None

User

7

PROGRAM 1 – COMPLETE None None

 PROGRAM 2 – COMPLETE

Main Class Error: Classname does not

begin with uppercase:

None None

200

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

Main class attempt to add extra line:

 PROGRAM 3 – INCOMPLETE

1 - package system does not exist

system.out.println("enter data");

None

User

8

PROGRAM 1 – COMPLETE

Main class attempt to add extra line: -

2

1 - system does not exist

system.out.println(x*2);

Full program

 PROGRAM 1 – COMPLETE

None None

 PROGRAM 3 – INCOMPLETE

1- cannot find symbol Scaner

input= new

Scanner(System.in)

None

User

9

PROGRAM 1 – InCOMPLETE 3 - error: package system does not

exist system.out.println(x);

Full program

Statement dialog

User

10

PROGRAM 1 – COMPLETE

Main class attempt to add extra line:

1- ';' expected

System.out.println("a good

program ")

2- - illegal character: \215

x=2?10;

Editor instructions

 PROGRAM 2 – COMPLETE

None None

 PROGRAM 3 – INCOMPLETE

Main class attempt to add extra line:

1 - cannot find symbol Scanner

a=new Scanner(System.in);

Full program

Main interface

instructions

User

11

PROGRAM 1 – COMPLETE

1- ')' expected

System.out.println(" " + 2x);

2- error: not a statement 2*x

3- illegal start of expression

x=*2;

Full program – 3 times

Main interface

instructions

 PROGRAM 2 – COMPLETE

Main Class Error: Classname does not

contain public and class keywords:

None - full program - 2, statement

dialog, examples - twice

None

 PROGRAM 3 – COMPLETE

None - statement dialog, full

program

None

 PROGRAM 4 – COMPLETE –

advanced interface

1- variable in is already

defined in method main

None

 PROGRAM 5 – COMPLETE –

advanced interface

None - full program once None

201

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

 PROGRAM 6 – COMPLETE –

advanced interface

Main class attempt to add extra line:

None - Scaffolding techniques used

- full program - 2, statement

dialog, instructions, tutorial,

keywords enabled

None

User

12

PROGRAM 1 – COMPLETE

1 - error: not a statement x * 2;

3. illegal start of expression x

=*2;

None

 PROGRAM 2 – COMPLETE

None – example suggestion

accepted, full program

None

 PROGRAM 3 – COMPLETE

1- error: '(' or '[' expected

Scanner s = new Scanner;

2- cannot find symbol value =

s.nextline;

None

 PROGRAM 4 – COMPLETE

None

- statement dialog

None

 PROGRAM 5 – COMPLETE –

advanced interface

None – full program None

 PROGRAM 6 – COMPLETE –

advanced interface

None – statement dialog None

User

13

PROGRAM 1 – COMPLETE

Main class attempt to add extra line: - 2

1- error: ';' expected int x

2- error: ';' expected double

x=10

Full program - 3

Instruction

 PROGRAM 2 – COMPLETE

None – Examples None

 PROGRAM 3 – COMPLETE

Main Class Error: If there are only two

words in the declaration:

Main Class Error: Classname does not begin with

uppercase:

Main Class: Error: Line in wrong publi class

classname format:

None – Use of examples None

 PROGRAM 4 – InCOMPLETE –

Advanced

None None

User

14

PROGRAM 1 – COMPLETE

Main class attempt to add extra line: -

4

1- no suitable method found for

println(String,int)

2- cannot find symbol sum=x*2;

Full program

instructions

202

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

Main Class Error: Classname does not

begin with uppercase:

 PROGRAM 2 – COMPLETE

None None

 PROGRAM 3 – InCOMPLETE

1 - unclosed string literal

System.out.println("enter your nam

Scanner example

rejected

Full program

 PROGRAM 4 – COMPLETE

None None

User

15

PROGRAM 1 – COMPLETE

None

1- <identifier> expected int

x=10, double;

Statement dialog

 PROGRAM 2 – COMPLETE

1- error: ')' expected

System.out.println("i": +i)

None

 PROGRAM 3 – COMPLETE

1- ')' expected

System.out.println("Your

input is": + words);

Hints,

Statement dialog,

instructions, examples,

Full program

 PROGRAM 4 – inCOMPLETE

1 - error: ';' expected y=in.next line(); Examples

User

16

PROGRAM 1 – incomplete

Main class attempt to add extra line:

1- error: ';' expected

system.out.println(x)

None

 PROGRAM 2 – incomplete

Main class attempt to add extra line:

1- unclosed string literal

Sytem.out.println("Your

input is + input)

None

 PROGRAM 3 – COMPLETE

Noen – full program None

User

17

PROGRAM 1 – inCOMPLETE

1- error: ';' expected int x=10 Instructions

Full program

 PROGRAM 2 – inCOMPLETE

Not completed chunks none

 PROGRAM 3 – incomplete

Main Class Error: Classname does not

begin with uppercase:

Not run none

 PROGRAM 4 – inCOMPLETE None – statmetn dialog, examples,

full program

None

203

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

Main Method Error : public,void, return,

static statements in main method:

Not run

User

18

PROGRAM 1 – COMPLETE

Main Class: Error: Line contains special

character:

Main class attempt to add extra line: - 2

None None

 PROGRAM 2 – COMPLETE

None – full program None

 PROGRAM 3 – Complete

5 Scanner s= new

Scanner(System.in);

Full program

User

19

PROGRAM 1 – COMPLETE

Main class attempt to add extra line:

3. error: '.class' expected

System.out.println(double

(x));

Instructions

 PROGRAM 2 – COMPLETE

1- error: ';' expected

System.out.println (", ")

none

 PROGRAM 3 – COMPLETE

None

- statement dialog

None

 PROGRAM 4 – COMPLETE –

advanced interface

None

- Hints, statement dialog

None

 PROGRAM 5 – COMPLETE –

advanced interface

None

- Statement dialog, full program

None

 PROGRAM 5 – inCOMPLETE –

advanced interface

Did not contain any output None

User

20

PROGRAM 2 – COMPLETE

Main class attempt to add extra line:

1 - : error: variable natural_numbers

might not have been initialized

Full program

 PROGRAM 3 – COMPLETE

None – statement dialog

 PROGRAM 4 – inCOMPLETE 1- unclosed string literal

System.out.println

Full program

User

21

PROGRAM 1 – COMPLETE

Main class attempt to add extra line:

2- ';' expected

System.out.println("x?x")

Full program

 PROGRAM 2 – COMPLETE

1- cannot find symbol

System.out.println (I);

none

 PROGRAM 3 – COMPLETE

None – statement dialog, full

program

none

204

User SCAFFOLDED ERROR PROMPTS

– Number of times

NUMBER OF RUN-TIME

ERRORS

User enabled

Scaffolding

techniques used

during run-time

error correction

 PROGRAM 4 – inCOMPLETE –

advanced interface

Not run none

 PROGRAM 5 – inCOMPLETE –

advanced interface

Main class attempt to add extra line:

1- error: ';' expected Output

a=new Output ()

none

User

22

PROGRAM 1 – COMPLETE

None – full program None

 PROGRAM 2 – COMPLETE

Main Class Error: If there are only two

words in the declaration:

None – full program None

 PROGRAM 3 – COMPLETE

None- statement dialog None

 PROGRAM 4 – COMPLETE –

advanced interface

Main Class: Error: Line contains special character:

Main Class: Error: Line in wrong publi class

classname format:

Program is nor run

User

23

PROGRAM 1 – COMPLETE

1- error: not a statement int

x=10;!

None

 PROGRAM 2 – COMPLETE

2. not a statement for(int

0;i<=9;i++)

none

 PROGRAM 3 – COMPLETE

Main Class Error: Classname does not

begin with uppercase:

2- error: cannot find symbol

string a;

Statement dialog

 PROGRAM 4 – COMPLETE –

advanced interface

Main class attempt to add extra line:

1- error: ';' expected MethSt

a=new MethSt ()

2- cannot find symbol string x;

Full program

 PROGRAM 5 – inCOMPLETE Not run None

User

24

PROGRAM 1 – inCOMPLETE

1 error: variable in is already defined

in method main

none

