
109

Chapter 6

Automating Network
Protocol Identification

Ryan G. Goss and Geoff S. Nitschke

The proliferation of computer network users has, in recent years, placed a strain on network
resources, such as bandwidth and number allocations. This issue is more apparent where connec-
tivity is limited, such as in developing countries. The provisioning of services over these congested
resources needs to be managed, ensuring a fair quality of experience (QoE) to consumers and
producers alike. Quality of service (QoS) techniques used to manage such resources require con-
stant revision, catering for new application protocols introduced to the network on a daily basis.
This research proposes an efficient, autonomous method for distinguishing application protocols
through the use of a dynamic protocol classification system (DPCS). Using this method, the burden
of signature creation is reduced, while the accuracy achieved in application protocol identification
increases.

Contents
6.1 Introduction ..110
6.2 Related Work ..111
6.3 Method ...112
6.4 Experiments ..116

6.4.1 Experiment Set 1: Unsupervised Learning ...116
6.4.2 Experiment Set 2: ANN Classifiers ..117
6.4.3 Experiment Set 3: Classifier Testing...118

6.5 Discussion ...119
6.6 Conclusion ... 120
References ..121

K21539_C006.indd 109 4/26/2014 7:33:34 AM

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

110 ◾ Ryan G. Goss and Geoff S. Nitschke

6.1 Introduction
Computer networks have grown substantially in recent years, due in part to the increasing global
reach of the Internet, network access speeds, and content availability. This growth continues to
spur the development of numerous applications, using both client–server and peer-to-peer (P2P)
communication architectures. Each application uses a specific application protocol, generating a
number of flows in order to exchange data. In computer networks, a flow describes a sequence
of packet exchanges between hosts, uniquely identified by its 5-tuple identifier: source IP address,
destination IP address, source port, destination port, and protocol identifier. In order to identify the
underlying application protocol of a flow, a unique signature is required.

Network administrators traditionally used packet header information, such as source and des-
tination ports and protocol, to formulate signatures and classify flows on a network. As this infor-
mation is configured by the two communicating hosts, alternative port and protocol information
can be negotiated, effectively negating the effect of port-based filters and restrictions (Alshammari
and Zincir-Heywood 2008). This issue is problematic, since an increasing number of applica-
tion developers seek to evade classification. P2P application protocols exacerbate this problem by
operating in a decentralized manner, dynamically selecting the ports and protocols on which they
communicate (Auld et al. 2007). The inefficiencies associated with classic port-based classifica-
tion forced industry and researchers alike to consider a number of alternatives, such as deep packet
inspection (DPI) and statistical analysis.

DPI has become an essential tool for network engineers, enabling them to search both packet
header and payload (content) for predefined application protocol signatures (Huang and Zhang
2008). These signature matches are often performed using regular expressions in software or
through the use of specialized hardware, such as a field-programmable gate array (FPGA) (Huang
and Zhang 2008). While DPI yields excellent results in identifying plaintext flows, encryption
renders the content of packets opaque and thus the use of DPI inept. Statistical analysis addresses
the problem of opaque, encrypted flows, by inferring the application (Gebski et al. 2006) or appli-
cation class (Auld et al. 2007; Li et al. 2007; Moore and Papagiannaki 2005) of a flow by examin-
ing statistical information over a number of packet exchanges. The advantage of statistical analysis
is that regardless of how applications attempt to disguise themselves, through encryption or port
randomization, the characteristics exhibited over their packet exchanges remain intact.

The definition and provisioning of signatures is often a service provided by the vendors of traf-
fic management devices, through the supply of updated signature packs. These signature packs
need to be regularly updated in order to keep up with advances in application protocol develop-
ment. According to Szabo et al. (2007), this is one of the most significant problems associated with
signature-based systems, since each vendor is responsible for the creation of their own proprietary
signature packs, compatible with their systems. Furthermore, the attributes, or discriminators,
extracted to describe a network flow and the mechanism employed to distinctly identify them are
often a closely guarded secret. For these reasons, accuracy and performance variances between
vendor equipment are not uncommon. The process of creating and deploying signatures in this
manner is suboptimal, as the development of new application protocols far exceed signature pro-
duction by vendors. This results in a significant amount of network flows remaining unclassified or
inaccurately classified until an update is released. This, in turn, results in network administrators
being unable to manage the network resources at their disposal.

Given these issues, this research proposes a dynamic protocol classifier (DPC) method to address
the two major issues pertinent in flow classification, accuracy and automation. Automation refers
to methods that automate input from a user (manual annotation for new applications) or vendor

K21539_C006.indd 110 4/26/2014 7:33:34 AM

Automatic Network Protocol Identification ◾ 111

(signature packs written for new classifiers). Using the proposed DPC method, new application pro-
tocols are automatically discovered in a training data set using a select set of discriminators. These
discovered protocols are subsequently used to train artificial neural network (ANN) classifiers, in
order to identify future instances of the protocols. Accuracy refers to the ability of such an automated
method to discriminate between different application protocols and noise in training and test data,
as well as the ability for trained ANN classifiers to correctly identify future instances of the protocol.

In order to increase the efficacy of clustered training data, the DPC method includes the
density-bases spatial clustering of applications with noise (DBSCAN) method as its unsupervised
learning component. DBSCAN is capable of forming arbitrarily shaped clusters to deal with noise
in the data. We thus hypothesize that the DPC method will outperform (with statistical signifi-
cance), for this case study, the accuracy achieved by a hierarchical self-organizing map (HSOM)
(Goss and Nitschke 2013a) and k-means (Goss and Nitschke 2013b) method.

6.2 Related Work
Machine learning (ML) has been the subject of much research in classifying network traffic using
flow statistics inferred from a network (Alshammari and Zincir-Heywood 2009; Auld et al. 2007;
Bernaille et al. 2006). These statistical features, or discriminators, are calculated over multiple
packet exchanges. ML classifiers are trained to associate particular discriminator sets, or patterns,
with known traffic classes. The classifiers are then able to identify and differentiate future unclas-
sified flows using previously learned rules (Nguyen and Armitage 2008). Hu and Shen (2012)
compare the efficiency of several ML techniques, providing an overview of recent advances in this
area. Hu and Shen (2012) present algorithms for the creation of specific feature sets and classifica-
tion models, comparing the efficiency of each. The authors considered a number of classification
methods, including genetic algorithms (GA) and Bayesian classification, as well as unsupervised
clustering methods including expectation maximum (EM) clustering (Dempster et al. 1977), and
k-means clustering (MacQueen et al. 1967).

Two key metrics for measuring the performance of a traffic classification system are accuracy and
completeness (Szabo et al. 2007). As such, the discriminators used to train classifiers and those used to
test existing classifiers are significant. The quality of the discriminators used to describe a flow is cru-
cial to the performance of an ML method (Nguyen and Armitage 2008) and has thus been the topic
of research, including that of Auld et al. (2007), Bernaille et al. (2006), Este et al. (2008), Gargiulo
et al. (2009), Moore and Papagiannaki (2005), Moore et al. (2005), Mcgregor et al. (2004), Huang
and Zhang (2008), Alshammari and Zincir-Heywood (2007), and Li et al. (2007). As the number of
applications encrypting their communications rises (Nascimento et al. 2013), the dependency on DPI
wanes. Instead, the focus has shifted toward discriminators that remain effective through plaintext
and encrypted flows. For example, Mcgregor et al. (2004) examine plots of packet size against packet
interarrival times (IATs) for a number of flows. The authors concluded that the results of these plots
were indicative of the application type. In addition to these discriminators, the authors described the
flows through the extraction of byte counts, connection duration, number of transitions between
transaction and bulk transfer modes, and the amount of time spent in the idle state. These character-
istics were used by an EM algorithm, which grouped them into a small number of clusters.

Bernaille et al. (2005) dispute the use of discriminators such as IAT, due to the influence of
network load and transport control protocol (TCP) acknowledgements. Instead, the authors use the
direction and size of each packet, recorded over a number of packet exchanges. Each flow record
was transformed into a hidden Markov model (HMM). Thereafter, spectral clustering (Von Luxburg

Definition of
“ANN” correct?

K21539_C006.indd 111 4/26/2014 7:33:34 AM

112 ◾ Ryan G. Goss and Geoff S. Nitschke

2007) was used to find clusters in the likelihood space. The results of this work demonstrated a
system capable of recognizing behavioral characteristics of a flow, with an accuracy performance
of 90%, given observation of as little as the first several packets.

Li et al. (2007) demonstrate the classification of Internet traffic using a support vector machine
(SVM) (Cortes and Vapnik 1995). The authors do so using 19 distinct discriminators, including
the total number of packets in the flow, average packet size, duration of the flow, packet and byte
ratios, and the average window size. Results showed a 99.41% degree of accuracy.

Alshammari and Zincir-Heywood (2009) focused on identifying the Secure Shell (SSH) and Skype
application protocols. They do so by comparing five different ML techniques, including AdaBoost
(Freund and Schapire 1995), SVM, naive Bayesian (Devroye 1996), RIPPER (Cohen 1995), and
C4.5 (Quinlan 1993). Using discriminators such as various packet IAT measurements, forward and
backward packet size information, and the duration of the flow, the authors were able to highlight
C4.5 as the highest-performing algorithm, scoring approximately 97% in the best-case test scenario.

Goss and Botha (2012) demonstrate the utility of a generic discriminator set that is suitable
for identifying distinct application protocols at an early stage of their existence. In this work,
ANN classifiers were trained using manually annotated data sets to identify application protocols
with a 99% degree of accuracy. Goss and Nitschke (2013a) extend this work, using an HSOM to
automate the manual annotation process. Each cluster identified by the HSOM corresponds to a
specific application protocol within the data set. Features of each cluster were subsequently used
to train an ANN classifier to identify future instances of the protocol. Testing these classifiers
resulted in a 98% degree of accuracy.

Goss and Nitschke (2013b) use k-means to cluster the recorded data sets. Dissimilar to k-means
implementation described by Hu and Shen (2012), where the number of clusters, k, is preset, Goss
and Nitschke (2013b) use an evolutionary algorithm (EA) (Eiben and Smith 2003) to approximate
the best value of k. The EA uses the silhouette cluster evaluation method (Rousseeuw 1987), as
part of the fitness function for evaluating each k value. Although a high degree of accuracy was
demonstrated, the k-means algorithm is still not the most appropriate clustering method, due to
its inability to find nonlinearly separable clusters (Jain 2010).

However, both the k-means and HSOM algorithms suffer from this problem and are thus
susceptible to outlying points skewing the clustering results. The inability to detect and manage
outliers renders the HSOM and k-means algorithms unsuitable for operation in noisy data sets,
such as those describing live network traffic. The emergent spherical clusters indicative of k-means
and HSOM clustering are highly susceptible to noise in the data. Furthermore, multiple passes on
each datum are required by each of these algorithms as part of their clustering process, reducing
the overall efficiency of these methods. Classifier efficiency is important to ensure completeness
of the system and to ensure that the system is always up-to-date. Thus, an alternative solution is
needed, where nonspherical clusters with the ability to counteract the effect of noise emerge.

6.3 Method
To address the problematic issues associated with the HSOM and k-means methods, we propose
a DPC method for automating the identification of application protocols as they traverse the
network. The DPC method also used an EA to automate the tuning of clustering parameters as
well as to determine the optimal structure of each ANN classifier. The research objective was to
demonstrate increased efficiency of the DPC method comparative to related methods applied
to the same task. For data sets of fabricated network traffic, the accuracy and efficiency of the

K21539_C006.indd 112 4/26/2014 7:33:34 AM

Automatic Network Protocol Identification ◾ 113

DPC method were compared to the HSOM (Goss and Nitschke 2013a) and k-means (Goss and
Nitschke 2013b) methods. For clustering data sets describing live network traffic, DBSCAN (Ester
et al. 1996), was tested as an alternative to the HSOM and k-means methods.

Figure 6.1 delineates a method for automated network flow classification via automatically
training ANN classifiers to identify application protocols traversing the network. ANNs were

Mark flow

Unknown
discriminator

sets

NoYes

Match using
existing ANN

classifiers?
NoFlow marked?

Yes

Flow in

Classifier
testing

Flow out

Classifier
generation Unsupervised

learning
(clustering)

Yes Optimal
clustering? No

EA parameter
optimization

Yes Publish classifier
Create and train
ANN classifiers
(one per cluster)

Optimal training?

No
EA ANN structure

optimization

Figure 6.1 Bottom: An unsupervised clustering method is used to identify new protocols as
clusters in the training data. An artificial neural network (ANN) classifier is trained to identify
future instances of each cluster (application protocol). Top: Unknown protocols are broken
down into their defining discriminator sets and placed in the training data, upon which the
clustering method operates in subsequent iterations.

K21539_C006.indd 113 4/26/2014 7:33:35 AM

114 ◾ Ryan G. Goss and Geoff S. Nitschke

selected in favor of alternative supervised learning methods, such as decision trees, due to their
ability to operate both as independent classifiers or in an ensemble. This allows a single classi-
fier to be transported from one system to another without requiring all supporting classifiers to
follow suit. The classifiers created by this method were subsequently used to test and mark each
flow as it switched through a network. Critical to the method’s success was the ability to describe
a flow by its underlying application protocol. As each application communicates with a remote
host using a unique pattern of byte exchanges, inferring the underlying application protocol
of a flow is accomplished by examining certain statistical and payload characteristics. These
characteristics, or discriminators, are common to both the training and testing data used by the
method.

This research used a generic set of discriminators, capable of identifying new and previously
observed application protocols, proposed and tested by Goss and Botha (2012). These discrimina-
tors were able to uniquely fingerprint the underlying application protocol of a flow early upon it
entering the network. Early identification allows prompt prioritization of the flow and manage-
ment of its resources as it transits the network. Resources refer to the amount of bandwidth (speed)
and priority (order of preference when arriving at a router) allocated to a given application.

The discriminators included the direction of the first four payload-bearing packets, the aver-
age size of these packets, and the numeric value of the first three bytes of payload in each direction.
The directionality of the flow was determined through observation of the synchronization (SYN)
packet. A SYN packet is the first packet sent in a TCP communication when a new session is
requested. The requirement for observation of a SYN packet therefore dictates that only flows
utilizing the TCP protocol were considered.

It is envisaged that via modification of the base discriminator set, this method will also support
user datagram protocol (UDP)–based flows. However, demonstration of this is outside the scope
of this chapter.

After a predefined number of packet exchanges, the recorded discriminator sets for each flow
were tested against existing classifiers. The order in which the classifiers were tested was based on
previous results, with the most popular classifiers tested first. The popularity of each classifier was
determined by the function P(x) = f/t where x denotes the event of a successful match, f the num-
ber of previously successful matches, and t the number of trials. Evaluating a flow using the most
probable classifiers reduces the number of tests required for classification, improving the overall
efficiency of the system.

Discriminator sets belonging to unidentified flows were added to a database and the flow
marked as unknown. These data were then clustered by the DBSCAN algorithm:

DBSCAN(D, eps, minPTS)
C = 0
for each unvisited point P in dataset D
mark P as visited
NeighborPts = regionQuery(P, eps)
if sizeof(NeighborPts) < minPTS
 mark P as NOISE
else
 C = next cluster
 expandCluster(P, NeighborPts, C, eps, minPTS)

expandCluster(P, NeighborPts, C, eps, minPTS)
add P to cluster C
for each point P’ in NeighborPts

K21539_C006.indd 114 4/26/2014 7:33:35 AM

Automatic Network Protocol Identification ◾ 115

if P’ is not visited
 mark P’ as visited
 NeighborPts’ = regionQuery(P’, eps)
 if sizeof(NeighborPts’) > = minPTS
 NeighborPts = NeighborPts joined with NeighborPts’
if P’ is not yet member of any cluster
 add P’ to cluster C

regionQuery(P, eps)
return all points within P’s eps-neighborhood (including P)

DBSCAN requires two parameters for clustering, namely, the maximal distance between
neighbors, epsilon (ε), and the minimum points per cluster (minPTS). The value for ε was restricted
to min(knn) < ε < max(knn), where knn was the distance of each datum to its nearest neighbor.
The value of minPTS was in the range D + 1 < minPTS < (|db|)/2, where D denotes the number of
dimensions of the input vector and db was the database of unknown discriminator sets.

A GA (Eiben and Smith 2003) tuned this clustering process, adjusting the values of ε and
minPTS over a number of iterations. The GA’s genotype was a bit-string that encoded the value
of ε and minPTS. The initial genotype population consisted of randomly generated values. Using
silhouette cluster analysis (Rousseeuw 1987), the GA’s fitness function scored each genotype with
a value in the range [−1, 1], according to how well DBSCAN clustered the training data with the
given (encoded) ε and minPTS values. This score measured how tightly grouped the members of
each cluster are and was thus a measure of the success of the clustering process. A score toward the
value of 1 indicated more optimal clustering, while a lower score, the converse.

At each generation of the GA, fitness proportionate selection was used to select pairs of parents,
where each pair of parents was recombined using one-point crossover (Eiben and Smith 2003) to
produce one child genotype. This process was repeated until enough child genotypes had been
produced to replace the previous population. Elitism was also applied such that the highest-scoring
genotype was transferred to the next generation. Bit-string mutation was then applied to flip one
bit of each child genotype with a 0.5 degree of probability (Table 6.1). The GA was run for 1000
generations (Table 6.1), after which time the fittest genotype was selected for the optimal ε and
minPTS.

Each cluster within the optimized clustered data set describes a unique application protocol.
As such, a classifier was required to identify future instances of the application. A separate ANN
classifier was created for each cluster, with the data of the cluster used as the training set. Initially,

Table 6.1 EA Parameters

Parameter Initial Value Start Range End Range

Generations 1000 – –

Mutation Rate 0.5 – –

Number of Genes 20 – –

Crossover Point Random 0 20

Epsilon (ε) 0.00002 0.00001 0.0001

minPTS 645 12 711

K21539_C006.indd 115 4/26/2014 7:33:35 AM

116 ◾ Ryan G. Goss and Geoff S. Nitschke

the number input nodes of each classifier ANN equals the magnitude of the discriminator set. The
output of each classifier was a single node that returned the probability of a supplied input vector
being a match.

The number of hidden layer nodes and the number of hidden layers was optimized by a GA.
Each genotype was encoded as a bit-string, and the number of hidden layer nodes was set in the
range [1, 5]. The fitness function was the classification accuracy of an ANN with n hidden nodes.
The GA also employed fitness proportionate selection, generational replacement, one point cross-
over and bit-flip mutation in the same method as used to evolve the ε and minPTS parameters for
the DBSCAN method.

6.4 Experiments
Three experiment sets were conducted to evaluate the classification of network traffic flows. The
first experiment tested the capability of the unsupervised learning component (DBSCAN-based
clustering) on a training data set. The second experiment set evaluated the EA optimization
method that tunes DBSCAN clustering parameters and ANN topology of the ANN assigned to
classify each cluster. The third experiment set verified the learnt classification behaviors of each
of the ANN classifiers using a manually annotated data set recorded in a real-world network
environment.

6.4.1 Experiment Set 1: Unsupervised Learning
Flow inspector software* was developed for recording discriminators from passing flows. This
software observes and records information about traffic flows passing through the interfaces of
the device on which it is deployed. The software made use of iptables and specifically the libipq
module to pipe this information through a user-space daemon for analysis.

The software was configured to record 11 discriminators (determined by Goss and Botha
2012) for each flow, including the direction and average size of the first payload-bearing packets as
well as the value of the first three bytes of payload in either direction. The software was deployed at
a midsized corporate establishment, set to record flow information for a period of 1 h on a normal
business day. At the outset, no predefined classifiers were made available, and therefore, all flows
were sampled, with their discriminator sets appended to the training data set. In total, 1421 TCP
flows were sampled and appended to the database for evaluation by DBSCAN.

A GA was applied to tune the DBSCAN clustering parameters ε and minPTS (Section 6.3),
where the search space for ε was determined by plotting the distance to the nearest neighbor of
each datum on a histogram (Figure 6.2). Figure 6.2 shows the average distance of each datum
to its nearest neighbor, with the knee of the graph at an approximate value of 0.00005. The knee
of the graph is indicative of the most likely value of ε, the point at which the distance between
neighbors increases exponentially, due to the presence of outliers (noise). The search space for ε was
therefore constrained to values between 0.00001 and 0.0001. Similarly, the search space for the
minPTS parameter was configured such that D + 1 < = minPTS < = (|db|)/2, between 12 and 711.
The GA parameters, their initial values, and the search space for each are listed in Table 6.1. This
GA was executed for 1000 generations, where optimal ε and minPTS values of 0.00004 and 61,
respectively, were found. The clustered data set consisted of six distinct clusters, with a silhouette

* Custom-designed by Ryan Goss. Details can be found at http://goo.gl/80BQE.

K21539_C006.indd 116 4/26/2014 7:33:35 AM

Automatic Network Protocol Identification ◾ 117

value of 0.993615. The clusters, with their associated datum and silhouette values, are summarized
in Table 6.2. The clusters were then saved for the second experiment set (Section 6.4.2).

6.4.2 Experiment Set 2: ANN Classifiers
Each of the six clusters identified by experiment set 1 (Section 6.4.1) were used as training sets by
an ANN that attempted to classify the protocol represented by each cluster. The following pseudo-
code describes the ANN classification process, given the clustered data.

For each cluster c in [identified clusters]
1. Mark data linked to c with "1"
2. Mark data external to c with "0"
3. For i = 1 to EA_max_generations
 For each s genome in EA_population
 Create ANN a to identify c using structure s
 Train: 1000 iterations using marked datum
 If accuracy(a) > current_best_for_c

Count

1200

1000

800

600

400

200

0

KNN distribution

0.
00

00
00

0.
00

00
25

0.
00

00
50

0.
00

00
75

0.
00

01
00

0.
00

01
25

0.
00

01
50

0.
00

01
75

0.
00

02
00

0.
00

02
25

0.
00

02
50

0.
00

02
75

0.
00

03
00

0.
00

03
25

0.
00

03
50

0.
00

03
75

0.
00

04
00

0.
00

04
25

0.
00

04
75

0.
00

05
00

0.
00

05
25

0.
00

05
50

0.
00

05
75

0.
00

06
00

Figure 6.2 Histogram depicting nearest neighbors.

Table 6.2 Clustering Results

Cluster Datum Silhouette

1 127 0.993615

2 319 0.989984

3 101 0.997174

4 61 0.999032

5 175 0.996352

6 74 0.991109

K21539_C006.indd 117 4/26/2014 7:33:35 AM

118 ◾ Ryan G. Goss and Geoff S. Nitschke

 current_best_for_c = a
 Fitness(s) = accuracy(a)
 Next s
Next i
4. Set c_ann = current_best_for_c
Next cluster

Each ANN was a fully connected feed-forward network with one hidden layer of log-sigmoidal
nodes. The ANN has one output code (indicating the accuracy of classification within the range
[0.0, 1.0]) that also uses a log-sigmoid activation function. The input layer consisted of 11 input
neurons corresponding to the 11 discriminators used for classification (Section 6.4.1). A GA was
used in order to determine an appropriate number of hidden layer nodes as well as number of hid-
den layers (Section 6.3) for each cluster in the clustered data.

The GA was run for each cluster, resulting in six different ANN topologies (Table 6.3). At the
end of each GA run for each cluster, the ANN topology resulting in the highest score was retained
as the classifier most suitable. Table 6.3 presents the ANN topology for each cluster classification
that yielded the highest accuracy. These results were gained from training each ANN on each
cluster of the clustered data set (Section 6.4.1) for 1000 iterations.

6.4.3 Experiment Set 3: Classifier Testing
The flow inspector software (Section 6.4.1) was once again deployed for the purpose of capturing
discriminators in each passing TCP flow over a 15 min period. Concurrently, a separate instance
of the flow inspector software was connected to a wide area network (WAN) of a home broadband
user, recording TCP flows over a 1 h period. The flow inspector recorded for 1 h since the traffic
volumes of the home user were significantly less than that of the corporate network. Each of the
data recorded during this process were manually annotated by experts, identifying them by their
underlying application protocol (for verification).

In order to adequately test the trained ANN classifiers, five randomly selected samples for each
protocol were presented to the ANN classifiers trained in experiment set 2 (Section 6.4.2). The highest-
scoring (classification accuracy) ANN classifier and the average output scores are presented in
Table 6.4 for a given set of protocols. These results are presented with those attained by a heuristic
annotation method (Goss and Botha 2012), an HSOM method (Goss and Nitschke 2013a), and
a k-means method (Goss and Nitschke 2013b) for the same protocols. In Table 6.4, – indicates
that the protocol was not tested, and DPC refers to the classification accuracy of the DPC method

Table 6.3 EA Optimization Results

Cluster Hidden Layers Neurons per Hidden Layer Accuracy

1 4 10 99.897%

2 4 11 99.983%

3 2 4 99.996%

4 2 11 99.992%

5 3 11 99.948%

6 4 11 99.970%

K21539_C006.indd 118 4/26/2014 7:33:35 AM

Automatic Network Protocol Identification ◾ 119

proposed in this chapter. Heuristic refers to the manual annotation method for protocol identifica-
tion described by Goss and Botha (2012).

6.5 Discussion
Results indicate the degree of accuracy (close to% 100) for the evolved ANN classifiers. The
topology of each of the six ANN classifiers was evolved specifically to maximize the classification
accuracy of each with respect to clustered training data. Six ANN classifiers were evolved since
there were six clusters (where each cluster corresponded to a detected application protocol) in the
training data set. The high classification accuracy was verified for both training and test data. To
properly test the capability of trained classifiers to accurately classify any given protocol, a set of
application protocols were randomly selected from a given protocol set. Furthermore, fabricated
test protocols were randomly generated from an existing discriminator set.

Trained ANN classifier accuracy is comparable to that yielded by an HSOM (Goss and
Nitschke 2013a) and k-means (Goss and Nitschke 2013b) method for the same application proto-
col classification task. New flows were captured on corporate and a home ADSL network and were
used as the test data for the trained ANN classifiers. This was done so the authors could ascertain
how well the trained ANN classifiers are able to dynamically classify the most popular application
protocols (such as HTTP and SMTP) from live network flows of corporate versus home networks.
In order to ensure that the ANN classifiers were properly trained, that is, generalizing such that
newly observed protocols were properly classified, only classifications yielding a 95% or higher
degree of accuracy were considered. Classifications with a lower degree of accuracy were consid-
ered to have an unknown classification.

Table 6.4 indicates that all classifiers yielded a degree of accuracy of 99% or higher when given
the task of identifying eight given application protocols in live traffic flows. The DPC method
yielded comparable classification results (no statistically significant difference) to the HSOM and
k-means methods. The exception was that the DPC and k-means methods both significantly out-
performed HSOM for accurately classifying the HTTP protocol. In the HSOM method, HTTP
transactions using the HTTP 1.1 protocol (pipe-lining) spread the HTTP protocol over a number
of clusters and, subsequently, a number of classifiers. Testing the discriminator sets manually

If “ADSL” is an
abbreviation,
please define at
first mention.

Table 6.4 Classification Results on Test Data

Protocol Classifier Number DPC Heuristic HSOM K-means

POP3 2 99.96% 99.06% 99.88% –

SMTP 3 99.90% 99.92% 99.86% 99.94%

IMAP – – – 99.77% 99.86%

HTTP 1 100.00% 99.93% 69.60% 99.88%

HTTPS 5 99.92% 99.95% 99.95% 99.89%

Soulseek – – – 99.83% –

BitTorrent 6 99.82% – 99.70% 98.78%

PPTP 4 99.41% – – –

If SMTP, IMAP,
HTTP, and
HTTPS are
abbreviations,
please define.

K21539_C006.indd 119 4/26/2014 7:33:35 AM

120 ◾ Ryan G. Goss and Geoff S. Nitschke

annotated HTTP by experts against each individual classifier subsequently resulted in the low
score being produced. The k-means method was able to overcome this problem; however, the spe-
cifics of this are not mentioned in the work. In the DPC method, these HTTP 1.1 requests were,
upon further investigation, discarded by DBSCAN as “noise” due to the lack of samples during
the clustering process.

Another key difference between the DPC, HSOM, and k-means methods that affected over-
all classification accuracy in this comparative study was the efficacy of the clustering of training
data. The capability of unsupervised learning (clustering) data to correctly cluster traffic flow data
according to identified application protocols impacted the ANN backpropagation training process
and, thus, ANN classification accuracy.

For this clustering process, both the k-means and HSOM methods required many iterations
before clusters emerged in the final layer of the SOM (Goss and Nitschke 2013a). Both the HSOM
and k-means methods worked with a data set of 1973 data points with 11 dimensions (discrimi-
nators). In the first layer of the HSOM, clustering occurred after 300 iterations. Each iteration
equated to the evaluation of 1973 discriminators for each of the 400 neurons in the first layer.
Clustering at the first layer of the HSOM resulted in each of 50 best matching unit (BMU) clusters
being evaluated against 100 neurons in the second layer for an additional 100 iterations.

The final layer of the HSOM identified 14 clusters; however, only 11 data sets were considered
and used in training ANN classifiers due to the lack of datum samples in three of the clusters. The
k-means method (Goss and Nitschke 2013b) was similarly inefficient in that multiple iterations of
the method were required for each datum within the traffic flow data set that was being clustered.
Given randomly selected centroids, k = 16 clusters were derived, with a calculated silhouette value
of 0.916821. For the DBSCAN method, a data set of 1421 data points with 11 dimensions (dis-
criminators) was recorded. The DBSCAN method evaluates each data point only once for each
run of the algorithm. In contrast to the HSOM and k-means methods, this resulted in increased
efficiency when clustering data sets of recorded network traffic.

Also, the DBSCAN method did not produce clusters with an insufficient number of sample
data points, as was the case for both the HSOM and k-means methods. In the case of both
HSOM and k-means, clusters that contained an insufficient number of data points had to be
manually removed. This meant that, dissimilar to the DPC method, the HSOM and k-means
methods could not be fully automated. For example, in the HSOM clustering, three clusters
emerged, which DBSCAN would have considered noise. This result is attributed to the capability
of DBSCAN to form arbitrarily shaped clusters and its robustness toward outlier detection (noise),
elements that skew both the HSOM and k-means methods.

Furthermore, the DPC method was advantageous in that the ε and minPTS parameters were
evolved to values that worked well for the clustering of recorded traffic flow training data that were
clustered by the DBSCAN component of DPC. The DPC method also had the advantage that the
DBSCAN component was able to form complex shapes in its clustering process and thus cluster
nonlinearly separable data.

6.6 Conclusion
This chapter presented the DPC method for a case study of automated application protocol iden-
tification on computer networks. This study extended previous work (Goss and Botha 2012; Goss
and Nitschke 2013a,b) that showed the benefit of unsupervised clustering methods (HSOM
and k-means) for dynamic application protocol identification on recorded traffic flows. Such

K21539_C006.indd 120 4/26/2014 7:33:35 AM

Automatic Network Protocol Identification ◾ 121

automation is beneficial since it alleviates for network administrators the delays experienced wait-
ing for new signatures to be created by the vendor. Methods that automate the classification of new
protocols must thus work with the data of live traffic flows and be able to dynamically ascertain
the defining features of new protocols that traverse the network (Szabo et al. 2007).

This case study demonstrated that the DPC method was appropriate for dynamically iden-
tifying new protocols and generating signatures ad hoc. The clustering component (DBSCAN)
of DPC was found to be more efficient and appropriate for the given protocol classification and
identification task. Efficient refers to the lower number of evaluations per data point required for
DBSCAN to cluster the training data. Appropriate refers to the capability of DBSCAN to more
effectively (comparative to the HSOM and k-means methods) exclude noise from clustered data
via forming nonspherical clusters, and to cluster nonlinearly separable data. Also, DBSCAN (more
generally the DPC method) did not require the number of clusters to be specified a priori, as was
necessitated by k-means.

The DPC method demonstrated an average classification accuracy of 99% given the task of
dynamically identifying eight application protocols. The overall classification accuracy of the DPC
method was comparable to that achieved by HSOM and k-means. Hence, the hypothesis that the
DPC method would outperform (with statistical significance) the HSOM and k-means methods
(Section 6.1) was refuted. However, these latter two methods are still to be tested for the PPTP,
Soulseek, and POP3 protocols. While the average accuracy achieved was favorable (in excess of
99%), it is still to be determined whether such accuracy would persist with an increased sample set
with additional protocols observed by the flow inspector software.

Future work will address the issue of clustering high-dimensional data, which has been elu-
cidated as problematic for nonparametric density-based methods, such as DBSCAN (Jain 2010).
Whereas this work used data sets defined by 11 discriminators (dimensions), future studies will
compare the capability of k-means, HSOM, and the DPC method to work with significantly
higher-dimensional data. Future work will also address extensions to the DBSCAN component
of the DPC method, such as allowing for an ε value to be dynamically set for emerging clusters,
after initially being set for the entire clustering process. Furthermore, the DBSCAN component
will be compared with the OPTICS (Ankerst et al. 1999) and DeLiClu algorithms (Achtert et al.
2006), to investigate the possibility of overcoming DBSCAN’s limitation in performing optimally
within large density distributions.

References
Achtert, E., Böhm, C., & Kröger, P. (2006). DeLi-Clu: Boosting Robustness, Completeness, Usability, and

Efficiency of Hierarchical Clustering by a Closest Pair Ranking. In Advances in Knowledge Discovery and
Data Mining (pp. 119–128). Springer, Berlin, Heidelberg.

Alshammari, R., & Zincir-Heywood, A. (2007). A Flow Based Approach for SSH Traffic Detection. In
Proceedings of the IEEE International Conference on System, Man and Cybernetics (pp. 296–301). IEEE
Computer Society, Montreal, Que.

Alshammari, R., & Zincir-Heywood, A. (2008). Investigating Two Different Approaches for Encrypted
Traffic Classification. In Proceedings of the Sixth Annual Conference on Privacy, Security and Trust
(pp. 156–166). IEEE Computer Society.

Alshammari, R., & Zincir-Heywood, A. (2009). Machine Learning Based Encrypted Traffic Classification:
Identifying SSH and Skype. In Computational Intelligence for Security and Defence Applications (pp. 1–8).

Ankerst, M., Breunig, M., Kriegel, H., & Sander, J. (1999). OPTICS: Ordering Points to Identify the
Clustering Structure. ACM SIGMOD Record, 28(2), 49–60.

If “PPTP” and
“POP3” are
abbreviations,
please define at
first mention.

If “OPTICS” is
an abbreviation,
please define at
first mention.

Please provide
editor(s), pub-
lisher name and
location.

K21539_C006.indd 121 4/26/2014 7:33:35 AM

122 ◾ Ryan G. Goss and Geoff S. Nitschke

Auld, T., Moore, A., & Gull, S. (2007). Bayesian Neural Networks for Internet Traffic Classification. IEEE
Transactions on Neural Networks, 18(1).

Bernaille, L., Soule, A., Akodjenou, I., & Salamatian, K. (2005). Blind Application Recognition through
Behavioral Classification. CNRS LIP6, Technical Report.

Bernaille, L., Teixeira, R., & Salamatian, K. (2006). Early Application Identification. In Proceedings of the
2006 ACM CoNEXT Conference (p. 6).

Cohen, W. (1995). Fast Effective Rule Induction. In Proceedings of the Twelfth International Conference on
Machine Learning (Vol. 95, pp. 115–123).

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297.
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum Likelihood from Incomplete Data via the EM

Algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 1–38.
Devroye, L. (1996). A Probabilistic Theory of Pattern Recognition (Vol. 31). Springer Verlag.
Eiben, A., & Smith, J. (2003). Introduction to Evolutionary Computing. Springer.
Este, A., Gargiulo, F., Gringoli, F., Salgarelli, L., & Sansone, C. (2008). Pattern Recognition Approaches

for Classifying IP Flows. In Proceedings of the 2008 Joint IAPR International Workshop on Structural,
Syntactic and Statistical Pattern Recognition (pp. 885–895). Springer-Verlag, Berlin, Heidelberg. doi:
10.1007/978-3-540-89689-0_92.

Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A Density-based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Knowledge Discovery in Databases (Vol. 96, pp. 226–231).

Freund, Y., & Schapire, R. E. (1995). A Decision-Theoretic Generalization of On-line Learning and an
Application to Boosting. In Computational Learning Theory (pp. 23–37).

Gargiulo, F., Kuncheva, L., & Sansone, C. (2009). Network Protocol Verification by a Classifier Selection
Ensemble. In Multiple Classifier Systems (pp. 314–323). Springer-Verlag, Berlin, Heidelberg.

Gebski, M., Penev, A., & Wong, R. (2006). Protocol Identification of Encrypted Network Traffic. In
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (pp. 957–960).
IEEE Computer Society.

Goss, R., & Botha, R. (2012). Establishing Discernible Flow Characteristics for Accurate, Real-time Network
Protocol Identification. In Proceedings of the 2012 International Network Conference (INC2012)
(pp. 25–34). IEEE Computer Society, Port Elizabeth, South Africa.

Goss, R., & Nitschke, G. (2013a). Automated Network Application Classification: A Competitive Learning
Approach. In Proceedings of the IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2013)
(pp. 45–52). IEEE Press, Singapore.

Goss, R., & Nitschke, G. (2013b). Network Protocol Identification Ensemble with EA Optimization. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2013) (pp. 1735–1736).
ACM Press, Amsterdam, Netherlands.

Hu, B., & Shen, Y. (2012). Machine Learning Based Network Traffic Classification: A Survey. Journal of
Information and Computational Science, 9(11), 3161–3170.

Huang, K., & Zhang, D. (2008). A Byte-Filtered String Matching Algorithm for Fast Deep Packet Inspection.
In Proceedings of the Ninth International Conference for Young Computer Scientists (pp. 2073–2078).
IEEE Computer Society.

Jain, A. (2010). Data Clustering: 50 Years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. doi:
10.1016/j.patrec.2009.09.011.

Li, Z., Yuan, R., & Guan, X. (2007). Traffic Classification—Towards Accurate Real Time Network
Applications. In Proceedings of the Twelfth International Conference on Human-Computer Interaction:
Applications and Services (pp. 67–76). Springer-Verlag, Berlin, Heidelberg.

MacQueen, J. et al. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, p. 14).

Mcgregor, A., Hall, M., Lorier, P., & Brunskill, J. (2004). Flow Clustering Using Machine Learning
Techniques. Passive and Active Network Measurement, 205–214.

Moore, A., & Papagiannaki, K. (2005). Toward the Accurate Identification of Network Applications. In
Passive and Active Network Measurement (Vol. 3431, pp. 41–54). Springer.

Moore, A., Zuev, D., Crogan, M., & Mary, Q. (2005). Discriminators for Use in Flow-based Classification.
Queen Mary and Westfield College, Department of Computer Science.

Please provide
page number(s).

Please provide
publisher name
and location if
available.

Please provide
publisher
location.

Please provide
volume number.

Please provide
publisher
location.

Please provide
editor(s), pub-
lisher name and
location.

Please provide
editor(s), pub-
lisher name and
location.

Please provide
complete list of
contributors.

Please provide
volume number.

Please provide
publisher
location.

Please provide
publisher
location.

K21539_C006.indd 122 4/26/2014 7:33:35 AM

Automatic Network Protocol Identification ◾ 123

Nascimento, Z., Sadok, D., & Fernandes, S. (2013). A Hybrid Model for Network Traffic Identification
Based on Association Rules and Self-Organizing Maps (SOM). In Proceedings of the Ninth International
Conference on Networking and Services (ICNS2013) (pp. 213–219).

Nguyen, T., & Armitage, G. (2008). A Survey of Techniques for Internet Traffic Classification using Machine
Learning. IEEE Communications Surveys & Tutorials, 10(4), 56–76.

Quinlan, J. (1993). C4. 5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning.
Rousseeuw, P. (1987). Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis.

Journal of Computational and Applied Mathematics, 20, 53–65.
Szabo, G., Szabo, I., & Orincsay, D. (2007, June). Accurate Traffic Classification. In IEEE International

Symposium on a World of Wireless, Mobile and Multimedia Networks (pp. 1–8).
Von Luxburg, U. (2007). A tutorial on Spectral Clustering. Statistics and Computing, 17(4), 395–416.

Please provide
volume and page
number(s).

K21539_C006.indd 123 4/26/2014 7:33:35 AM

K21539_C006.indd 124 4/26/2014 7:33:35 AM

