
A Mobile Scaffolding Application to Support Novice 
Learners of Computer Programming

 Chao Mbogo 

Computer Science Department 
University of Cape Town 

 chao.mbogo@uct.ac.za 

Edwin Blake 

Computer Science Department 
University of Cape Town 

 edwin@cs.uct.ac.za

Hussein Suleman 

Computer Science Department 
University of Cape Town 

 hussein@cs.uct.ac.za 
 

ABSTRACT 
Support for novice learners of computer programming can be 

provided by scaffolding the construction of programs. The 

ubiquity of mobile phones allows us to support learners whenever 

they wish to work on a program outside the classroom. This paper 

describes the development of an application that scaffolds the 

construction of programs on a mobile phone. The application was 

designed based on a five-level scaffolding framework and 

implemented on the Android platform.  

The application scaffolds the construction of programs on a 

mobile device by: (i) representing a program in parts; (ii) 

restricting a learner to complete the program in a certain order; 

(iii) enabling construction of a program one part at a time; (iv) 

providing instructions, steps, default code to be edited, hints, and 

error prompts where appropriate; and (v) fading the scaffolds as 

the learner progresses from one successfully completed and 

compiled program, to the next.  

Experiments are currently ongoing to test and evaluate the mobile 

application.  

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computer Uses in Education 

– Computer-assisted instruction, Computer-managed Instruction, 

Distance Learning.  

General Terms 
Design, Human Factors.  

Keywords 
Mobile Application, Novice Learners, Computer Programming, 

Support, Scaffolding. 

1         INTRODUCTION 
Learning computer programming at undergraduate level has long 

been challenging [3]. Research from a developing country points 

to the importance of experimenting with new pedagogical 

approaches to tackle these challenges [2].  

Instructional scaffolding [6] is defined as “an adult controlling 

those elements of the task that are essentially beyond the learner’s 

capacity, thus permitting him to concentrate upon and complete 

only those elements that are within his range of competence”.  

The definition of scaffolding that this paper adopts is; “modifiable 

support that enables a learner to fulfill a goal”. The goal for 

learners is effective construction of programs since programming 

is best learnt through doing.  

The ubiquity of mobile devices provides an opportunity to use 

them in supporting novice learners of programming. A recent 

study indicates that programming directly on mobile devices is 

quite potent and accessible for learners who are beginning to learn 

programming [5]. 

This paper discusses a mobile scaffolding application that 

supports the construction of Java programs. There are several 

mobile Java IDEs available on the Google App store, such as 

DeuterIDE. However the interfaces of these IDEs mimic a PC 

IDE such as Eclipse and do not offer additional support that a 

novice learner of programming may need such as; hints for 

completing a program, or error prompts that indicate basic errors 

at the point of constructing the program.  

In contrast to these IDEs, this paper describes a mobile application 

that scaffolds the construction of Java programs, while using 

design guidelines that would assist in supporting a novice learner. 

In addition, specific design guidelines have been implemented to 

address the restrictive qualities of small screen sizes in mobile 

phones. 

The design goals of the mobile application are: 

1. To support the construction of programs on a mobile device 

using scaffolds. 

2. To provide scaffolds that adapt to the learner’s level and if 

disabled, can be enabled by the learner at will.  

3. To address the qualities of mobile phones such as small 

screen sizes. 

To achieve these goals, the developed mobile application is 

designed based on a five-level framework. The framework is 

based on a theory-driven model [2] which has three main phases: 

type of cognitive learning challenge; specific learning challenge; 

and scaffolding guidelines. In addition to these three phases, two 

other phases were added in order to accommodate: (i) a model for 

categorizing the type of scaffolding to use; and (ii) scaffolding 

strategies, which are specific types of implementation approaches 

that can achieve scaffolding guidelines. The scaffolding strategies 

were then implemented on a mobile application. Experiments are 

currently being undertaken to test and evaluate the mobile 

application.  

The rest of the paper is organized as follows: Section 2 describes 

scaffolding strategies; Section 3 describes the system 

implementation by using a Java program example; and Section 4 

concludes the paper. 

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 
for third-party components of this work must be honored. For all other 

uses, contact the Owner/Author.  

ICTD 2013, Dec 07-10 2013, Cape Town, South Africa 
ACM 978-1-4503-1907-2/13/12. 

http://dx.doi.org/10.1145/2517899.2517941  

mailto:chao.mbogo@uct.ac.za
mailto:hussein@cs.uct.ac.za
http://dx.doi.org/10.1145/2517899.2517941


2         SCAFFOLDING STRATEGIES 
The scaffolding strategies were arrived at after identification of 

learner-cited cognitive learning challenges. These challenges were 

then mapped to given scaffolding guidelines and types of 

scaffolding. Table 1 shows how each scaffolding strategy fits into 

the scaffolding framework. The table shows examples of learner 

challenge as cited by findings from learners of programming.  

To meet the design goals described in the previous section, the 

system is based on the following scaffolding strategies: 

1. Represent a program in parts. 

2. Restrict a learner to complete a program in a certain order. 

3. Enable construction of a program one part at a time.  

4. Providing instructions, default code, steps, hints, examples, 

and error prompts where appropriate. 

5. Fading the scaffolds as the learner progresses from one 

successfully completed and compiled program, to the next. 

2.1       Represent a Program in Parts 
To meet the first and third design goals, the main interface is 

represented in five parts. These parts identify the five parts of a 

Java program: header comments, imports, main class, method and 

main method.  

2.2      Restrict a Learner to Complete a 

Program in a Certain Order 
To support the construction of programs on a mobile device, a 

learner is restricted to construct a program in a certain order. First, 

the learner is required to complete the main class declaration. The 

header comments are completed next where a learner is required 

to give author’s name and describe the program. The learner can 

then complete the main method, and thereafter complete the 

methods and import parts if needed.  

2.3      Enable Construction of a Program one 

Part at a Time 
To address the small screen sizes of mobile phones, 

decomposition is used as a scaffolding strategy where only one 

decomposed ‘chunk’ can be worked on a time, while being able to 

relate to the whole part by viewing the full program. This relation 

would keep the learner connected to the chunks, while at the same 

time able to appreciate existence of the whole problem [1]. 

Therefore decomposition will also be used to reduce the 

complexity of the learning process.  

2.4      Providing Instructions, Default Code, 

Steps, Hints, Examples, and Error 

Prompts where Appropriate 
Instructions and steps on how to interact with the application are 

provided. These guide the learner on availability of menu options 

and how to move from one part to another. Default code is 

provided to reduce the cognitive load on the learner, and the 

learner is able to edit this in completing part of a program. Hints 

are part-specific and are based on standard coding guidelines on 

how to complete the different parts of a Java program. Error 

prompts are also part-specific and only pop up if a program part 

has an error. Examples are viewable and are related to the part of 

the program being completed, as opposed to examples that contain 

a full program.  

2.5      Fading the Scaffolds 
To provide scaffolds that adapt to the progression of the learner, 

certain scaffolds in the application fade. First-time instructions 

and steps on how to complete one part at a time are provided only 

in the first program. In the subsequent program, the learner is 

Table 1: Table that shows how scaffolding strategies fit into a five-level framework 

Type of 

cognitive 

challenge 

Specific learning 

challenge  

Scaffolding 

type 

Scaffolding guideline Scaffolding strategy that can be 

implemented on a Mobile Device 

Sense Making The simple yet confusing 

rules of programming 

Supportive Use representation and language 

that bridge learners’ understanding 
of programming. 

Provide default code that the learner can 

edit 

Sense Making It’s hard to join different 
parts of code into one 

Supportive/Intrinsic Organize the mobile strategy 
around the semantics of the 

programming language. 

Represent a program in parts 
Restrict a learner to complete a program 

in a certain order 

Sense Making Constructing logic from 

programs is difficult 
 

Reflective/ Intrinsic Structure task and functionality by 

restricting a complex task by 
setting proper boundaries for 

learners. 

 

Enable construction of a program one 

part at a time.  
Force the learner to complete ‘first level’ 

tasks before ‘unlocking’ ‘second level 

tasks’ and so on 

Sense Making Unclear error messages 

when debugging. 
Debugging is sometimes 

frustrating. 

Supportive Use representation and language 

that bridge learners’ understanding 
of programming. 

Prompt the learner as soon as they make 

a mistake in a piece of code instead of 
having to wait till they compile the 

program 

Articulation and 

Reflection 

Lack of documentation 

and practical examples 

Reflective Embed expert guidance about 

programming practices. 

Provide examples that are relevant to the 

program part being completed. 

Process 

Management 

It takes too much time to 

code programs 
Finding ways to accom-

plish a task in the shortest 
way possible 

Supportive/Intrinsic 

 

Organize the mobile strategy 

around the semantics of the 
programming language. 

Represent a program in parts  

Provide steps, default code and 
instruction on completion of the program 

while using the application  

 

 



notified that the steps and instructions have been disabled and 

they can enable them by selecting from a menu. After a learner 

successfully completes three programs, the interface changes from 

one which one part has to be completed at a time, to one which 

any part can be completed. A learner is able to go back to the 

basic interface if they wish to, by pressing on a related menu.  

3         SYSTEM IMPLEMENTATION  
A mobile application was developed for the Android platform 

based on the design strategies described in the previous section. 

The mobile application uses the Ideone API1 for compilation and 

running of programs. This section will be explained using the Java 

problem example below.  

Problem: Write a program called ‘Testing’ that prints the 

words ‘This works!’. 

The application has two main screens: Main Interface and Code 

Editor. The main interface is the entry point of the application and 

the learner is presented with the interface as shown in Figure 1(a). 

Any chunk with a plus sign is enabled, and on start the main class 

is the only one enabled. Figure 1(b) shows the main class clicked 

and steps are shown above, instructing the learner on what to do 

next.  

On clicking inside the expanded area of the main class, the learner 

is taken to the code editing screen as shown in Figure 2 (a) where 

the step instruction guides them on what to do. If the learner 

completes the class name starting with a lower case, they get an 

error prompt (Figure 2 (b)). This error prompt is an example of 

how an error in the program gets highlighted to the learner before 

compilation.  

On successful creation of class name and on pressing the phone 

back button, the main interface is displayed (Figure 3 (a)) and the 

program is saved onto device (Figure 3(b)). The main class is 

highlighted as green to indicate completion, and header comments 

part is now activated as is now shown with a plus sign.  

The header comment reveals the name of the program as created 

after creation of the main class (Figure 4(a)). On pressing phone 

menu and selecting to view full program, the learner is able to view 

the full program as at that stage (Figure 4(b)). Figure 5(a) shows the 

code editor when the learner selects to edit the header comment. On 

getting back to the main interface, the header comment is updated 

and main method part is now activated (Figure 5(b)).  

 

 (a) main class enabled (b) main class clicked 

Figure 1. Main Interface 

                                                                 

1 http://ideone.com/api 

 

 (a) editing class name (b) Error prompt 

Figure 2. Code Editor 

 

 (a) main class completed (b) file saved on device 

Figure 3. Interface on successful creation of class declaration  

 

 (a) on click of header (b) full program at this stage 

Figure 4. Header and Full View 

 

 (a) editing header (b) header completed 

Figure 5. Header Edit 

http://ideone.com/api


On pressing the main method button, default structure for main 

method is revealed (Figure 6(a)), and on pressing inside this 

expanded area the learner is shown some options to select (Figure 

6 (b)). This problem requires display of output, hence the learner 

can select the System.out.println() option. This takes them back to 

the code editor (Figure 7(a)) and the learner can type what is 

required within the brackets of System.out.println(). On pressing 

the back button, the three completed section are all green as 

shown in Figure 7(b). 

The completed full program can now be viewed and seen as 

complete (Figure 8(a)). On compilation, the output is shown in 

Figure 8(b).  

 

(a) main method selected (b) selection of option 

Figure 6. Main Method  

 

(a) edit output option (b) main method complete 

Figure 7. Main Method Edit 

 

(a) full program (b) compiled and run program 

Figure 8. Completed Problem 

4         CONCLUSION 
A mobile application that scaffolds the construction of programs 

on a mobile device has been developed. A five-level scaffolding 

framework was used in order to implement the scaffolding 

strategies. Scaffolding is provided in the form of: representation 

of a program in parts; restriction of order of program completion; 

completion of a program one part at a time; and provision of 

instructions, steps, default code, hints and prompts. The 

application provides fading of scaffolding that can be enabled and 

disabled by the learner at will.  

The application is currently under testing and evaluation with first 

year learners of Java programming. Several issues that need to be 

resolved as identified in early testing stages include; reduction of 

textual information in the code editor, more pronounced 

instructions on first use, usability of the code editor needs 

improvement and it should be possible to load a saved program in 

order to reuse it.  

The hints, prompts and selection of options to use in program 

have been positively received by the learners so far. Complete 

results will be published in future papers.  

Future work involves implementing user feedback into the first 

prototype and iteratively testing with learners of programming.  

5         ACKNOWLEDGMENTS 
This study is funded by Hasso Plattner Institute and supported by 

ICT for Development Laboratory at University of Cape Town.  

6         REFERENCES 
[1] Ackermann, E. Perspective-Taking and Object 

Construction. In Kafai, Y., and Resnick, M., ed., In 

Constuctionism in Practice: Designing, Thinking, and 

Learning in a Digital World. Mahwah, New Jersey: 

Lawrence Erlbaum Associates. , 1996. 

[2] Apiola, M, Tedre, M, and Oroma, J.O. Improving 

Programming Education in Tanzania: Teachers’ and 

Students’ Perceptions. In 41st ASEE/IEEE Frontiers in 

Education Conference (Rapid City SD 2011), Session F3G. 

[3] Lahtinen, E.,AlaMutka, K.,Järvinen, H. A Study of the 

Difficulties of Novice Programmers. In ITiCSE '05 

Proceedings of the 10th annual SIGCSE conference on 

Innovation and technology in computer science education ( 

2005), 14 - 18. 

[4] Quintana, C, Reiser, B, Davis, E.A, Krajcik, J. Fretz , E. A 

Scaffolding Design Framework for Software to Support 

Science Inquiry. Journal of the Learning Sciences, 13, 3 

(November 2009), 337-386. 

[5] Tillmann, N. Moskal, M., de Halleux, J., Fahndrich, M., 

Bishop,J., Samuel, A., Xie, T. The Future of Teaching 

Programming is on Mobile Devices. In ITiCSE’12 

Proceedings of the 17th ACM annual conference on 

Innovation and technology in computer science education 

(Haifa, Israel 2012), 156-161. 

[6] Wood, D, Bruner, J. S, and Ross, G. The role of tutoring in 

problem solving. Journal of Child Psychology & Psychiatry 

& Allied Disciplines, 17(2) (1976), 89–100.0         

 


