

Fig. 1. Polar and cartesian parameterizations of the halfdisc D.

Appendix

Derivation of the default γ VALUE

Theorem 1: Let R be a positive real number. Let

$$
w_{\mathbf{p}}(\mathbf{x})=\left(1-\min \left\{\frac{\|\mathbf{p}-\mathbf{x}\|}{R}, 1\right\}^{2}\right)^{4}
$$

for $\mathbf{p}, \mathbf{x} \in \mathbb{R}^{3}$, let H be a half-plane and \mathbf{v} be a point on the boundary of H. Then

$$
\begin{equation*}
\frac{\left\|\int_{\mathbf{p} \in H} w_{\mathbf{p}}(\mathbf{v})(\mathbf{p}-\mathbf{v}) d H\right\|}{\sqrt{\left(\int_{\mathbf{p} \in H} w_{\mathbf{p}}(\mathbf{v}) d H\right)\left(\int_{\mathbf{p} \in H} H w_{\mathbf{p}}\|\mathbf{p}-\mathbf{v}\|^{2} d H\right)}}=\frac{512 \sqrt{6}}{693 \pi} \tag{1}
\end{equation*}
$$

In the context of boundary detection, \mathbf{v} is a point to be classified, while \mathbf{p} is a splat with radius R.

Proof: Firstly note that if $\|\mathbf{p}-\mathbf{v}\|>R$ then $w_{\mathbf{p}}(\mathbf{v})=0$. Thus, if D is the subset of H within a distance R of \mathbf{v}, then we can replace H by D in the integrals in (1). We parameterize the half-disc D using polar coordinates (r, θ), with $r \in[0, R]$ and $\theta \in[0, \pi]$, as shown in Fig. 1. We can also Cartesian coordinates $(x, y)=(r \cos \theta, r \sin \theta)$.

$$
\begin{aligned}
w(r) & =\left(1-\left(\frac{r}{R}\right)^{2}\right)^{4} \\
& =1-\frac{4}{R^{2}} r^{2}+\frac{6}{R^{4}} r^{4}-\frac{4}{R^{6}} r^{6}+\frac{1}{R^{8}} r^{8}
\end{aligned}
$$

Let us now consider the integrals one at a time. The integral in the numerator is a vector integral, but from symmetry it is clear that the x component will vanish and we need only compute the y component

$$
\begin{aligned}
\int_{H} w_{\mathbf{p}}(\mathbf{v})(\mathbf{p}-\mathbf{v})_{y} d H & =\iint_{r, \theta} w(r) r \sin \theta \cdot r \cdot d r \cdot d \theta \\
& =\left(\int_{0}^{R} r^{2} w(r) d r\right)\left(\int_{0}^{\pi} \sin \theta d \theta\right) \\
& =R^{3}\left(\frac{1}{3}-\frac{4}{5}+\frac{6}{7}-\frac{4}{9}+\frac{1}{11}\right) \cdot 2 \\
& =\frac{256}{3465} R^{3} .
\end{aligned}
$$

Next, the integrals in the denominator:

$$
\begin{aligned}
\int_{H} w_{\mathbf{p}}(\mathbf{v}) d H & =\iint_{r, \theta} w(r) \cdot r \cdot d r \cdot d \theta \\
& =\left(\int_{0}^{R} w(r) \cdot r \cdot d r\right)\left(\int_{0}^{\pi} d \theta\right) \\
& =\left(\frac{1}{2}-\frac{4}{4}+\frac{6}{6}-\frac{4}{8}+\frac{1}{10}\right) R^{2} \pi \\
& =\frac{\pi}{10} R^{2} . \\
\int_{H} w_{\mathbf{p}}(\mathbf{v})\|\mathbf{p}-\mathbf{v}\|^{2} d H & =\iint_{r, \theta} w(r) \cdot r^{3} \cdot d r \cdot d \theta \\
& =\left(\frac{1}{4}-\frac{4}{6}+\frac{6}{8}-\frac{4}{10}+\frac{1}{12}\right) R^{4} \pi \\
& =\frac{\pi}{60} R^{4} .
\end{aligned}
$$

The left hand side of (1) is thus

$$
\frac{\frac{256}{3465} R^{3}}{\sqrt{\frac{\pi}{10} R^{2} \cdot \frac{\pi}{60} R^{4}}}=\frac{256 \sqrt{600}}{3465 \pi}=\frac{512 \sqrt{6}}{693 \pi} .
$$

