
Flexible Design for Simple Digital Library Tools and
Services

Lighton Phiri
Department of Computer Science

University of Cape Town
Private Bag X3

Rondebosch 7701
Cape Town, South Africa
lphiri@cs.uct.ac.za

Hussein Suleman
Department of Computer Science

University of Cape Town
Private Bag X3

Rondebosch 7701
Cape Town, South Africa

hussein@cs.uct.ac.za

ABSTRACT

The design of Digital Library Systems (DLSes) has evolved
over time, both in sophistication and complexity, to com-
plement the complex nature and sheer size of digital con-
tent being curated. However, there is also a growing de-
mand from content curators, with relatively small-size col-
lections, for simpler and more manageable tools and ser-
vices for managing content. The reasons for this particu-
lar need are driven by the assumption that simplicity and
manageability might ultimately translate to lower costs of
maintenance of such systems. This paper builds on previ-
ous work in order to assess the flexible nature of the pro-
posed design approach —the explicit adoption of a mini-
malistic approach to the overall design of DLSes. A two-
axis evaluation strategy was used to assess this proposed
solution: a developer-oriented survey assessed the flexibil-
ity and simplicity; and a series of performance benchmarks
were conducted to assess the scalability. In general, the
study outlined some possible implications of simplifying
DLS design; specifically the results from the developer-
oriented user study indicate that simplicity in the design of
the DLS repository sub-layer does not severely impact the
interaction between the service sub-layer and the reposi-
tory sub-layer. Furthermore, the scalability experiments
indicate that desirable performance results for small- and
medium-sized collections are attainable.

Categories and Subject Descriptors

H.3.7 [Information Storage and Retrieval]: Digital
Libraries—Collection, Systems issues, User issues; H.3.4
[Information Storage and Retrieval]: Systems and
Software—Performance evaluation

General Terms

Human Factors, Measurement, Performance

Keywords

Digital Libraries, DSpace, Minimalism, Simplicity

1. INTRODUCTION
Preservation of digital content is a key concern of archivists

because of the lack of strong evidence that content will,
in fact, be accessible and usable in the near and distant
future. Various solutions have been proposed but many
of the comprehensive and generalisable content solutions
(e.g., LOCKSS1, DuraCloud2, emulation) have a require-
ment for complex hardware/software/communication sys-
tems. At the other end of the spectrum are solutions based
on simplicity, exemplified by the successful Project Guten-
berg [1], where all manuscripts in its collection can be
viewed in a universal plain text form.
Simplicity of system architectures also has been hailed

as a potential solution to growing software service/system
complexity. Many existing digital library (DL) tools are
monolithic but there is a gradual shift towards a more
Unix-like architecture, with interchangeable tools and com-
mon interfaces.
Thus, a simplification in DLS service/storage architec-

ture may yield multiple benefits. However there may be
adverse effects, such as reduced performance because of
insufficient pre-processing and indexing.
This paper therefore reports on an investigation into

the simplicity and performance constraints of simpler DLS
architectures, specifically for a file-based storage architec-
ture [2]. The core questions asked include: do simple ar-
chitectures result in tools and services that are flexible
and easy to use; is the performance acceptable in some
circumstances; what are the bounds for acceptable use
of file-based architectures; and what are the major issues
that cause performance degradation, if any.
The remainder of this paper is structured as follows:

Section 2 is a discussion of background information and
related work associated with the study; Section 3 details
the architecture of the prototype simple file-based repos-
itory; Section 4 describes a developer-oriented user study
that was conducted to assess the flexibility and ease of use
of the proposed architectural design, and additionally, the
performance benchmarks that were conducted to assess
the scalability of the architecture; and, finally, Section 5
concludes the paper.

2. RELATED WORK
Evaluation of DLs has been a subject of interest for DL

research from the very early stages. This is evidenced by
early initiatives such as the D-Lib Working Group on DL

1http://www.lockss.org
2http://www.duracloud.org

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.lockss.org
http://www.duracloud.org

Metrics3 that was established in the late 1990s. A series
of related studies have since been conducted with the aim
of outlining a systematic and viable way of evaluating the
complex, multi-faceted nature of DLs that encompasses
content, system and user-oriented aspects. For instance,
the DELOS4 Cluster on Evaluation [3, 4], which is perhaps
the most current and comprehensive DL evaluation initia-
tive, was initiated with the aim of addressing the different
aspects of DL evaluation.
The DELOS DL evaluation activities have yielded some

significant results. In an attempt to understand the broad
view of DLs, Fuhr et al. [5] developed a classification and
evaluation scheme using four dimensions: data/collection,
system/technology, users and usage, and further produced
a MetaLibrary comprising of test-beds to be used in DL
evaluation. In a follow up paper, Fuhr et al. [6] proposed a
new framework for evaluation of DLs with detailed guide-
lines for the evaluation process.
A number of user studies have been conducted to evalu-

ate DLs from users’ perspectives. For instance, Blandford
et al [7] proposed PRET A Rapporter —a framework for
structuring user-centred evaluation studies, in order to fo-
cus more on the design of interfaces, and user-system in-
teraction. In addition, Xie [8] conducted a user study to
investigate users’ use, their criteria and their evaluation
of DLs.
There have also been a number of specific performance

evaluation experiments conducted on DLSes. In an at-
tempt to study the ingest behaviour of a large-scale archive,
Misra et al. [9] conducted ingest performance experiments
to confirm the capability of DSpace5 to serve as a large
archive. Bainbridge et al. [10] provided a comprehen-
sive report of stress-tests and scalability experiments con-
ducted on three widely-used DL open source DLSes —
DSpace, Fedora Commons6 and Greenstone7— and fur-
ther present a case study, detailing the construction of a
large collection with 1.1 million digitised objects that was
built using Greenstone. However, their experiments were
more centred on the collection building process, which typ-
ically involves ingestion and importation of content. The
scalability of Fedora Commons is also assessed on the Fe-
dora Performance and Scalability Wiki8, which gathers
data and documents limits and constraints to help im-
prove Fedora Commons.
While the performance-centred studies each address sin-

gle aspects of DL performance, none of them provide all-
encompassing results detailing the impact on typical DL
operations as collections are scaled up in size. Further-
more, the majority of user studies that have been con-
ducted predominantly focus on end users’ perspectives of
DLs. In Section 4 we present results from a developer
study, and experimental results detailing collection sizes
when response times exceed generally acceptable limits.
First, however, the architecture of the experimental repos-
itory is presented.

3. REPOSITORY ARCHITECTURE
DLs are specifically designed to store, manage and pre-

serve digital objects over long periods of times [11]. The
digital objects are composed of bitstreams —the stored

3http://www.dlib.org/metrics/public/index.html
4http://www.delos.info
5http://www.dspace.org
6http://fedora-commons.org
7http://www.greenstone.org
8http://fedora.fiz-karlsruhe.de/docs

raw files e.g. documents and images, and corresponding
metadata that provides a detailed description of the bit-
streams. The high-level design of a typical DLS is com-
posed of three main components/layers: a user interface
layer through which end users access digital objects; a
service layer that provides the necessary services for in-
teracting with and manipulating the digital objects; and
a repository layer for storage and management of digital
objects [12, 13].
The architectural design of the prototype simple repos-

itory is based on a set of design principles presented in
previous work [2], and makes use of a typical native oper-
ating system filesystem as the core storage infrastructure,
with the goal of supporting preservation and enabling ease
of use and management. The main components that make
up the repository sub-layer, with all the components resid-
ing on the filesystem, arranged and organised as regular
files and/or directories, are shown in Figure 1. A typical
DLS repository is composed of two types of conceptual
digital objects: Container Objects and Content Objects.
Either may have an associated Metadata Object. Con-
tainer Objects are repeatable and can be recursively cre-
ated within other Container Objects. A Metadata Object
associated with a Container Object contains: information
that uniquely identifies the object; an optional descrip-
tion of the object, including relationships that might ex-
ist with other objects; and a detailed manifest of objects
contained within it. Content Objects represent digital ob-
jects to be stored within the repository. The Metadata
Objects associated with Content Objects are similar to
those of Container Objects, with the exception of mani-
fest information. This hierarchical structure of Containers
and Content/Metadata maps directly onto directories and
files, respectively, in a typical filesystem, as illustrated in
Figure 1.

4. EVALUATION
In previous work conducted, the effectiveness of the pro-

posed simpler design approach was assessed through the
implementation of a real-world digital collection [14]. In
order to extensively evaluate the proposed solution, a two-
axis evaluation strategy was employed to assess the sim-
plicity and easy of use, and the scalability.

4.1 Developer Survey
A developer-oriented user study was conducted to assess

the simplicity of file-based repository implementations and
the easy of interaction with such implementations. The
study involved participants building layered services on
top of a file-based repository, and subsequently partici-
pating in an optional post-study survey.

4.1.1 Target Group

The survey participants were recruited from a total of
34 Computer Science Honours (CSC4000) students, en-
rolled for the World Wide Web Technologies (WWW)
elective course module at the University of Cape Town.
The WWW module had a mandatory practical assign-
ment, accounting for 20% of the overall assessment, in
which the students were required to build generic Web ap-
plications, in groups, using the file-based repository store
described in Section 3.
Incidentally, the student-centric target population was

explicitly used due to the following reasons:

• The survey participants had the necessary background
knowledge of Web technology principles

2

http://www.dlib.org/metrics/public/index.html
http://www.delos.info
http://www.dspace.org
http://fedora-commons.org
http://www.greenstone.org
http://fedora.fiz-karlsruhe.de/docs

ROOT

Repository1

Container1 (metadata1)

object1-1

object1-2

metadata1-1

metadata1-2

Container2 (metadata2)

Container2.1 (metadata2.1)

Container2.2 (metadata2.2)

object2.1-1

metadata2.1-1

object2.2-1

metadata2.2-2

ROOT

Repository1

Container1

object1-1

object1-2

metadata1-1

metadata1-2

Container2

Container2.1

Container2.2

object2.1-1

metadata2.1-1

object2.2-1

metadata2.2-2

conceptual view filesystem view

metadata1

metadata2

metadata2.1

metadata2.2

Figure 1: Repository architecture object structure.

• The survey participants had all been exposed to the
same training

• The survey participants had a very strong motivate
for taking part in the study, and thus spent a sub-
stantial amount of time engaging with the technol-
ogy

• The cost implications of paying for professional de-
veloper, to participate in the survey, would have
been substantial

A request for survey participation was emailed to the
class mailing list after the assignment due date, in which
26 out of the 34 students responded, as shown in Table 1.

4.1.2 Data Collection

A post-experiment survey was conducted in the form of
an online questionnaire, designed using LimeSurvey9. The
questionnaire was aimed at eliciting participants’ experi-
ence in working with a simple and minimalistic file-based
collection, effectively establishing the impact of simplicity
on the overall design.

4.1.3 Results and Discussion

9http://www.limesurvey.org

The survey participants all met the basic requirement
associated with the technical expertise required to un-
dertake the study —their knowledge of Web technology
principles are depicted in Figures 2; their knowledge of
fundamental DL principles are depicted in 3; and their
knowledge working with some popular storage solutions
are depicted in 4. The implementation of the Web ser-
vices was done using a variety of programming languages,
as shown in Figure 5. In addition, the participants’ views
on the simplicity and ease of use of the repository is shown
in Figure 6. Furthermore, when asked to rank preferred
storage solutions for data management, 46% of the partic-
ipants chose database management systems in preference
to using file-base and cloud based solutions.
The survey results indicate that the target population

generally had the necessary skill-set required for this study.
The majority of respondents had some form of experience
working with Web applications and associated technolo-
gies (see Figure 2). Furthermore, all respondents were
familiar with fundamental concepts associated with DLs
(see Figure 3).
The strong preference of using databases as storage struc-

tures is arguably as a result of the majority of participants’
prior work with databases, as shown in Figure 4, and is
further justified by the question that asked participants
for reasons for their prior preferred storage solutions; the
responses from some participants who ranked databases

3

http://www.limesurvey.org

Table 1: Developer survey target population

Groups G
ro
u
p
1

G
ro
u
p
2

G
ro
u
p
3

G
ro
u
p
4

G
ro
u
p
5

G
ro
u
p
6

G
ro
u
p
7

G
ro
u
p
8

G
ro
u
p
9

G
ro
u
p
1
0

G
ro
u
p
1
1

G
ro
u
p
1
2

G
ra
n
d
T
o
ta
l

Candidates 3 3 3 3 3 2 3 3 3 3 3 2 34
Participants 3 3 1 2 2 2 3 3 2 2 1 2 26

Recruitment 1
0
0
%

1
0
0
%

3
3
.3
%

6
6
.6
%

6
6
.6
%

1
0
0
%

1
0
0
%

1
0
0
%

6
6
.6
%

6
6
.6
%

3
3
.3
%

1
0
0
%

7
6
.5
%

Technologies background

DB apps

DBMS

Web apps

XML

0 5 10 15 20 25

Number of subjects

Te
ch

no
lo

gi
es

< 1 yr 1−3 yrs 3−6 yrs > 6 yrs

Figure 2: Survey participants’ background knowl-
edge working with technologies relevant to the study.

DL concepts background

DLs

Metadata

Preservation

N
ovice

E
xpert

Number of subjects

D
L

co
nc

ep
ts

Figure 3: Survey participants’ background knowl-
edge working with fundamental DL concepts.

Storage background

Cloud

Database

File

0 5 10 15 20 25

Number of subjects

 S
to

ra
ge

 s
ol

ut
io

ns

Not at all Rarely Some times
Most times All the time

Figure 4: Survey participants’ background knowl-
edge working with some popular storage solutions.

Programming languages usage

C#

Java

Python

HTML5

PHP

JavaScript

0 5 10 15

Number of subjects

P
ro

gr
am

m
in

g
la

ng
ua

ge
s

Figure 5: Survey participants’ programming lan-
guages usage during service implementation.

4

Simplicity

Understandability

Metadata

Structure

Metadata

Structure

0 5 10 15 20 25

Number of subjects

R
ep

os
ito

ry
 a

sp
ec

ts

Strongly agree Agree Neutral
Disagree Strongly disagree

Figure 6: Survey participants’ simplicity and under-
standability ratings of repository design.

Operations approach ratings

Copying records

Deleting records

Reading records

Updating records

0 5 10 15 20 25

Number of subjects

M
an

ag
em

en
t o

pe
ra

tio
ns

Both File−based Database−based
Neither

Figure 7: Survey participants’ ratings of data man-
agement approaches for typical DL operations.

first are listed below.

• “I understand databases better.”

• “Simple to set up and sheer control”

• “Easy setup and connection to MySQL database”

• “Speed of accessing data, and its free.”

• “Ease of data manipulation and relations”

• “Easy to query”

• “Centralised management, ease of design, availabil-
ity of support/literature”

• “The existing infrastructure for storing and retriev-
ing data”

• “Querying a database table to retrieve a record is
most useful for data.”

In addition, as shown in Figure 6, 69% and 61% of
the participants found the storage of metadata records in
XML-encoded files simple and easy to use. Interestingly,
62% found the structure simple to work with, however,
only 46% found the structure of records understandable.
This significant reduction is attributed to the fact that
the majority of participants had limited knowledge of the
method used to model relationships between records; in-
cidentally, Dublin Core ’hasPart’ and ’isPartOf’ [15] were
used to model relationships between records. Interest-
ingly, out of the total 12 participants whose preference
was databases,the majority identified themselves as hav-
ing little background information pertaining to metadata
standards, DLs and digital preservation. It can be argued
that their lack of knowledge of these fundamental concepts
could have influenced their subjective views —this is sup-
ported by some of their general comments listed below.

• “Had some difficulty working the metadata, despite
looking at how to process DC metadata online, it
slowed us down considerably.”

• “Good structure although confusing that each page
has no metadata of its own(only the story).”

• “The hierarchy was not intuitive therefore took a
while to understand however having crossed that
hurdle was fairly easy to process.”

• “I guess it was OK but took some getting used to”

Furthermore, the range of Web services implemented
by the target population and the variety of programming
languages, as shown in Figure 5, used to implement the
services is indicative of the flexibility of the repository de-
sign, strongly indicating that the repository design did not
significantly influence the choice of service and implemen-
tation language. This conclusion is further supported by
an explicit survey question, that was aimed at eliciting
respondents’ views on whether the repository structure
had a direct influence on their programming language(s)
of choice, to which only 15% of the participants agreed.
In conclusion, the results from the developer survey sug-

gest that developer interaction with resulting systems is
not significantly affected, as the majority of participants
found the collection simple and easy to work with. The
use of a variety of programming languages also gives in-
sight into the flexibility of the proposed design —a key
attribute of extensibility in software design.

4.2 Scalability
A series of experiments (see Section 4.2.3) were per-

formed to assess the scalability of specific DL services with
different collection sizes/structures.
In order to compare scalability performance with exist-

ing solutions, the same experiment workloads described in
Section 4.2.2 were used to conduct scalability experiments
on DSpace (see Section 4.2.5).

4.2.1 Test Setup

The experiments were all conducted on a standalone In-
tel Pentium (E5200@ 2.50 GHz) with 4 GB of RAM run-
ning Ubuntu 12.04.1 LTS. ApacheBench 2.310 and Siege
2.7011 were used to simulate user requests, with five-run
averages taken for each request.

10http://httpd.apache.org/docs/2.2/programs/ab.
html

11http://www.joedog.org/siege-home

5

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://www.joedog.org/siege-home

Table 2: Performance experiment dataset workload design

Workload W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
1
0

W
1
1

W
1
2

W
1
3

W
1
4

W
1
5

Records 1
0
0

2
0
0

4
0
0

8
0
0

1
6
0
0

3
2
0
0

6
4
0
0

1
2
8
0
0

2
5
6
0
0

5
1
2
0
0

1
0
2
4
0
0

2
0
4
8
0
0

4
0
9
6
0
0

8
1
9
2
0
0

1
6
3
8
4
0
0

Collections 1
9

2
5

4
2

5
7

6
7

8
3

1
0
0

1
1
2

1
1
6

1
1
9

1
2
7

1
2
9

1
2
8

1
3
1

1
3
1

Size (MB) 0
.5
4

1
.0
0

2
.0
0

3
.9
0

7
.6
0

1
5
.0
0

3
0
.0
0

6
0
.0
0

1
1
8
.0
0

2
3
6
.0
0

4
7
1
.0
0

9
4
2
.0
0

1
9
4
5
.0
0

3
7
8
8
.8
0

7
6
8
0
.0
0

The dataset used for the experiments is a collection of
Dublin Core [15] XML records, organised into 131 sub-
sets, which was harvested from the NDLTD Union Cat-
alogue12 using the OAI-PMH 2.0 protocol [16]. The har-
vested records were separated into individual XML files
that were used to design the experiment workloads de-
scribed in Section 3.

4.2.2 Workload Design

A random sampling technique was used to generate 15
workloads of exponentially-increasing sizes, with sampled
records placed into their original containers. The struc-
ture of the dataset is depicted in Table 2.
A second dataset was then created, with a further level

of containers based on record publication dates, resulting
in a 2-level hierarchy. Finally, a third dataset was created,
with one additional level of containers based on the ini-
tial letter of an author’s last name, resulting in a 3-level
hierarchy. Figure 8 illustrates the object organisation in
one-level, two-level and three-level workload models.
As stated in Section 3, to leverage ease of use and man-

agement of resulting systems, storage of digital objects is
exclusively done on the native operating system. In order
to further ensure simplicity, repository features and func-
tionalities that could potentially contribute to the overall
complexity of resulting systems were eliminated. As such,
the collection workloads were not indexed, and no third-
party search services were used.

4.2.3 Performance Benchmarks

The performance benchmarks were aimed at evaluating
the performance and scalability of services with varying
collection sizes. Using Nielsen’s three important limits for
response times [17], a series of experiments were designed,
with each experiment specifically focusing on determin-
ing the break-even point at which performance drastically
degrades.
The performance experiments were carried out on the

following list of services derived from a transaction log
analysis of a production digital library system13:

• Item ingestion

• Full-text search

• OAI-PMH data provider operations

• Feed generation of most recently added items

4.2.4 Results and Discussion

12http://union.ndltd.org/OAI-PMH
13http://pubs.cs.uct.ac.za

Item Ingestion.
The ingestion process for a typical DLS in part involves

importation of metadata associated with the bitstreams
being ingested. The purpose of experiments conducted
for this aspect was to determine the relative ingestion
performance of metadata records, in terms of response
time, with varying workload sizes. A single newer record
was then used to simulate single item ingestion, through
a script that read the record to be ingested and wrote
the contents of the record to each of the 15 workload col-
lections in the three datasets. The times taken to suc-
cessfully write the record to disk were then noted. Fig-
ure 9 shows the results of the experiment. The ingestion
response times generally remain constant, irrespective of
the workload size. This is because the only overhead in-
curred results from disk write IO. The workload size does
not substantially affect the ingestion response times.

Search.
The most frequently occurring terms in the 15 work-

loads were identified using the Apache Solr Luke Request
Handler14 and search requests executed to determine re-
sponse times for each workload. The search technique in-
volved recursive traversal of workload containers, and suc-
cessively parsing and querying each metadata file in the
collection for the search phrase in question. The mean re-
sponse times taken to generate search query resultsets are
shown in Figure 10. There is a linear correlation between
the workload size and the query response time, largely
because all metadata records need to be analysed each
time a search query is issued. In addition, a large amount
of time is spent parsing and querying the record, with
these tasks accounting for an average of 39% and 46% re-
spectively. When the workload size exceeds 409600, the
parsing phase becomes extremely expensive, accounting
for 95% of the total search time.

OAI-PMH Data Provider.
The XMLFile Perl data provider module [18] was used

in these experiments by integrating it with each of the
workloads. The module was configured and deployed within
a mod perl-enabled Apache 2.2.22 Web server. The re-
sumptionToken size and container levels in datasets were
varied. Figures 11 and 12 show: baseline results, for the
four OAI-PMH verbs —GetRecord, ListIdentifiers, ListRecords
and ListSets [19], conducted on the dataset with a one-
level container and configured with a resumptionToken
size of 1000; and results for the ListRecords verb when
executed on the three datasets with varying container lev-
els while keeping the resumptionToken size constant. The
ListRecords and ListIdentifiers verbs are the most expen-

14http://wiki.apache.org/solr/LukeRequestHandler

6

http://union.ndltd.org/OAI-PMH
http://pubs.cs.uct.ac.za
http://wiki.apache.org/solr/LukeRequestHandler

NDLTD

OCLC

...

object

...

...

...

...

(a) Dataset#1 structure

NDLTD

OCLC

2010

...

object

...

...

...

(b) Dataset#2 structure

NDLTD

OCLC

2010

z

...

object

...

...

(c) Dataset#3 structure

Figure 8: The workload hierarchical structures for the three experiment datasets. The setSpec, publica-
tion date and first character of creator name were used as first-, second and third-level container names
respectively.

Item Ingestion

2.5

2.6

2.7

2.8

2.9

3.0

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

Workload size

T
im

e
[m

s]

Dataset#1 Dataset#2 Dataset#3

Figure 9: A plot showing the average time taken to
ingest a single item into an existing collection.

Search (Datasets)

102

103

104

105

106

107

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

Workload size

lo
g1

0(
T

im
e

[m
s]

)

Dataset#1 Dataset#2 Dataset#3

Figure 10: A plot showing the impact of collection
size/structure on overall query performance.

OAI−PMH (Baseline)

10− 2

10− 1

100

101

102

103

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

lo
g1

0(
T

im
e

[m
s]

)

GetRecord ListIdentifiers ListRecords ListSets

Figure 11: A plot showing the OAI-PMH data
provider baseline performance benchmarks for all re-
quest verbs.

OAI−PMH (ListRecords)

100

101

102

103

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

lo
g1

0(
T

im
e

[m
s]

)

Dataset#1 Dataset#2 Dataset#3

Figure 12: A plot showing impact of collec-
tion size/structure on OAI-PMH data provider
ListRecords verb.

7

Index

Ingest

OAI−PMH

Feed

Search

100

102

104

106

lo
g1

0(
T

im
e

[m
s]

)

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

Figure 13: A Kiviat plot showing increases in response times relative to workload sizes for file-based stores
for all evaluation aspects —full-text search, OAI-PMH data provider, RSS feed generator and single item
ingestion, as well as batch indexing.

sive of the OAI-PMH verbs, each taking more than 10
seconds when the workload size goes beyond 25600 and
12800, respectively, for the baseline results.

Feed Generator.
The top N most recent records were identified using

operating system creation and modification timestamps
by traversing the 15 workloads to determine the response
times.
The results indicate a substantial change in the response

times for two-level and three-level structured workloads,
relative to one-level structured workloads. This change is
as a result of the increase in the traversal times as the
hierarchies are increased.

Summary.
The performance experiment results strongly indicate

that the performance is within generally acceptable limits
for medium-sized collections, as evidenced in the Kiviat
plot shown in Figure 13. Figure 13 also indicates that in-
gestion performance is significantly better than the other
services.
In addition, the performance degradation for all the ser-

vices occurs for collections with larger than 12800 objects.
Furthermore, the results indicate that performance degra-

dation of information discovery services —full-text search,
feed generation and OAI-PMH associated services is com-
parable and is largely as a result of parsing, a problem
that can easily be remedied through the use of an index.

4.2.5 Performance Comparisons

This experiment was conducted to evaluate and com-
pare performance results from non-indexed file-based repos-
itories with an equivalent DSpace-based setup. A total of
15 DSpace 3.115 instances were set up, corresponding to
the 15 experiment workloads described in Section 4.2.2.
The following operations were then performed on the DSpace
instances, and subsequently compared with the results of
the performance benchmarks described in Section 4.2.3

• Single item ingestion

• Search query performance

• OAI-PMH data provider performance

Figure 15 shows that the average time taken to ingest a
single item using the file-based approach is much more ef-
ficient in comparison to DSpace. In contrast, the DSpace
ingest phase comprises of an item-level database write
phase, a collection-level database write phase and an in-
dexing phase.
As shown in Figures 14, 16 and 17, information discov-

ery operations —search operations and OAI-PMH data
provider operations— are orders of magnitude faster on
DSpace in comparison to the file-based store. The re-
sponse times on DSpace for these operations are faster as
a result of a third-party indexing service (Apache Solr16)

15https://wiki.duraspace.org/display/DSDOC3x
16http://lucene.apache.org/solr

8

https://wiki.duraspace.org/display/DSDOC3x
http://lucene.apache.org/solr

Full Text Search

102

104

106

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

lo
g1

0(
T

im
e

[m
s]

)

Simple Repository DSpace

Figure 14: A plot showing the comparison of full-text
search performance between the simple repository
and DSpace.

Item Ingestion

101

102

103

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

lo
g1

0(
T

im
e

[m
s]

)

Simple Repository DSpace

Figure 15: A plot showing the comparison of inges-
tion performance between the simple repository and
DSpace.

OAI−PMH (ListIdentifiers)

100

101

102

103

104

105

106

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

lo
g1

0(
T

im
e

[m
s]

)

Simple Repository DSpace

Figure 16: A plot showing the comparison of the
OAI-PMH ListIdentifiers verb performance between
the simple repository and DSpace.

OAI−PMH (ListRecords)

102

103

104

105

106

10
0

20
0

40
0

80
0

1.
6k

3.
2k

6.
4k

12
.8

k

25
.6

k

51
.2

k

10
2.

4k

20
4.

8k

40
9.

6k

81
9.

2k

16
38

.4
k

lo
g1

0(
T

im
e

[m
s]

)

Simple Repository DSpace

Figure 17: A plot showing the comparison of the
OAI-PMH ListRecords verb performance between
the simple repository and DSpace.

integrated with the application to facilitate fast search.
Comparable speeds could be attained by the file-based
store by integrating it with a similar indexing service.

5. CONCLUSION
The goal of this study was two-fold:

• Assess developer subjective views on using the pro-
posed approach, in order to elicit the potential sim-
plicity of resulting services

• Objectively assess the performance of a file-based
store as workloads increase in size

The results from the developer survey suggest that the
resulting simple file-based repository design is easy to work
with and could potentially simplify repository manage-
ment tasks. Furthermore, the results also indicate that a
simple file-based repository design would have little im-
pact on the extensibility of an application built on top of
such a repository design.

The performance experiments show that performance is
within generally-acceptable limits for small- and medium-
sized collections with up to 25600 objects, on a given
hardware platform. This is illustrated in the Kiviat plot
shown in Figure 13. Performance degradation of oper-
ations such as information discovery and OAI-PMH ser-
vices are largely as a result of extensive parsing, a problem
that can easily be remedied through the use of an index.
It was also shown that DSpace does indeed perform better
at discovery-oriented services, but this is due to the use
of an index for many operations.
It has been demonstrated that small- and medium-sized

collections can easily use a file-based store as the core of
an arguably more robust DL architecture, with no no-
ticeable impact on performance. Larger collection sizes
will work in a file-based repository without performance
penalties for some services; other services require the use
of appropriate (possibly minimal) indices to avoid full col-
lection scans. It has been further demonstrated that the

9

approach is flexible and does not significantly impact the
building of extensible services.
Ultimately, this study has explored the bounds of per-

formance and shown that performance is manageable and
need not be the reason not to use a simpler DLS archi-
tecture. When weighing architectural choices, the heavy-
weight system with brute-force indexed data stores must
be reasonably balanced against the benefits of lightweight
and simpler architectures.

6. ACKNOWLEDGEMENTS
This research was partially funded by the National Re-

search Foundation of South Africa (Grant numbers: 85470
and 83998) and University of Cape Town. The authors ac-
knowledge that opinions, findings and conclusions or rec-
ommendations expressed in this publication are that of the
authors, and that the NRF accepts no liability whatsoever
in this regard.

7. REFERENCES

[1]Michael Hart. Project Gutenberg. The History and Phi-

losophy of Project Gutenberg. 1992.

[2]Lighton Phiri, Kyle Williams, Miles Robinson, Stuart
Hammar, and Hussein Suleman. “Bonolo: A General
Digital Library System for File-Based Collections”. In:
Proceedings of the 14th International Conference on

Asia-Pacific Digital Libraries. Ed. by Hsin-Hsi Chen
and Gobinda Chowdhury. Springer Berlin / Heidel-
berg, 2012, pp. 49–58.
doi: 10.1007/978-3-642-34752-8_6.

[3]DELOS Working Group. DELOS Workshop on the

Evaluation of Digital Libraries. 2004.

[4]Leonardo Candela, Donatella Castelli, Pasquale Pagano,
Constantino Thanos, Yannis Ioannidis, Georgia Koutrika,
Seamus Ross, Hans-Jörg Schek, and Heiko Schuldt.
The DELOS Digital Library Reference Model. Founda-

tions for Digital Libraries. ISTI-CNR at Gruppo ALI,
2008.

[5]Norbert Fuhr, Preben Hansen, Michael Mabe, Andras
Micsik, and Ingeborg Sølvberg. “Digital Libraries: A
Generic Classification and Evaluation Scheme”. In: Re-
search and Advanced Technology for Digital Libraries.
Ed. by Panos Constantopoulos and Ingeborg T. Sølvberg.
Springer Berlin Heidelberg, 2001, pp. 187–199.
doi: 10.1007/3-540-44796-2_17.

[6]Norbert Fuhr, Giannis Tsakonas, Trond Aalberg, Maris-
tella Agosti, Preben Hansen, Sarantos Kapidakis, Claus-
Peter Klas, László Kovács, Monica Landoni, AndrÃa֒s
Micsik, Christos Papatheodorou, Carol Peters, and In-
geborg Sølvberg. “Evaluation of digital libraries”. In:
International Journal on Digital Libraries 8.1 (2007),
pp. 21–38.
doi: 10.1007/s00799-007-0011-z.

[7]Ann Blandford, Anne Adams, Simon Attfield, George
Buchanan, Jeremy Gow, Stephann Makri, Jon Rim-
mer, and Claire Warwick. “The PRET A Rapporter
framework: Evaluating digital libraries from the per-
spective of information work”. In: Information Process-

ing & Management 44.1 (2008), pp. 4–21.
doi: 10.1016/j.ipm.2007.01.021.

[8]Xie Iris Hong. “Users’ evaluation of digital libraries
(DLs): Their uses, their criteria, and their assessment”.
In: Information Processing & Management 44.3 (2008),
pp. 1346–1373.
doi: 10.1016/j.ipm.2007.10.003.

[9]Dharitri Misra, James Seamans, and George R. Thoma.
“Testing the scalability of a DSpace-based archive”.
In: Proceedings of the IS&T Archiving 2008.1 (2008),
pp. 36–40.

[10]David Bainbridge, IanH. Witten, Stefan Boddie, and
John Thompson.“Stress-Testing General Purpose Dig-
ital Library Software”. In: Research and Advanced Tech-

nology for Digital Libraries. Ed. by Maristella Agosti,
JosÃl’ Borbinha, Sarantos Kapidakis, Christos Pap-
atheodorou, and Giannis Tsakonas. Springer Berlin
Heidelberg, 2009, pp. 203–214.
doi: 10.1007/978-3-642-04346-8_21.

[11]William Y. Arms. Digital Libraries. Cambridge, Mas-
sachusetts: The MIT Press, 2001.

[12]William Y. Arms. “Key Concepts in the Architecture
of the Digital Library”. In: D-Lib Magazine. The Mag-

azine of Digital Library Research 1.1 (1995).
doi: 10.1045/july95-arms.

[13]William Y. Arms, Christophe Blanchi, and Edward A.
Overly.“An Architecture for Information in Digital Li-
braries”. In: D-Lib Magazine. The Magazine of Digital

Library Research 3.2 (1997).
doi: 10.1045/february97-arms.

[14]Lighton Phiri and Hussein Suleman.“In Search of Sim-
plicity: Redesigning the Digital Bleek and Lloyd”. In:
DESIDOC Journal of Library & Information Technol-

ogy 32.4 (2012), pp. 306–312.

[15]DCMI Usage Board. Dublin Core Metadata Element

Set, Version 1.1. Dublin Core Metadata Initiative. 1999.

[16]Carl Lagoze, Herbert Van de Sompel, Michael Nelson,
and SimeonWarner. The Open Archives Initiative Pro-

tocol for Metadata Harvesting. Dublin Core Metadata
Initiative. 2002.

[17]Jakob Nielsen. Response Times: The 3 Important Lim-

its. 1993.

[18]Hussein Suleman.OAI-PMH2 XMLFile File-based Data

Provider. 2002.

[19]Carl Lagoze, Herbert Van de Sompel, Michael Nel-
son, and Simeon Warner. Implementation Guidelines

for the Open Archives Initiative Protocol for Metadata

Harvesting. Guidelines for Repository Implementers.
2002.

10

http://dx.doi.org/10.1007/978-3-642-34752-8_6
http://dx.doi.org/10.1007/3-540-44796-2_17
http://dx.doi.org/10.1007/s00799-007-0011-z
http://dx.doi.org/10.1016/j.ipm.2007.01.021
http://dx.doi.org/10.1016/j.ipm.2007.10.003
http://dx.doi.org/10.1007/978-3-642-04346-8_21
http://dx.doi.org/10.1045/july95-arms
http://dx.doi.org/10.1045/february97-arms

	1 Introduction
	2 Related Work
	3 Repository Architecture
	4 Evaluation
	4.1 Developer Survey
	4.1.1 Target Group
	4.1.2 Data Collection
	4.1.3 Results and Discussion

	4.2 Scalability
	4.2.1 Test Setup
	4.2.2 Workload Design
	4.2.3 Performance Benchmarks
	4.2.4 Results and Discussion
	4.2.5 Performance Comparisons

	5 Conclusion
	6 Acknowledgements
	7 References

