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Abstract

Information management systems (digital libraries/repositories, learning man-

agement systems, content management systems) provide key technologies for

the storage, preservation and dissemination of knowledge in its various forms, such

as research documents, theses and dissertations, cultural heritage documents and

audio �les. These systems can make use of cloud computing to achieve high levels

of scalability, while making services accessible to all at reasonable infrastructure

costs and on-demand.

This research aims to develop techniques for building scalable digital information

management systems based on e�cient and on-demand use of generic grid-based

technologies such as cloud computing. In particular, this study explores the use

of existing cloud computing resources o�ered by some popular cloud computing

vendors such as Amazon Web Services. This involves making use of Amazon Sim-

ple Storage Service (Amazon S3) to store large and increasing volumes of data,

Amazon Elastic Compute Cloud (Amazon EC2) to provide the required computa-

tional power and Amazon SimpleDB for querying and data indexing on Amazon S3.

A proof-of-concept application comprising typical digital library services was devel-

oped and deployed in the cloud environment and evaluated for scalability when the

demand for more data and services increases. The results from the evaluation show

that it is possible to adopt cloud computing for digital libraries in addressing issues

of massive data handling and dealing with large numbers of concurrent requests.

Existing digital library systems could be migrated and deployed into the cloud.



Contents

Plagiarism Declaration iii

Dedication iii

Acknowledgements v

Abstract vi

1 Introduction 1

1.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 8

2.1 Computational and Storage Models . . . . . . . . . . . . . . . . . . 9

2.1.1 Server Farms . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Cluster Computing . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . 11



viii Contents

2.1.4 Volunteer Computing . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 Field-Programmable Gate Arrays (FPGAs) . . . . . . . . . 15

2.1.7 General-purpose Graphics Processing Units(GPGPUs) . . . 16

2.2 Utility Computing and Cloud Computing . . . . . . . . . . . . . . . 16

2.2.1 Infrastructure Models of Cloud Computing . . . . . . . . . . 19

2.2.2 Services Layers of Cloud Computing . . . . . . . . . . . . . 21

2.2.2.1 Software as a Service (SaaS) . . . . . . . . . . . . . 21

2.2.2.2 Platform as a Service (PaaS) . . . . . . . . . . . . 21

2.2.2.3 Infrastructure as a Service (IaaS) . . . . . . . . . . 21

2.3 Amazon Web Services (AWS) and Cloud Computing . . . . . . . . 21

2.3.1 Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Amazon S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Amazon SQS . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Amazon Elastic MapReduce . . . . . . . . . . . . . . . . . . 23

2.3.5 Amazon CloudFront . . . . . . . . . . . . . . . . . . . . . . 24

2.3.6 Amazon SimpleDB . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Cloud Computing and Information Management . . . . . . . . . . . 24

2.4.1 DuraCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Fedorazon Cloud Repository . . . . . . . . . . . . . . . . . . 25

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Cloud Migration . . . . . . . . . . . . . . . . . . . . . . . . 28



Contents ix

2.5.2 Performance Analysis of Cloud Applications . . . . . . . . . 29

2.5.3 Related Cloud Systems . . . . . . . . . . . . . . . . . . . . . 30

2.5.3.1 EUCALYPTUS . . . . . . . . . . . . . . . . . . . . 30

2.5.3.2 OpenNebula . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3.3 OpenStack . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3.4 CloudStack . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Amazon Web Services 36

3.1 Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Amazon AMIs . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Other EC2 Components . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Regions and Availability Zones . . . . . . . . . . . . . . . . . 42

3.2 Amazon EC2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Amazon EBS . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Amazon Instance Store . . . . . . . . . . . . . . . . . . . . . 45

3.3 Amazon S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Amazon SimpleDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Amazon SimpleDB Data Model . . . . . . . . . . . . . . . . 47

3.4.2 Amazon SimpleDB limits and queries . . . . . . . . . . . . . 48

3.5 Request and Response Handling on EC2, S3 and SimpleDB . . . . . 49

3.5.1 Amazon EC2 API Requests and Responses . . . . . . . . . . 49

3.5.2 Amazon S3 API Requests and responses . . . . . . . . . . . 51



x Contents

3.5.3 Amazon SimpleDB API Requests and Responses . . . . . . 52

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Digital Library Services 56

4.1 Architectural Design Considerations . . . . . . . . . . . . . . . . . . 56

4.1.1 The Proxy Architecture . . . . . . . . . . . . . . . . . . . . 57

4.1.2 The Redirector Architecture . . . . . . . . . . . . . . . . . . 58

4.1.3 The Round-Robin Architecture . . . . . . . . . . . . . . . . 58

4.1.4 The Client-Side Architecture . . . . . . . . . . . . . . . . . . 59

4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The Web User Interface . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Typical Digital Library Services . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2.1 Metadata Indexing . . . . . . . . . . . . . . . . . . 65

4.4.2.2 Inverted Index on SimpleDB . . . . . . . . . . . . . 66

4.4.2.3 Index Maintenance on SimpleDB . . . . . . . . . . 67

4.4.2.4 Querying . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 The Metadata Harvester . . . . . . . . . . . . . . . . . . . . 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Evaluation 74

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Contents xi

5.2 Overview of Experiments . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Experiment 1: Service Scalability . . . . . . . . . . . . . . . . . . . 78

5.3.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . 78

5.3.1.2 Results and Discussion . . . . . . . . . . . . . . . . 80

5.3.2 Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . 80

5.3.2.2 Results and Discussion . . . . . . . . . . . . . . . . 82

5.3.3 Varying the number of EC2 instances . . . . . . . . . . . . . 84

5.3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . 84

5.3.3.2 Results and Discussion . . . . . . . . . . . . . . . . 84

5.4 Experiment 2: Data Scalability . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . 87

5.4.1.2 Results and Discussion . . . . . . . . . . . . . . . . 87

5.4.2 Browse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . 89

5.4.2.2 Results and Discussion . . . . . . . . . . . . . . . . 89

5.5 Experiment 3: Processor Load Testing . . . . . . . . . . . . . . . . 90

5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 91

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



xii Contents

6 Conclusion 93

6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Implementation of a Full Prototype Digital Library System . 95

6.3.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.3 Cloud Security . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 95



List of Tables

3.1 Some examples of available Amazon EC2 Instance Types[5] . . . . . 38

3.2 Illustration of the Amazon SimpleDB data model. . . . . . . . . . . 48

5.1 Average response times in milliseconds (ms) against the number of

requests processed when searching collections of di�erent sizes. . . . 88

5.2 Average response times in milliseconds (ms) against the number of

requests processed when browsing collections of di�erent sizes. . . . 90



List of Figures

1.1 An overview of cloud computing showing essential characteristics,

service models and deployment models of cloud computing. . . . . . 2

1.2 The diagrammatic representation showing the di�erence between the

traditional DL architecture and the proposed cloud DL architecture. 4

2.1 A diagrammatic representation of a �ve-layer Grid architecture [51]. 12

2.2 A diagrammatic representation of the four-layered cloud architecture

[55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Hybrid cloud combining private and public cloud models [94]. . . . 20

2.4 DuraCloud in context: A typical DuraCloud utilization scenario [28]. 26

2.5 The logical relationship between Eucalyptus components [44]. . . . 32

2.6 The relationship between Amazon AWS and Eucalyptus [44]. . . . . 33

3.1 Launching di�erent instance types from one AMI. . . . . . . . . . . 39

3.2 The relationship among Amazon EC2 forms of storage. . . . . . . . 43

3.3 The diagram illustrating the life cylce of Amazon EBS[5] . . . . . . 44

3.4 SimpleDB data model represented by a spreadsheet[8]. . . . . . . . 47

4.1 The Proxy Architecture: The �master" or �manager" acts as a proxy

between users and the nodes in the cloud. . . . . . . . . . . . . . . 57

4.2 The Redirector Architecture: The �master" or �manager" acts as a

look up table for service nodes and steers connections between users

and the nodes in cloud . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 The Round-Robin Architecture: Clients use DNS system to obtain

addresses of the next machine to use. . . . . . . . . . . . . . . . . . 59



List of Figures xv

4.4 The Client-Side Architecture: The �master" or �manager" sends a

list of nodes to the client upon request. This list is used to rotate

requests to service nodes. . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 The high-level architecture of the system showing di�erent components. 61

4.6 Illustration of data and metadata storage in the AWS cloud using S3

and SimpleDB [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Metadata harvesting from NDLTD and SA NETD. . . . . . . . . . 72

5.1 Results obtained from processing queries of di�erent complexities. . 81

5.2 Results obtained from browsing the collection by di�erent criteria. . 83

5.3 The results obtained from varying the number of instances when

browsing and searching the collection. . . . . . . . . . . . . . . . . . 85

5.4 Speedup graph showing average response time in milliseconds (ms)

vs. the number of servers. . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Average response time in milliseconds (ms) vs. the number of re-

quests processed when searching collections of di�erent sizes. . . . . 88

5.6 Average response time in milliseconds (ms) vs. the number of re-

quests processed when browsing collections of di�erent sizes. . . . . 89

5.7 Graph of average response time in milliseconds (ms) vs. number of

users serviced for a �xed number of concurrent requests. . . . . . . 92



Chapter 1

Introduction

The massive amount of data and information produced in recent years consti-

tutes what can be referred to as data or information explosion [66]. Man-

agement and storage of this data and information becomes challenging and, over

time, data and information systems will have to scale accordingly to cope with this

situation. �Big Data" [66] is now part of every sector and function in the global

economy. This data needs to be captured, communicated, aggregated, stored and

analyzed.

In 2011, the McKinsey Global Institute (MGI) [66] estimated that globally there has

been storage of more than 7 exabytes of data by enterprises on disk drives in 2010.

Furthermore, MGI stated that consumers alone stored more that 6 exabytes on

personal computers and notebooks. Management of this increasingly large amount

of data is, therefore, essential. In the current information age, emerging technologies

such as cloud computing [50] can arguably be adopted and utilized in order to handle

some and/or all of these tasks.

1.1 Cloud Computing

Although there is no consensus on a single de�nition of cloud computing [50], cloud

computing can be de�ned as a large distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms and services are delivered on-demand

to external customers over the Internet [47]. Cloud computing has been widely
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adopted in recent years to solve storage and computational problems in di�erent

domains.

Utility computing is a speci�c subset of cloud computing that provides on-demand

infrastructure with the ability to control, scale and con�gure that infrastructure

without the consumer of the resource knowing their physical location [38]. Although

sometimes utility computing can be thought of as elastic computing because of its

characteristic scalability, elastic computing is a feature of cloud computing that

uses computing resources that vary dynamically to meet variable workloads [32].

Utility computing can be argued as a more cost-e�ective alternative to other forms

of high performance computing (HPC) because of the e�ciency of shared resources

for which the management is normally by a third party [92].

A high level visual model of cloud computing is depicted in Figure 1.1. The �gure

shows di�erent essential characteristics, service models and deployment models.

Cloud services exhibit esential characteristics that demonstrate their relation to,

and di�erences from, traditional computing approaches. A thorough discussion of

these concepts is presented in Chapter 2 of this thesis.

Broad Network Access On-Demand Self-Service Rapid Elasticity Measured Service 

Resource Pooling 

Infrastructure as a Service (IaaS) Platform as a Service (PaaS) Software as a Service (SaaS) 

Public Private Hybrid Community Deployment 
Models 

Service 
Models 

Essential 
Characteristics 

Figure 1.1: An overview of cloud computing showing essential char-

acteristics, service models and deployment models of cloud com-

puting.
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1.2 Motivation

According to a study by the Oracle Corporation [39], data volumes are growing at

40% per year and by 2020 it will have grown to 44 times of its size in 2009. Most

systems that are said to scale to cope with large volumes of data store up to 5.1TB of

data [31]. Given the amount of research work produced in recent years, in the form

of electronic theses and dissertations, research output (Conference papers, Journal

articles, workshop articles and books), podcasts, audio �les and video clips, systems

with limited scalability capabilities will not cope in future. Cloud computing, on the

other hand, promises the possibility for unlimited scalability [33] in the management

of growing volumes of data.

Digital libraries deal with forever increasing volumes and various forms of data.

Over the years, digital library system design and implementation has resulted in

production of systems that meet multiple criteria [27]. These include elements of

scalability and preservation of data. However, research has to be done to investigate

the e�cacy of cloud adoption and to verify that cloud computing indeed o�ers

unlimited scalability as the need for more data storage capacity arises. Furthermore,

for the majority of applications, databases are the preferred technology for managing

and archiving (structured) data sets, but as the size of the data set begins to grow

larger than a few hundred terabytes, current databases become less competitive

with more specialized solutions, such as the storage services that are part of storage

clouds [52]. Utility computing is arguably the better �t here because of its ability

to provision services on-demand.

Within utility clouds, digital library services can be designed and implemented to

emulate most existing HPC architectures. This is possible because di�erent digital

library services are most e�cient on di�erent architectures - utility computing of-

fers the �exibility of multiple architectural models to deal with this scenario [92].

Figure 1.2 shows two digital library (DL) architectures; the traditional DL archi-

tecture and the cloud computing architecture proposed by this thesis. With the
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traditional architecture, DL services are accessible from a manually administered

server (therefore, there are administration costs involved) whereas with the cloud

DL architecture, services are are accessible from multiple virtual servers.

Server 

User DL Services 

Database 

(a) Traditional Digital Library (DL) architecture

. 

. 

. 

Amazon 
EC2 

Amazon 
EC2 

DL services 

DL services 

Amazon S3 

Amazon 
SimpleDB 

User  

(b) Cloud Digital Library (DL) architecture

Figure 1.2: The diagrammatic representation showing the di�er-

ence between the traditional DL architecture and the proposed

cloud DL architecture.

1.3 Problem Statement

This research aims to develop techniques for building scalable digital information

management systems based on e�cient and on-demand use of generic grid-based

technologies. In particular, this study explores the use of existing cloud comput-

ing resources o�ered by the Amazon Web Services. This involves making use of

Amazon Simple Storage Service (Amazon S3) to store large and increasing volumes

of data, Amazon Elastic Compute Cloud (Amazon EC2) to provide the necessary

computational power required and Amazon SimpleDB for data indexing on Amazon

S3.
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1.4 Research Questions

Speci�cally, this study addresses the following questions:

1. Can a typical digital library architecture be layered over an on-demand paradigm

such as cloud computing?

This research question seeks to investigate if, given a typical digital library

system, it is possible to migrate it into the cloud environment. It investigates

whether there are any signi�cant modi�cations necessary to existing digital

library systems prior to migration. A proof-of-concept application comprising

some typical digital library system services was developed to ascertain whether

or not this will be an easy or challenging task to undertake and if, at all, it

is possible. The details of the digital library service components design and

implementation are discussed in Chapter 4 of this thesis.

2. Is there linear scalability with increasing data and service capacity needs?

This research question can further be divided into two subquestions. The �rst

part will be to investigate whether there will be linear scalability when varying

collection sizes are browsed and searched; that is, is there linear scalability

when volumes of data increase? The second part of this research question

seeks to investigate whether there will be linear scalability when the need for

more service capacity arises. In this case, a �xed collection size is browsed and

searched while the number of application servers varies. The details of how

these two subquestions are answered and the respective �ndings are presented

in Chapter 5.

1.5 Research Contributions

This research explores and gives an insight into the migration of a typical digital

library architecture into the cloud environment. It further evaluates if there is
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scalability of digital library systems deployed in cloud environments, in terms of

the demand for more data and services.

1.6 Scope and Limitations

The focus will be on the core but limited digital library features namely, search

and browse. The experiments will also be focused on performance based on the

search and browse features. It should be noted that the digital library architectures

discussed in this thesis are those relevant to this research.

It will also be infeasible to discuss cloud computing security and the economic value

of cloud computing in this thesis. The major focus will be on scalability and service

provision in the cloud.

1.7 Research Methodology

The development of a proof-of-concept application comprising typical digital library

system services to make use of the Amazon Web Services cloud computing platform

was the �rst step in executing this study. The application comprises a simple

user interface for the purpose of querying and results display. Experiments were

conducted to validate the study. This evaluation mainly focused on the performance

of the search and browse features when subjected to large numbers of requests, large

collection sizes and large numbers of concurrent user requests.

1.8 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the background

to cloud computing, other related high performance computing technologies and

an overview of related work. Chapter 3 gives a technology review of the Amazon



1.8. Thesis Organization 7

Web Services (AWS) as applicable to this thesis. Chapter 4 presents the design

speci�cation of the application that implements some typical digital library system

services as well as its implementation details. Chapter 5 gives details of the exper-

imental set-up used to test the performance of some design architectures and gives

a detailed discussion of �ndings of this research. Finally, concluding remarks and

possible extensions to this research are presented in Chapter 6.



Chapter 2

Background and Related Work

The emergence of cloud computing in recent years has attracted researchers,

companies and general users across the globe. This has let to the technology

largely being used for those applications that are characterized by massive data

sets and require signi�cant computing resources [53]. Cloud computing dates back

to the early days of Information Technology outsourcing [73]. Di�erent companies

or organizations de�ne cloud computing di�erently in order to describe the kind of

services they o�er and as a result there is no consensus on a single de�nition of the

term [50]. As stated in Chapter 1, the de�nition adopted in this thesis is the one

by Foster et. al [47].

This chapter presents and discusses di�erent distributed and high performance com-

puting (HPC) technologies with particular reference to how information manage-

ment systems can continue to make information available and accessible to an ever-

larger community of users by consuming cloud/elastic computing resources.

This chapter further presents some trends in distributed and high performance

computing by giving an overview of grid computing, cluster computing, cloud com-

puting and related technologies, and how they compare, based on di�erent criteria.

The focus is also on computational models and storage models of these technologies

(Section 2.1) as used in digital libraries and related systems.

Traditionally referred to as Supercomputing, HPC deals with building hardware and

software systems for processing of computationally-intensive jobs [92]. Many forms

of HPC exist namely, server farms, grid computing, cluster computing, cloud/utility

computing, edge computing, volunteer computing, �eld-programmable gate arrays
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(FPGAs) and general-purpose graphics processing units (GPGPUs). These are

in use in recent years to deal with di�erent problems requiring some signi�cant

computing power and resources. Each of these technologies is discussed in Section

2.1. Section 2.2 discusses utility and cloud computing. An introduction to Amazon

Web Services is given in Section 2.3. Section 2.4 presents cloud computing and

information management and related work is presented in Section 2.5.

2.1 Computational and Storage Models

During the early days of studying scalability of online systems, Web server farms

and clusters were used in a Web hosting infrastructure as a way to create scalable

and highly available solutions [37]. Also referred to as server cluster, computer

farm or ranch, a server farm1 is a group of networked servers, hosted in one lo-

cation, that streamline internal processes by distributing the workload between

individual components of the farm and expediting computing processes by harness-

ing the power of multiple servers. The following sections discusses di�erent HPC

and distributed computing technologies namely, server farms (Section 2.1.1), clus-

ter computing (Section 2.1.2), grid computing (Section 2.1.3), volunteer computing

(Section 2.1.4), edge computing (2.1.5), Field-Programmable Gate Arrays (FPGAs)

(Section 2.1.6) and general-purpose Graphics Processing Units GPGPUs (Section

2.1.7).

2.1.1 Server Farms

High-scalability server farms [70] have been designed and implemented by Mi-

crosoft's development team in order to support over one hundred thousand con-

current users with as few servers as possible. The team achieved a highly scalable

1http://www.webopedia.com/TERM/S/server_farm.html. [Last accessed on 27 Jan-

uary 2013]

http://www.webopedia.com/TERM/S/server_farm.html
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site server by scaling hardware vertically, horizontally and by improving the archi-

tecture of the server farm.

Scaling hardware vertically (scale up) means increasing the capacity by upgrad-

ing hardware speci�cations, while maintaining the physical footprint2 and number

of servers in the server farm. This simpli�es site management at a higher hard-

ware cost than scaling horizontally [70]. Scaling hardware horizontally (scale out)

means increasing capacity by adding servers, that is, adding server machines in

parallel to the existing machine(s) [70]. This enables an increase in hardware at

a lower cost but requires scaling vertically once site management becomes su�-

ciently complex. Improving architecture involves improvement of server e�ciency

by identifying operations with similar workload factors and dedicating servers to

each type of operation. The results from these techniques [70], based on an early

customer-site performance audit, showed that server farms can be scaled to serve

over 100 000 users with as few as 88 front-end servers. The back-end can also be

scaled up accordingly by adding servers as needed. The use of server farms has

been recommended by the DSpace3 development team to address some scalability

issues because they support the Web server and architecture of DSpace [92].

2.1.2 Cluster Computing

A cluster is a type of parallel or distributed computer system, which consists of

a collection of inter-connected stand-alone computers working together as a single

integrated computing resource [19]. Clusters are usually deployed to improve per-

formance and/or availability over that of a single computer while typically, being

more cost-e�ective than single computers of comparable speed and availability [49].

With each machine in a cluster running an independent set of tasks coordinated

over a high-speed network, clusters are suited to problems which can be decomposed

2http://www.valid-computing.com/virtual-server-definition.html
3DSpace is a software of choice for academic, non-pro�t and commercial organizations building

open digital repositories (http://www.dspace.org/introducing).

http://www.valid-computing.com/virtual-server-definition.html
http://www.dspace.org/introducing
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into separate communicating processes [92]. The computers in a cluster are inter-

connected among themselves using high-speed networks such as Gigabit Ethernet,

SCI4, Myrinet5 and In�niBand6.

The parallel or distributed computers [86] in a cluster work together to execute

compute intensive and data intensive tasks that would otherwise be infeasible to

perform on a single computer. The user's requests in a cluster are received and

distributed among all the stand-alone computers that form the cluster [86].

Most commercial search engines (e.g. Google) use a cluster architecture for their

querying and indexing operations because of the high bandwidth required for e�-

cient indexing for search or browse indices [22, 92].

2.1.3 Grid Computing

With an increasing number of research problems requiring large amounts of com-

putational power, computational grids were developed [46]. The concept of grid

computing dates back to the mid-90s and has since then gained much attention in

distributed computing research area. Foster and Kesselman [46] de�ne Grid com-

puting as an interconnected system of heterogeneous computational devices under

distributed ownership, usually spread over large geographical areas and connected

by public or private communication links.

However, Abbas [1] argues that vendors, academics, trade, as well as the popular

press have tried to de�ne Grid Computing but could not agree on one de�nition.

Abbas further states that grid computing can enable co-located virtual organizations

to share distributed resources to achieve similar functions in a distributed computing

paradigm [1].

4SCI - Scalable Coherent Interface: is a high-speed interconnect standard for shared memory

multiprocessing and message passing.
5Myrinet: is a high-speed local area networking system designed by Myricom to be used as an

interconnect between multiple machines to form computer clusters.
6 In�niBand: is a switched fabric communications link used in HPC and enterprise data centers.
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Some types of grids, for instance, computational grids, have been used to address

di�erent scienti�c problems [1]. They represent a new computational framework

whose e�cient use requires schedulers that allocate user's tasks to the grid resources

in a timely manner [42]. Grid computing has a project-oriented business model in

which the users or community have a certain number of service units (CPU hours)

they can spend [47]. Grids have a �ve-layer architecture comprising the fabric layer,

the connectivity layer, the resource layer, the collective layer and the application

layer (see Figure 2.1). The fabric layer interfaces to local control, including physical

and logical resources such as �les. Core communication and authentication proto-

cols supporting Grid-speci�c network transactions are de�ned by the connectivity

layer [51]. The resource layer allows the sharing of a single resource and it builds

on connectivity layer communication and authentication protocols to de�ne proto-

cols for secure negotiation, initiation, monitoring and control of sharing operations

on individual resources [51]. The collective layer allows resources to be viewed as

collections and sharing of resources and the application layer uses appropriate com-

ponents of each layer to support the application [51]. These layers are shown in

Figure 2.1.

Figure 2.1: A diagrammatic representation of a �ve-layer Grid

architecture [51].
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Unlike clouds, grids do not rely much on virtualization [47]. Grids use the MapRe-

duce parallel programming model for large data sets and MPICH-G2, which is a

grid-enabled implementation of MPI7 [63]. The latter gives the familiar interface

of MPI while at the same time provides integration with the Globus Toolkit [64].

Applications supported by Grids range from HPC to HTC8 applications. HPC

applications use MPI to achieve the required interprocess communication. Grid

security is based on the assumption that resources are heterogeneous and dynamic.

Authentication, communication and authorization use public-key based GSI9 pro-

tocols. Storage Resource Broker (SRB) [76], iRODS [20] and DILIGENT [40] are

examples of digital library applications that use grids [92]. Grids have been studied

and used in digital libraries and a recent study by Parker [83] discusses Grids from

a di�erent standpoint, which considers usability as opposed to functionality alone.

2.1.4 Volunteer Computing

Volunteer computing [11] is a form of distributed computing in which the general

public volunteers processing and storage to scienti�c research projects. This is the

use of idle desktop computers to perform computations for which dedicated high

performance systems can not be secured [92]. BOINC10 [10] - a platform for public

resource distributed computing - is useful for volunteer computing and it facilitates

creation of volunteer computing projects [13]. BOINC is designed to support ap-

plications that have large computation requirements, storage requirements or both

[26]. The �rst project to use BOINC was the SETI@HOME11 project [12].

7Message Passing Interface
8High Throughput Computing
9Grid Security Infrastructure
10Berkeley Open Infrastructure for Network Computing
11 SETI: Search for Extraterrestrial Intelligence
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2.1.5 Edge Computing

Edge computing [82] pushes application logic and underlying data to the edge of the

network. The aim is to improve availability and scalability [82]. In edge computing,

computers at the edge of the network perform computation, instead of machines

at the core [92]. Edge computing has been used in the analysis of caching and

replication strategies for Web Applications [88]. Sivasubramanian et. al [88] state

that one of the techniques and the simplest way to generate user-speci�c pages of

a website is to replicate the application code at the edge servers while the data is

kept centralized. This is also a useful technique used by edge computing products

at Akamai12, for online business solutions.

Akamai edge computing enables companies to deploy and execute J2EE13 appli-

cations or application components onto the Akamai network - one of the largest

on-demand distributed computing platforms [2]. There are currently several com-

mon Web applications and application components that run on the Akamai edge

computing platform [2].

Edge computing lets each edge server generate user-speci�c pages according to con-

text, session and information stored in the database, thereby spreading the com-

putational load across multiple servers [88]. Some known disadvantages, however,

include wide-area network latency incurred during data access and performance

bottlenecks as a result of serving the entire system's database needs. A typical ap-

plication of edge computing in digital libraries is the Bleek and Lloyd [90] project

in which a prototype search engine was developed in AJAX to demonstrate how

ranked retrieval could be performed on the client using local data, thus the need

for network interaction and server resources are eliminated [91].

12http://www.akamai.com
13Java 2 Platform, Enterprise Edition

http://www.akamai.com
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2.1.6 Field-Programmable Gate Arrays (FPGAs)

FPGAs are microchips that can perform speci�c tasks in hardware during runtime

[92] and they are �eld programmable devices that feature a general structure that

allows very high logic capacity [29].

FPGAs have been evaluated for use in computation-intensive data mining applica-

tions [62] in a pilot study that made use of SRAM-based 14 FPGA coprocessors.

Further work involving intensive computation using FPGAs was the design of an

FPGA-based processor array by Perera and Li [84] for computation of a similarity

matrix - a commonly used data structure to represent the similarity among a set

of feature vectors, with each matrix element representing the computed similarity

measure between two vectors. The experimental results have shown that the pro-

cessing elements in an FPGA are recon�gurable to perform di�erent functionalities

of varying complexities, therefore the processor array on an FPGA can have pro-

cessing elements with di�erent similarity measures or data mining functions. Data

mining applications that require parallelism to achieve better performance make

use of processor arrays in FPGAs [84].

Although FPGAs provide inherent parallelism, they are limited by the amount of

chip space. However, Mueller et. al [75] demonstrated that their limitations can

be managed by an e�cient circuit for parallel stream processing. Their assessment

of the potential for FPGAs as co-processors for data intensive operations in the

context of multi-core systems has shown that FPGA capabilities can be integrated

into data processing engines e�ciently [75]. FPGAs have no well-known digital

library applications that currently make explicit use of them [92].

14SRAM: Static Random Access Memory
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2.1.7 General-purpose Graphics Processing Units(GPGPUs)

GPGPU15 is the utilization of a graphics processing unit (GPU) to perform computation-

intensive tasks that have, in the past, been handled by CPUs16. They exploit the

increasing computational power of microchips on commodity graphics cards, which

are capable of parallel processing, thus they are much faster than traditional CPUs.

There are presently no known digital library systems that explicitly use GPGPUs

[92].

2.2 Utility Computing and Cloud Computing

The utility computing model o�ers a number of bene�ts to both service providers

and users. It is a speci�c subset of cloud computing that is envisioned as the next

generation in HPC [100] where the actual nature of the technology is not obvious

to the developer and the end-user [92]. Unlike traditional computing, virtualized

resources are created and assigned dynamically to various users when needed.

Utility computing is best suited to those users who have rapidly changing or increas-

ing computing needs. Users can obtain appropriate amounts of computing power

from providers dynamically, based on their speci�c service needs and requirements.

However, there are businesses that provide a utility service level agreement (SLA),

in which case the customer and the utility computing service provider sign an IT

service contract that speci�es the minimum expectations and obligations that exist

between the two parties [30].

Cloud Computing has recently become a mainstream topic of interest in computing

as a utility. Armburst et. al [17] further state that the applications delivered as

services over the Internet have long been referred to as Software as a Service (SaaS)

15en.wikipedia.org/GPGPU
16Central Processing Units

en.wikipedia.org/GPGPU
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and the data center hardware and software (operating system, enabling middle-

ware and application software) is what is referred to as a Cloud. Cloud computing

provides an alternative pay-as-you-go business model, o�ering users services on-

demand.

Cloud computing has a four-layer architecture that comprises the fabric layer, the

uni�ed resource layer, the platform layer and the application layer (see Figure 2.2).

The fabric layer is represented by the hosting platform in Figure 2.2. The con-

nectivity layer, the resource layer, the collective layer and the application layer

are represented by cloud infrastructure services, cloud platform services, and cloud

applications, respectively. Cloud services, however, are provided at three di�erent

layers - the uni�ed resource layer, the platform layer and the application layer.

In the model shown in Figure 2.2, each layer abstracts the layer below it, exposing

interfaces that the layers above build upon. There are no strong dependencies

between layers and each layer provides an easy to compose architecture with services

from other layers [55]. If needed, horizontal scalability can be provided by individual

layers in this case. The components making up the cloud platform in Figure 2.2 are

brie�y discussed as follows:

� A hosting platform provides physical machines, operating systems, network

systems, storage systems, power management and virtualization software that

are needed by the cloud application [55].

� Cloud infrastructure services abstract the hosting platform as a set of virtual

resources and manage those resources based on scalability and availability

needs. This layer provides compute, storage and network abstract resources

which means that underlying physical resources can be accessed without know-

ing the underlying hardware and software. The services provided by this

subsystem are known as Infrastructure as a Service (Iaas) [55].

� Cloud platform services help with integration of on-premise software with
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hosted services because management of software for cloud computing is com-

plex. This platform di�erentiates one cloud provider from another and the

services provided by this layer are referred to as Platform as a Service (PaaS).

[94]

� Cloud Applications is the layer that connects disparate systems and leverages

cloud storage infrastructure to store documents. It mainly house applications

that are build for cloud computing which expose Web interfaces and Web

services for end users. The services provided on this layer are known as

Software as a Service (SaaS). [94]

� Security services ensure token provisioning, identity federation and claims

transformation, all of which are built on open standards, WS-Security, WS-

Trust, WS-Federation, SAML17 protocols and OpenID for greater interoper-

ability. [55]

� Management services cut across all the layers described before. The hosting

platform takes advantage of the management interfaces and programs for au-

tomated scalability and availability administration. Although cloud hosting

and management is the task of the datacenter, customers may need function-

ality that allows them to easily control their application and post deployment

con�gurations, obtain information about usage statistics and connect their

enterprise management systems. [55]

� Tools (application development SDK) help customers build, test and deploy

applications in the cloud. These can be extensions to existing tools or hosted

tools from a speci�c cloud provider. [55]

In the cloud computing model, resources in the cloud are shared by all users at the

same time [47]. The next sections are structured as follows, Section 2.2.1 discusses

infrastructure models of cloud computing and Section 2.2.2 presents di�erent service

layers of cloud computing namely, Software as a Service (SaaS) (Section 2.2.2.1),

17Security Assertion Markup Language
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Figure 2.2: A diagrammatic representation of the four-layered

cloud architecture [55].

Platform as a Service (PaaS) (Section 2.2.2.2) and Infrastructure as a service (IaaS)

(Section 2.2.2.3).

2.2.1 Infrastructure Models of Cloud Computing

There are di�erent architectural considerations for cloud computing particularly,

when moving from a standard enterprise application deployment model to one based

on cloud computing. Three of these are discussed here. Public and private clouds

o�er complementary bene�ts [94], and there is the value of open APIs versus pro-

prietary ones (Figure 2.3).

(a) Public Clouds: In this case, the cloud is made available in a pay-as-you-go

manner to the general public [17]. Public clouds are run by third parties and

applications from di�erent customers are likely to be mixed together on the

cloud's servers, storage systems and networks [94]. The general public making

use of cloud facilities are not necessarily geographically co-located with the

cloud enterprise. In the case of public clouds, the service being sold is utility
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computing [17]. Examples of public utility computing are Amazon Web Services

and Microsoft Azure [17].

(b) Private Clouds: These refer to internal data centres build exclusively for use

by one community [17, 94] (see Figure 2.3). These provide clients with control

over data, security and quality of service [94] because private clouds can be

built and owned by the company's own IT department. In this case, the cloud

enterprise and the client are geographically co-located.

(c) Hybrid Clouds: These types of clouds combine both public and private clouds

(see Figure 2.3) and provide externally provisioned scalability on-demand [94].

Resources of a public cloud can be used to augment a private cloud, which is

useful in maintaining service levels in the case of rapid work �ows.

Figure 2.3: Hybrid cloud combining private and public cloud mod-

els [94].
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2.2.2 Services Layers of Cloud Computing

2.2.2.1 Software as a Service (SaaS)

This is the top layer that features a complete application o�ered as a service on-

demand. A single instance of the software runs on the cloud and serves multiple

end users or client organizations [94]. An example of a well-known provider of SaaS

is Salesforce.com.

2.2.2.2 Platform as a Service (PaaS)

PaaS encapsulates a software layer and provides it as a service that can be used for

provision of higher-level services. According to Sun Microsystems [95], PaaS can be

provided by integration of an OS, middleware, application software and a develop-

ment environment, which is then provided to the client as a service. Further, from

a client's perspective, PaaS appears as an encapsulated service presented through

an API.

2.2.2.3 Infrastructure as a Service (IaaS)

IaaS o�ers storage [3] and compute [5] capabilities as standardised services over

the network. All the hardware, e.g. servers, storage systems, switches, routers

and other systems are pooled and made available to handle workloads ranging from

application components to HPC applications. The best-known commercial example

is Amazon Web Services.

2.3 Amazon Web Services (AWS) and Cloud Computing

AmazonWeb Services (AWS) dates back to early 2006 when Amazon.com provided

companies of all sizes with a Web services platform infrastructure in the cloud. AWS

Salesforce.com
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gives clients the �exibility of using their desired programming model(s) depending

on the problems at hand. Clients also have access to computational power, storage,

and other Web services on-demand. Clients pay only for what they use and there

are no up-front expenses or long-term contracts or commitments, thus making AWS

the most cost-e�ective way to deliver applications to customers and clients.

Di�erent services provided by AWS are summarized in the sections 2.3.1, 2.3.2, 2.3.3,

2.3.4, 2.3.5, and 2.3.6. Details of the services used by the application developed in

this thesis are given in Chapter 3.

2.3.1 Amazon EC2

Amazon EC2 [5] is a Web service that enables users to deploy and manage server

instances in Amazon's data centres using APIs or available tools and utilities. Users

can �nd Amazon Machine Images (AMIs) and customise them or optionally build

AMIs from scratch (this is known as virtualization). These virtual AMIs are based

on di�erent operating systems (e.g. Windows and variants of Linux). Then the AMI

is bundled so as to obtain an AMI ID to enable deployment of as many instances as

desired. Instances can be launched and administered in a similar manner to servers.

EC2 is further presented in Chapter 3.

2.3.2 Amazon S3

Amazon S3 [3] is a storage service for the Internet. It provides a simple Web

services interface that can be used to store and retrieve any amount of data, at any

time, from anywhere on the Web. Users can create buckets (containers for objects

stored in Amazon S3) to store objects18. Objects are fundamental entities stored

in Amazon S3. Every object has a unique identi�er called a key within a bucket.

Amazon S3 o�ers REST and SOAP APIs where users can perform the following

operations on buckets: create a bucket, write an object to a bucket, read an object

18An object is a blob of data, the size of which ranges from 1 byte to 5 TB
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from a bucket, delete an object and also list keys contained in one of their buckets.

S3 is discussed further in Chapter 3.

2.3.3 Amazon SQS

Amazon Simple Queue Service (Amazon SQS) [7] is a distributed queue system that

acts as a bu�er between components that produce and save data and o�ers a reliable,

highly scalable, hosted queue for storing messages as they travel between computers

in the cloud. Amazon SQS allows decoupling the components of an application so

they run independently, with Amazon SQS handling message management among

components. It ensures that the message is delivered at least once and supports

multiple reading and writing happening on the same queue.

2.3.4 Amazon Elastic MapReduce

Amazon Elastic MapReduce [6] is a Web service that enables businesses, researchers,

data analysts and developers to easily and cost-e�ectively process vast amounts of

data using Amazon EC2 and Amazon S3. Amazon Elastic MapReduce focuses

mainly on data analysis. Users upload into Amazon S3 the data they need to

process along with the mapper and reducer executables that will process the data

and then send a request to Elastic MapReduce to start a job �ow. Then MapReduce

starts an EC2 cluster, which loads and runs Hadoop. Hadoop executes a job �ow

by downloading data from Amazon S3 onto the cluster of slave instances. Then

Hadoop processes the data and uploads the results from the cluster to Amazon

S3. Finally, users receive noti�cation that their data analysis is done and they can

download the processed data from Amazon S3.
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2.3.5 Amazon CloudFront

Amazon CloudFront [4] is a Web service that makes content delivery to users easier

and quicker at low latency and high data transfer speeds. It works with Amazon

S3 and users are routed to the nearest edge location (geographical location where

CloudFront caches copies of users' objects). In the case of Amazon CloudFront,

objects refer to �les that users need CloudFront to deliver. The origin server stores

the original versions of objects.

2.3.6 Amazon SimpleDB

Amazon SimpleDB [8] is a Web service that works in close collaboration with Ama-

zon EC2 and Amazon S3 to provide core database functions of unstructured data

and metadata indexing and querying in the cloud.

2.4 Cloud Computing and Information Management

Part of the on-going research in the digital libraries community is focused on the

development of techniques for scalable search services [36], addressing issues of

scalability for high performance digital libraries on the World Wide Web [14] and

expanding digital library services [14]. With increasing volumes of information,

some digital library systems fail to scale as expected [85]. Therefore, there is a

need to devise generic techniques (not only speci�c to the WWW) to cope with the

ever-increasing demands to archive information using on-demand paradigms such

as Amazon's EC2/S3.

The DSpace Foundation [41] and Fedora Commons [60] have developed a new service

named DuraSpace to serve academic libraries, universities and other organizations

in providing perpetual access to digital content.
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2.4.1 DuraCloud

DuraCloud [69] is a Web-based open technology platform aimed at supporting li-

braries, universities, and other cultural heritage organizations that wish to provide

perpetual access to their digital content. The service replicates and distributes

content across multiple cloud providers and enables the deployment of services to

support access, preservation and re-use. DuraCloud was developed by DuraSpace19.

Duracloud was not used for experiments in this thesis because it is very speci�c in

its function unlike AWS that provides a suite of services that can be harnessed by

di�erent digital library components.

Figure 2.4 shows possible interactions in a particular use case where DuraCloud is

used as a backup system for data being stored within an institutional repository.

The repository in the diagram is exemplary and it is replaceable with any other

software system that is capable of writing to the �le system [28].

2.4.2 Fedorazon Cloud Repository

The Fedorazon project [45] dates back to 2004 when cloud computing was adopted as

an alternative for development of institutional repositories. The Fedorazon (Fedora

Commons + Amazon Web Services) project uses Fedora digital repository software

with Amazon's EC2 and S3 and it was tailored to help institutions to launch their

own repositories in the cloud with minimal e�ort and with little or no technical

expertise regarding the necessary underlying hardware con�gurations.

The inception of Fedorazon had close ties with the Grid community and thus the

early implementation of Fedorazon was based on the Grid and ASP20 [45]. The wide

open access of the grid allows anyone to deploy any kind of software they want on it

19Solutions o�ered by DuraCloud are described on the project website available at http:

//wiki.duraspace.org/display/DURACLOUD/DuraCloud [Last Accessed on 30 January

2013]
20Active Server Pages

http://wiki.duraspace.org/display/DURACLOUD/DuraCloud
http://wiki.duraspace.org/display/DURACLOUD/DuraCloud
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Figure 2.4: DuraCloud in context: A typical DuraCloud utilization

scenario [28].

and run it to capacity. However, the emphasis for the Grid is all on computational

cycles and very little support for long term storage. As a result, there is a high

threshold for understanding and administering the Grid which requires in-house

expertise [45].

The Fedorazon project produced of a publicly accessible version of Fedora 3.0 on

Amazon Web Services (EC2, S3 and EBS). This means that users can launch an

instance of Fedora 3.0 on AWS following a step-by-step procedure outlined in the

Fedorazon documentation21 in order to set up their own institutional repository.

The project has also achieved the cost analysis report [45], which attempted to

provide pragmatic advice for the actual costs in running any repository within the

21http://www.ukoln.ac.uk/repositories/digirep/index/Fedorazon_How_to_

Guides

http://www.ukoln.ac.uk/repositories/digirep/index/Fedorazon_How_to_Guides
http://www.ukoln.ac.uk/repositories/digirep/index/Fedorazon_How_to_Guides
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cloud.

At the time of the project conclusion in 2008, there were several academic sector

institutions that have utilised Fedorazon for development and testing but there has

yet to be a de�nitive institution to use it as their primary repository instance [45].

In its current state, Fedorazon could be called �Platform as a Service (PaaS)".

2.5 Related Work

The notion of using grid technologies in digital libraries has been addressed before

as evidenced by previous works. For example, to address some threats to long term

digital preservation, Barateiro et. al [20] present the use of data grids for digital

preservation. The authors extend the existing iRODS, an open-source system for

data grids based on the distributed client-server architecture. Some extensions

made to iRODS were a replication of the iCAT (the database which is a central

repository for storage of data in iRODS) to all nodes in the grid and an iCAT

recovery mechanism in case of failure/corruption of the central node and an audit

service for comparison of iCAT with its replicas [20].

Suleman et. al [93] address two scalability concerns with the aid of migration

and replication in component-based digital library systems using grid technology.

The results from the experimentation have shown that the component-based digital

library system with minimal functionality successfully scales seamlessly with little

overhead independent of the number of parameters that can be optimized [93].

The DILIGENT project focuses on integration of grid technology and digital li-

braries [40] but di�ers from the cloud computing approach in that it does not ad-

dress scalable on-demand access to digital libraries. The project aims at supporting

virtual research groups by providing the knowledge infrastructure that manages a

network of shared resources (archives, databases and software tools) and enables

reliable and secure Digital Libraries on-demand [40].
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Some repository systems such as DSpace [41] and Fedora [60] may, in future, use

storage resource brokers (SRB) to manage access to information and for preservation

using some lightweight API [41]. However, these systems have not yet achieved

scalability levels required in handling large amounts of data [72, 58]. Thus, it is of

paramount importance to move digital library systems to a di�erent ideal such as

the use of cloud/utility computing to provide access to large amounts of data and

computational resources [79].

The next sections discuss previous work on cloud migration (Section 2.5.1), per-

formance analysis of applications deployed in the cloud (Section 2.5.2) and some

related cloud systems (Section 2.5.3). Migrating applications into the cloud environ-

ment is discussed here because there have been e�orts to migrate existing systems

into the cloud [18]. It is also important to highlight performance of applications

deployed in the cloud as compared to applications that are hosted on organization's

premises.

2.5.1 Cloud Migration

Cloud migration22 is the process of transitioning all or part of an organization's

data, applications and services from on-site premises behind the �rewall to the

cloud. Cloud migration has gained attention from di�erent communities in recent

years. Babar and Chauhan [18] shared their experiences in migrating an open source

software system, Hackystat23, into the cloud. In their study, they presented the ex-

isting Hackystat architecture and the enhanced architecture for cloud deployment.

They argue that software systems consisting of multiple technologies in their imple-

mentation are harder to migrate than systems using stateless components. There

22Cloud migration http://www.webopedia.com/TERM/C/cloud_migration.html.

Last accessed on May 22nd, 2013
23hackystat: a framework for collection, analysis, visualization, interpretation, annotation and

dissemination of software development process and product data. Source: http://code.

google.com/p/hackystat/

http://www.webopedia.com/TERM/C/cloud_migration.html
http://code.google.com/p/hackystat/
http://code.google.com/p/hackystat/
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was no actual migration performed except for the framework that could be used in

the migration of Hackystat into the cloud.

Khajeh-Hosseini et. al [56] discussed the cost-bene�t analysis of cloud migration.

Their study did not involve actual system migration but concluded that migrating

enterprise IT systems to IaaS is more cost-e�ective than maintaining an on-premises

system.

2.5.2 Performance Analysis of Cloud Applications

With an increasing adoption of cloud computing, one of the key issues is perfor-

mance evaluation of applications deployed in cloud environments. In a study that is

very similar to this work in terms of evaluation, Moschakis and Karatza [74] present

performance evaluation of integrating mechanisms for job migration and handling

of job starvation. Their evaluation was conducted through simulation under varying

workloads, job sizes, migration and starvation handling schemes and the results did

not show signi�cant improvements in response times in a cloud environment [74].

Khazaei et. al [57] present a novel approximate analytical model for performance

evaluation of cloud server farms and solve it to obtain an accurate estimation of

the complete probability distribution of the request response time, among other

things. The results from the performance of the cloud server farm indicated that

their proposed approximation method provided more accurate results for the mean

number of tasks in the system, blocking probability, probability of immediate service

and response times in the cloud [57]. However, there were longer waiting times for

clients in a cloud centre that accommodated heterogeneous services as opposed to

its homogeneous equivalent with the same tra�c intensity [57].

Performance evaluation of high-speed network interconnects such as In�niBand on

HPC and cloud systems has also be studied [96]. The results showed that the latest

version of In�niBand FDR24 interconnect gives the best performance in terms of

24FDR: Fourteen Data Rate
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latency and bandwidth on HPC and cloud computing systems [96].

2.5.3 Related Cloud Systems

The are several cloud initiatives and virtualization technologies that exist today.

Some of these are brie�y discussed in this section. Detailed discussion of all cloud

computing vendors and operating systems is out of the scope of this thesis. The

cloud computing systems discussed here are based on some of the HPC technologies

discussed above.

2.5.3.1 EUCALYPTUS

Eucalyptus (Elastic Utility Computing Architecture Linking Your Programs To

Useful Systems) is an open-source software infrastructure for implementing utility

computing on clusters. EUCALYPTUS delivers a framework where Amazon cloud

facilities can be integrated. Its infrastructure is designed to support multiple client-

side interfaces and the current Eucalyptus interface is compatible with the following

AWS services used in this thesis; Amazon EC2, Amazon S3 and Amazon EBS25 [78].

Originally a research project from the Computer Science Department at the Uni-

versity of California, Santa Barbara, Eucalyptus software is now maintained by

Eucalyptus Systems (A company founded by the authors of the software). Nurmi

et. al [79] present the design of Eucalyptus that emulates Amazon EC2's SOAP

and query interfaces and allows users to launch, access and terminate entire vir-

tual machines. It is an open-source framework for cloud computing, implementing

Infrastructure as a Service (IaaS).

Its design is simple, �exible and modular and motivated by extensibility and non-

intrusiveness [78, 79]. The current design is such that virtual machines running on

top of Xen hypervisor [21] are supported. Each high-level system is implemented

25Elastic Block Store
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as a stand-alone Web service allowing Eucalyptus to expose each Web service as a

well-de�ned, language-agnostic API [43].

The six components of the Eucalyptus cloud architecture are [43]:

(a) Node Controller (NC): the NC executes on any machine hosting VM instances

and controls VM activities such as execution, inspection and termination of VM

instances [43].

(b) Cluster Controller (CC): The Cluster Controller has the function of gather-

ing information about a set of Node Controllers (NCs) and schedules virtual

machine (VM) execution on speci�c NCs. Executing on a machine that has a

network connection to both machines running the NC and the machine running

the CLC, the CC also manages the virtual machine networks [43].

(c) Cloud Controller (CLC): The CLC is the entry point into the cloud and it

queries other components for information about resources, makes high-level

scheduling decisions and makes requests to Cluster Controllers (CC). It is re-

sponsible for exposing and managing the underlying virtualized resources e.g.

servers, network and storage and it can be accessed through command line

tools that are compatible with Amazon's EC2 as well as through a Web-based

Eucalyptus Administrator Console [43].

(d) Walrus : Users can store persistent data, organized in buckets and objects using

Walrus. Walrus has the following operations for buckets: create, delete

and list buckets; and put, get and delete on objects. The Walrus in-

terface is compatible with Amazon's S3 [43].

(e) Storage Controller (SC): The storage controller provides similar functionality

to Amazon's Elastic Block Store( EBS) [43].

(f) VMware Broker (Broker or VB): this optional Eucalyptus component enables

deployment of virtual machines (VMs), VMware infrastructure elements and

mediates all interactions between CC and VMware hypervisors either directly
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or through VMware vCenter [43]. Figure 2.5 shows the logical relationship

Figure 2.5: The logical relationship between Eucalyptus compo-

nents [44].

between these components. The cloud components - CLC and Walrus - com-

municate with cluster components - CCs and SCs. The CCs and SCs, in turn,

communicate with the NCs. The network among machines hosting these com-

ponents must be able to allow TCP26 connections among them [44].

Euca2ools - the Eucalyptus command line interface for interacting with Web ser-

vices - has most of its commands similar to EC2, S3 and IAM27 services, thus

generally accepting the same options and environment variables. Figure 2.6 shows

the relationship between AWS and Eucalyptus functions. EC2 maps to CLC, EBS

maps to SC and S3 maps to Walrus.

2.5.3.2 OpenNebula

OpenNebula [71] is an open-source cloud computing framework that enables cre-

ation and management of virtualized infrastructures that provide private, public

and hybrid IaaS clouds [89]. OpenNebula architecture allows the use of multiple

storage back-ends such as logical volume manager (LVM) and Internet small com-

puter system interface (iSCSI) and di�erent hypervisors such as VMware, Xen and

KVM28 [71].

26Transmission Control Protocol
27Identity and Access Management
28kernel-based virtual machine
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Figure 2.6: The relationship between Amazon AWS and Eucalyp-

tus [44].

Several cloud infrastructures are based on OpenNebula. CERN - the European

Organization for Nuclear Research - uses virtualization and OpenNebula for batch

processing services [86]. Telecommunications operators such as Telefónica are using

OpenNebula to virtualize Web servers, mailing systems and databases [71]. Unlike

AWS and Eucalyptus, OpenNebula, by default, uses a shared �le system (typically

NFS) for all disk image �les and �les needed to run OpenNebula functions [87].

OpenFlow29 is one of the applications that use OpenNebula.

OpenFLow provides a way for researchers to run experimental protocols in the net-

works they use daily [68]. OpenFlow provides network management for CloudNaaS

(Cloud Network as a Service) [24] - a networking platform for enterprise applica-

tions that extend the self-service provisioning model for cloud services to include

networking services [89]. Stabler et. al [89] implemented OpenFLow protocol on

29OpenFlow is being developed by the Open Networking Foundation (ONF) (http://www.

openflow.org)

http://www.openflow.org
http://www.openflow.org
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Clemson's OneCloud30 [89] which was integrated into a virtual machine provision-

ing engine and provided an API for networking services to end-users. OpenFlow

can also serve as a useful campus component in large scale testbeds and Stanford

University will adopt it, using commercial Ethernet switches and routers for their

networking experiments [68].

OpenNebula supports several standard APIs namely; EC2 Query, vCloud31 [59] and

Open Cloud Computing Interface (OCCI)32 - an emerging standard de�ning IaaS

APIs that are delivered through the Open Grid Forum (OGF)33 [23].

2.5.3.3 OpenStack

Openstack34 is an open-source project initiated by Rackspace and NASA that is

built into Ubuntu Sever and Ubuntu is the reference operating system for OpenStack

deployments [34]. OpenStack controls and manages compute, storage and network

resources aggregated from multiple servers in a data centres [23]. It provides a Web

interface (dashboard) and APIs compatible with Amazon EC2 to the administrators

and users [23]. The interface allows for �exible provisioning of resources.

2.5.3.4 CloudStack

CloudStack is an open-source software platform that pools computing resources

to build public, private and hybrid IaaS clouds [15]. In addition to its own API,

CloudStack implements the the Amazon EC2 and S3 APIs, as well as the vCloud

API [23].

30One Cloud is an experimental cloud infrastructure from Clemson University that is based on

the OpenNebula cloud framework (https://sites.google.com/site/cuonecloud)
31VMware's vCloud http://vcloud.vmware.com/
32Open Cloud Computing Interface. http://occi-wg.org/
33Open Grid Forum. http://www.ogf.org/
34OpenStack. http://www.openstack.org

https://sites.google.com/site/cuonecloud
http://vcloud.vmware.com/
http://occi-wg.org/
http://www.ogf.org/
http://www.openstack.org
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There are several cloud o�erings in industry today. Some examples of di�erent cloud

service provisioning platforms are Red Hat's OpenShift35, Nimbula36, Nimbus [77],

VMware's Cloud Foundry [97], etc. As mentioned before, discussion of all these is

out of the scope of this thesis. Most of these platforms o�er similar services, what

di�ers is the vendor of the cloud infrastructure.

2.6 Summary

Di�erent distributed and HPC technologies have been presented in this chapter

and, for each of them, there were examples showing if and how they have been

used in digital libraries. Some advances in cloud computing were also presented

but none of the existing systems uses cloud computing in a manner similar to this

work. Most systems are focused on the computational power, data processing and

storage without explicit emphasis on evaluation of issues of scalability. A detailed

discussion of Amazon Web Services relevant to this thesis is given in Chapter 3 that

follows.

35OpenShift. https://openshift.redhat.com/app/
36Nimbula. https://nimbula.com

https://openshift.redhat.com/app/
https://nimbula.com


Chapter 3

Amazon Web Services

A
mazon Web Services (AWS) provides a full suite of services designed to solve

application growth needs through on-demand scalability, processing and stor-

age. This chapter gives an overview of Amazon Web Services used in the design

and implementation as discussed in Chapter 4.

The AWS examples presented in this chapter are those that were used in the im-

plementation and deployment of the search and browse digital library system ser-

vices. There are several services o�ered by AWS that will not be presented in this

chapter. Speci�c services that will be discussed include Amazon Elastic Compute

Cloud (Amazon EC21) (Section 3.1), Amazon Simple Storage Service (Amazon S32)

(Section 3.3), Amazon SimpleDB3 (Section 3.4) and Amazon Elastic Block Store

(Amazon EBS4) (discussed under Section 3.2). Section 3.5 presents some request

and response mechanisms on EC2, S3 and SimpleDB.

3.1 Amazon EC2

EC2 is a Web service that provides resizable computing capacity in the cloud and

it refers to the servers in Amazon's data centers that are used to build and host

software systems [5]. EC2 is physically a large number of computers on which

Amazon provides time to paying customers [53]. EC2 is based on Xen virtualization

1Amazon EC2 and EC2 will be used interchangeably
2Amazon S3 and S3 will be used interchangeably
3Amazon SimpleDB and SimpleDB will be used interchangeably
4Amazon EBS and EBS will be used interchangeably
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technology [21]. This allows one physical computer to be shared by several virtual

computers, each of which hosts di�erent operating systems (OSes). Each virtual

OS has its own management strategy. In principle, Xen virtualization can allow

any sort of operating system to be hosted [53].

EC2 provides users with virtual hosts based on Linux and Windows operating sys-

tems. These have a range of 32- and 64-bit kernels that support Windows and

common Linux distributions such as Ubuntu and Fedora Core. The components

and features that EC2 provides can be accessed using a Web-based GUI5, com-

mand line tools and API6 calls.

EC2 comprises Amazon Machine Images (AMIs), Regions and Available zones, stor-

age, databases, networking and security, and other components such as monitoring,

auto scaling and elastic load balancing, and AWS identity and access manage-

ment(IAM).

3.1.1 Amazon AMIs

An Amazon AMI is a template that contains a software con�guration such as an

operating system, a server and applications from which instances can be launched

[5]. An instance is a copy of an AMI running as a virtual server in the cloud. Mul-

tiple and di�erent instance types of the same AMI can be launched. The hardware

of the host computer used for an instance is determined by the instance type [101].

Each instance type o�ers di�erent compute and memory capabilities [5]. It is im-

portant for users to select an instance type based on the amount of memory and

computing power that they will need for the application or software that they plan

to run on the particular instance. Table 3.1 7 gives a snapshot of instance types

available to users to run their software applications. A full list of instance types is

available in [5].

5Graphical User Interface
6Application Programming Interface
7Source: Amazon Elastic Compute Cloud User Guide, API Version 2012-12-01
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Figure 3.1 illustrates how di�erent instance types can be launched from one AMI.

That is, three host computers each has at least one instance launched from them

and all the instances on the three computers were launched from the same AMI

although launched on di�erent hosts. Instances continue running until they are

terminated or they fail. There are many available public AMIs but users can also

create their own AMIs using command line tools to come up with an AMI that

meets their speci�c needs.

AMI 
Instance (e.g. 
c1.medium) 

Instance (e.g. 
m1.large) 

Instance (e.g. 
cc2.8xlarge) 
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Figure 3.1: Launching di�erent instance types from one AMI.

In order to gain insight into which instance type is best-suited for an application,

the following de�nitions of instance types and families need to be borne in mind

[5, 101], examples of which are given in Table 3.1.

� Micro: this instance type provides a small amount of consistent CPU resources
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and enables users to burst CPU capacity when additional cycles are available.

These are well-suited for lower throughput applications and websites that

consume signi�cant compute cycles periodically e.g. t1.micro.

� Standard : these instance types have memory-to-CPU ratios suitable for most

general-purpose applications e.g. m1.small.

� High-CPU : these instance types have proportionally more CPU resources than

memory (RAM).These are well-suited for computationally-intensive applica-

tions e.g. c1.medium.

� High-Memory : these instance types have proportionally more memory re-

sources. These are well suited for high-throughput applications, for instance,

database and memory caching applications e.g. m2.xlarge.

� High-Memory Cluster : these instance types have large amounts of memory

as well as high CPU and network performance and they are well suited for

in-memory analytics, graph analysis and scienti�c computing applications.

� High I/O : these instance types provide tens of thousands of low-latency, ran-

dom I/O operations per second (IOPS) to an application. These are well-

suited for NoSQL databases, clustered databases and OLTP (online transac-

tion processing) systems e.g. hi1.4xlarge.

� High Storage: these instance types provide very high storage density and high

sequential read and write performance per instance. They are well-suited for

data-intensive applications, for instance, data warehousing, Hadoop/MapRe-

duce and parallel �le systems e.g. hs1.8xlarge.

� Cluster Compute: these instance types have a very large amount of CPU cou-

pled with increased networking performance. These are well-suited for High

Performance Computing (HPC) applications and other network-intensive dis-

tributed computing applications e.g. cc1.4xlarge.
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� Cluster GPU : these instance types provide general-purpose graphics process-

ing units (GPUs), with proportionally high CPU and increased network per-

formance for applications that bene�t from highly parallelized processing.

These are well-suited for HPC applications as well as rendering and media

processing applications e.g. cg1.4xlarge.

3.1.2 Other EC2 Components

Other important EC2 components include:

� Databases : EC2 instances can be used to run a database and store data

within an EBS volume[5]. Advanced database functionality can be provided

by services such as SimpleDB[8].

� Networking and security : EC2 allows for assignment of instances to user-

de�ned security groups that de�ne �rewall rules for instances. When an AMI

instance is launched, it can be assigned to as many groups as the user desires

[5].

� Monitoring : EC2 provides basic monitoring and Amazon CloudWatch pro-

vides advanced monitoring services [5].

� Auto scaling : this allows for automatic scaling of EC2 capacity up or down

depending on whether there is a demand for more instances to maintain per-

formance, or the demand drops, respectively, to minimise costs [5].

� Elastic load balancing : this service automatically distributes incoming tra�c

across multiple EC2 instances [5].

� Identity and Access Key Management (IAM): this service provides users with

unique security credentials and access privileges [5]. The pre-requisite is that

a user has to sign up for an AWS account so that they can be assigned security
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credentials - an access key ID and a secret access key. An access key ID8 is

essentially a username and it is an alphanumeric text string that uniquely

identi�es a user who owns an AWS account. A secret access key plays the

role of a password hence it is known to the user who owns an AWS account

only.

3.1.3 Regions and Availability Zones

Amazon EC2 instances can be placed in multiple locations. Locations on Amazon

EC2 include Availability Zones and regions. Regions are dispersed and located in

separate geographic areas [5, 101]. Availability Zones are distinct locations within

a region that are engineered to be isolated from failures in other Availability Zones

and provide inexpensive, low latency network connectivity to other Availability

Zones in the same region [5]. Therefore, instances can be launched in separate

regions allowing for applications to be designed in such a way that they are closer

to speci�c customers or other requirements.

One of the advantages of instances that are launched in separate Availability zones

is that it helps to protect applications in case of failure of a single location. In order

for the user to �nd out the Availability zones and Regions available to them, they

issue the following commands, respectively, from the command line:

prompt> ec2-describe-availability-zones

AVAILABILITYZONE us-east-1a available us-east-1

AVAILABILITYZONE us-east-1b available us-east-1

prompt> ec2-describe-regions

REGION ap-northeast-1 ec2.ap-northeast-1.amazonaws.com

REGION ap-southeast-1 ec2.ap-southeast-1.amazonaws.com

8http://www.bucketexplorer.com/documentation/amazon-s3--what-is-my-

aws-access-and-secret-key.html

http://www.bucketexplorer.com/documentation/amazon-s3--what-is-my-aws-access-a nd-secret-key.html
http://www.bucketexplorer.com/documentation/amazon-s3--what-is-my-aws-access-a nd-secret-key.html
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There are several API command-line tools for Amazon EC2 (detailed documentation

of all the command line tools is available in [5]) but most AWS services are easily

accessible via a Web interface today.

During data processing on an instance, the storage options available to users on EC2

are EBS, Amazon instance store and S3. Figure 3.2 shows the relationships among

these di�erent forms of EC2 storage. Instance store provides temporary block-level

storage for use with an EC2 instance during processing and, for persistent block-

level storage, EBS is used. EBS volumes are created from a snapshot which is, in

turn, stored on S3.

0 3 1 2 

Instance A 

Instance B 

Instance Store 

EC2 Amazon EBS Amazon S3 

Ephemerals 

Snapshot 

Bucket 

0 3 1 2 

Figure 3.2: The relationship among Amazon EC2 forms of storage.

3.2 Amazon EC2 Storage

Amazon EC2 storage is provided by two components, Amazon EBS (Section 3.2.1)

and Amazon instance store (Section 3.2.2).
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3.2.1 Amazon EBS

EBS is used where persistent block-level storage is required. Best suited for appli-

cations that require a database, a �le system, or access to raw block-level storage,

EBS volumes are essentially hard disks attached to a running instance[5].

As shown in Figure 3.2, multiple volumes can be attached to an instance. For

purposes of data back-up, users can create a snapshot of an EBS volume and store

it in Amazon S3. New Amazon EBS volumes can be created from a snapshot, and

be attached to another instance. Volumes can be detached from instances and be

attached to other instances.

When an EBS volume is created, it goes into a �pending" state. In this state it

can either be in �available" state or �deleted" state. If the volume is in �available"

state, then it can be attached to an instance. In this case it is in �attached" state.

Otherwise the volume can be deleted if not used. In this case it goes into the

�deleted" state. In the �attached" state, the EBS volume can be detached and go

back into the �available" state, in which case it can he attached again or deleted,

and the cycle repeats itself. Figure 3.3 represents this scenario.

Pending  

Deleted  

Attached  

Available 
Detach 
volume 

Delete 
volume 

Attach 
volume 

Create 
volume 

Figure 3.3: The diagram illustrating the life cylce of Amazon

EBS[5]
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3.2.2 Amazon Instance Store

With the exception of micro instances, all instance types o�er instance store, which

provides instances with temporary, block-level storage that is physically attached

to the host computer. The data on an instance store volume does not persist when

the associated instance is stopped or terminated. Detailed information on instance

ranges is given in the Amazon EC2 User Guide API Version 2012-12-01 in [5].

An Amazon EC2 instance store consists of one or more instance store volumes.

These volumes are usable only from a single Amazon EC2 instance during its life-

time; they can not be detached and then attached to another instance. Instance

store volumes are mounted before they can be used[5]. The instance type also de-

termines the type of hardware for instance store volumes. A high I/O instance (for

example, hi1.4xlarge) uses solid state drives (SSD) to deliver very high random

I/O performance. This works best for very low latency storage needs. Instance

stores can be used with EBS and in turn with Amazon S3 (see section 3.3 that

follows).

3.3 Amazon S3

S3 allows storage and retrieval of any amount of data from anywhere on the Web.

In Amazon S3, data is stored in buckets. A bucket[3] is a container for objects

stored in S3 and it follows a speci�c naming convention. Objects[3] are fundamental

entities stored in S3. They consist of data and metadata. The metadata is a set of

name-value pairs that describe the object. Although developers can specify other

metadata �elds when storing the object, S3 default metadata �elds include the date

the object was last modi�ed, and standard HTTP metadata such as Content-Type.

A unique identi�er of an object within a bucket is called a key. Also referred to as

the �lename, exactly one key belongs to one S3 object. Thus, to uniquely identify

each S3 object, the combination of a bucket, key, and version ID is used. It is
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also important to choose a Region where created buckets will be stored. The S3

user guide API Version 2006-03-01 has an easy-to-use Web interface from which S3

services can be accessed [3].

Amazon S3 buckets can be created from the Web user interface provided by AWS.

Any data stored on S3 can also be browsed through the same interface. A bucket

can be deleted if it is empty. Buckets containing objects can only be deleted if the

objects are deleted �rst.

Objects can be uploaded into an S3 bucket. Once uploaded, users can perform var-

ious operations on them. Users can download the object, edit the object properties,

copy an object to a di�erent location and even delete an object, if not needed. It

is also possible to create folders in S3, to group objects just like creating folders on

a computer system. In order to index and query S3 data and metadata, SimpleDB

is used. Section 3.4 below gives an overview of SimpleDB.

3.4 Amazon SimpleDB

AWS o�ers a Web interface to create and store multiple data sets[8]. It simpli�es

querying of data stored in it. Amongst other operations on the data stored in it,

SimpleDB supports a write operation (for example, PutAttributes) and two

types of read operations[98], di�erentiated by calls to GetAttributes: consistent

read - which ensures that the value returned always comes from the most recently

completed write operation; and eventually consistent read - which does not guaran-

tee this. The Amazon SimpleDB data model, which is di�erent from the relational

database data model, is discussed in Section 3.4.1 and further details on limits and

queries on SimpleDB are discussed in Section 3.4.2.
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3.4.1 Amazon SimpleDB Data Model

Amazon SimpleDB allows developers to organize their structured data in domains

within which they can perform the following operations; put data , get data or run

queries. Each domain has items in it that are described by attribute name-value

pairs[35]. For instance, consider a spreadsheet analogy. The Amazon SimpleDB

components are analogous with those of the spreadsheet[8] as shown in Figure 3.4.

� Customer Account is represented by the entire spreadsheet. It refers to the

Amazon Web Services account to which all domains are assigned.

� Domains are represented by the domain worksheet tabs at the bottom of

the spreadsheet. Domains are similar to tables that contain similar data.

Queries are executed against a domain, but cannot be executed across di�erent

domains.

� Items are represented by rows. Items represent individual objects that contain

one or more attribute name-value pairs.

� Attributes are represented by columns. Attributes represent categories of data

that can be assigned to items.

� Values are represented by cells. Values represent instances of attributes for

items. An attribute can have multiple values.

Figure 3.4: SimpleDB data model represented by a spreadsheet[8].

Table 3.2 shows sample data stored in Amazon SimpleDB.
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ID Car Make Model Year Colour Price Registration

Number

CAR_001 Toyota Fortuner 2005 Red R325K CA149-851

2009 Plum R200K CY149-851

2012 Black R400K CA200-400

CAR_002 Volkswagen Toureg 2010 Grey R350K CA201-401

2006 Blue R200K CZ149-851

Table 3.2: Illustration of the Amazon SimpleDB data model.

3.4.2 Amazon SimpleDB limits and queries

The number of domains that can be created per account on Amazon SimpleDB

is limited to 250, each domain size is up to 10GB and can store up to 1 billion

attributes. A detailed list of all limits to be considered when working with Amazon

SimpleDB can be obtained in [8].

Amazon SimpleDB supports select, which takes similar query expressions to

the standard SQL select statement. The following is an example of a query

expression in Amazon SimpleDB:

select <output_list>

from <domain_name>

[where <expression>]

[<sort_order>]

[limit <limit>]

In the <output_list>, the user can specify whether they want to retrieve all

attributes, item names only, an explicit list of attributes or the total number of items

available in a particular SimpleDB domain (represented by count(*) function).

SimpleDB also supports sorting on a single attribute, in ascending or descending

order.
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3.5 Request and Response Handling on EC2, S3 and Sim-

pleDB

Many services o�ered by AWS use both SOAP9 and REST10 API calls. However,

Amazon SimpleDB does not support SOAP API calls as of June 1, 2012 11. Unless

otherwise stated, examples of API calls that follow for EC2, S3 and SimpleDB use

the REST API calls. It should be noted that EC2 and S3 still support SOAP API

calls. The requests are sent in a URL encoded form as speci�ed in RFC3986[25].

Section 3.5.1 that follows presents Amazon EC2 API requests and responses and

Section 3.5.2 presents Amazon S3 API requests and responses.

3.5.1 Amazon EC2 API Requests and Responses

Amazon EC2 supports Query requests and SOAP requests. Query requests on EC2

are HTTP or HTTPS requests that use the HTTP verb GET or POST and a Query

parameter named Action. For example, the EC2 command

ec2-run-instances

issued from the command line is encoded in a URL in a Web browser, using a GET

request as follows:

https://ec2.amazonaws.com/?Action=RunInstances&ImageId=<image_id>&MaxCount=

<max_count>&MinCount=<min_count>&Placement.AvailabilityZone=<availability_

zone>&Monitoring.Enabled=<boolean_value>&AWSAccessKeyId=<ACCESS_KEY_ID>&Version

=<API_Version>&Expires=<timestamp>&Signature=<signature>&SignatureVersion=

<version_number>&SignatureMethod=<signature_method>

The �rst part of the URL (https://ec2.amazonaws.com/) represents the end-

point, which is the Web service entry point to act on. The Action (?Action=

RunInstances) is the action performed on the endpoint.The remainder of the

9Simple Object Access Protocol
10REpresentational State Transfer
11https://forums.amazon.com/ann.jspa?annID=1488

https://ec2.amazonaws.com/
?Action=RunInstances
?Action=RunInstances
https://forums.amazon.com/ann.jspa?annID=1488
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URL is parameters, which are request parameters issued in the query. The <im-

age_id> is the identity of the Amazon AMI from which the instances(s) are

launched. The <boolean_value> can either be true or false depending on

whether the instance is monitored or not. Instance monitoring is performed by

viewing the status checks and scheduled events for an instance. A status check

gives the information that results from automated checks performed by EC2. These

automated checks detect whether speci�c issues are a�ecting a running instance.

Detailed operational visibility of each instance is given by the status checks[5] as

well as the data provided by Amazon CloudWatch[9]. The signature sent in the

request is URL encoded as mentioned above. Detailed list of all EC2 actions is

given in [5].

Amazon EC2 also uses the SOAP API calls to make requests. SOAP request

messages use HTTPS and have to be hashed and signed for integrity and non-

repudiation. In response to either a Query or a SOAP request, an XML data

structure is returned. The EC2 response includes the request ID in the requestId

element, which is a unique string assigned by AWS. The response structure is shown

below:

<DescribeKeyPairsResponse xmlns="http://ec2.amazonaws.com/doc/2012-12-01/">

<requestId>7a62c49f-347e-4fc4-9331-6e8eEXAMPLE</requestId>

<keySet>

<item>

<keyName>gsg-keypair</keyName>

<keyFingerprint>

00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00

</keyFingerprint>

</item>

</keySet>

</DescribeKeyPairsResponse>

The structure of an XML response is speci�c to the associated request. In gen-

eral, the response data types are named according to the operation performed and

whether the data type is a container (can have children)[5]. Examples of containers

include groupSet for security groups and keySet for key pairs (see XML re-

sponse above)[5]. Item elements are children of containers, and their contents vary
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according to the container's role.

3.5.2 Amazon S3 API Requests and responses

Amazon S3 supports two types of requests: requests made using a user's AWS

account (or IAM12 credentials) and the REST API calls. The Amazon S3 REST

API uses a custom HTTP scheme based on a keyed-HMAC13 for authentication[61].

To authenticate a request, selected elements of the request are concatenated �rst

to form a string. Then the AWS Secret Access Key is used to calculate the HMAC

of that string [61]. and we call the output of the HMAC algorithm the �signature"

because it simulates the security properties of a real signature. Finally, the signature

is added as a parameter of the request.

An example of a request making use of an AWS account or AMI credentials given

below uses the AWS S3 code and libraries provided on the AWS website (http:

//aws.amazon.com/code/Amazon-S3). The example uses Java code, which

was also used to develop typical digital library services presented in this thesis as

discussed in Chapter 4. Firstly, an instance of AmazonS3Client is created and

then a request is sent to Amazon S3.

//user authentication

AWSCredentials myCredentials = new BasicAWSCredentials(myAccessKeyID,

mySecretKey);

//create an instance of AmazonS3Client

AmazonS3 s3client = new AmazonS3Client(myCredentials);

//send a sample request (list objects in a given bucket).

ObjectListing objectListing = s3client.listObjects(new

ListObjectsRequest().withBucketName(bucketName));

The Amazon S3 REST API calls use the following HTTP methods; PUT, GET and

DELETE[54]. A GET request is used to get objects from an S3 bucket. A PUT

request is used to upload objects into S3 buckets. A DELETE request is used to

12Identity and Access Management
13Hash Message Authentication Code

http://aws.amazon.com/code/Amazon-S3
http://aws.amazon.com/code/Amazon-S3
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delete objects from S3. An example of a successful S3 REST request to create a

bucket is depicted below:

PUT /onjava HTTP/1.1

Content-Length: 0

User-Agent: jClientUpload

Host: s3.amazon.com

Date: Wed, 02 Jan 2013 14:34:45 GMT+02:00

Authorization: AWS <ACCESS_KEY_ID:signature>

The response of the above successful request is as follows:

HTTP/1.1 200 OK

x-amz-id-2: <metadata_header>

x-amz-request-id: <request_id>

Date: Wed, 02 Jan 2013 14:34:01 GMT+02:00

Location: /onjava

Content-Length: 0

Server: AmazonS3

3.5.3 Amazon SimpleDB API Requests and Responses

Firstly, a SimpleDB request has the following set of mandatory parameters; Action,

AWSAccessKeyID,DomainName, Signature, SignatureVersion, Timestamp and Ver-

sion. SimpleDB has a set of conditional parameters, namely, Attribute.X.Name, At-

tribute.X.Value, AttributeName, ItemName and SignatureMethod. These are con-

ditional because they are not applicable to some operations. For instance, the At-

tribute.X.Value parameter is required by PutAttributes and BatchPu-

tAttributes and it is optional for DeleteAttributes and BatchDeleteAt-

tributes. Optional parameters in SimpleDB are Attribute.X.Replace, MaxNum-

berOfDomains, MaxNumberOfItems, NextToken and SelectExpression.

Some important terminology related to Amazon S3 requests and responses handling

is explained below.

� Action: this is the name of the action, for instance, BatchPutAttributes.

� AWSAccessKeyID : the user's AWS Access Key ID.
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� DomainName: the name of the domain used in the operation.

� Signature: this is an HMAC-SHA1 or HMAC-SHA256 signature calculated

using the user's Secret Access Key.

� SignatureVersion: the AWS signature version, which is currently the value 2.

� Timestamp: this is the day, date and time of the request.

� Version: this is the version of the API used. In this thesis, API Version

2009-04-15 has beed used.

� Attribute.X.Name: this is the name of the attribute associated with an item.

� Attribute.X.Value: this is the value of an attribute associated with an item.

� AttributeName: the name of the attribute to return. It is optional for the

GetAttributes request.

� ItemName: this is a unique identi�er of an item. It is required by the fol-

lowing operations: PutAttributes, BatchPutAttributes, GetAt-

tributes, DeleteAttributes and BatchDeleteAttributes.

� SignatureMethod : this is required when using signature version 2 with REST

requests. It explicitly provides the signature method HmacSHA1 or Hmac-

SHA256.

� Attribute.X.Replace: this is a �ag used to specify whether to replace an at-

tribute/value or to add an attribute/value. It defaults to false.

� MaxNumberOfDomains : this is the maximum number of domain names that

can be returned. For example, an operation like ListDomains uses MaxNum-

berOfDomains.

� MaxNumberOfItems : this is the maximum number of items to return in a

response.
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� NextToken: it is a string that tells Amazon SimpleDB where to start the next

list of domain or item names.

� SelectExpression: it is a string that speci�es the query that is executed against

the domain.

With these de�nitions in mind, the next example uses PutAttributes on CAR_001

from Table 3.2 using SimpleDB REST API to demonstrate a request and response.

The item name is CAR_001, with attributes car make, model, year, colour, price

and registration number. The �rst two attributes have a single value and the rest

of the attributes are multivalued. The attribute Year has values 2005, 2009 and

2012. Colour attribute has the values red, plum and black. Lastly, the at-

tribute values for registration number are CA149-851, CY149-851 and CA200-

400.

https://sdb.amazonaws.com/?Action=PutAttributes&Attribute.1.Name=Make&Attribute.1.Value

=Toyota&Attribute.2.Name=Model&Attribute.2.Value=Fortuner&Attribute.3.Name=Year

&Attribute.3.Value=2005&Attribute.3.Name=Year&Attribute.3.Value=2009&Attribute.3.Name

=Year&Attribute.3.Value=2012&Attribute.4.Name=Colour&Attribute.4.Value=Red&Attribute.

4.Name=Colour&Attribute.4.Value=Plum&Attribute.4.Name=Colour&Attribute.4.Value=Black&

Attribute.5.Name=Price&Attribute.5.Value=R325K&Attribute.5.Name=Price&Attribute.5.

Value=R200K&Attribute.5.Name=Price&Attribute.5.Value=R400K&Attribute.6.Name=

RegistrationNumber&Attribute.6.Value=CA149-851&Attribute.6.Name=RegistrationNumber&

Attribute.6.Value=CY149-851&Attribute.6.Name=RegistrationNumber&Attribute.6.Value=

CA200-400&AWSAccessKeyId=[AWS_ACCESS_KEY_ID]&DomainName=CarModels&ItemName=CAR_001

&SignatureVersion=2&SignatureMethod=HmacSHA256&Timestamp=2013-01-11T15%3A03%3A05-07

%3A00&Version=2009-04-15&Signature=[valid_signature]

When the PutAttributes request has been successful, the following response is

returned in an XML format:

<PutAttributesResponse>

<ResponseMetadata>

<RequestId>490206ce-8292-456c-a00f-61b335eb202b</RequestId>

<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>

</PutAttributesResponse>

BoxUsage gives an indication of the system resources that were utilized to complete

a request.
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3.6 Summary

In this chapter, an overview of the Amazon Web Services used in this thesis has been

presented. It can be argued that Amazon Web Services o�ers a well-established,

well-documented and stable platform to develop applications. A proof-of-concept

application comprising typical digital library services was designed and developed

to make use of the services presented here. The design and implementation details

are given in Chapter 4 that follows.



Chapter 4

Digital Library Services

The basic research question this thesis attempts to answer is whether a typical

digital library architecture can be migrated into a cloud environment and

also to investigate the scalability issues involved when the demand for more data

and services increases. With these research questions in mind, an experimental

set of limited typical digital library services was designed and implemented on

AWS. This chapter outlines the design and implementation of two typical digital

library services: search and browse. The chapter also outlines how AWS services

were integrated in the development of these services. Section 4.1 presents cloud

computing architectural design considerations that are of importance to this thesis.

The overall architecture of the systems is discussed in Section 4.2.

4.1 Architectural Design Considerations

This section discusses di�erent architectures that can be used to implement scal-

able on-demand digital library systems on top of a cloud environment. Some of

the architectures considered here emulate some of the parallel programming archi-

tectures such as shared-memory machines and distributed-memory machines. All

such architectures are characterized by a master/manager paradigm. Typically,

the master node (or server) (as shown in �gures 4.1, 4.2, 4.3 and 4.4) is used to

steer/proxy connections and manage application servers. The master achieves this

via a Web user interface. It also handles requests/responses and monitors machines

(represented by nodes numbered 1 to 4 in the diagrams that follow).
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Four possible architectures that take advantage of scalability within utility clouds

are illustrated and discussed in sections 4.1.1 (the proxy architecture), 4.1.2 (the

redirector architecture), 4.1.3 (the round-robin architecture) and 4.1.4 (the client-

side architecture) that follow. A further presentation and discussion of these design

architectures can be found in [92].

4.1.1 The Proxy Architecture

This type of architecture, illustrated in Figure 4.1, works like the shared-memory

machines. The �Master" or �Manager" node acts as a proxy for all external connec-

tions to and from the service nodes. It keeps track of which nodes are available at

any given point in time. Should any node fail, the �master" or �manager" redirects

connections/services to the available nodes. This architecture is characteristic of

cluster computing.

User 

Processing 

Storage 

Master or manager 

Node 1 

Node 4 

Node 2 

Node 3 

Figure 4.1: The Proxy Architecture: The �master" or �manager"

acts as a proxy between users and the nodes in the cloud.

(a) Advantage: should any failures occur, there will always be continuity of service

as requests will be redirected to the working and/or available nodes.

(b) Disadvantage: there is a possibility of a bottleneck on the �master" node during

simultaneous service requests.
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4.1.2 The Redirector Architecture

Figure 4.2 shows an architecture that emulates the grid. In this case the �master"

or �manager" node serves as a lookup table for service nodes. External clients in

this case make direct connections to the nodes in the cloud.
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Master or manager 

Node 1 

Node 4 

Node 2 

Node 3 

Figure 4.2: The Redirector Architecture: The �master" or �man-

ager" acts as a look up table for service nodes and steers connec-

tions between users and the nodes in cloud

(a) Advantage: An obvious advantage is that there are fewer possible bottlenecks.

(b) Disadvantage: The possible disadvantage is that in the event of one machine

failing, requests can still be sent to that machine if the requests are sent directly

from the user instead of the �master" node.

4.1.3 The Round-Robin Architecture

In this scenario (Figure 4.3), clients use the DNS system or any similar address

resolution system to obtain addresses of the next node to use in the cloud using

a round-robin approach. The �master" keeps IP addresses of all machines and

the information about which machine(s) has/have failed. Although easy to im-

plement, round-robin DNS has problematic drawbacks such as those arising from
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record caching in the DNS hierarchy itself, as well as client-side address caching

and reuse, the combination of which can be di�cult to manage. Thus, round-robin

cannot be solely relied upon for service availability. An architecture of this nature

is characteristic of Web server farms.
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DNS 

Figure 4.3: The Round-Robin Architecture: Clients use DNS sys-

tem to obtain addresses of the next machine to use.

4.1.4 The Client-Side Architecture

In the architecture depicted in Figure 4.4, the �manager" or �master" keeps informa-

tion about the state of all service nodes and can, therefore, send this list of nodes to

the client when requested. This architecture is rather complex although it arguably

provides high levels of scalability and reliability.

4.2 System Architecture

Digital libraries can be designed to take advantage of services provided by these

architectures in order to achieve �exibility and high levels of scalability. An appli-

cation was designed on top of a cloud environment using one of the architectures,

particularly the proxy architecture with some elements of the client-side architec-

ture. Figure 4.5 shows the overall architecture of the typical digital library services
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Figure 4.4: The Client-Side Architecture: The �master" or �man-

ager" sends a list of nodes to the client upon request. This list is

used to rotate requests to service nodes.

implemented. The Web user interface in Figure 4.5 is discussed further in Section

4.3. Typical digital library services (search and browse) are presented in Section

4.4.

4.3 The Web User Interface

The Web user interface is a light-weight process that provides an entry point for

queries to the browse and search features [76]. The user interface is text-based

and it issues queries and waits for responses. A query response consists of a list

of document identi�ers ranked by values which indicate the probability that the

document satis�es the information need represented by the query. The query results

are presented such that the highest ranked documents are at the top [76].

4.4 Typical Digital Library Services

This thesis looks into the implementation of two typical digital library services:

browse and search. These services used the metadata harvested from two collections



4.4. Typical Digital Library Services 61

Web User Interface 

Search Browse 

Digital Library Services 

Instance 
B 

Instance 
C 

Instance 
A 

Instance 
D 

Amazon EC2 

Buckets 

Amazon S3 Amazon 
EBS 

Amazon SimpleDB 

Domain A 
(Metadata) 

Domain B 
(Inverted File 

Indexes) 

Query Indexing  Storage 

Figure 4.5: The high-level architecture of the system showing dif-

ferent components.

- The Networked Digital Library of Theses and Dissertations (NDLTD) and The

South African National Electronic Theses and Dissertations (SA NETD) portal

using the metadata harvester discussed in Section 4.4.3.

4.4.1 Browse

Paihama [81] de�nes browsing as the process of going through a collection of items

using speci�c criteria to �nd the items of interest. In our experimentation, the

criteria speci�ed was the title of the document, the author and the date that the

document was published. In all the three criteria, the collection can be browsed in

ascending/descending order.
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The browse feature is accessible through the light-weight Web user interface de-

scribed in section 4.3 and accepts users' queries to browse the collection by author,

title and date. When the collection is browsed, users select the criteria they wish to

browse by. The results of the browsing request are displayed back on the Web user

interface. The application uses SimpleDB for indexing and querying operations.

Communication between the application and SimpleDB is over the REST1 API.

On the front end, a user's browse request is submitted in a URL of the form:

ec2-50-17-126-167.compute-1.amazonaws.com:8080/SimpledbBrowsinServlet/Index?act

ion=browse&category=<browse_category>&order=<browsing_order>

The �rst part of the URL, ec2-50-17-126-167.compute-1.amazonaws.

../Index, is the endpoint, followed by the Action (&action=browse) and the

parameters (category (title, author or date)) and order (ascending or descending)

in the browse request.

The back-end processing is more elaborate. When a request is send to SimpleDB,

the following action is executed:

select * from <domain_name>

where itemName()=<item_name>

order by <sort_order>

limit <limit>

The select operation returns a set of Attributes for ItemNames that match

the select expression. In addition to this, the response metadata is also returned in

the response. This includes the RequestId and BoxUsage. BoxUsage refers to the

system resources utilized during query execution. Queries with a higher BoxUsage

value are the more expensive queries. The general response XML from a SimpleDB

select request is as follows:

<SelectResponse>

<SelectResult>

<Item>

<Name>item_name</Name>

<Attribute><Name>attribute_name</Name><Value>attribute_value</Value>

1REpresentational State Transfer

ec2-50-17-126-167.compute-1.amazonaws.../Index
ec2-50-17-126-167.compute-1.amazonaws.../Index
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</Item>

</SelectResult>

<ResponseMetadata>

<RequestId>request_ID</RequestId>

<BoxUsage>amount_of_system_resources_used</BoxUsage>

</ResponseMetadata>

</SelectResponse>

A select operation uses NextToken to tell SimpleDB where to start the next

list of domain or item names. If ListDomains and/or GetAttributes are

called successive times with the NextToken, they will return up to MaxNum-

berOfDomains more domain names and MaxNumberofItems more item names

respectively, each time. A SimpleDB select operation is limited to 2500 items per

request. If the limit is speci�ed in the select expression, results will be returned

with the NextToken. Due to the nature of the SimpleDB data model with the

possibility of some attributes having multiple values, each time a request is issued,

the collection is browsed from the beginning but the results are displayed starting

from the last NextToken that was returned.

For example, if the collection is to be browsed in descending order of titles with 50

results to be displayed per page, then the following select expression is issued:

select * from DLCloud

where itemName() is not null

order by Title desc

limit 50

The select response of the results returned is in an XML format. The snapshot

of the results, shown below, represents a sample of one of the records retrieved in

an XML format.

<SelectResponse>

<SelectResult>

<Item>

<Name>oai_techreports.cs.uct.ac.za_102</Name>

<Attribute><Name>Title</Name><Value>A Lightweight Interface to Local Grid

Scheduling Systems</Value>

<Attribute><Name>Author</Name><Value>Christopher Parker</Value>



64 Chapter 4. Digital Library Services

<Attribute><Name>Description</Name><Value>Many complex research problems

require an immense amount of computational power to solve. In order to

solve such problems, the concept of the computational Grid was conceived.

Although Grid technology is hailed as the next great enabling technology in

Computer Science, the last being the inception of the World Wide Web, some

concerns have to be addressed if this technology is going to be successful

.</Value>

<Attribute><Name>Date</Name><Value>May 2009</Value>

<Attribute><Name>Identifier</Name><Value>http://pubs.cs.uct.ac.za/archive

/00000521/01/thesis.pdf</Value>

</Item>

</SelectResult>

<ResponseMetadata>

<RequestId>b1e8f1f7-42e9-494c-ad09-2674e557526d</RequestId>

<BoxUsage>0.0000219907</BoxUsage>

</ResponseMetadata>

</SelectResponse>

The XML �le returned is parsed and displayed to the user in a readable manner.

The application uses Java servlets to achieve this. The application uses the IAM

credentials for communication with AWS in order to parse the returned XML for

display on the Web user interface.

4.4.2 Search

Search is the process by which a client can retrieve an item with speci�ed properties

among a collection of items stored on a server [81]. A data collection (or collection

of documents) stored on S3 is indexed by SimpleDB. SimpleDB indexes metadata

on full-text of the relative documents. Figure 4.6 shows how �les and their metadata

are stored on S3 and SimpleDB respectively. When the collection is searched, the

indexing is performed by SimpleDB, as presented in Section 4.4.2.1. Inverted index

on SimpleDB is discussed in Section 4.4.2.2. Index maintenance during document

additions, modi�cations and deletions is discussed in Section 4.4.2.3. An algorithm

for querying SimpleDB is presented in Section 4.4.2.4.
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Figure 4.6: Illustration of data and metadata storage in the AWS

cloud using S3 and SimpleDB [35].

4.4.2.1 Metadata Indexing

The main focus of this thesis is not development of new information retrieval algo-

rithms. Despite this, there are some considerations in developing a search feature on

top of SimpleDB. Existing information retrieval engines such as Lucene [65] can not

be used to develop the searching and indexing components on SimpleDB because

of SimpleDB's data model, as discussed in Chapter 3.

In order to make querying faster, an index is used [48]. An index is a data struc-

ture that maps terms to the documents that contain them. With an index, query

processing can be restricted to documents that contain at least one of the query

terms. Many di�erent types of indices exist. The most e�cient index structure

for text querying is an inverted index [48]. An inverted index is a collection of

lists, one per term, recording the identi�ers of the documents containing that term.

Both metadata and full text of documents are indexed by SimpleDB. A detailed

discussion of indexing and inverted �les can be found in Frakes et. al [48].

SimpleDB is arguably a persistent hashtable of hashtables. Each row, also called an
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item in the outer hashtable, has another hashtable with up to 256 key-value pairs,

called attributes.

4.4.2.2 Inverted Index on SimpleDB

An inverted index (or inverted �le) representation on SimpleDB can be performed

by mapping the inverted �le on top of the attributes. That is, have one SimpleDB

domain with one word (term). Then the attributes store the list of URLs (or doc-

uments) containing that word. A single URL (or document) contains many words

in it, therefore, it is important to have a separate SimpleDB domain containing a

mapping from a hash of URL to URL and use the hash URL in the inverted �le.

This helps keep the inverted �le relatively smaller.

To achieve this, SimpleDB uses CreateDomains to create the domains (if this

is the �rst time indexing occurs), a domain of terms and a domain of URLs and

PutAttributes to add terms (attributes) to the domains. To avoid re-inventing

the wheel, Ferret's default Analyzer [67] was used to tokenize the input and �lter

the terms. Stemming of terms uses the Porter Stemming algorithm [99]. Algorithm

4.1 depicts creation of an inverted �le entry on SimpleDB.

Algorithm 4.1 Inverted index on SimpleDB

1: procedure addInvertedFileEntry(term, vector)

/* read the index object from SimpleDB */

/* extract the entire text from a given document */

/* break the text into tokens/terms (SimpleDB attributes) */

/* �lter stop words from the terms */

/* apply stemming to the terms */

2: current_term← null

3: current_term_line← ∅

4: last_saved_term← null

/*iterate on character level */
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5: for each stemmed version of the term, enumerate(vector) do

6: index_term, term_line← getTermLine(term, position)

7: if current_term 6= index_term and current_term 6= null then

8: make a new entry of the term in the domain of terms

9: last_saved_term← current_term

10: end if

11: current_term_line← term_line

12: current_term← index_term

13: current_term_line[bucket]← current_term_line.get(bucket, “ ”)

14: save the entry in inverted �le

15: if current_term 6= last_saved_term then

16: add it to the inverted �le.

/* add current term, update current term line */

17: last_saved_term← current_term

18: end if

19: end for

20: end procedure

/* save index object to SimpleDB */

end

4.4.2.3 Index Maintenance on SimpleDB

When the data collection changes, the index needs to be updated to re�ect the

changes in the collection [76]. Index update on SimpleDB involves addition of

documents, modi�cation of documents and deletion of documents.

SimpleDB uses PutAttributes and BatchPutAttributes calls for document

additions and modi�cations. The two API calls di�er in that BatchPutAt-

tributes is used to generate multiple put operations in a single call. With doc-

ument additions, new documents are added to the index object on SimpleDB. For

document modi�cations, the original entry of the item to be modi�ed is �rst deleted
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from the index using the DeleteAttributes call, then the new version of the ob-

ject is added to the index object, and stored on SimpleDB. Modifying a SimpleDB

item that does not exist causes an error. Furthermore, because SimpleDB makes

multiple copies of the data and uses the eventual consistency update model (see

Chapter 3), an immediate GetAttributes or Select operation (both read op-

erations) after a PutAttributes or DeleteAttributes operation (both write

operations) might not return updated data.

The deletion of documents (using DeleteAttributes or BatchDeleteAt-

tributes calls) is whereby entries of documents deleted from SimpleDB are

deleted from the index object. DeleteAttributes will delete an item if all

its attributes have been deleted. If DeleteAttributes is called without being

passed attributes or values speci�ed, all the attributes associated with that speci�c

item are deleted. However, DeleteAttributes is idempotent because running

it multiple times on the same item does not cause an error.

4.4.2.4 Querying

SimpleDB allows queries to be performed through the Query API operation on one

domain at a time. This service understands queries expressed in a simple language

speci�c to SimpleDB. SimpleDB responses do not include attribute values, meaning

that when a SimpleDB query operation is issued, the service returns a set of item

names that match the query. These item names do not include the items' attribute

names or values, which means that a follow up GetAttributes operation is re-

quired. The GetAttributes operation retrieves the attributes stored in a named

item. For instance, if a query returns 50 items, then the application has to perform

50 subsequent GetAttributes operations to retrieve all the data.

SimpleDB does not support sorting of query results, which means that the results

are returned in their lexicographical order. The result sorting has to be explicitly

speci�ed by the application. Therefore, the results sorting is done at inverted �le
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level.

There is a time limit imposed by SimpleDB on the queries issued and if a query

exceeds this limit, the entire query operation fails and the service returns a Re-

questTimeout error message. Any partial results that may have been generated

before the timeout occurred are not returned.

Queries are issued from the Web user interface (section 4.3). The user's request is

sent in a URL of the form:

ec2-50-17-126-167.compute-1.amazonaws.com:8080/SimpledbBrowsinServlet/Index?act

ion=search&query=computer+science&searchType=title

The query text (or sentence) is tokenized to obtain all terms (attributes) in the

order in which they appear in the sentence. The stop words are removed and the

stemming process is applied to the terms. For each stemmed term, if the index of

the term already exists in the domain for terms, then its URL hash is retrieved,

and a node is added to its posting list. Since each SimpleDB item is limited to

256 attribute-value pairs, new items are created each time the current item reaches

the upper limit (256). A SimpleDB response is 1MB in size and if the response

is larger than 1MB, a nextToken is returned. This nextToken will be used to

get remaining results until all results are displayed (paging). Algorithm 4.2 shows

pseudocode for querying SimpleDB.

Algorithm 4.2 Querying SimpleDB

1: procedure QuerySimpleDB(query)

2: URL_hash_of_terms← ∅

3: terms← query.tokenize()

4: for term in terms do

5: inverted_file_entry ← this.sdb_index.getInvertedF ileEntry(term)

/* print inverted �le entry */

6: URL_hashes← extractHashListFromInvertedF ile(

inverted_file_entry)
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/* print URL hashes

7: for URL_hash in URL_hashes do

8: URL_hash_of_terms[URL_hash]← URL_hash_of_terms.get(

URL_hash, [ ]) + [term]

9: end for

10: end for

11: for URL_hash in URL_hash_of_terms do

12: results← (length(URL_hash_of_terms[URL_hash], URL_hash))

13: end for

/* printing inverted �le results and URLs with matches */

14: results← [ ]

15: for matches, URL_hash in results do

16: look up URL with URL_hash

17: print URL_hash

18: end for

19: return results

20: end procedure

end

The algorithm for extracting the URL hash list of pages from the inverted �le entry

is given by the pseudocode of Algorithm 4.3.

Algorithm 4.3 Extracting URL hash list from an inverted �le entry

1: procedure extractHashListFromInvertedFile(inverted_�le_entry)

2: pages← inverted_file_entry.split(pageSeparator)

/*extract positions */

3: URL_hash_list← [ ]

4: for page in pages do

5: if page← empty then

6: continue
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7: end if

/* append page URL hashes to the the URL hash list */

8: URL_hash_list← URL_hash_list+ [page.split(

positionSeparator)[0]]

9: end for

/* sort the URL hash list */

10: URL_hash_list.sort()

11: return URL_hash_list

12: end procedure

end

Depending on the query complexity, there is a single SimpleDB access or multiple

accesses. Index merging involves concatenating posting lists that belong to the

same term into a single domain, resulting in one single index instead of multiple

indices.

4.4.3 The Metadata Harvester

The Metadata harvester is a simple Perl script that is used to obtain the metadata

records from the two collections namely, the Networked Digital Library of Thesis

and Dissertations (NDLTD) and the South African National Electronic Thesis and

Dissertations (SA NETD). The harvested metadata �les were then ingested into S3.

At the time of metadata harvesting, the best way available to ingest the �les into S3

was through JetS3t2. JetS3t is a free, open-source Java toolkit and application suite

for S3, CloudFront content delivery network and Google Storage for Developers.

The JetS3t toolkit provides Java programmers with a powerful yet simple API3 for

interacting with storage services and managing data stored there. However, due to

recent developments and API version upgrades, S3 has a simple easy-to-use Web

2http://www.jets3t.org
3Application Programming Interface

http://www.jets3t.org
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user interface provided by the AWS management console from which data can be

ingested. Figure 4.7 shows a simple metadata harvester that stored the harvested

metadata �les on Amazon S3.

Figure 4.7: Metadata harvesting from NDLTD and SA NETD.

4.5 Summary

Cloud architectures provide an opportunity and platform for digital library design

and development over existing cloud platform APIs. The digital library services

presented in this thesis used some AWS services such as EC2, S3 and SimpleDB.

Despite its ability to simplify querying and indexing of structured data, SimpleDB's

data model remains complex in terms of the ease with which querying can be done.

SimpleDB allows querying on attribute name level and, therefore, results sorting

remains an open question in SimpleDB. In order to sort by value, the developer

has to explicitly develop a sorting method using any of the existing e�cient sorting

algorithms. Also eventual consistency may entail some issues. �Real-time" updates

may be a requirement for DLs. For example deletion of a document, update of a
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licence or addition of a document. The next chapter presents the evaluation of the

services described here and discusses the �ndings of the evaluation experiments.



Chapter 5

Evaluation

This chapter presents and discusses how the application comprising typical

digital library service components was tested and evaluated. One of the

important aspects that the evaluation addresses is the scalability issues involving

deployment of digital library services in the cloud. Section 5.1 gives and overview of

the resources used in the setup of the experiments. A brief overview of experiments

is given in Section 5.2. The three experiments performed in this thesis are presented

and discussed in sections 5.3, 5.4 and 5.5

5.1 Experimental Setup

For performance evaluation, the application was deployed on an Amazon EC2 in-

stance. Apache JMeter was used for simulation of users and user requests. For these

experiments, an Amazon EC2 instance of type t1.micro was launched for server-

side processing. For simplicity purposes, a 32-bit Ubuntu AMI was used because it

had the same architecture as the desktop computer on which the application was

developed prior to deployment on EC2. The �rewall was con�gured to open ports

22 for SSH, 80 for HTTP, 8080 for Glass�sh and 4848 for Glass�sh Admin, then

the instance was launched. A key-pair was created and downloaded to the local

machine.

Glassh�sh is an open source, production-ready, Java Enterprise Edition-compatible

application server 1. The application developed used Glass�sh as the Web server.

1http://glassfish.java.net/public/getstarted.html

http://glassfish.java.net/public/getstarted.html
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Therefore, as a requirement and for compatibility purposes, Glass�sh was installed

on all EC2 instances used in the experiments that follow.

Apache JMeter (hereinafter referred to as JMeter) [16], a 100 percent pure Java

application designed to test and measure performance, was used for load testing of

the application by recording the time it takes to perform a search and/or browse

query. It may be used as a highly portable server benchmark as well as multi-client

load generator [16].

It should be noted that �thread group" in the following refers to the simulated num-

ber of users accessing the Web application. �Loop Count" represents the number

of times the Web application was accessed by the simulated number of users. In

JMeter terminology, �ramp" up de�nes the amount of time between start up of

threads [80]. JMeter also has logic controllers that determine the order in which

the samplers are processed. Samplers tell JMeter to sent requests and wait for a

response and they are processed in the order in which they appear in the tree. The

Logic controller used in the experiments that follow was the �Random controller",

which alternates among each of the other controllers for each loop iteration, pick-

ing one at random at each pass. Samplers perform the actual work on JMeter by

generating one or more sample results.

For the purpose of presentation of experimental results that are discussed in the

sections that follow, the following listeners were added to the thread group on

JMeter: view results in table, aggregate report and view results tree. View Results

in Table is a listener that creates a row for every sample result, making it easy to

generate Excel spreadsheets for analysis of results. Aggregate Report creates a table

row for each di�erently named request in a test. It gives the totals of the response

information and provides request count, minimum, maximum, average, error rate,

approximate throughput (request/second) and Kilobytes per second throughput.

View Results Tree displays a tree of all sample responses, allowing for easy viewing

of responses of any sample.

These listeners were able to give a better indication of performance of the Web
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application because they produce a tabular representation of results. The actual

data from the experiments was analyzed using an Excel spreadsheet. The graphs of

time taken to process each request against the requests' timestamps were plotted

using the actual data from these experiments.

� Ubuntu Instance - Server Con�guration: An Amazon EC2 instance was

launched using the AWS management console. Once the instance was run-

ning, an SSH connection to the server was opened2. For example,

ssh ubuntu@ec2-23-20-202-114.compute-1.amazonaws.com

An SSH client was used with the information provided, that is, the EC2 key-

pair that was downloaded to the local machine and was associated with the

instance launched. The �rst time the connection was made, Ubuntu needed

to be updated with the latest changes using the commands:

sudo add-apt-repository deb http://archive.canonical.com/ oneric partner

sudo apt-get update

sudo apt-get upgrade

Since Glass�sh server 3.1 was the server used to run the application on the

local machine, it was then downloaded and installed on the instance at this

stage:

wget http://dlc.sun.com.edgesuite.net/glassfish/3.1/release/glassfish-3.1.zip

unzip glassfish-3.1.zip

� Ubuntu Instance - Install Oracle Java JDK7 via PPA: The Oracle Java JDK

7 was required because it includes JRE and the Java browser plugin. It was

installed via the PPA3 because this provides the full Oracle JDK7 package.

The following commands were used to add the PPA and install the latest

Oracle Java (JDK) 7 in Ubuntu:

2http://www.cecs.csulb.edu/~monge/classes/423/2011Spring/project/

aws_ec2_glassfish_instance.html (Last accessed on January 2, 2013)
3http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-

via.html?m=1 (Last accessed on January 2, 2013)

http://www.cecs.csulb.edu/~monge/classes/423/2011Spring/project/aws_ec2_glassf ish_instance.html
http://www.cecs.csulb.edu/~monge/classes/423/2011Spring/project/aws_ec2_glassf ish_instance.html
http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html?m= 1
http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html?m= 1
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sudo add-apt-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-jdk7-installer

� Ubuntu Instance - Glass�sh Con�guration and Launch: The Glass�sh tool

pkg was run as follows:

~/glassfish3/bin/pkg

Finally Glass�sh was started with the following command:

~/glassfish3/glassfish/bin/asadmin start-domain --verbose

Now, using a Web browser, the Glass�sh administration console was opened

and con�gured with the security realm and JDBC resources. The Web appli-

cation to be run on the EC2 instance was deployed from the Glass�sh admin

console.

5.2 Overview of Experiments

To determine service and data scalability needs of the application, a series of ex-

periments were carried out:

(a) Service scalability - performance testing of the application for its ability to

handle numerous search and browse requests (response time) using multiple

varying number servers. In the light of this, experiments were carried out

to determine the response time for searching di�erent categories of words and

browsing the collection using di�erent criteria. In particular, timed-experiments

were carried out to search for popular words, unpopular words, multiple popular

words, multiple unpopular words and a hybrid of popular and unpopular words

to determine if the response times are stable and if there are variations that

occur because of multiple server front-ends.

(b) Data Scalability - performance testing of the application for its ability to handle

searching and browsing functions over varying collection sizes for a �xed number
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of servers. The response time was recorded for both searching and browsing

through data collections of di�erent sizes. The results and interpretation are

elaborated under section 5.4

(c) Processor load testing: A set of experiments in this category were aimed at

determining the behaviour of the application when subjected to a large number

of concurrent requests.

5.3 Experiment 1: Service Scalability

5.3.1 Search

The aim of this experiment is to investigate the time taken for a DL based on

AWS to respond to search requests in a server farm con�guration. This experiment

determines if the response times are stable and if there is variation that occurs

because of the multiple server front-ends.

5.3.1.1 Methodology

JMeter was set up to simulate �fty (50) users accessing one Web service ten (10)

times for the search function. The Web service was hosted on four (4) identical

Amazon EC2 instances (servers). In order to determine the order in which the

Samplers are processed a logic controller was added. In this particular case, a Ran-

dom Controller. The Random Controller picks a random sampler or sub-controller

at each pass, so all the servers had an equal chance of being selected for processing.

The 500 (50 users x 10 requests per user) requests were distributed amongst the

four servers.

In the case of a search, the experiments were carried out at least �ve times for the

�ve di�erent types of queries: popular words, unpopular words, multiple popular

words, multiple unpopular words and a hybrid of popular and unpopular words.
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Query complexity was determined based on the size of the inverted �le size when

results were retrieved from S3.

(a) Popular words : This part of the experiment was divided into two categories.

The �rst category was the case where one hundred (100) results were displayed

per page. The second category was whereby all results were displayed on one

page. When a query of a popular word (for example, �computer") was submit-

ted, the results were returned in an inverted �le from S3. In general, larger

inverted �les contain the most popular words in documents. Therefore, the

largest inverted �le was the one with more occurrences of the popular words in

a query string.

(b) Unpopular words : Contrary to popular words, unpopular words (for example,

�immunochemical") were contained in the smallest inverted �les when results

were retrieved from S3.

(c) Multiple popular words : An example of multiple popular words can be �cloud

computing". Retrieval of the words in this type of a query requires multi-

ple SimpleDB operations. SimpleDB uses the following operators to combine

expressions: intersection, or, and, not and union in the case of multiple-

word search. Multiple words were obtained from the largest inverted �les con-

taining individual words in a query string and the results were merged using

one of the afore-mentioned SimpleDB operators, depending on the nature and

type of query.

(d) Multiple unpopular words and/or a hybrid of popular and unpopular words :

Examples of multiple unpopular words and a hybrid of popular and unpopular

words are �carbohydrate conformations of pneumococcal antigens" and �compu-

tational chemistry and immuno-chemical dynamics", respectively. These cate-

gory of words were obtained from combinations of small and large inverted �les

containing individual words in the query string and the results were merged
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using the operators mentioned before. These queries also involved multiple

SimpleDB operations.

Since the experiments described above were executed at least 5 times, the averages

of the times were computed and used in analysis of the results.

5.3.1.2 Results and Discussion

The results are shown in Figure 5.1. The graph in Figure 5.1(a) was obtained from

the average response times of the 500 requests. Figure 5.1(b) shows the case in

which the data was partitioned into an average of blocks of 50 requests.

The results show that there was a noticeable time to connect to AWS services

(see �pre-cached" part of the graph in 5.1(a)) at the start of all experiments. The

oscillations in response times for queries of di�erent complexities suggest that there

were multiple AWS back-end servers with caches of data that were not completely

shared. The results further show that there was stable response times and that there

was some variability because of multiple server front-ends but nothing signi�cant

after the initial cache priming stage (see �cached" section of the graph in 5.1(a)).

5.3.2 Browse

The aim of this experiment is to investigate the time taken for a DL based on AWS

to respond to browse requests in a server farm con�guration. This experiment was

also performed to determine if the response times are stable and if there is variation

that occurs because of the multiple server front-ends when browsing the collection.

5.3.2.1 Methodology

JMeter was set up to simulate �fty (50) users accessing one Web service ten (10)

times for the browse function. The Web service was hosted on four (4) identical
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Figure 5.1: Results obtained from processing queries of di�erent

complexities.

Amazon EC2 instances (servers). In order to determine the order in which the Sam-

plers are processed a logic controller was added. In this particular case, a Random
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Controller. The Random Controller picks a random sampler or sub-controller at

each pass, so all the servers had an equal chance of being selected for processing.

The 500 (50 users x 10 requests per user) requests were distributed amongst the

four servers.

The experiments were repeated at least 5 times for each browsing criteria. The

averages were computed from the experiment runs and for each browsing category

a graph of time (in milliseconds) against request timestamp was plotted. A further

comparative analysis of the three browsing categories was carried out by partitioning

the results into blocks of 50 and taking the average of each block. This gave a better

comparison of the average response time against the number of requests for all the

three browsing categories (author, title and date).

5.3.2.2 Results and Discussion

The results of this experiment are as shown by Figure 5.2 that follows.Figure 5.2(a)

shows a case whereby the average response times of the 500 requests were used to

generate the graph of average response time against request timestamp. The graph

of Figure 5.2(b) shows the case whereby the average of blocks of 50 requests was

used to generate the graph.

The results show that the average response time is slightly higher when browsing

the collection. This could be due to the size of the response returned by a browse

request. However, as in the case of a search operation, the results show that there

was a noticeable time to connect to AWS services (see �pre-cached" part of the

graph in 5.2(a)) at the start of all experiments. The oscillations in response times

for di�erent browsing criteria suggest that there were multiple AWS back-end servers

with caches that were not completely shared. The results further show that there

were stable response times and that there was some variability because of multiple

server front-ends but nothing signi�cant after the initial cache priming stage (see

�cached" section of the graph in 5.2(a)).
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(a) Graph of average response time in milliseconds (ms) vs. request timestamp obtained from

browsing the collection by di�erent criteria.

0 

200 

400 

600 

800 

1000 

1200 

1400 

1 to 50 51 to 100 101 to 150 151 to 200 201 to 250 251 to 300 301 to 350 351 to 400 401 to 450 451 to 500 

A
ve

ra
ge

 T
im

e
 (

m
s)

 

Number of Requests 

Browsing by Title Browsing by Date Browsing by Author 

(b) Combined graph of time in milliseconds (ms) vs. the number of requests processed when

browsing by di�erent criteria.

Figure 5.2: Results obtained from browsing the collection by dif-

ferent criteria.



84 Chapter 5. Evaluation

5.3.3 Varying the number of EC2 instances

The aim of this experiment is to determine if the number of instances on which

the application was run does a�ect the response time when browsing or searching

SimpleDB data.

5.3.3.1 Methodology

The experiment was setup such that JMeter simulated 50 users accessing one Web

service 10 times as in the previous experiments. The Web service was hosted on one,

two, three and four EC2 instances respectively. In all the four cases, the experiment

was repeated at least 5 times and the average response time was computed. For the

case of one EC2 instance, there was no need for load distribution so the Random

Controller was not used. However, for the remaining cases (2, 3, and 4 instances),

the Random Controller was used in order to distribute the load evenly to all the

EC2 instances. The results of the experiment are represented graphically in the

section that follows.

5.3.3.2 Results and Discussion

The results of this experiment are represented by the graphs of Figure 5.3. For

further analysis and interpretation purposes, the results were divided into blocks of

50 requests per block. The average of each block was computed and the graphs of

average response time (in milliseconds) vs. number of requests was generated. The

results of all the di�erent numbers of instances were plotted on the same graph in

order to have a clear picture of the comparison of performance when using di�erent

numbers of instances.

Figure 5.3(a) depicts the results obtained from varying the number of instances

when searching the collection. In this case, the average response time is signi�-

cantly higher when using one instance and it increases slightly as the number of
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(a) Graph of time in milliseconds (ms) vs. number of requests when searching the

collection over a varying number of EC2 instances.
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(b) Graph of time in milliseconds (ms) vs. number of requests when browsing the

collection over a varying number of EC2 instances.

Figure 5.3: The results obtained from varying the number of in-

stances when browsing and searching the collection.

requests increases. This is caused by a possible bottleneck as the instance (server)

gets over-whelmed with numerous requests, thus slowing it down. There is no dis-

tinct di�erence in response time between 2 and 3 instances. The performance of

the application is similar in both cases and an additional fourth server shows a sig-

ni�cant performance improvement. The average response time is lowest when using

4 instances, showing that the number of instances does impact on the application

performance when searching a digital collection.

Figure 5.3(b) on the other hand, shows a scenario in which the number of instances

was varied when browsing the collection. The graph shows that using one instance
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su�ers possible performance bottlenecks and therefore the average response time is

higher than all the other 3 cases (2, 3 and 4 instances). With browsing, the di�erence

is signi�cant at the start up to 200 requests, after which there is no major di�erence

when using 2, 3 and 4 instances. However, a closer look at the results indicated

that the case of four instances show better performance in comparison to all the

other cases with an average of 483 milliseconds.

The speedup graph obtained when the number of EC2 instances was varied is shown

in Figure 5.4.
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Figure 5.4: Speedup graph showing average response time in mil-

liseconds (ms) vs. the number of servers.

5.4 Experiment 2: Data Scalability

Experiments were carried out in order to determine the performance of the browse

and search features of the application for di�erent collection sizes. These exper-

iments were intended to reveal whether or not the application could cope with

increasing volumes of data in digital collections.



5.4. Experiment 2: Data Scalability 87

5.4.1 Search

The aim of this experiment is to investigate the time taken to process typical re-

quests when the collection size di�ers.

5.4.1.1 Methodology

To determine the e�ect of time on di�ering collection sizes, Apache JMeter was

used as in the case of service scalability discussed before. JMeter was set up to

simulate 50 users accessing one Web service 10 times.

One of the important considerations in this case are the number of servers. For

instance, this �rst experiment involved the use of four (4) identical servers and was

run with collection sizes of 4000, 8000, 16000 and 32000 records. The experiment

was run at least �ve times for each collection size. The average of the results

was computed and for each collection size, the average response time obtained was

further partitioned into blocks of 50 requests to give a better analysis of the results.

The graph of average response time (in milliseconds) against number of requests for

each collection size was plotted.

5.4.1.2 Results and Discussion

The results were represented as average response time against collection size as

shown in Figure 5.5 and Table 5.1. The data from this experiment was partitioned

into blocks of 50 requests and the values in Table 5.1 were obtained by taking an

average of each block. In this case there is still a noticeable time to connect to

AWS at the start of the experiment. The results suggest that the average response

time does not di�er much. However, more experimentation is needed with larger

datasets. This is dependent on the nature of the requests and the sizes of responses,

but there is no unexpected overhead from the cloud service layer.
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Figure 5.5: Average response time in milliseconds (ms) vs. the

number of requests processed when searching collections of di�er-

ent sizes.

Average Response Time (ms)

Requests 4000 records 8000 records 16000 records 32000 records

1 to 50 897 855 880 870

51 to 100 626 623 630 622

101 to 150 507 501 497 453

151 to 200 482 445 529 483

201 to 250 462 476 466 417

251 to 300 532 440 464 481

301 to 350 439 472 517 432

351 to 400 504 477 438 522

401 to 450 465 494 445 472

451 to 500 530 441 481 478

Table 5.1: Average response times in milliseconds (ms) against

the number of requests processed when searching collections of

di�erent sizes.
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5.4.2 Browse

The aim of this experiment was to determine the performance of the browse feature

for a �xed number of servers (four servers in this case) when browsing varying

collection sizes.

5.4.2.1 Methodology

To determine the time taken to browse collection sizes of 4000, 8000, 16000 and

32000 records, JMeter was setup and used as described in Section 5.4.1.

5.4.2.2 Results and Discussion

The graph of average response time taken to browse the collection was plotted

against the number of requests. The results are as shown by Figure 5.6 and Table

5.2. The data from this experiment was partitioned into blocks of 50 requests and

the values in Table 5.2 were obtained by taking an average of each block.
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Figure 5.6: Average response time in milliseconds (ms) vs. the

number of requests processed when browsing collections of di�erent

sizes.
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Average Response Time (ms)

Requests 4000 records 8000 records 16000 records 32000 records

1 to 50 1147 1005 1030 939

51 to 100 1023 876 935 905

101 to 150 854 854 837 805

151 to 200 827 809 812 801

201 to 250 820 808 815 818

251 to 300 863 865 840 793

301 to 350 846 825 821 793

351 to 400 832 797 799 770

401 to 450 846 803 807 771

451 to 500 823 824 823 823

Table 5.2: Average response times in milliseconds (ms) against the

number of requests processed when browsing collections of di�erent

sizes.

The response time for browsing is higher than that of searching because there was

a large number of results retrieved when the collection was browsed. As with the

search feature, there is a noticeable time taken to connect to AWS. The average

response time does not greatly impact on browsing collections of di�erent sizes but

more experimentation is needed with larger datasets.

5.5 Experiment 3: Processor Load Testing

The idea behind load testing is to determine the volume of requests that the appli-

cation could process for an increasing number of concurrent users.

The aim of this experiment was to investigate the time taken to process typical

requests when the number of sequential requests varies, with di�erent number of

concurrent requests.
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5.5.1 Methodology

JMeter was set up to simulate di�erent numbers of users accessing one Web service.

The �rst scenario was a simulation of 5 users, each accessing the Web service 10

times. The second and subsequent scenarios were a simulation of 20, 50, 100, 250

and 500 users, each accessing the Web service 10 times for a search query.

The Web service was again hosted on 4 identical Amazon EC2 instances (servers)

in this case. In order to determine the order in which the Samplers are processed, a

logic controller was added and in this particular case, it was a Random Controller.

The Random Controller picks a random sampler or sub-controller at each pass, so all

the servers have an equal chance of being selected for processing. This experiment

was repeated at least 5 times for search and browse for each of the 5, 10, 20, 50,

100, 250 and 500 users simulated. The overall average response time for each case

was computed and used to generate a graph of average response time against the

number users.

5.5.2 Results and Discussion

The results of this experiment are as shown by Figure 5.7 that follows.

The results show that the average response times are relatively low when there

are fewer users for both search and browse. The average response time shows a

slight increase when the number of concurrent users is increased. As expected, the

quantity and age of requests does not impact on the response times. However, more

experimentation is needed with a simulation of a large number of concurrent users.
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Figure 5.7: Graph of average response time in milliseconds (ms) vs.

number of users serviced for a �xed number of concurrent requests.

5.6 Summary

The results of the experiments have shown that there are stable response times

and some degree of variability because of multiple front-end servers when browsing

and/or searching a collection of a �xed size. There are no signi�cant response time

di�erences after the results caching phase. When processing typical requests on

varying collection sizes in the cloud, response times do not di�er much although

more experimentation with larger datasets is needed. Lastly, request sequencing has

shown that the quantity and age of requests does not have an impact on response

times.
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Conclusion

6.1 Concluding Remarks

Dealing with large volumes of data can be a daunting task, especially when

there are no tools and appropriate technologies at one's disposal. Cloud

computing has gained popularity in recent years and it has been adopted by several

institutions, industries and/or individuals for use in di�erent domains. It therefore

provides a means for developing systems that can scale as needed. The cloud

application proposed and developed on top of the Amazon Web Services cloud

computing stack for this thesis gave a better understanding of the pros and cons

of developing Digital Library applications in AWS. The complexity of applications

di�ers but development of digital library service components in the cloud has proven

to be feasible.

Performance evaluation of the application deployed in the cloud has shown that re-

sponse times are not greatly a�ected by di�erences in request complexity, collection

sizes or request sequencing. There is a noticeable time taken to connect to AWS

services. In production systems this should really be persistent, like ODBC/JDBC

connections in persistent database-driven Web applications.

There is a ramp-up time where internal caching has a small impact on the results.

This occurs consistently for all requests and request types. This will not a�ect busy

services but may have a small impact on services that are rarely used. Oscillation in

response times suggests that there are multiple AWS back-end servers with caches
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that are not completely shared. This results in a degree of unpredictability in results

but this averages out over a period of time.

6.2 Limitations

In developing the services, many features had to be redesigned from typical database-

driven versions. This may constrain what is possible in, for example, query syntax,

and may also a�ect the viability of other services because of the limitations of

S3/SimpleDB.

Experiments carried out in this thesis were using one type of Amazon EC2 instance,

which could have also had a performance bearing. A more elaborate approach

would be to deploy an application of digital library service components on di�erent

Amazon EC2 instance types. Another aspect of this research was the use of Amazon

SimpleDB for indexing and querying the digital collection. Amazon SimpleDB has

a high degree of query results caching, which could possibly a�ect the experimental

results. The use of di�erent indexing services can therefore give a better indication

of performance of digital library service components deployed in clouds.

While this work was underway, Amazon Web Services released the beta version

of another service - Amazon CloudSearch1 - which supposedly provides a fully-

managed search service that automatically scales with increasing amounts of search-

able data. This service was not used in this thesis because the development of digital

library service components was a way of experimenting with application deployment

in the cloud.

There are open questions that this thesis did not answer, in particular those related

to building a full set of digital library services in the cloud and optimizing the

inverted �le indexing on SimpleDB.

1http://aws.amazon.com/cloudsearch [Last accessed on 6 February 2013]

http://aws.amazon.com/cloudsearch
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6.3 Future Work

Some possible extensions to this work are highlighted in sections 6.3.1, 6.3.2 and

6.3.3 that follow.

6.3.1 Implementation of a Full Prototype Digital Library System

Development of a full prototype digital library system can give a better indication

of the ease of development and deployment and/or migration of existing digital

library architectures into the cloud environment.

6.3.2 Experimentation

The set of experiments conducted in this thesis were a subset of a series of experi-

ments that could be carried out to determine digital library scalability in the cloud.

It would also be useful to use a larger collection size of up to millions of records

when testing for data scalability. Another consideration could be simulation of an

even larger population of users, perhaps millions of concurrent user accesses.

The experiments presented in this thesis used a synthetic load for performance

testing. It is however necessary to test the application using a realistic load. The

realistic load follows actual load patterns which can be obtained from existing log

�les of real-world websites.

6.3.3 Cloud Security

Data security in the cloud is another possible extension to this work. It is imperative

for users to know that all their data stored in public clouds is secure and safe from

third party intrusions. An evaluation of cloud security for digital library services in

public clouds can be incorporated into this study.
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