
Technical report CS13-01-00 Department of Computer Science, University of Cape Town

Accelerating kd-tree searches for all k-nearest neighbours

Bruce Merry, James Gain and Patrick Marais

January 2013

Abstract

Finding the k nearest neighbours of each point in a point cloud forms an integral part of many point-cloud
processing tasks. One common approach is to build a kd-tree over the points and then iteratively query
the k nearest neighbors of each point. We introduce a simple modification to the queries to exploit the
coherence between successive points; no changes are required to the kd-tree data structure. The path from
the root to the appropriate leaf is updated incrementally, and backtracking is done bottom-up. We show
that this can reduce the time to compute the neighbourhood graph of a 3D point cloud by over 10%, and
by up to 24% when k = 1. The gains scale with the depth of the kd-tree, and the method is suitable for
parallel implementation.

1 Introduction

The “all k-nearest neighbours problem” (AKNN)
can be defined as follows: given a set of points in
space and a number k, find the k nearest points to
each of the given points. It is a special case of the
k-nearest neighbours (KNN) problem, where the
input point cloud is also the set of query points.
AKNN is a standard tool in point-cloud process-
ing tasks, including density estimation, normal es-
timation, smoothing, surface reconstruction and
others [Connor and Kumar, 2010]. The brute
force approach takes O(dN2) time in d dimensions,
which is prohibitively expensive for typical point
clouds. Even when using more efficient algorithms,
it is computationally intensive, and often domi-
nates the execution time of point-cloud processing
tasks [Sankaranarayanan et al., 2007]. We review
previous work on the AKNN problem in Section 3.

One popular data structure for accelerating spa-
tial queries is the kd-tree [Bentley, 1975], which
is a multi-dimensional extension of a binary tree.
Section 2 describes kd-trees in more detail, along
with our implementation. A kd-tree can be used
to solve the AKNN problem by making N in-
dependent KNN queries. Our contribution, pre-
sented in Section 4, is a simple modification to this
approach. We process the points in a spatially-
coherent order, which allows some information
computed in each query to be re-used for the fol-
lowing query. The modification is general and can
be combined with other variations of the problem,
such as finding approximate nearest neighbours.
The results show a significant reduction in the to-
tal time.

In section 5 we show that our algorithm is suit-

able for parallel execution on modern multi-core
CPUs, and additionally describe how we build the
kd-tree in parallel.

2 kd-Trees

A kd-tree is a tree structure where each node cor-
responds to a rectangle: in d-dimensional space,
a rectangle is the product of d closed intervals on
the coordinate axes. Each internal node has an
axis-aligned hyperplane that splits the rectangle;
the two sub-rectangles thus formed are associated
with the two child nodes. Each point in a point
cloud is stored in a leaf whose rectangle contains
it. The set of points in a leaf is also known as a
bucket, and the bucket size is normally bounded by
some small constant. Figure 1 shows an example
of a kd-tree in two dimensions. As there is a large
body of literature on kd-trees, we will not attempt
to review it here. The interested reader is referred
to Elseberg et al. [2012] for a comparison of several
kd-tree implementations.

A kd-tree can be used to accelerate k-nearest
neighbour queries Friedman et al. [1977], using
ball-rectangle intersection tests. Given a query
point p and k candidate neighbours, we can be
sure that the true k-neighbourhood will be found
inside a ball centred on p and passing through the
current kth-nearest candidate. When searching for
better candidates, a node which does not intersect
this ball can be skipped without considering any of
its children. Figure 1 shows a 2D example, where
k = 2. While searching for a neighbour for p, we
have identified n1 and n2 as candidates. We can
ignore any points that lie outside the circle shown,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Technical report CS13-01-00 Department of Computer Science, University of Cape Town

p

n1
n2

Figure 1: Search for neighbours in a kd-tree.

allowing the left subtree of the root to be pruned.
We first describe how kd-trees are built in Sec-

tion 2.1 and return to query algorithms in Sec-
tion 2.2.

2.1 Constructing the tree

A kd-tree is constructed recursively, by repeatedly
splitting a node into two children and distribut-
ing corresponding points to the appropriate chil-
dren. A splitting rule determines the axis and po-
sition of the splitting plane for each internal node.
We have used the sliding midpoint rule, which
has good theoretical and practical performance
for nearest-neighbour searches [Maneewongvatana
and Mount, 1999]. The splitting hyperplane is
aligned perpendicular to the longest side of the
rectangle. It is positioned to split the rectangle
into two equally-sized sub-rectangles, unless all the
points would then fall on the same side of the
split. In this case, the splitting hyperplane “slides”
the minimum distance to ensure that both sub-
rectangles contain points.

Another design choice is the representation of
nodes in memory. Elseberg et al. [2012] have ob-
tained high performance in their kd-tree library
(libnabo) by keeping the nodes as small as possi-
ble, to minimize pressure on the memory hierarchy.
We have closely followed their design: each inter-
nal node is represented in 8 bytes, with blog2 dc+1
bits to indicate the split axis, 32 bits to store the
split coordinate, and the remaining bits to store
the index of the right child. Leaf nodes also con-
tain 8 bytes, with the split axis replaced by a
sentinel value to indicate a leaf, the split coordi-
nate replaced by the index of the first point in the
bucket, and the child index replaced by the bucket
size. The nodes are stored as a flat array, ordered
by a pre-order walk (see Figure 2), so it is not nec-
essary to store a pointer to the left child as it will
always be adjacent in memory.

Internal node

Leaf node

Point index

Figure 2: A flattened kd-tree. The red arrows are
implicit pointers to the left child, while other ar-
rows are explicitly encoded array indices. Each leaf
node additionally encodes the size of its bucket.

Our implementation diverges from libnabo in
a few respects. We fix the dimension at com-
pile time, which removes dynamic memory over-
heads; we eliminate a redundant pointer from
each bucket entry to the coordinates for the corre-
sponding point; and we set the maximum bucket
size to 16 (rather than 8), as we found that this
gave slightly better performance across a range of
neighbourhood sizes. Presumably as a result of
these changes, our implementation out-performs
libnabo in 3D.

2.2 Finding nearest neighbours

Arya and Mount [1993b] introduced a number
of refinements to accelerate nearest neighbour
searches. One that we take advantage of is in-
cremental distance computation, which reduces the
number of operations needed to compute the min-
imum distance between the query point and the
rectangles, particularly in high dimensions. While
processing a node N , they store the minimum
squared distance between p and N , as well the
portion of this squared distance along each axis.
When moving to the children of N , there are two
cases. For the closer child N1, the closest point
to p is the same as for N , and so no update is
required. For the more distant child N2, only the
distance along the split axis changes, so the total
squared distance d can be updated by subtracting
the old value along this axis and adding the new
value, as shown in Algorithm 1.

Arya and Mount also describe two tree traversal
orders. The standard search is recursive, with the
closer subtree visited prior to visiting the more dis-
tant subtree. The priority search visits leaves in
increasing order of distance from p, but incurs ad-
ditional overhead in maintaining a priority queue.
We briefly experimented with priority search but
found that the overhead exceeded the gains from
examining fewer leaves, so we have used standard
search instead.

While searching for k nearest neighbours with

2



Technical report CS13-01-00 Department of Computer Science, University of Cape Town

Algorithm 1: FindKNN with incremental dis-
tance computation

Input: Query point p
Input: Subtree root node N
Input: Per-axis squared distances a
Input: d =

∑
a

Input: Squared distance to the kth-nearest
candidate D

if N is a leaf then
foreach point q in N do

if ‖p− q‖2 < D then
Add q as a candidate;
Update D;

end

end

else
Let N1, N2 be children of N , with N1

closer to p;
FindKNN (p, N1, a, d, D);
u← (pN.axis −N.split)2;
d← d− aN.axis + u;
aN.axis ← u;
if d < D then

FindKNN(p, N2, a, d, D);
end

end

k > 1, it is also necessary to have some data struc-
ture for maintaining the k best candidates encoun-
tered. We have used just a simple array: Else-
berg et al. [2012] report that this is faster for k up
to about 30, which is the typical range for many
point-cloud processing tasks.

3 Related work

In this section we will focus on the AKNN problem,
as the whole field of nearest-neighbour techniques
is too broad to be reviewed here. However, we will
mention one technique that forms the basis for our
contribution. Nüchter et al. [2007] use kd-trees to
answer nearest-neighbour queries in the Iterated
Closest Point (ICP) algorithm. They note that
each query is typically quite close to the corre-
sponding query from the previous iteration of the
algorithm. To exploit this, they modify the query
procedure to return both the closest point and the
leaf node that contains it. On the next query, the
search is started in this leaf node, and backtrack-
ing is implemented explicitly using pointers in the
tree to parent nodes, rather than top-down using
recursion.

Connor and Kumar [2010] sort the input points
along a space-filling curve, which places points
close to many of their neighbours. For each point,
they obtain a candidate neighbourhood by test-
ing O(k) elements to either side in the sorted list.
The candidate is then refined by finding a conser-
vative range to search and recursively subdividing
it, pruning sub-ranges when they provably contain
no nearest neighbours. Their implementation also
parallelises the queries.

The AKNN problem has also been studied in
the context of databases, where it is generalised
to the “k-nearest neighbour join”: for each point
in one set, find the k nearest neighbours in an-
other set. Böhm and Krebs [2004] use an R-tree-
like structure, and they find the neighbourhoods of
all points from a disk page concurrently. Heuris-
tics are used to prioritise pairs of buckets to be
examined. Xia et al. [2004] also consider the prob-
lem from the perspective of I/O scheduling, but
use principal component analysis to project high-
dimensional data into a lower-dimension space,
which is divided into a grid of blocks and sorted
lexicographically. As before, the neighbourhoods
for all the points in one block are searched concon-
currently.

Although these algorithms are optimized to an-
swer multiple queries in terms of I/O scheduling
and pruning, each neighbourhood is still computed
independently. Sankaranarayanan et al. [2007] im-
prove the search by using the neighbourhood of the
previous point as an initial candidate for the neigh-
bourhood of the current point. This gives an upper
bound on the search radius, and they further mod-
ify the search to avoid re-searching the space occu-
pied by the previous neighbourhood. This idea of
using information from the previous point is simi-
lar in principle to our technique, although we ex-
ploit the coherence in a different way.

4 Exploiting coherence

Once a kd-tree has been constructed, a näıve
approach to solving the all k-nearest neighbours
problem is to perform an independent search for
each point against the tree. This is sub-optimal,
because it discards information determined for one
point which can be reused for nearby points. Our
approach is based on the work of Nüchter et al.
[2007], but adapted to the all k-nearest neighbours
problem. In particular, our approach does not
store parent pointers in the kd-tree.

Nüchter et al. exploit coherence in time: a query
is moved some distance by an iteration of the ICP
algorithm. We instead exploit coherence in space:

3



Technical report CS13-01-00 Department of Computer Science, University of Cape Town

N0

N1

S2

prev p

N2

N3

p

S3

S1

Figure 3: Primary path update. The gray nodes
belong only to the old primary path, and are
popped (bottom-up). The blue nodes are then
pushed (top-down) until reaching Nm.

we perform the queries in an order that maximises
spatial coherence. Fortunately, the kd-tree con-
struction has already computed such an order,
namely the order the points are encountered in a
recursive walk of the tree. In our implementation
the buckets are stored in exactly this order, so it
is possible to do this walk iteratively rather than
recursively.

Given a query point p, let P = {N0, . . . , Nm} be
the path through the kd-tree from the root (N0) to
the leaf containing p (Nm), as shown in Figure 3.
We will call this the primary path. Let Si be the
sibling of Ni. If we expand the recursive calls from
Algorithm 1 that follow the primary path, we find
that we first visit Nm and then the subtrees rooted
at Sm, Sm−1, . . . , S1. This corresponds to lines 10–
21 in Algorithm 2.

We refine this approach in two ways. Firstly,
we need to actually compute the primary path,
which we do incrementally starting with the pri-
mary path for the previous query. We pop nodes
that do not contain p until we are left with a pre-
fix of the primary path, and then we complete this
partial path by walking down the tree as usual
(Figure 3). This is shown in lines 1–8. Since each
node is pushed once and popped once, this takes
amortized O(1) time per query. The second refine-
ment is that we can exit the loop early if the rect-
angle associated with node Ni completely contains
the ball centred at p and passing through the kth-
nearest candidate — the so-called “ball-within-
bounds” test [Friedman et al., 1977] (line 13).

The ball-within-bounds test could also be ap-
plied to the näıve search. We found that applying
it there reduced performance, while it increased
performance in our incremental implementation.
The test itself is applied exactly as often, so we
assume the difference is that each näıve query com-
putes the rectangles top-down from the root to

the leaf, rather than bottom-up only to the point
where the test succeeds.

Algorithm 2: Bottom-up backtracking. Refer
to 1 for the definitions of FindKNN, a, d and D.

Input: Query point p
Input: Leaf L containing p
Input: Primary path P of some point
Output: Neighbourhood of p
Output: Primary path of p

1 while L is not a descendant of P.back do
2 P.pop();

3 end
4 while P.back 6= L do
5 Find child C of P.back containing L;
6 Compute rectangle and node range of C;
7 P.push(C);

8 end
// P now the primary path of p

9 a← 0;
10 FindKNN(P.back, a, 0);
11 foreach Ni in P except the root do //

bottom-up
12 if Ni completely contains candidate ball

then
13 break;
14 end
15 axis← Ni−1.axis;
16 aaxis ← (Ni−1.split− paxis)

2;
17 d← aaxis if d < D then
18 FindKNN(s(Ni), a, d);
19 end
20 aaxis ← 0;

21 end

To implement these operations efficiently, we
need to associate some extra fields with each node:
the range of node indices for the descendants of
the node, and the rectangle corresponding to the
node. It is not necessary to store these fields in
the kd-tree itself: they are maintained only for the
primary path.

5 Parallel execution

Modern CPUs typically contain multiple cores,
and parallel programming is important in obtain-
ing high performance. If our modified search pro-
cedure were unsuitable for parallel implementation
it would be of limited practical value. We now
show that our algorithm can very easily be adapted
for parallel execution on a multi-core CPU. We
have not considered massively parallel processors
such as GPUs: in principle the same methods can

4



Technical report CS13-01-00 Department of Computer Science, University of Cape Town

be used, but we have not measured the impact on
performance.

Our modification introduces a serial depen-
dency, because each query uses information from
the previous query. However, this information is
only used as a hint for acceleration, and should
it be expedient we can find the neighbourhood
of a point with no prior information. To break
the serial dependencies, we divide the nodes into
equally-sized sequential chunks, and process all
the points in each chunk serially. The first point
in a chunk is processed with no prior informa-
tion, while the rest are processed incrementally.
Chunks do not always take a uniform amount of
time to process, so we use OpenMP [OpenMP
Architecture Review Board, 2008] scheduling for
load-balancing. We found that a chunk size of
1024 gives good load-balancing without excessive
scheduling overheads.

If only the k-nearest neighbour search is op-
timised, the total running time could come to
be dominated by the time to construct the kd-
tree, particularly for small values of k. To avoid
this, we also parallelise the construction of the kd-
tree. Since each subtree is built independently, this
should be simple to parallelise. Unfortunately, the
way nodes are stored in a flat array introduces a
serial dependency, as one needs to know the num-
ber of nodes in the left subtree to determine where
to place nodes from the right subtree.

To facilitate parallelisation, we build the tree in
phases. In the first phase, we build a “hybrid” tree
where the top few layers use a different node repre-
sentation, labelled “super-nodes” in Figure 4. The
construction is recursive. To process a subtree, we
pick a splitting plane, then partition the points
into the left and right sides. If the tree contains at
least C = N

256 points then its root becomes a super-
node with pointers to its children, and the children
are generated in parallel. Since the children are
written to separately allocated arrays, there are
no conflicts. On the other hand, if the tree con-
tains fewer than C points then it is generated into
a flat array, and the children are processed serially.
The choice of C is design to provide sufficient par-
allelism to saturate the CPU without creating an
excessive number of super-nodes.

After the hybrid tree is constructed, we make
additional passes to flatten it into a single array.
First, we recursively (and in parallel) compute the
size of each subtree. Next, we use these sizes to
determine where each of the separate flat arrays
shown in Figure 4 will be placed within the final
array. Finally, we copy the nodes from the hybrid
tree into this array.

Super-node

Internal node

Leaf node

Point index

Figure 4: Hybrid kd-tree. Each green super-node
is allocated separately. Each connected piece of
internal and leaf nodes is a separate array that is
produced as a serial task.

6 Results

6.1 Experimental setup

Experiments were carried out on an Intel Core i7-
2600 (4 cores, 3.4 GHz) with 16 GiB of RAM run-
ning Ubuntu 12.04. The code was written in C++
and compiled with GCC 4.6.

Table 1 lists the data sets we used. The data sets
marked with a (*) are range-scanned point clouds,
while the others are polygon meshes from which
only the vertices are used. Although the latter
are not necessarily representative of a typical point
cloud, we have used them to facilitate comparison
with previous work [Sankaranarayanan et al., 2007,
Connor and Kumar, 2010].

6.2 Performance comparison

Table 1 shows the reduction in total time (includ-
ing time taken to build the tree) due to our modi-
fied search. For comparison, we also show the time
taken by the integer version of STANN 0.74 [Con-
nor and Kumar, 2010]. STANN was not able to
process the Pisa data set as our test machine has
insufficient virtual memory.

Figure 5 shows the improvement against the
number of vertices. In general, larger point clouds
benefit more. Large clouds have deeper kd-trees,
and so gain the most from eliminating the top-
down computation of the primary path. It is also
interesting to note that the Armadillo data set,
which is far noisier than the other data sets, ben-
efits more than might be expected.

We have not implemented the scheme of
Sankaranarayanan et al. [2007], but a compari-
son with their reported results suggest that their
scheme is not competitive for in-core use. For
example, they report 2657.9 seconds to compute
8-neighborhoods for the Lucy model on a quad-
CPU system, of which only about 10 seconds is
I/O time.

5



Technical report CS13-01-00 Department of Computer Science, University of Cape Town

Table 1: Data sets and search times with k = 8 and 8 threads. The data sets marked with a (*) are range-
scanned point clouds, while the other models are reconstructed meshes with the connectivity information
removed. Build is the time to construct the kd-tree. Näıve and Backtrack are the times for independent
queries and for our method respectively, and Reduction is the difference between them. Values in parentheses
exclude the build time. STANN is the time taken by the STANN library [Connor and Kumar, 2010].
The Armadillo data contains a significant amount of noise and background, while the other range-scanned
data sets contain clean data. We also dropped scans from the Armadillo data set that had no registration
information.

Data set Points (×106) Build (s) Näıve (s) Backtrack (s) Reduction (%) STANN (s)

Bunny (*) 0.36 0.02 0.10 (0.08) 0.09 (0.08) 4.6 (5.4) 0.82
Happy Buddha 0.54 0.02 0.14 (0.11) 0.13 (0.10) 6.3 (7.8) 0.97
Turbine Blade 0.88 0.04 0.23 (0.19) 0.21 (0.17) 6.2 (7.5) 1.94
Armadillo (*) 2.93 0.20 0.98 (0.78) 0.88 (0.69) 9.4 (11.7) 6.65
David (2mm) 3.61 0.20 0.99 (0.78) 0.90 (0.70) 8.6 (10.9) 6.89
Lucy 14.03 0.85 3.90 (3.05) 3.47 (2.62) 10.9 (13.9) 27.23
David (1mm) 28.18 1.60 7.67 (6.07) 6.78 (5.18) 11.6 (14.7) 56.42
Pisa (*) 157.43 10.02 48.07 (38.05) 41.81 (31.80) 13.0 (16.4) —

106 107 108

5

10

15

20

25

Vertices

R
ed

u
ct

io
n

in
ti

m
e

(%
)

k = 1

k = 8

k = 16

Figure 5: Improvement over the näıve implemen-
tation, for the models listed in Table 1 (including
build time). Pisa with k = 16 is not shown be-
cause the neighbourhood graph exceeds the avail-
able memory.

6.3 Parallel performance

Figure 6 shows the effectiveness of our paralleli-
sation. The kd-tree construction is accelerated,
but the speedup is sub-linear, achieving less than
3× speedup with 4 threads. However, it is the k-
nearest neighbour searches that dominate running
time, and here we achieve close to linear speedup
with 4 threads. Since our CPU has 8 hardware
threads but only 4 cores, the sub-linear speedup
with more threads is as expected.

7 Conclusions

We have presented a modification to a standard
kd-tree search that accelerates queries in the all

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Threads

S
p

ee
d
u
p

Build

Query

Total

Linear

Figure 6: Speedup with increasing number of
threads, for the David model with k = 8. The
results are almost identical for other models and
other values of k. With larger values of k the
queries take a higher proportion of total time and
so overall speedup is slightly improved.

6



Technical report CS13-01-00 Department of Computer Science, University of Cape Town

k-nearest neighbours problem, with the greatest
improvements when k is small and the point cloud
is large. The modification is very simple to im-
plement: Algorithm 2 hides very little detail. It
also requires no modifications to the tree struc-
ture itself, so it can be implemented on top of an
existing kd-tree library provided that the library
exposes the internal data structures. There are a
number of variations of nearest-neighbour searches
that we have not discussed: searching for approxi-
mate nearest neighbours [Arya and Mount, 1993a],
searches within a radius bound, non-Euclidean
metrics, user-provided predicates to exclude cer-
tain neighbours, and so on. Provided that these do
not modify the search order, they should trivially
integrate with our modification. Our implementa-
tion also supports higher dimensions, but the im-
pact of dimension on performance is unknown.

We have also shown that in spite of the incre-
mental nature of the algorithm, it is straightfor-
ward to parallelise the queries, and we achieve
nearly linear speedup with four cores.

8 Acknowledgements

The data sets are courtesy of the Stanford 3D scan-
ning repository, the Georgia Institute of Technol-
ogy Large Geometric Models Archive and the Dig-
ital Michelangelo project. Funding was provided
by the South African Centre for High Performance
Computing.

References

Sunil Arya and David M. Mount. Approximate
nearest neighbor queries in fixed dimensions. In
Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, SODA ’93,
pages 271–280, Philadelphia, PA, USA, 1993a.
Society for Industrial and Applied Mathemat-
ics. ISBN 0-89871-313-7.

Sunil Arya and David M. Mount. Algorithms
for fast vector quantization. In Data Compres-
sion Conference, 1993. DCC ’93., pages 381–
390, 1993b.

Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Commun.
ACM, 18(9):509–517, Sep 1975. ISSN 0001-
0782.

Christian Böhm and Florian Krebs. The k-nearest
neighbour join: Turbo charging the KDD pro-
cess. Knowl. Inf. Syst., 6(6):728–749, November
2004. ISSN 0219-1377.

M. Connor and P. Kumar. Fast construction
of k-nearest neighbor graphs for point clouds.
IEEE Transactions on Visualization and Com-
puter Graphics, 16(4):599–608, July–Aug 2010.
ISSN 1077-2626.

Jan Elseberg, Stéphane Magnenat, Roland Sieg-
wart, and Andreas Nüchter. Comparison of
nearest-neighbor-search strategies and imple-
mentations for efficient shape registration. Jour-
nal of Software Engineering for Robotics, 3(1),
Feb 2012.

Jerome H. Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. An algorithm for find-
ing best matches in logarithmic expected time.
ACM Trans. Math. Softw., 3(3):209–226, Sep
1977. ISSN 0098-3500.

Songrit Maneewongvatana and David M. Mount.
It’s okay to be skinny, if your friends are fat.
In Center for Geometric Computing 4th Annual
Workshop on Computational Geometry, 1999.

Andreas Nüchter, Kai Lingemann, and Joachim
Hertzberg. Cached k-d tree search for ICP al-
gorithms. In Proceedings of the 6th IEEE In-
ternational Conference on Recent Advances in
3D Digital Imaging and Modeling (3DIM ’07),
pages 419–426. IEEE Computer Society Press,
August 2007. ISBN ISBN 0-7695-2939-9.

OpenMP Architecture Review Board.
OpenMP application program in-
terface version 3.0, May 2008.
http://www.openmp.org/mp-documents/spec30.pdf.

Jagan Sankaranarayanan, Hanan Samet, and
Amitabh Varshney. A fast all nearest neighbor
algorithm for applications involving large point-
clouds. Comput. Graph., 31(2):157–174, April
2007. ISSN 0097-8493.

Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jing
Hu. GORDER: an efficient method for KNN join
processing. In Proceedings of the Thirtieth in-
ternational conference on Very large data bases,
VLDB ’04, pages 756–767. VLDB Endowment,
2004. ISBN 0-12-088469-0.

7


