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ABSTRACT

Finding large amounts of text data for use in natural 
language technology is difficult for under-resourced 
languages such as Swahili. The corpora that are readily 
accessible for these languages are not sufficient to be used 
in language technologies, whose requirements can run into 
the hundreds of millions of words. This paper describes how 
we can take advantage of search engines such as Google 
together with crawling tools to collect Swahili text from the 
Web. We also share the experience of cleaning up and 
normalising the resulting text data. Finally, we show some 
preliminary results of the evaluation of the language models 
built from our corpus as well as results of how they compare 
to those built from the Helsinki Corpus. 
 

Index Terms— Under-resourced languages, corpus 
acquisition, Swahili, language model

1. INTRODUCTION 
 

Natural language technology applications, such as, 
speech recognition, machine translation, and handwriting 
recognition, require large amounts of training text data. For 
such applications performance normally increases with 
increasing amount of training data. In large vocabulary 
continuous speech recognition systems [4], hundreds of 
millions of words are needed to obtain accurate probability 
estimation for the statistical language model. In [1], Banko 
and Brill showed that for context sensitive spelling 
correction, increasing the training data size increases the 
accuracy for up to 1 billion words. Likewise in machine 
translation, as described in [2], the more the training data, 
the better the results. 

Although the Web is growing tremendously all the time, 
with large amounts of text data being added to it daily, 
finding contents for a particular target language can be 
difficult. First, it requires knowing the location of these 
contents and how to collect them. As there are millions and 
millions of Web pages, knowing which web site has content 
in a given language is an enormous challenge. This situation 
is clearly most severe for under-resourced languages. 
Secondly, the process of cleaning up and normalizing the 
contents is always crucial and needs extra care so as to 
achieve high performance in the resulting language model. 

This involves text-processing tasks such as removing 
markup tags or unwanted text, clearing empty spaces or 
lines to produce one-line single sentences, and expanding 
abbreviations and acronyms. In particular, normalisation [4] 
such as converting non-words into spoken words depends 
on the target language, requiring some understanding of the 
language so that the conversion rules can be defined and 
word ambiguity can be resolved. Therefore, existing scripts 
which have automated these tasks for other languages may 
not be helpful. 

The focus of this study is Swahili, an under-resourced 
language spoken by over 100 million people in East and 
Central Africa, mainly Tanzania, Kenya, the Comoros, 
Rwanda, Burundi, Uganda and the DRC, and to a lesser 
extent, Malawi, Zambia, Mozambique and Somalia (see 
http://swahililanguage.stanford.edu/). For this reason, one 
can approach the Web with a certain level of confidence 
about the presence of significant Swahili content there. The 
next section shows how the search engine Google was used 
to locate Swahili contents. Section 3 shows how these 
contents were collected by crawling into the web sites found 
by the search. Cleaning up of the contents is explained in 
Section 4, while Section 5 shares the experience of 
developing the normalization rules. Section 6 shows some 
preliminary results on the language model, while Section 7 
discusses these results with reference to previous work. 
 

2. WEB SEARCH 
Searching for content on the Internet has always been 

difficult because of the distributed manner in which the 
content is stored. Because English dominates the Web, 
content in less popular languages is hard to discover. 

The search engine Google contains features that help to 
narrow down the search results. The language selection 
feature made it possible to list documents or domain names 
written in Swahili. For our search queries, we used the more 
common Swahili keywords ("na", "ya", "ni", meaning 
“and”, “of”, “is”) which are likely to be found in any 
Swahili document. SEOquake, a FireFoxaddon, helped to 
export the list of URLs in the search results into csv files 
(see Figure 1). These csv files were then merged into a text 
file and URLs were truncated remaining with only root 
domain names. Redundant domain names were then 
removed from the list. The purpose of retaining only 
domain names was to enable the web crawler to visit the 
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entire website by starting from the root and passing through 
all the pages hosted on that domain. The whole process of 
merging and truncating was done using a Perl script. 
 

 
Figure 1. Search results exported usingSEOQuake 

We performed a manual cross-check, looking up one 
URL after another to see how much Swahili content exists 
on those web sites. It may be argued that we could have 
narrowed down our search results by just focusing on 
domain names of Swahili-speaking countries, for instance 
domains ending in .tz, meaning URLs from Tanzania where 
one is most likely to find content written only in Swahili. 
Unfortunately, this was not the case since it turned out that 
some of these web sites contain content in both English and 
Swahili and, furthermore, the percentage of content that is 
in English is sometimes much greater than the Swahili 
content. Thus, domain names by themselves are not a 
reliable guide on the language of the content. A trigram 
language model can alleviate the task of detecting 
documents of the desired type; however, there was none 
available to us, and, in fact, the ultimate goal of this work is 
to build a Swahili language model. A total of 4220 URLs 
were found which had any number of Swahili words. Some 
URLS had the same root domain name and in such cases, 
only one such URL was retained. The number after 
discarding redundant domain names was 1498. Lastly, a 
manual check was conducted for the amount of Swahili 
content. Only a final 36 domains were found to have a 
significant number of Swahili sentences (proper or 
improper).This final list was then used in the crawling tool 
to download all the content. 

 

3. COLLECTING THE CONTENT 

For collecting the text data we used wget since it 
provides all the necessary features required to perform the 
work efficiently (see below for how the command was used 
to launch this process). The command wget is a free tool for 
retrieving content from the web. It supports downloading 
via HTTP, HTTPS and FTP protocols. Its robustness allows 
it to work over slow and unstable network connections. It 
can work as a Web crawler by downloading recursively the 
resources linked to each other. It also allows selection of 
document types to download which is crucial when there is 
limited bandwidth and storage. 
 
wget -r -Nc -np -R 
gif,jpg,jpeg,js,png,JPG,FLV,MP4,AVI,css,ico,flv,swf,mp4,
avi,mp3,mov -i ../list.txt 

� -r :perform recursive download 
� -Nc :skipping downloads that would download to 

the existing files 
� -np : don’t ascend to the parent directory 
� -R : Reject files extension 
� -I : download URLs found in a file 

The final 36 domain names list file was then split into 
five text files for simplicity, each containing at least 6 
domain names. These files were then used one by one in the 
wget command to retrieve the content from each of the 
domain names. Since we were only interested in textual 
information, pictures, videos, audio and other arbitrary 
binary content were avoided. The process of downloading 
the content from the domains on each text file took about a 
day. The total download size of all content was 
approximately 1.9GB of textual content, where most 
consisted of html files and some consisted of pdf files, word 
documents and text files. 
�

4. CLEANING 
 

Before starting with cleaning up the contents, all web 
pages retrieved from a particular domain were merged into a 
single text file. This made the cleaning process much 
quicker and easier than if it were to be done for hundreds of 
html files individually. By merging this way, each domain 
name corresponded to a single text file for clean-up. 

Since the conversion of pdf and word documents to text 
files requires other tools and requires more text processing 
to come up with clearly defined Swahili sentences, we 
decided to extract the contents from html files which 
seemed easier but also sufficient. Instead of removing the 
web based tags we decided to extract the contents from 
certain tags, which made it possible to retrieve more useful 
content. Tags like <p>, <br>, <div>,<th>were used to 
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extract groups of linguistic sentences, while tags like <a>, 
<script>,<style> were ignored as they contain presentation 
information, and not content.  Non-mapped Unicode 
characters, empty lines and empty spaces were all removed. 
Punctuation marks such as (.?!) were used to identify 
sentences which were then listed line by line in a text file.  
Other characters such as (*()[]{}"#><) were also removed 

Furthermore, a Perl script was used to identify and 
discard sentences with more than fifty percent of words 
which appeared not to be in the Swahili dictionary. The 
Swahili dictionary was created from the Helsinki Corpus 
which contains more Swahili words than the Freedict, Tuki 
or TeDje-SED dictionaries [3]. The presence of such 
sentences was because at times splitting of sentence at 
markers was not done perfectly which left some 
grammatically incorrect Swahili sentences and some that 
were merged with English words. Again not all the contents 
were just in Swahili; some were a mixture of both languages 
which made it difficult to filter out. However, our primary 
goal was to collect as many Swahili sentences as possible 
regardless of ending up possibly with 50% of English words 
in the sentence. The minimum sentence length was about 4 
words while the maximum length was about 99 words. 
Table 1shows the data counts during the cleaning stage. 

 
 

Table 1. Statistics for cleaned-up web corpus 

Total number of sentences 488,273 
Max number of words per 
sentence 

99 

Min number of words per 
sentence 

4 

 
5. NORMALISATION 

 
Normalization is the process of converting non-standard 

words, which includes numbers, currency, abbreviations, 
acronyms and dates, into spoken words. This process is very 
crucial when it comes to applying the language model in 
applications such as automatic speech recognition in order 
to have better recognition results. Leaving these non-
standard words will introduce noise in the training data 
causing the language model not to perform well when 
applied to speech recognition. Although the set of non-
standard words varies from one language to another, 
fortunately, they can be handled in a manner that is 
independent of language. The process, mostly involves a 
standard set of steps, which can be applied to any language. 
However, resolution of word ambiguity can demand more 
attentionas it depends on the word context, and requires 
familiarity with the language itself, which can be hard 
sometimes depending on the dimensions of the problem. 

The process of normalization begins with splitting the 
input text into tokens, followed by identifying the types of 

non-standard words and their categories. It then finishes 
with performing the expansion. In this work, we started 
with the straightforward identification of these types and 
performing the expansion. Tokenization was performed 
separately during the cleaning up. Perl regular expressions 
were used to define the rules of identifying the categories. 
We adopted similar rules to those used in [9].The order of 
identifying the types of category was important in order to 
deal with ambiguity. For instance, dates with this format 
(12/23/2002) had to be detected first before fractions 
(12/23). The following non-standard word types were 
chosen for normalization: time, numbers (cardinal, 
fractions, and decimals), emails, web addresses, telephone 
numbers and fax numbers, abbreviations and acronyms (see 
Table 2 for some examples). 
 

Table 2.Normalisation examples 

Category Format Conversion
(Swahili 
example) 

Conversion
(English
example) 

Email Abc_123
@ 
yahoo.com 

A b c underscore 
mojambilitatu at 
yahoo nukta 
com 

A b c 
underscore 
one two 
three at 
yahoo dot 
com 

Times saa 12:30 Saasitananusu 
 

Half past 
twelve 

Dates 30-02-
2002 or 
 

Thelathinimwezi 
wapilimwaka 
elfumbilinambili 

Thirtieth of 
February 
two 
thousand 
and two  

Decimals 3.4 
 

Tatunuktanne Three point 
four 

Fractions ½ nusu half 
Cardinal 34 Thelathininanne Thirty four 
 

6. LANGUAGE MODELS 
 

We built different types of n-gram language model for 
both the text prepared from the web and Helsinki corpus 
[7]. The text from the Helsinki corpus, to our knowledge the 
only large tag Swahili corpus currently available online, was 
prepared in a similar fashion to that from the web. Sentence 
separation and cleaning up of empty lines or spaces was 
already done, which made the task of cleaning up much 
easier. 

We used the SRILM toolkit [8] to build the languages 
models. These language models were built using different 
types of smoothing techniques and different sizes of the 
Swahili dictionary (20K, 50K, 64K and 95K) in order to 
analyse the effect of both on the language model by 
computing the model’s perplexity. Ultimately the goal of 
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this work is to evaluate the language models according to 
their performance in machine translation tasks, but this is 
left to future work. 

We also combined the two sets of data in order to 
analyse the performance of the language model as we 
increased the size of the text data set. Figures 2 to 11 show 
the experimental results, first on comparison between 
different smoothing techniques and finally on performance 
of each language model as the size of the data set increases. 

The following smoothing techniques were applied: 
� GT Good Turing 
� AB Absolute Discounting 
� WB Witten-Bell Discounting 
� RD Ristard’s Natural Discounting 
� O – KN Original Kneser-Ney Discounting 
� M-KN Modified Kneser-Ney Discounting 
� O-KN-I Original Kneser-Ney interpolated 

 
Figure 2. Helsinki corpus, 20K dictionary 

 
 

 
Figure 3. Helsinki corpus, 50K dictionary 

 

 
Figure 4. Helsinki corpus, 64K dictionary 

 

 
Figure 5. Helsinki corpus, 95K dictionary 

 
 

 
Figure 6. Web corpus, 20K dictionary 
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Figure 7. Web corpus, 50K dictionary 

 
 
 
 

 
Figure 8. Web corpus, 64K dictionary 

 
 

 
Figure 9. Web corpus, 95K dictionary 

 

 
Figure 10. Both corpora, 3-gram LM 

 
Figure 11. Both corpora, 4-gram LM 
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7. DISCUSSION 
 

From the results shown in Figure 2 to Figure 9, we can 
see that the perplexity value decreases as the order of n-
grams increases but then it becomes steady or saturated as it 
reaches higher orders for different smoothing techniques. 
The OOV rates for both the Helsinki Corpus and the Web 
Corpus decrease by similar factors as the size of the 
dictionary increases. (One thing to be cleared about the 
OOV rates is that our goal was not to compare them 
between the two corpora but to see the impact of dictionary 
sizes on the language model.) The language models created 
from the Helsinki corpus and the Web corpus are quite 
similar in terms of performance but they do differ slightly in 
terms of out of vocabulary words (OOV). The web corpus 
has more out of vocabulary words due to diversity of data 
coming from the web compared with the Helsinki corpus for 
which most of the data is taken from old newspapers which 
contain proper Swahili sentences. Interpolated original 
Kneser-Ney (O-KN-I) smoothing outperforms other 
smoothing techniques.  

Based on different training data set sizes, the perplexity 
also decreases as data increases on different n-gram orders 
as shown in Figures 10 and 11. These results confirm those 
published earlier by Goodman in [6] based on comparison 
of different smoothing techniques against different n-gram 
orders and against varying sizes of training data. 
 

8. CONCLUSION AND FUTURE WORK 
 

This paper reported the work on how to collect Swahili 
content from the World Wide Web and prepare it to be used 
in building n-gram language models for various values of n, 
and subjected to various smoothing techniques. The process 
was accomplished with the assistance of Google search 
engine, a crawling tool and some Perl scripting for text 
processing. The process included both manual and 
automated tasks. The paper also shared our experience on 
performing text normalization, which was mainly done by 
constructing rules expressed in Perl. Finally, the preliminary 
language model results were presented which were similar 
to those reported in past work.  

The web corpus data was not well cleaned up and the 
words were not tagged. It contained ungrammatical Swahili 
sentences, unwanted words and English words, which can 
give false results during real application such as speech 
recognition or machine translation. We are hoping in the 
future to use a morphological analyser to look for 
grammatical errors and spelling mistakes so that we can 
improve the quality of the corpus by reducing the OOV rate. 
The quality of the web corpus will be evaluated during the 
next phase of our research, when we apply it to machine 

translation. This will be compared with the performance of 
the Helsinki Corpus in the same task. For tagging the 
corpus, support vector machines or other classification 
algorithms could be used to perform this process more 
efficiently and effectively.  

In text normalization, some conversion words such as 
(@-at, /-forward slash) were borrowed from the English 
dictionary. In the future, we are hoping to do more research, 
finding proper Swahili substitution words of these types of 
symbols. In Swahili-speaking countries, there are bodies 
responsible for language maintenance tasks, such as 
composing new words for modern phenomena. We hope to 
make contact with these and be able to tap into their 
resources. The language models created were not tested to 
check performance on real applications. The ultimate goal 
of this work is to perform such an evaluation by using these 
models in a machine translation system, which we intend to 
do in the last stage of this research. 
. 
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