
Assessing the Design of Web Interoperability Protocols

Jorgina Paihama
Department of Computer

Science
University of Cape Town

Private Bag X3, Rondebosh,
7701

Cape Town, South Africa
jpaihama@cs.uct.ac.za

Kyle Williams
Department of Computer

Science
University of Cape Town

Private Bag X3, Rondebosh,
7701

Cape Town, South Africa
kwilliams@cs.uct.ac.za

Hussein Suleman
Department of Computer

Science
University of Cape Town

Private Bag X3, Rondebosh,
7701

Cape Town, South Africa
hussein@cs.uct.ac.za

ABSTRACT
Existing Web interoperability protocols are, arguably, over-
ly complex as a result of each protocol being designed by a
different group, providing a single service, and having its
own syntax and vocabulary. Some standards, such as RSS,
are popular and are designed with simplicity in mind and
include easy to understand documentation, which is a key
reason for its high adoption levels. However, the majority
of protocols are complex, making them relatively difficult
for programmers to understand and implement and thus
hampering communication between heterogeneous infor-
mation systems. This paper proposes a possible new di-
rection for high-level interoperability protocols by focusing
on simplicity. The High-level Interoperability Protocol -
Common Framework (HIP-CF) was designed and evalu-
ated as a proof of concept that, if interoperability is simpli-
fied and it is made easier for programmers to understand
and implement protocols, it could lead to having more in-
teroperable systems as well as increased protocol adoption
levels. Evaluation showed that this is a reasonable view
and that there is a lot of room for improvement when it
comes to interoperability protocols.

Categories and Subject Descriptors
H.3.0 [Information Storage and Retrieval]: General;
H.3.5 [Online Information Services]: Data Sharing;
H.3.7 [Digital Libraries]: Standards

General Terms
Standardisation, Design, Documentation

Keywords
Interoperability, Internet protocols, Web Services

1. INTRODUCTION
A large amount of research has been carried out on the

creation and preservation of digital information systems
and it has been shown how these systems can be benefi-
cial in a number of environments. However, the benefits

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SAICSIT ’12, October 01 - 03, Pretoria, South Africa
Copyright 2012 ACM 978-1-4503-1308-7/12/10...$15.00.

of these systems could be extended even further if the
systems were able to communicate better. Improved in-
teroperability between heterogeneous systems would allow
for increased information accessibility, promote open ac-
cess, allow for the easier creation of federated metadata
archives, improve efficiency and reduce costs by allowing
systems to share and retrieve data as necessary [27].

This kind of interoperability is beneficial in many con-
texts. For instance, interoperability among medical record
systems is beneficial as it could allow a doctor, who is
treating a patient for the first time, to have access to that
patient’s full medical history, instead of having to rely on
the patient’s memory.

Currently there are many protocols that facilitate in-
teroperability between systems at various levels of com-
munication. The current set of interoperability protocols
are created by different groups, usually provide a single
main service and make use of different syntax and seman-
tics. Many of these protocols are efficient and provide
advanced features. However, this often comes at the cost
of them being overly complex and leads to implementa-
tion difficulties for programmers who, in most cases, have
to read long and complex documentation.

In addition to the complexity, there are also some inter-
operability protocols and standards that forgo advanced
features for the sake of simplicity. For instance, the Really
Simple Syndication (RSS) standard is extremely popular
and its popularity seems to be linked to the simplicity of
the protocol and the ease with which RSS feeds can be im-
plemented [10]. It could be argued that, interoperability
protocol adoption rates can be improved if the protocols
are simplified and one could argue for the simplification
of all high-level interoperability protocols. Furthermore,
it could be useful to create a suite of protocols that are
consistent and that allow for the implementation of one
particular protocol in the suite to make it easier implement
others with minimal incremental work. The possibility of
improvement comes from the premise that if protocols had
more in common it would be easier to provide solutions
to interoperability problems.

Thus, this paper proposes the design of an experimental
suite that combines simplicity and efficiency to improve
interoperability by combining various high-level interop-
erability services into a single suite of protocols. The goal
of this suite is to support only the minimal required func-
tionality, while not compromising efficiency. While the
proposed suite combines multiple high-level interoperabil-
ity protocols, each of the protocol is independent of the
others, i.e. the implementation of one protocol should fa-
cilitate the implementation of another protocol given the
acquired common knowledge, but it is not required that

353

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

all protocols be implemented. It is not the purpose of this
paper to dissuade people from using existing and estab-
lished protocols/standards and adopt the proposed suite.
Instead, the focus of this paper is to show that there is,
in fact, lots of room for improvement in the design of the
current set of protocols and to suggest a possible alterna-
tive direction for high-level interoperability research and
design.

The rest of this paper is structured as follows. Section
2 discusses the background and current state of different
interoperability protocols. Section 3 presents the results of
a user survey and the design of the experimental protocol
suite. The evaluation of the suite is presented in Section
4 and, lastly, the conclusion is presented in Section 5.

2. BACKGROUND
Interoperability is the capability of different systems to

communicate and exchange data with each other, using
a set of predefined formats, standards and protocols that
allow the systems to successfully use each other’s services.
In this section, some existing interoperability protocols
and standards are discussed and analysed as well a brief
discussion about some interoperability research projects.

2.1 Interoperability Protocols and Standards
A protocol is a set of formal rules that determine the

way in which two systems communicate [31]. A standard
is a documented agreement containing precise technical
specifications to be used as rules/guidelines to ensure that
the products/services are fit for their purposes [31].Proto-
cols can be either low-level protocols or high-level proto-
cols, where the former defines the physical and electrical
characteristics of the communication while the latter de-
fines the data formats for message encoding and informa-
tion control, message syntax, syntax for communication
between devices, flow control and error handling [31]. The
experimental protocol framework proposed in this paper is
a high-level interoperability protocol. There are a number
of notable interoperability protocols and standards, some
of which are briefly discussed below.

2.1.1 Really Simple Syndication (RSS) and Atom
RSS is an XML-based Web content syndication stan-

dard that periodically checks Web sites in search of up-
dated content that is then delivered to subscribers [9][35].
It provides subscribers with an organised list of notifica-
tions about new and updated Web content [33], which is
known as a RSS feed. A RSS feed consists of a number of
entries, which can be news headlines, full-text articles, ar-
ticle excerpts, weather reports, podcasts, etc, where each
entry contains a set of metadata elements e.g. title, link,
description [32]. RSS feeds can be accessed by anyone
who is interested in the content it provides. Maintaining
an RSS feed involves creating an RSS document (an XML
file) that is Web accessible to RSS aggregators. The RSS
documentation is short (less than 10 pages), simple and
most programmers can have an RSS feed up and running
in a few hours.

The simplicity of RSS is a controversial issue with some
arguing that it is excessively simple and therefore lacks
structure/semantics that are crucial for improved levels of
functionality and security [23]. However, the vast majority
see the simplicity of RSS as its main success factor [34],
a view that is strongly supported by the large number
of Web sites that have implemented RSS feeds to share
content, including sites for major news broadcasters, such

as CNN, BBC and the New York Times [33]. RSS is seen
by some as being synonymous to syndication [34]. Based
on the success of the RSS simplicity model, one can’t help
but ask ”Can a similar simplicity model be applied to other
standards and protocols”?

Atom is a syndication standard this is similar to RSS
but aims to improve the way in which RSS provides syndi-
cation of Web resources (i.e. weblogs and news headlines)
to Web sites and directly to users [30]. A feed in Atom is
equivalent to an RSS feed with some minor differences, to
support the shortcomings its creators identified in RSS.

2.1.2 Z39.50
The Z39.50 protocol is an application layer protocol

that supports distributed search and retrieval between
structured network services [6]. This protocol stipulates
data structures and interchange rules that allow a client
machine to search and retrieve records from databases
on a server machine, across different platforms [29]. It
is widely used by librarians and very often integrated
into library systems and personal bibliographic reference
programs (e.g. interlibrary catalogue search with Z39.50
queries).

Z39.50 supports lower level OSI services [28], but de-
spite that many implementers chose to layer it on top of
TCP/IP, as opposed to implementing it in an OSI envi-
ronment to benefit from the full OSI services. At its peak
time some of the reasons given for this were: a. The
size and complexity of OSI implementation was daunting;
b. There was no mature OSI software available for the
full range of computing environments in use at the im-
plementing institutions; c. The architectural structures
within the OSI application layer were seen as unstable; d.
The complexity of the OSI upper layers would outweigh
whatever benefits an OSI implementation had to offer;
e. The protocol required a particular type of software to
be installed, configured and maintained in order to work,
making it expensive; f. No bulk data transfer. In more
recent years researchers hoped that the use of newer tech-
nologies (e.g.XML, RDF, SRU etc) [1] would help revive
the now almost obsolete protocol.

2.1.3 OAI-PMH
The Open Archives Initiative - Protocol for Metadata

Harvesting (OAI-PMH) [2] is a protocol that provides an
application-independent framework for metadata transfer.
It was designed to be easy to implement (based on widely
accepted standards such as HTTP, XML and Dublin Core)
and highly efficient. There are two actors in the OAI–PMH
framework: a data provider and a service provider. A data
provider uses OAI–PMH to expose metadata about repos-
itory content to service providers [25] and maintains one or
more repositories. A service provider uses OAI–PMH to
harvest metadata from data providers. In the context of
OAI–PMH, the term harvesting refers to collecting meta-
data from different repositories and the possible storage
of all metadata in a central database.

2.1.4 OAI-ORE
The Open Archives Initiative - Object Reuse and Ex-

change (OAI-ORE) is a protocol that facilitates the de-
scription and exchange of Aggregations of Web Resources
[26] and is used in many applications [19]. For instance,
JSTOR, an online academic journals archive, uses OAI-
ORE in results visualization and topology navigation tools;
and the DANS (Data Archiving and Networked Services)
uses OAI-ORE to improve its“Durable Enhanced Publica-

354

tions” by providing durable access to value-added services
and datasets [22].

2.1.5 Simple Web-service Offering Repository De-
posit (SWORD)

SWORD is a lightweight protocol for depositing con-
tent from one location to another [4]. SWORD’s main
focus is on depositing content into repositories, but this
can potentially be used to deposit content into any system
that is willing to receive it [4]. SWORD can be used to
facilitate e-Learning applications as demonstrated by ex-
amples, such as its use: in a drag-and-drop desktop tool;
for bulk deposit for sharing metadata; to deposit from a
content creation tool; or to drag-and-drop news feed re-
sources into a repository [14].

2.1.6 Search/Retrieval via URL or WEB (SRU/W)
Search/Retrieval is a service for search and retrieval of

Web resources across the Internet where a client makes a
search request for the retrieval of matching records from
the server [7]. This standard is based on the Z39.50 proto-
col. The protocol can be used in two different ways [5]: as
parameters in a URL, called Search/Retrieval URL Ser-
vices or SRU; or as SRU via HTTP SOAP, formerly know
as Search/Retrieval Web Services or SRW [8].

2.2 Interoperability Research
In addition to the wide variety of interoperability proto-

cols and standards, there are some notable interoperability
research projects that have set out to provide solutions to
a range of interoperability issues, as well as experiment
with and extend existing protocols. Some of these are
discussed below.

2.2.1 The Kahn-Wilensky Architecture
Kahn-Wilensky is an open architecture that supports a

large and extensible class of distributed digital informa-
tion services, such as digital library services [24]. This ar-
chitecture provides a naming principle and a service that
uses those names for the identification and location of dig-
ital objects, as well as for providing a protocol access to
objects. Kahn-Wilensky’s underlying architecture forms
a base for extensions that can be customized for infor-
mation of various formats [12]. Implementations based on
the Kahn-Wilensky architecture include the Interoperable
Secure Object Stores (ISOS) and the Dienst protocol [17].

2.2.2 The Dienst Protocol
Dienst is an architecture and protocol for digital li-

braries across multiple servers [16]. Initially called the
Computer Science Technical Report Project, this ARPA
funded project originated from the need to create a dig-
ital library of Computer Science technical reports [15].
Over one hundred institutions used Dienst to be part of
the Networked Computer Science Technical Reference Li-
brary (NCSTRL) but, with the creation of OAI-PMH,
many of them have transitioned to the latter. The design
of OAI-PMH was largely based on improvements and in
some cases simplifications made by considering the lessons
learned from the design of Dienst; for example, Dienst sup-
ports over 30 verbs and OAI-PMH only supports 6 verbs
[21]. Furthermore, a harvesting approach is preferred to
a cross archive searching approach because it avoids the
problem of not getting up to date results (possible in fed-
erated search if one or more repositories are down) by
collecting and storing all data in a central location. In
2003, a Dienst OAI-PMH Gateway (DOG) was created

to allow OAI-PMH harvesting from existing and at risk
Dienst repositories [21].

2.2.3 Simple Digital Library Interoperability Pro-
tocol (SDLIP)

SDLIP is a protocol that defines simple interfaces for in-
teroperability between data providers [20]. SDLIP’s main
goals are: the simplification of both client and server side
implementations; server support for stateful and stateless
operations; dynamic load balancing for servers; support
for thin clients; and implementations via distributed ob-
ject technology (CORBA and HTTP/CGI) [3].

This section has provided a brief introduction to inter-
operability by discussing and analysing some of the most
popular and well-known protocols and standards as well
presenting a discussion of various research interoperabil-
ity projects. The next section describes a study aimed
at gaining insight into what users wanted most from an
interoperability protocol. The data collected from the sur-
vey was used to make the design decisions of the suit of
protocols described in this paper.

3. USER STUDY AND PROTOCOL DESIGN
An online questionnaire was conducted in order to gain

information from protocol implementers and users about
the state of currently used protocols and how, if at all,
they could be improved. Invitations to participate were
sent to mailing lists from different communities1 and par-
ticipants were asked to answer 6 questions about various
protocols/standards, namely RSS, Atom, APP, Z39.50,
OAI-PMH, OAI-ORE, SRU/W and SWORD. 2. The par-
ticipants were asked to answer questions related to:

1. Their level of confidence ranking from expert imple-
menter to having never heard of the protocol.

2. To list other protocols they were familiar with and
their expertise.

3. Most useful feature(s) of each of the protocols.

4. Least useful feature(s) of each of the protocols.

5. To list possible improvements to existing protocols.

6. Any general comments they might have.

30 participants took part in the survey (7 null responses).
The responses from the remaining 23 participants showed
that OAI-PMH is the most popular, known by 61% of
participants, followed by RSS (39%) and Atom (22%).
APP was the least known, unknown by 74% of partic-
ipants, followed by SRU/W and SWORD, which were
both unknown by 44% of participants. The features that
were most frequently mentioned as most useful were: sim-
plicity, aggregation, platform independence, the use of
popular standards and flexibility. The features most fre-
quently mentioned as least useful were: lack of features,
semantics issues, complexity and quality of documenta-
tion/specifications. Some of the improvements suggested
were: better documentation, standardisation, simplicity
and efficiency.

The results of this survey led to the conclusion that a
good interoperability protocol should be: simple enough

1i.e. srw, eprints, dspace, atom, oai, rss and UCT grads
2These were chosen for appearing to be some of the more
popular protocols/standards on the discussions of various
interoperability related mailing lists

355

to allow programmers to implement, explore and experi-
ment while requiring only operations that are crucial to
the performance of the protocol, but also robust. These
findings were important in drawing up a plan to achieve
the simplification goal. Thus, in order to try to find po-
tential solution(s), a set of experimental protocols were
designed to be evaluated against the existing ones.

Having simplicity and efficiency as the key design goals,
a “ground-up minimalistic design approach” was chosen to
design the set of experimental protocols. In this approach
the design starts with the basic and absolutely necessary
support (i.e. modes for the transmission and encoding of
data) and then only adds the features that are needed for
an efficient protocol, as opposed to adding every possible
combination of features.

3.1 High-level Interoperability Protocol -
Common Framework (HIP-CF)

HIP-CF is a common framework that facilitates high-
level interoperability between heterogeneous systems. It
has different interoperability protocol services built as a
layer on top of a common framework, thus creating a suite
of protocols. The protocols use HTTP for data transfer
and therefore follows the HTTP specifications as stated
in RFC 2616 [18]. The protocols supported by the HIP-
CF suite are: Xbrowse for browsing data; Xharvester for
harvesting data; and Xsearch for identifying and retrieving
specific data. In this section, HIP-CF is described. This
description begins with a listing of the terminology used,
followed by the principles and guidelines for implementing
HIP-CF protocols. Thereafter, the HIP-CF general model
is described, including the protocol model, the application
layer protocol, the parameter model and error messages.
Thereafter, an example of one protocol based on HIP-CF
will be described.

3.1.1 Terminology
The terms presented in this section are used to define

the roles and/or actions involved in the functionality of the
protocol3. The terminology is presented in alphabetical
order and not in order of occurrence or use.
Client - A computer connected to a network that makes

a request for resources or services from a server located
elsewhere on the network [31]. A client can also be a
server and vice-versa.
Data Source/Repository - A system that exposes its

contents and allows access to it by external sources.
Digital Library - A managed collection of digital in-

formation, with associated services, where the information
is accessible over a network [11].
Metadata - Data that describes data, for example meta-

data about a journal article can include the author’s name,
the title and the publication date.
Query - A request made to a computer system (e.g.

database, digital repository) to retrieve a particular set of
data records [31]. A query can have one or more parame-
ters.
Record - A data structure consisting of a collection of

fields, each possibly containing a different data type [31].
A record here refers to a metadata record presented in
XML.
Request - A message that requires some form of reply

from its recipient [31].

3Unless otherwise indicated by a reference, the terms used
in this document are defined according to their specific use
in or for HIP-CF.

Response - A document returned by the server as a
result of a client request.

Server - A computer or computer program that is de-
signed to provide shared services to other computer sys-
tems on a network.

URL - The Uniform Resource Locator is a string of
characters used to identify a resource on the Internet (e.g.
a Web page, a server or a a file) [11].

XML - eXtensible Markup Language (XML) is a set
of rules for encoding structured documents in a machine-
readable form4.

3.1.2 HIP-CF Principles and Guidelines
Implementations of HIP-CF services MUST comply with

the principles and guidelines below:

Simplicity.
HIP-CF implementations SHALL be as simple as pos-

sible. The protocol is designed to be efficient and reliable
but, most importantly, to be simple, as opposed to be-
ing complex and computationally expensive. The motto
is “do what needs to be done in the simplest possible way,
and add complexity only when or where strictly neces-
sary”. A bottom-up approach is RECOMMENDED for
the implementation of all protocol. In other words: start
from nothing, and build up the implementation until the
desired functionality and efficiency is achieved. Use the
simplest available solutions and avoid any non-crucial ele-
ments. Simplicity is important because it is a key factor to
reduce costs, save time and possibly increase compliance
with the protocol specification.

Robustness.
HIP-CF implementations MUST be robust, i.e. have

the ability to recover from invalid input data and other
error conditions, as well as operate in adverse conditions.

Data Storage.
There are no requirements for where or how data should

be stored. It is left to the organisation or individual im-
plementing the protocol to choose a solution that best
suits their needs. Data sources MUST ensure that the
repository/system is configured to allow clients to find and
access the resources available in the repository.

Reuse.
HIP-CF implementations MUST take advantage of ex-

isting technologies and standards such as HTTP, XML
and REST.

3.1.3 HIP-CF General Model
The framework provides a consistent and extensible stan-

dardised structure (vocabulary, principles and guidelines)
(see Figure 1) that is based on the Representational State
Transfer (REST) architecture, and allows the implemen-
tation of different high-level interoperability protocols.

Protocol Model.
The protocol has two main components: a client and

a server. The client and server communicate through
request-response pairs. For simplicity, it is RECOM-
MENDED that, when possible, HIP-CF implementa-
tions use 1 request-response pair for record retrieval in-
stead of sending a request to find out if there are matching

4http://en.wikipedia.org/wiki/XML

356

Figure 1: High-level Interoperability Protocol -
Common Framework.

records and then sending a second request to retrieve the
records.

The Application Layer Protocol.
The RECOMMENDED protocol to transfer the re-

quest and response pairs between the client and the server
is the HyperText Transfer Protocol (HTTP) (see Figure
2). HTTP is an application layer protocol for distributed,
collaborative and hypermedia information systems [18].
Requests can be sent using either one or both HTTP
GET and HTTP POST. Special characters in the URL
(e.g. space, $, <, :) should be encoded according to URL
encoding standards5.

Using HTTP GET the parameters are sent via the URL
using the standard method of parameter passing where
parameters are separated from the URL by a question
mark and from each other by an ampersand, as is shown
below:

http://www.serverexample.com?parameter1=one&

parameter2=2.

Using HTTP POST the arguments are carried in the
message body, which has the advantage of not limiting
the length of the arguments. For example:

Post http://www.serverexample.com

Content-Length: 128

Content-Type: application/x-www-form-urlencoded

Request=parameter1=one¶meter2=two

It is RECOMMENDED that, whenever possible, cus-
tomized messages and solutions for HTTP errors are used
in order to help the client/user better understand errors
and find solutions. HTTP error messages may also be
used to control data traffic, for example error code 307
can be used to temporarily redirect requests to a different
location.

Parameter Model.
Each protocol defines a set of parameters. There are

the mandatory parameters (parameters that MUST be
implemented) and optional parameters (parameters that
improve the quality of the results but are only used by
choice).

5http://www.w3schools.com/tags/ref urlencode.asp

Error Messages.
When a request generates an error the server responds

by sending the client an error message. While an error
message MAY contain both machine and human readable
formats, at a minimum it is RECOMMENDED that it
contains an HTTP error code.

3.2 Xsearch
The previous section described the requirements and

recommendations for a protocol based on the HIP-CF
framework. In this section, Xsearch, which is an exam-
ple of a protocol based on the HIP-CF framework will
be described. Xsearch is only one of the three protocols
based on HIP-CF; however, it demonstrates how simple a
protocol based on HIP-CF can be and how easily it can
be implemented. The Xsearch protocol is a high-level in-
teroperability protocol that provides a simplistic service
for clients to search for resources from digital libraries,
databases and other sources of digital data. Search is the
process by which a client can retrieve an available resource
from a server. To search for a resource, a client sends a
request or query, which is made up of a search term and
zero or more optional parameters to the server. The server
responds by sending back a list of resources that match
the client’s request or a message to inform the client that
none of the resources available on the server match the
client’s request.

3.2.1 Parameter Model
Xsearch has four defined parameters (see Table 1). A

request has to contain the mandatory parameter query-
word, and any combination of the optional parameters.

The queryword is the mandatory request parameter and
it is made up of one or more words sent by the client in
a request and is used by the server to retrieve resources
whose content matches the parameter. The server has con-
trol over which parts of the resources/records are searched
to find a match. The rpp parameter allows the client to
decide on the number of records the server should display
in a single response page. This is only applicable when
there is more than one record that matches the query. On
the response page, the server tells the client how many
records in total match the query. If the number of records
that match the query is higher than the number of records
displayed on the results page, then the client can use the
rpp parameter and start parameter, which is the starting
point in the result set from which the user wants to re-
trieve results, to retrieve the remaining matching records.
When the rpp parameter is not used, the server returns
the default number of matching records per page starting
from the first matching record. The default number is
determined by the server settings.

There are a number of metadata formats that can be
used to present a query’s response, for example Dublin
Core, MARC 21 and MODS. The choice of metadata for-
mat is related to the needs of the community implement-
ing the protocol and the data source. As RECOM-
MENDED by the W3C6, if necessary, an XML names-
pace7 can be created to clear any ambiguities that may
exist for elements that happen to have the same name
and to group common elements together.

3.2.2 Processing Model
Processing occurs on the server side, where the server:

6World Wide Web Consortium. http://www.w3.org/
7http://www.w3.org/TR/xml-names/

357

Figure 2: HTTP Request and Response Model.

Table 1: Xsearch parameters and their occurrence and descriptions
Parameters Occurrence Description
queryword mandatory The word/phrase submitted by the client which the server uses to check its resources in

order to find matching records.
rpp optional Records Per Page (rpp) indicates the number of records to display per results page.
start optional The number of the first record on the results page. For example if the records counter is

initialized at 0, start=1 will return a page of results starting from the second matching record.
metadataFormat optional Tells the server to only return results that are in the metadata format specified by the client.

• Receives a request (in a language/format that it un-
derstands).

• Decodes the request to get the parameter values.

• Uses the parameter values to perform a search query
on its own data source.

• Gets a response from the data source and encodes it
in a format that the client understands.

• Sends back the response.

The client also processes the results page(s) returned by
the server and uses the data/matching record(s) as it sees
fit. However, the use of the retrieved data by the client is
outside the scope of Xsearch.

3.2.3 Query Model
Any query language may be used in the implementa-

tion of Xsearch. The choice of query language will be
influenced by, amongst other things, the data source.

3.2.4 Result Set Model
The result set is a list of records or an error response

returned by the server as a response to a request. The
result set is usually an ordered list whose format and con-
tents are defined according to request parameter values or
server settings. Result sets usually only contain metadata.

3.2.5 Protocol Example
An example of the use of the Xsearch protocol is given

below, where parameters help fine-tune the result set. In
the example below, the record returned will be the first
record that matches the query, which searches for the
queryword “John.”

Figure 3: An example of the data returned by an
Xsearch query.

http://127.0.0.1/cgi-bin/Search.pl?queryword=john

&start=0&rpp=1

An example of the result to the above query is given in
Figure 3

This section has described HIP-CF and provided an ex-
ample of a protocol based on HIP-CF. In the next section,
protocols based on HIP-CF are evaluated in terms of their
perceived complexity and descriptive capabilities.

358

4. EVALUATION
Three methods of evaluation were used: a case study in

which the three HIP-CF protocols were implemented; a
user study investigating the perceived complexity of HIP-
CF compared to existing protocols; and an evaluation of
the entropy capabilities of HIP-CF.

4.1 Eprints Case Study
The first step of the evaluation was a case study of

the practicality of implementing the suggested experimen-
tal protocol. As a proof of concept, the three protocols
(Xbrowse, Xsearch and Xharvester) were implemented us-
ing the EPrints Digital Library platform as the storage
unit. The client applications were all developed in Perl
and the query language used was MySQL version 5.1.54.
Although an online interface was available, the client ap-
plication sent HTTP requests via the URL and not by us-
ing the HTML forms available on the user interface. All
response files were XML files. It was found that all ser-
vices could be successfully implemented and each protocol
was able to provide the services as expected.

4.2 User Understandability Evaluation
The understandability/complexity experiment is a mea-

sure of how complex or simple it is to understand a pro-
tocol. Users were asked to read the documentation of a
HIP-CF protocol and an existing protocol that provides
equivalent functionality. Based on their understanding of
the documentation, they completed a questionnaire to in-
dicate which they thought was the simplest protocol. It
should be noted that this was not an evaluation of the
individual features supported by the protocols but rather
an evaluation of how easily the main function of a pro-
tocol could be implemented/achieved. However in future,
for a deeper analyses, it would be useful to evaluate pro-
grammers actual implementations and use of the different
protocols.

The evaluation involved a total of 27 people all of whom
were computer science students chosen evenly across the
different academic levels.

4.2.1 Individual Protocol Service Evaluation
The first part of the evaluation involved 23 participants,

all computer science students at undergraduate or hon-
ours level. The students were asked to read the docu-
mentations of a HIP-CF protocol and an equivalent pro-
tocol and then complete a questionnaire. The participants
were each given a copy of official documentation for exist-
ing protocols and HIP-CF documentation. It was asked
that they read the documentations, see how well their un-
derstood them, evaluate how difficult they expect an im-
plementation to be and based on that do a comparison
and complete the questionnaires. The protocols that were
compared were: OAI-PMH vs. Xharvest and SRU vs.
Xsearch.

The questionnaire required the participants to:

• Name the two protocols they read.

• Rate their own level of programming skills.

• State if they were familiar with high-level interoper-
ability protocols before the evaluation session and,
if they were, to name the protocols and their level
of expertise.

• State the type of service each of the protocols pro-
vided.

• Rate their level of understanding for each of the two
protocols on a scale of 1-10.

• Rate the writing and presentation style of the pro-
tocols on a scale of 1-10.

• Rate the perceived degree of implementation diffi-
culty on a scale of 1-10.

• Provide general comments about the protocols.

Of the 23 participants, 10 provided answers for the SRU
vs. Xsearch comparison, 7 provided answers for the OAI-
PMH vs. Xharvest comparison and 6 were null answers.

Xsearch vs. SRU.
In the search comparison, 4 of the 10 participants rated

themselves as being average programmers and the other
6 rated themselves as being above average. 7 participants
chose “no” to having previous knowledge of high-level in-
teroperability protocols, 2 participants chose “yes” and 1
participant had a null answer.

After reading the documentation, the arithmetic mean
level of understanding for Xsearch was 7.7 (closer to ‘I
now have a good understanding of the protocol’) and 3.6
for SRU (closer to ‘I still don’t understand the protocol’).
Comparing Xsearch to SRU in terms of levels of under-
standing, 80% of users said their understanding of Xsearch
was above average as opposed to 70% of SRU users say-
ing their understanding was below average. Based on this
result, Xsearch is potentially simpler to understand than
SRU.

The arithmetic mean for the writing and presentation
style of Xsearch was 7.9 (closer to very good) and 3.7
for SRU (closer to poor). Comparing Xsearch to SRU
in terms of writing and presentation style, the results
showed that the majority of users (90%) were above aver-
age, which indicates that they are satisfied with Xsearch’s
writing and presentation style and also the majority of
users (60%) were below the average for SRU, which in-
dicates that they were not satisfied with SRU’s writing
and presentation style. Based on this result, Xsearch is
potentially simpler than SRU.

The arithmetic mean for the perceived degree of dif-
ficulty associated with Xsearch’s implementation was 5
(average) and 7.7 for SRU. Comparing Xsearch to SRU
in terms of perceived degree of difficulty associated with
the implementations, the results indicate that, although
the number is higher for SRU, for both protocols more
than 50% of participants did not perceive implementation
to be a trivial task. However, based on the mean values,
Xsearch’s implementation is expected to be easier than
that of SRU.

The overall conclusion from the comparison of Xsearch
and SRU is that Xsearch is not only simpler to understand
but also has a more usable writing and presentation style
than SRU. Although the ratings of the perceived degree
of implementation difficulty between the two protocols are
very close to each other, from this result it is possible
to assume that, because of the advantage in the other
categories, Xsearch is better overall, which supports the
claims made by this research and implies that the SRU
protocol could benefit from greater simplicity.

Furthermore, it was found that previous knowledge of
protocols had a much stronger impact on participants’ re-
sponses than programming skills did. In a lot of cases,
self-rated expert programmers rated the levels of under-
standing lower and the degree of perceived implementa-

359

tion difficulty higher than average programmers with pre-
vious knowledge of interoperability protocols. This can be
an indication that knowledge acquired from implementing
one protocol from a suite of protocols may be more ad-
vantageous in implementing another protocol in the same
suite than a higher level of programming expertise could
be.

Xharvester vs. OAI-PMH.
In the harvesting comparison, 3 of the 7 participants

rated themselves as being average programmers and the
other 3 rated themselves as being good programmers. All
7 participants chose “no” to having previous knowledge of
high-level interoperability protocols.

The arithmetic mean level of understanding for Xhar-
vester was 7.9 and 4.6 for OAI-PMH. Comparing Xhar-
vester to OAI-PMH in terms of levels of understanding,
the numbers clearly show that Xharvester, with 90% above
average, can be simpler to understand than OAI-PMH
with 60% below average. Based on the arithmetic mean
values, Xharvester is potentially simpler to understand
than OAI-PMH.

The arithmetic mean for writing and presentation style
for Xharvester was 8.3 (closer to very good) and 4.4 for
OAI-PMH (closer to poor). Comparing Xharvester to
OAI-PMH in terms of writing and and presentation style,
the results show that Xharvester is potentially simpler.

The arithmetic mean for the perceived degree of dif-
ficulty associated with Xharvester’s implementation was
5.7 (half way between easy and difficult) and 7.9 for OAI-
PMH (closer to difficult). Comparing Xharvester to OAI-
PMH in terms of perceived degree of difficulty associated
with the implementations, the results show that, while the
numbers differ for each protocol, the majority of partici-
pants see the implementation of either of the protocols to
be a relatively difficult task.

The overall conclusion from the comparison of Xhar-
vester vs. OAI-PMH is similar to that of Xsearch vs. SRU
in the fact that the HIP-CF protocols are deemed simpler.
Xharvester also proves to be simpler to understand as well
as more usable in terms of writing and presentation style
than OAI-PMH. The ratings of the perceived degree of
implementation difficulty between the two protocols in-
dicate that, according to the participants, neither one of
the implementations would be an easy task. As in the case
of SRU, OAI-PMH can also benefit from some simplifica-
tion on how the data/information is presented to possible
users.

4.2.2 Protocols Suite vs. Individual Protocol Ser-
vice Evaluation

The second part of the user evaluation involved 4 expert
masters students. It was carried out in a manner similar to
the individual protocol evaluation but, in this case, each
participant had to read the complete HIP-CF documenta-
tion as well as both OAI-PMH and SRU documentation.
This part of the evaluation had a considerably smaller
number of participants when compared to the individual
protocols evaluation, that is also reflective of the number
of Masters students versus the number of undergraduate
and honours students in tertiary institutions. The par-
ticipants were given the same set of questions as before;
however, in this case they had to evaluate HIP-CF, OAI-
PMH and SRU. In addition to this, they were also asked
to answer the following question according to the scale
below:

Having a protocol that supports multiple high-level inter-
operability services is? Rate according to the scale below.

• A great idea, since developers who implement one of
the services (e.g. search) are likely to also implement
the other services (e.g. browsing and/or harvesting)
and knowledge of the common framework may facil-
itate the overall process.

• A good idea, one option for multiple requirements.

• Unnecessary. The current situation works just fine.

• Bad idea, why mix the different services. It is sim-
pler if each service is covered by an individual pro-
tocol.

• Will not work, in trying to cover too many areas
the suite would end up not covering any of them
properly.

• None of the above. (Please elaborate)

The results are summarised in Table 2 and they suggest
that OAI-PMH is the simplest of the three protocols, fol-
lowed by HIP-CF and then SRU. However, all protocols
are perceived as being difficult to implement.

It is also noted that previous high-level interoperabil-
ity protocol knowledge is an important factor for partici-
pants/possible users to understand any protocol. This is
evident from the two participants who were familiar with
OAI-PMH, which helped them in understanding the other
protocols as was noticeable by their scores for all proto-
cols which were, in most cases, higher/better than those
of the other two participants.

It’s significant that all participants agreed that a pro-
tocol suite approach is good. So it can be argued that,
ideally, high-level interoperability protocol should be part
of a suite of protocols and at least as simple as OAI-PMH.

4.3 Entropy
The last way in which HIP-CF was evaluated was in

terms of its entropy, which is a measure of the amount
of order or predictability in a message [13] and of its in-
formation content and quantity. It is directly related to
data compression, in the sense that, ideally, the length of a
message after it is encoded should be equal to its entropy.
The value of entropy is equal to the minimum number
of bits necessary to encode a message without losing any
valuable information. This number helps eliminate non-
crucial information from the message, such as pieces of
information that have a probability of 1 because they do
not change and are always present, such as the <html>

and <body> tags in an .html file. Elements with a proba-
bility of 1 have an entropy of 0. With the entropy value, a
message can be compressed to obtain a representation of
the data file that occupies less space but preserves all of
the information [13] and the overall entropy is the average
of the entropy of the individual probabilities occurring. It
is calculated by the following formula [13]:

E = −
n∑
i

Pi logPi bits (1)

Using Equation 1, the entropy was calculated for a sin-
gle file using HIP-CF protocols and their equivalents. The
entropy values are shown below:

Xsearch = 1324 bits

360

Table 2: Protocols Suite vs. Individual Protocol Service Evaluation Results
Evaluation Factor Results
Understandability Results: All participants rated their levels of understanding of HIP-CF above the average
HIP-CF level. With 100% above average, the results indicate that the users’ understand-

ing HIP-CF ranges from relatively good to really good.
Understandability Results: OAI-PMH was rated at average or above average by all participants. There were
OAI-PMH two participants who rated OAI-PMH at level 10. These two participants had

previous knowledge of interoperability protocols and specifically with OAI-PMH.
The two participants who rated their understanding at average and just above
average were not familiar with OAI-PMH prior to the evaluation.
With 75% above average, OAI-PMH’s understanding also ranges from relatively
easy to really easy.

Understandability Results: SRU was the only protocol to get a below average rating. The ratings for this
SRU protocol were divided by about 50% between really easy to understand and

average or below, suggesting that it is easier for people with knowledge of
high-level interoperability protocols to understand it, than it is for those with
no prior knowledge.

Writing and Presentation Style Results: 1 participant rated this category below average and the other 3 rated it above
HIP-CF average. With 75% above average the results indicate that HIP-CF’s writing

and presentation style is well accepted by the participants, suggesting that it
is simple and easy to follow and comprehend.

Writing and Presentation Style Results: 1 participant rated this category average and the other 3 all rated it above
OAI-PMH average.None of the participants rated this category below average. This result

indicates that OAI-PMH’s writing and presentation style is also well-accepted,
making it simple and easy to follow and comprehend.

Writing and Presentation Style Results: 1 participant rated this category below average, 1 participant rated it average
SRU and the other 2 participants rated it above average. SRU ratings for writing

and presentation style were balanced between average and above average, with
50% of participants rating it as average and below and the other 50% rating it
above average. While its lowest rating is the same as the HIP-CF lowest rating,
its highest rating is not as high as the other protocols highest ratings.

Perceived Implementation Difficulty: 1 participant rated the perceived degree of difficulty associated with implemen-
HIP-CF ting HIP-CF as an average task and the other 3 participants rated it above

average. With 75% of ratings above average, 2/3 of it at level 9, HIP-CF’s
implementation is perceived as difficult.

Perceived Implementation Difficulty: 1 participant rated the perceived degree of difficulty associated with implemen-
OAI-PMH ting OAI-PMH below average and the other 3 rated it above average. The

results indicate that as with HIP-CF, OAI-PMH implementation was
considered above average difficult by most participants, in this case also by
75% of participants, although at different levels.

Perceived Implementation Difficulty: 1 participant rated the perceived degree of difficulty associated with implemen-
SRU ting SRU below average and the other 3 participants rated it above average

difficult. Similar to the other two protocols, SRU results also indicate that 75%
of participants perceive implementation to be an above-average difficult task.

A suite of protocols The participants were asked to give their opinion on whether it is better to have
vs. individual protocols individual protocols (which is the current situation) or have a suite of protocols,

i.e. one suite that supports multiple high-level interoperability protocols
(proposed in this research). Three participants chose option A and 1 participant
chose option B. The results indicate that all participants agree that a suite of
protocols is better than having individual protocols.

SRU = 3737 bits

Xharvester = 9625 bits

OAI-PMH = 14407 bits

For both search and harvesting, entropy calculations
show that the HIP-CF protocols require considerably fewer
bits in order to encode the data messages compared to
both SRU and OAI-PMH, thereby indicating that HIP-
CF can provide a better data compression ratio.

5. CONCLUSION
In this paper, it was hypothesised that simpler interop-

erability protocols and standards will lead to an increase in
adoption levels, thereby making it is easier for program-
mers to understand and implement them and therefore
leading to more interoperable systems. To that end, an
experimental suite of protocols was designed, implemented
and evaluated. The usability evaluation tested to see how
programmers would react to an alternative suite of proto-
cols. The evidence showed that the programmers would

rather implement the suite of experimental protocols than
the existing set because the former appeared to be simpler
and easier to implement, while still providing equivalent
functionality. Furthermore, entropy calculations showed
how the simpler protocols were more efficient at encoding
messages than their existing equivalents. While this pa-
per does not suggest that anybody should ever implement
the HIP-CF protocols, it has shown that there is enough
evidence from this experimental study to suggest that it
is possible to do better than we are currently doing. It
also calls attention to the possibility of a new route for
the design of high-level interoperability protocols in order
to make them easier to understand and implement and, in
doing so enhance interoperability and the ways in which
heterogeneous systems share information.

361

6. REFERENCES
[1] LC Z39.50/SRW/SRU Server Configuration

Guidelines. Library of Congress.
http://www.loc.gov/z3950/lcserver.html.

[2] The Open Archives Forum Online Tutorial.
http://www.oaforum.org/tutorial/.

[3] The Simple Digital Library Interoperability
Protocol (SDLIP-Core). Stanford Digital Libraries
Technologies.
http://diglib.stanford.edu:8091/ testbed/doc2/
SDLIP/.

[4] Simple Web-service Offering Repository Deposit
(SWORD). http://swordapp.org/.

[5] SRW: Search/Retrieve Webservice.
SRW-EditorialBoard, May 2004.
http://srw.cheshire3.org/SRW-1.1.pdf.

[6] JISC Information Environment Architecture
Glossary, 2005.

[7] CQL: Contextual Query Language (SRU version 1.2
specifications). Library of Congress, 2008.
http://www.loc.gov/standards/sru/specs/cql.html.

[8] SRU Protocol Transport (SRU Version 1.2
Specifications). Library of Congress, February 2008.
http://www.loc.gov/standards/sru/specs/transport.
html.

[9] Really Simple Syndication Specifications, Tutorials
and Discussion. RSS 2.0 Specifications, Version
2.0.11. RSS-Advisory-Board, March 2009.
http://www.rssboard.org/rss-specification.

[10] Atom Publishing Protocol - Popularity, 2010.
http://atompub.org/popularity.html.

[11] W. Arms. Manuscript of Digital Libraries. M.I.T.
Press, 2000.
http://www.cs.cornell.edu/wya/DigLib/MS1999/
index.html.

[12] W. Y. Arms. Key Concepts in the Architecture of
the Digital Library. In D-Lib Magazine. July 1995.
http://www.dlib.org/dlib/July95/07arms.html.

[13] T. C. Bell, J. G. Cleary, and I. H. Witten. Text
Compression. Prentice Hall Inc, 1990.

[14] S. Currier. SWORD: Cutting Through the Red
Tape to Populate Learning Materials Repositories,
February 2009.
http://www.sarahcurrier.com/publications.html.

[15] J. R. Davis and C. Lagoze. Dienst, A Protocol for a
Distributed Digital Document Library.
Communications of the ACM, 38(4), April 1995.
DOI = http://doi.acm.org/10.1145/205323.205331.

[16] J. R. Davis and C. Lagoze. NCSTRL: Design and
Deployment of a Globally Distributed Digital
Library. JASIS, 51(3):273–280, February 2000.

[17] D. Feng, W. C. Siu, and H. J. Zhang. Multimedia
Information Retrieval and Management:
Technological Fundamentals and Applications.
Signals and Communication Technology. Springer,
2003.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee.
RFC2616 - HypertextTransfer Protocol: HTTP/1.1,
June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[19] E. Giglia. Report on OAI 6: CERN Workshop on

Innovations in Scholarly Communication. In D-Lib
Magazine, volume 15, (9/10). September/October
2009.

[20] N. Green, P. G. Ipeirotis, and L. Gravano. SDLIP +
STARTS = SDARTS - A Protocol and Toolkit for
Metasearching. In Proceedings of the 1st
ACM/IEEE-CS Joint Conference on Digital
Libraries (New York, NY, USA), pages 207 – 214.
ACM Press, June 2001. DOI =
http://doi.acm.org/10.1145/379437.379496.

[21] T. L. Harrison, M. L. Nelson, and M. Zubair. The
Dienst-OAI Gateway. In Proceedings of the 3rd
ACM/IEEE-CS Joint Conference on Digital
Libraries (Washington, DC, USA), pages 309–311.
ACM Press, June 2003.

[22] M. Hoogerwerf. Durable Enhanced Publications. In
Proceedings of the African Digital Scholarship
Curation Conference (Pretoria, South Africa), May
2009. http://www.ais.up.ac.za/digi/docs/hoogerwerf
paper.pdf.

[23] S. Housley. RSS Security.
http://www.feedforall.com/rss-security.htm.

[24] R. Kahn and R. Wilensky. A Framework for
Distributed Digital Object Services, May 1995.
http://www.cnri.reston.va.us/k-w.html.

[25] C. Lagoze and H. Van de Sompel. The Open
Archives Initiative: Building a Low-barrier
Interoperability Framework. In Proceedings of the
1st ACM/IEEE-CS Joint Conference on Digital
Libraries (New York, NY, USA), pages 54–62. ACM
Press, June 2001. DOI =
http://doi.acm.org/10.1145/379437.379449.

[26] C. Lagoze, H. Van de Sompel, P. Johnston,
M. Nelson, R. Sanderson, and S. Warner. Open
Archives Initiative Object Reuse and Exchange.
ORE Specification - Abstract Data Model. Open
Archives Initiative, October 2008.
http://www.openarchives.org/ore/1.0/datamodel.

[27] C. Lagoze, H. Van de Sompel, M. Nelson, and
S. Warner. Open Archives Initiative Frequently
Asked Questions (FAQ).
http://www.openarchives.org/documents/FAQ.html.

[28] C. Lynch. RFC1729 - Using the Z39.50 Information
Retrieval Protocol. Network Working Group,
December 1994.

[29] C. Lynch. The Z39.50 Information Retrieval
Standard. Part 1: A Strategic View of its Past,
Present and Future. D-Lib Magazine, April 1997.

[30] M. Nottingham and P. Sayre. RFC4287 - The Atom
Syndication Format, December 2005.

[31] D. Pountain. Concise Dictionary of Computing.
Penguin Group, 2003.

[32] RSS Advisory Board. RSS Specification, March
2009. http://www.rssboard.org/rss-specification.

[33] What is RSS? Software Garden, July 2004.
http://rss.softwaregarden.com/aboutrss.html.

[34] H. Wittenbrink. RSS And Atom: Understanding
And Implementing Content Feeds And Syndication.
Packt Pulishing, 2005.

[35] W. Wu and J. Li. Rss Made Easy: A Basic Guide
for Librarians. Medical Reference Quarterly, 26(1),
2007.

362

