
Graphics Processing Unit Accelerated
Coarse-Grained Protein-Protein Docking

IAN WILLIAM TUNBRIDGE

Thesis Presented for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

UNIVERSITY OF CAPE TOWN

January 2011
This thesis is all the author’s own work.

Supervised by

Dr M. M. Kuttel
Assoc. Professor J. E. Gain

Dr R. B. Best

Plagiarism Declaration

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it
is one’s own.

2. I have used the IEEE transactions convention for citation and referencing. Each contribu-
tion to, and quotation in, this thesis from the work(s) of other people has been attributed,
and has been cited and referenced.

3. This thesis is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of
passing it off as his or her own work.

Signature

Date

i

Abstract

Graphics processing unit (GPU) architectures are increasingly used for general purpose com-
puting, providing the means to migrate algorithms from the SISD paradigm, synonymous with
CPU architectures, to the SIMD paradigm. Generally programmable commodity multi-core
hardware can result in significant speed-ups for migrated codes. Because of their computational
complexity, molecular simulations in particular stand to benefit from GPU acceleration.

Coarse-grained molecular models provide reduced complexity when compared to the tradi-
tional, computationally expensive, all-atom models. However, while coarse-grained models are
much less computationally expensive than the all-atom approach, the pairwise energy calcula-
tions required at each iteration of the algorithm continue to cause a computational bottleneck
for a serial implementation.

In this work, we describe a GPU implementation of the Kim-Hummer coarse-grained model
for protein docking simulations, using a Replica Exchange Monte-Carlo (REMC) method. Our
highly parallel implementation vastly increases the size- and time scales accessible to molecular
simulation. We describe in detail the complex process of migrating the algorithm to a GPU as
well as the effect of various GPU approaches and optimisations on algorithm speed-up.

Our benchmarking and profiling shows that the GPU implementation scales very favourably
compared to a CPU implementation. Small reference simulations benefit from a modest speed-
up of between 4 to 10 times. However, large simulations, containing many thousands of residues,
benefit from asynchronous GPU acceleration to a far greater degree and exhibit speed-ups of up
to 1400 times.

We demonstrate the utility of our system on some model problems. We investigate the effects
of macromolecular crowding, using a repulsive crowder model, finding our results to agree with
those predicted by scaled particle theory. We also perform initial studies into the simulation of
viral capsids assembly, demonstrating the crude assembly of capsid pieces into a small fragment.

This is the first implementation of REMC docking on a GPU, and the effectuate speed-ups
alter the tractability of large scale simulations: simulations that otherwise require months or
years can be performed in days or weeks using a GPU.

ii

Publications and Presentations

Sections of this work have been published in the following article:

1. Simulation of Coarse-Grained Protein-Protein Interactions with Graphics Processing
Units, I. Tunbridge, R. Best, J. Gain and M. Kuttel, Journal of Chemical Theory and
Computation, 2010, 6 (11), pp 3588-3600. DOI:10.1021/ct1003884

and presented at the following conferences:

1. CHPC National Meeting 2009, Johannesburg, RSA
Accelerating Course-Grained Protein-Protein Docking Using Graphics Processing Units, I.
Tunbridge

2. American Chemical Society Fall 2009 National Meeting and Exposition, Washington D.C.,
USA
Implementation of Coarse-Grained Models for Molecular Simulation on GPU Architecture,
M.Kuttel, I. Tunbridge, J. Gain and R. Best.

3. CHPC National Meeting 2008, University of KwaZulu-Natal, Durban, RSA
Accelerating A Course-Grained Replica Exchange Monte-Carlo Method for Protein-Protein
Docking Using Graphics Processing Units, I. Tunbridge.

iii

DOI:10.1021/ct1003884

Acknowledgements

The story of my PhD has had its fill of exciting, trying, boring and extremely frustrating times.
I wish to formally thank my supervisors, Michelle Kuttel, James Gain and Robert Best. I think
my supervision experience has been great. Thank you all for investing your time, effort and
funding in me over the last four years.

Although I abandoned my initial project, the process was valuable, eventually allowing me
to end up here. Thank you James for initially supervising and funding my MSc and trip to
the NCSA, Black Ginger for workstations and nVIDIA for the free graphics card. Thank you
Michelle for assuming the role of my primary supervisor thereafter, the funding and all the
graphics cards. Thanks Rob for all the advice and emails in the last two years and work over
Christmas to get this thesis done in time and allowing me access to the University of Cambridge
GPU cluster. And finally, thanks to all of you for correcting my terrible grammar and pointing
out my plentiful typos.

I also thank the CHPC for the lecturing experience (and pay) from the CUDA workshops
and the national meetings, John Stone for his input when my project was in its infancy and
Marco Gallotta for the use of his machine when cycles were scarce on my own.

My lab-mates: Ashley, Bertus, Dave, Jannie, Simon, Bruce, Carl, Andrew, Marco and Jason
(apologies for any omissions) have made the lab so much more than the health hazard it is.
Thank you for the hours of interesting, amusing and/or stimulating discussions.

Thanks to all my friends, the pub-lunch team and the ballroom dancers for balancing my
life.

Thank my parents, Alan and Judy, for the support throughout my university life and for the
roof over my head.

Finally, I wish to thank my fiancé, Michelle, for putting up with me through this lengthy
academic adventure.

iv

Contents

Plagiarism Declaration i

Abstract ii

Publications and Presentations iii

Acknowledgements iv

1 Introduction 1
1.1 Macromolecular GPU Implementations . 2
1.2 The Kim and Hummer Coarse-Grained Method 3
1.3 Aims . 4
1.4 Approach . 5

1.4.1 GPU Design and Implementation . 5
1.4.2 Macromolecular Crowding and Viral Capsid Applications 6

1.5 Contributions . 6
1.6 Thesis Organisation . 7

2 Graphics Processing Units 9
2.1 General Processing using Graphics Processing Units 11
2.2 The CUDA Programming model . 14

2.2.1 The Compute Unified Device Architecture 14
2.2.2 CUDA Kernels . 19
2.2.3 CUDA Memory . 19
2.2.4 Limitations of the CUDA Architecture . 23
2.2.5 Asynchronous Heterogeneous Computing 24

2.3 Summary: Optimisations in GPU Computing . 25
2.3.1 Expected GPU Performance . 26

3 Protein-Protein Docking Simulations 27
3.1 Introduction . 27
3.2 Scoring Functions and Energy Potentials . 32

3.2.1 Electrostatic Potentials . 33
3.2.2 Scoring Functions . 34

v

3.3 Systematic Searches . 35
3.4 Genetic Algorithms . 36
3.5 Molecular Dynamics and Monte-Carlo Simulation 37

3.5.1 Molecular Dynamics . 37
3.5.2 Monte-Carlo Algorithms . 39
3.5.3 Methods for Enhanced Sampling . 41

3.6 Dealing with Computational Complexity: Methods to Improve Tractability . . . 42
3.6.1 Coarse-Graining . 44

4 Design 49
4.1 Approach . 49
4.2 The Coarse-Grain Simulation Model . 50

4.2.1 Simulation Outputs . 55
4.3 Algorithm Design . 56

4.3.1 The Replica Exchange Algorithm . 56
4.3.2 Monte-Carlo Searches . 56

4.4 GPU Design . 58
4.4.1 Problem Mapping . 59
4.4.2 Multiple GPUs . 60

4.5 Design Summary . 62

5 Implementation 63
5.1 Sequential CPU Implementation . 64

5.1.1 Data Structures . 64
5.1.2 Monte-Carlo and Random Numbers . 66
5.1.3 Evaluating Global Potential Energy . 67
5.1.4 Replica Exchange . 69

5.2 Multi-core CPU Implementation . 73
5.3 GPU Implementation . 81

5.3.1 Performance Optimisation Guidelines . 81
5.3.2 GPU Initialisation and Resources . 82
5.3.3 GPU Design and Data Structure . 83
5.3.4 GPU Kernels . 89
5.3.5 Algorithmic Restrictions . 94
5.3.6 Asynchronous GPU Computing . 99
5.3.7 Multiple GPUs . 104
5.3.8 Compensated Summation . 105

5.4 Sampling and Clustering . 105
5.4.1 Sampling . 105
5.4.2 Clustering . 107

5.5 Implementation Summary . 107

vi

6 Verification and Validation 109
6.1 Verification . 111

6.1.1 Interaction Potentials . 111
6.1.2 Monte-Carlo Mutations . 116

6.2 Simulation Validation . 119
6.3 Summary . 125

7 Interaction Potential Performance 127
7.1 Interaction Potential Calculations . 128
7.2 Interaction Potentials on the GPU . 132

7.2.1 Shared vs. Texture Memory Caches . 134
7.2.2 Lookup Table Memory Performance . 136
7.2.3 Thread Blocks and Occupancy . 141
7.2.4 Data Transfer . 145
7.2.5 Performance Discussion . 146

7.3 Summary . 150

8 Simulation Benchmarking 153
8.1 GPU Benchmarking . 155

8.1.1 Asynchronous Performance . 157
8.2 Simulation Speed-up . 160
8.3 Discussion . 163

9 Applications 167
9.1 Ubiquitin C-Terminus Tail Truncation . 167
9.2 Cc/CcP Macromolecular Crowding . 170

9.2.1 Crowding Models . 172
9.2.2 Simulations . 173
9.2.3 Results . 173

9.3 Viral Capsid Construction . 179

10 Conclusions 185

References 203

A Supplementary Data 205

B Benchmarking Configuration 208

C Performance 209

vii

List of Figures

2.1 GPU and CPU 32-bit FLOPS Performance . 10
2.2 The Programmable Graphics Pipeline . 12
2.3 CUDA 1.0-1.3 Architectures . 15
2.4 CUDA Hardware Scheduling . 16
2.5 CUDA Thread Hierarchy . 17
2.6 The CUDA Software Stack . 18
2.7 Global Memory Coalescing . 22

3.1 Amino Acids and Polypeptide Growth . 28
3.2 Docking Schematic . 29
3.3 The Protein Docking Funnel . 30
3.4 The Stages of Docking . 31
3.5 Vps27: All-Atom vs Coarse Grained . 46

4.1 Flexible Linkers . 53
4.2 Coarse-grain Residue Representation . 54
4.3 All-atom vs. Coarse-grain Representations . 55
4.4 Sequential Replica Exchange Monte Carlo . 57
4.5 Sequential Monte Carlo Search . 57
4.6 GPU Monte Carlo Search . 59
4.7 Thread Block Mapping . 60
4.8 Tiled Kernel . 61

5.1 CPU Object Hierarchy . 65
5.2 CPU Implementation of Interaction Potential . 68
5.3 Replica Exchange Implementation . 70
5.4 Sequential CPU Implementation . 72
5.5 Multi-threaded Replica Exchange . 78
5.6 Multi-threaded Replica Exchange with Thread Reuse 79
5.7 Mutexes and Replica Exchange . 80
5.8 Parallel Execution and Padding . 87
5.9 CUDA and CPU Reductions . 89
5.10 The Interaction Potential Kernel . 90
5.11 A Tiled Thread Block . 91

viii

5.12 Thread Access Patterns . 92
5.13 Memory Allocation per Thread Block . 93
5.14 A Shared Memory Kernel Grid . 94
5.15 Sequential Monte-Carlo Simulation . 100
5.16 Interleaved Monte-Carlo Simulations . 101
5.17 GPU Streams . 102
5.18 Streamed Monte-Carlo Simulations . 103

6.1 Rotational Error . 118
6.2 Truncated and Full Length Ubiquitin . 120
6.3 UIM/Ub Fraction Bound . 121
6.4 Cc/CcP Fraction Bound . 122
6.5 DRMS versus Energy . 123
6.6 UIM/Ub and Cc/CcP Clusters . 124

7.1 CPU Kernel Calculation Time . 129
7.2 CPU Inclusive Profile . 131
7.3 Baseline Kernel Performance . 134
7.4 Texture Memory Kernel Time . 138
7.5 Constant Memory Kernel Time . 140
7.6 Global Memory Kernel Time . 140
7.7 Shared Memory Kernel Time . 141
7.8 Alternative Kernel Memory Configurations . 143
7.9 Relative Kernel Performance . 145
7.10 Kernel FLOP Performance . 148
7.11 GPU Inclusive Profile . 150

8.1 CPU Simulation Times . 154
8.2 GPU Simulation Performance . 156
8.3 GPU Stream Performance . 158
8.4 Synchronous vs Asynchronous GPU Performance 160
8.5 CPU vs. GPU Simulation Performance . 161
8.6 GPU vs. Serial CPU Speed-up . 162
8.7 Monte-Carlo Steps per Day Performance . 165

9.1 UIM/Ub Structure and Docking Poses . 168
9.2 UIM/Ub Cluster Population Shift . 169
9.3 Ubiquitin Truncation: Effect on Binding Affinity 169
9.4 Cc/CcP and CspA: Isolated Binding Affinities . 172
9.5 Crowded Cc/CcP: Fraction Bound . 174
9.6 Crowded Cc/CcP: Energy vs. DRMS . 175
9.7 Cc/CcP Structures . 176
9.8 Radial Distribution of Cc/CcP/CspA . 177

ix

9.9 CspA Interference . 178
9.10 Hepatitis B . 180
9.11 HBV Clusters . 182
9.12 Capsid Hood Configurations . 183

x

List of Tables

2.1 CUDA Memory Spaces . 20

6.1 Reference Conformation Energies . 112
6.2 Implementation Conformation Energies . 112
6.3 Relative Difference Between Calculated and Reference Values 113
6.4 GPU Conformation Energies . 114
6.5 The Effect of Compensated Summation Summary 115

7.1 Interaction Potential CPU Profile . 131
7.2 Kernel FLOP Performance . 147

8.1 CPU Implementation vs. CHARMM Performance 155

9.1 Crowder Dissociation Constants . 174
9.2 Proportion Native Conformations . 175

A.1 Amino Acid Parameters . 205
A.2 Contact Energies . 206
A.3 List of Variables . 207

B.1 System Configuration . 208
B.2 Simulation Molecular Data . 208

C.1 CPU Simulation Benchmark Scalability . 210
C.2 Synchronous GPU Simulation Benchmark Performance 211
C.3 Asynchronous GPU Simulation Benchmark Performance 212

xi

Chapter 1

Introduction

This work describes the implementation and development of fast parallel code for multi-protein
docking studies. An existing coarse-graining model using replica exchange Monte-Carlo simu-
lations is implemented, specifically using a Graphics Processing Unit (GPU) for its costly elec-
trostatic potential calculation to drastically, improve the tractability of simulations performed
using this model.

The formation of both transient and permanent multi-protein complexes is integral to many
biological processes. Some examples are antibody-antigen and protease-inhibitor complexes;
protein complexes involved in cellular signal transduction processes; structural proteins that
maintain the shape of a biological cell, and the very large multi-protein complexes represented
by the proteasome, the nuclear pore complex and viral capsids. Identification of the docking
sites and binding characteristics of these proteins provides understanding of their cooperative
roles in common cellular functions. This improves our understanding of disease mechanisms
and provides the basis for new therapeutic approaches. Consequently, the prediction of pro-
tein binding sites has been identified as one of the ten most sought-after solutions in protein
bioinformatics [1] and is closely related to the well-known NP -hard “protein folding problem”
of predicting the three-dimensional structure of a protein from its primary sequence [2].

In the absence of sufficient experimental data on the atomic structure of protein complexes,
popular methods such as Molecular Dynamics or Monte Carlo simulations of protein complex
components can assist in determining both their mode of interaction and the location of the
interaction site(s) [3]. Molecular simulations generate an ensemble of configurations, from which
both structural and thermodynamic data can be extracted. The configurations representing
bound protein complexes enable identification of both docking sites and the relative orientation
of the proteins, while an estimate of their binding affinity, a numerical description of the strength
with which proteins bind, can be obtained from the proportion of bound samples occurring in
the ensemble.

However, all-atom simulations of multi-protein complexes are highly computationally ex-

1.1. Macromolecular GPU Implementations 2

pensive and are therefore limited in scale by the available computing resources. Simulations
are typically restricted to simple biological systems (e.g, small binary protein complexes with-
out solvent) and nanosecond time scales. Accurate coarse-grained models have helped to extend
molecular simulations to more biologically relevant lengths and time-scales [4–12]. These reduced
molecular models aggregate single atoms into large spherical beads to significantly decrease the
computational cost of a simulation. There is considerable potential for further accelerating
molecular simulations by combining coarse-grained models with the computational power of
massively parallel graphics processing units (GPUs).

1.1 Macromolecular GPU Implementations

Modern GPUs have floating-point computation capabilities far in excess of current CPUs. GPUs
are Single Instruction Multiple Thread (SIMT) compute devices; organising data into homoge-
neous streams of elements and executing a function, or kernel, on all elements of a stream
simultaneously. Current high-end GPUs also have high memory bandwidth compared to CPUs.
For example, the nVIDIA GTX280 has 240 fragment or stream processors and theoretical mem-
ory bandwidth of 141GB/s. As a consequence, these compact devices are capable of rapid
high-throughput numeric operations and can be employed effectively by non-graphical, data-
parallel, memory-bound algorithms of high arithmetic intensity, such as the N-body problem
inherent in molecular simulations. For all-atom and coarse-grained potentials, evaluation of the
total interaction potential between all bodies, N , in a protein molecule is an O(N2) operation
and the chief performance bottleneck - a common feature of N-body simulations in general. The
independence of each pairwise interaction means that the calculation of all such potentials suits
the vector-like GPU architecture, promising good speed-ups over CPU-only implementations.

The difficult task of porting algorithms to the GPU architecture, while maintaining effective
use of the CPU, has been made easier with the development of general application program-
ming interfaces. In 2007, nVIDIA released the Compute Unified Device Architecture (CUDA)
API, which allows the general programmer direct access to the nVIDIA GPU hardware. CUDA
allows for operations not supported by graphics APIs, such as local data communication be-
tween kernels and scatter and gather operations. However, CUDA GPU programming is not
trivial [13]. Programmers must be mindful of the GPU memory hierarchy, which requires ex-
plicit management to minimise access latency and effective packing of data to enable a coalesced
memory access pattern. In addition, maximising GPU performance often requires latency hid-
ing through exploitation of the multi-threading capabilities of the CPU cores [14], adding the
difficulties of conventional multi-threaded asynchronous programming to the GPU-specific pro-
gramming techniques.

However, despite these difficulties, there are increasing reports of successful CUDA imple-
mentations of N-body algorithms achieving good speed-ups over CPU implementations [15–17].

1.2. The Kim and Hummer Coarse-Grained Method 3

Specifically, GPU-based calculations of the expensive long-range electrostatics and other non-
bonded forces necessary for molecular mechanics simulations are typically 10 - 100 times faster
than heavily optimised CPU-based implementations [18–20]. Friedrichs et al. [17] show speed-ups
over a single CPU implementation of up to 700 times for large all-atom protein molecular dynam-
ics running entirely on the GPU. However, such massive speed-ups are not always achievable: a
recent implementation of an acceleration engine for the solvent-solvent interaction evaluation of
molecular dynamics simulations shows speed-ups of up to a factor of 54 for the solvent-solvent
interaction component, but only 6-9 for the simulations as a whole [21].

Previous implementations of N-body dynamics on a GPU, such as the GRAPE implemen-
tation [16], translate the potential evaluation into a convenient map-reduce problem [15–17],
the map calculates the net potential contribution from each body and the reduce sums these
together to determine the free energy of the system. The Kim and Hummer coarse-graining
model, implemented in this work, requires very frequent random-access lookups, determined
by indirection, in evaluation of the interaction potential. Standard GPU memory-use models
typically discourage indirection since it produces divergent branch behaviour in threads on the
GPU, which result in degraded performance [22,23]. Therefore, in order to optimise the parallel
performance of our implementation, we assessed the performance impact of storing the struc-
tural data and potential lookup table using the various types of memory available on a GPU to
establish the optimal memory usage configuration.

The parallelization approach developed in this work is generally applicable to N-body prob-
lems that require similar random access lookups. This often occurs where the aspects of the
interaction between bodies are dependent on their type or state. One instance is the commonly-
used energy functions in molecular dynamics simulations, in which the interactions depend on
the type of each atom, particularly in the case of bonded forces in all atom models [24] and
coarse grain models [11,12].

1.2 The Kim and Hummer Coarse-Grained Method

The aforementioned cases of coarse-graining [4–12] already help to extend simulations to more
biologically relevant time-scales and sizes, but additional speed-ups offered by GPU acceleration
stand to further increase the tractability of such simulations, and in turn, allow for the simula-
tion of much larger systems in tractable time periods.

Kim and Hummer have developed a coarse grain model specifically for protein-protein dock-
ing simulation by replica exchange Monte-Carlo [12]. Their model aggregates the atoms of each
amino acid into a single spherical bead, representative of the charge, radius and amino acid type.
Monte-Carlo simulations are biased random search algorithms; random mutations are performed
upon a system and a scoring function used to evaluate the change, accepting improvements and
discarding worse state. Monte-Carlo simulations exploring the docking space are performed

1.3. Aims 4

using rigid body translations of the proteins with chain flexibility applied amino acids linking
secondary protein structures. Monte-Carlo moves are evaluated using the free energy of the
system, namely the sum of the non-bonded potentials resulting from the Lennard-Jones and
Coulomb forces between the beads and potential arising from the stretching, torsional and an-
gular forces between bonded atoms.

This model is shown to correctly determine the binding affinity of the complexes studied in
addition to discovering the correct binding interfaces within 2Å to 5Å DRMS. Their research
suggests that their model and energy function should be transferable to other protein-complex
studies [12].

The combination of replica exchange Monte-Carlo, coarse graining and a verified model offer
a valuable starting point for a viable GPU accelerated docking application. Numerous works
show that the parallel nature of electrostatic calculations makes them amenable to GPU imple-
mentation [17,18,25,26], coarse-graining improves tractability by reducing the time required to
perform simulations owing to fewer bodies per system, enabling the study of longer simulations
and/or larger simulations [10]. Finally, the parallel nature of replica exchange makes such a
method scalable to multiple GPU processes on one or many compute nodes, affording a maxi-
mal amount of high level parallelism in addition to the low level parallelism of the electrostatics
on the GPU.

This work reports a hybrid CPU-GPU parallel implementation of a coarse-grained Replica
Exchange Monte Carlo simulation protocol for simulation of multi-protein complexes, recently
developed by Kim and Hummer [12]. We implement the original Kim and Hummer model and
simulation methods, focusing on the development of a general, highly scalable GPU implemen-
tation with the goal of increasing the size of tractable simulations. This implementation is used
to simulate docking on a biologically relevant scale, under either crowded conditions or in a large
assembly, illustrating the utility of the implementation and method. Specifically, two test simu-
lations are performed, the first application investigates the affects of macromolecular crowding
upon a docking simulation. The second investigates the construction of a viral sub-capsid.

1.3 Aims

The foremost aim of this project is to develop a generic application for the simulation of multi-
protein docking based on the Kim and Hummer. coarse-graining and potential model and
accelerated by a GPU. This implementation aims to reproduce results attained by this model
in accelerated time compared to a CPU.

Performance is benchmarked, with the goal of determining the critical performance factors
of a coarse-grained model on a GPU, considering that a degree of indirection arises from the
coarse graining in contrast to the recommended GPU memory model. Determining an optimal

1.4. Approach 5

performance configuration for the generic case is coupled with the development of the applica-
tion, thus, benchmarking will aim to determine the manner in which GPU memory should be
managed and the effects of such management in the context of a generic n-body like algorithmic
decomposition with an indirect data dependency.

Achievement of a high performance implementation allows the study of two biologically
relevant simulations. Simulating large systems and assemblies of the order of 100,000 atoms
(macromolecular crowding and sub-capsid simulations) is intractable on a single GPU. Using
the aforementioned application, investigation of the affects of macromolecular crowding and
evaluating the results in the context of scaled particle theory will indicate the utility of the Kim
and Hummer model for studying such large-scale interactions. Second to this is the investigation
of sub-capsid and whole capsid viral assembly simulations. This investigation seeks to explore
the ability of this application to simulate this assembly.

1.4 Approach

1.4.1 GPU Design and Implementation

Implementation is approached in an iterative manner: initial design and implementation of the
model using only the CPU is followed by synchronous GPU implementation with validation
against the CPU and finally asynchronous and multiple GPU functionality. Extensive valida-
tion follows, inspecting the accuracy of the GPU versus the CPU as well as binding affinities and
structural evaluation. Finally, the success of the implementation is evaluated through quanti-
tative benchmarking, and qualitatively via application to relevant macromolecular simulations.
Each developmental phase builds upon prior work, culminating in the use of the implementation
to produce a biological result.

The relevant GPU programming techniques applicable to such a model are isolated and re-
fined to implement the Kim and Hummer coarse-grained model on a GPU. The implementation
is mindful of the need for both accuracy and speed, designing a scalable, heterogeneous solution
capable of fully utilising the CPU and zero to many GPU devices through multi-threading and
asynchronous GPU utilisation.

Expensive electrostatic calculations are performed using the GPU. Because of the separable
parallel relationship between the pairwise potentials, such a scheme scales favourably on a GPU.
Summation of these potentials is performed in part on the GPU using parallel reduction at a
kernel level, followed by a final summation on the CPU. Other operations such as Monte-Carlo
mutations and replica exchange are performed on the CPU. The division of work is based on
the algorithmic complexity of the parts, electrostatics is O(n2) while mutations, random number
generation and CPU summation are linear in complexity. The final optimisation of multiple GPU
streams results in full utilisation of both GPU and CPU, with the GPU performing electrostatics

1.5. Contributions 6

calculations for one replica in parallel with mutations and Monte-Carlo acceptance/rejection on
the CPU for other replicas.

Validation is performed with comparisons of the potentials between CHARMM [27], the
CPU and GPU. Verification of the simulations is performed by reproducing the results of two
simulations from Kim and Hummer [12] and comparing the binding affinities and the emergent
structures to known values and structures.

Both GPU and CPU implementations are benchmarked, determining an optimal generic
case with which simulations can be performed. Low level benchmarks, such as block size and
memory configuration, measure the affect of simulation parameters such that kernels may be
tuned and a single Monte-Carlo simulation optimised. Higher level benchmarking measures the
affects of multi-threading and asynchronous GPU usage, maximising resource utilisation on the
host machine.

1.4.2 Macromolecular Crowding and Viral Capsid Applications

Two studies are selected as tests for this implementation, one simulates the formation of a
protein-protein complex while influenced by other molecules while the other simulates the for-
mation of a multi-protein complex from symmetric protein molecules.

The first application simulates the macromolecular crowding effects of crowder proteins on
the binding characteristics of a specific complex, yeast cytochrome c to cytochrome c peroxi-
dase [28]. This study attempts to verify the predictions of scaled particle theory through simula-
tion. Protein simulations are typically performed in isolation: only the participating molecules
of interest are present but, with a GPU accelerated simulation the affects of introducing addi-
tional molecules into the simulation can be studied, aiming to more closely mimic the crowded
conditions occurring within living cells.

The second application of this implementation is to simulate viral capsid assembly. This
also serves as an investigation into the feasibility of using the Kim and Hummer’s model for
such systems. Performing replica exchange Monte-Carlo simulations to investigate the binding
strength, clustering characteristics and produce emergent bound structures will guide the devel-
opment of future simulation models.

1.5 Contributions

This is the first implementation of a heterogeneous CPU-GPU course-grained replica exchange
Monte-Carlo model. The implementation of this model for macromolecular docking using
nVIDIA’s CUDA technology is a necessary step in the advancement of docking simulations,

1.6. Thesis Organisation 7

adding evidence to the growing body of scientific work illustrating that the use of GPU technol-
ogy is essential for macromolecular simulation. The novelty of the implementation arises from
the heterogeneous parallelization scheme and synthesis of n-body electrostatics CUDA schemes
and the coarse-grain potential from Kim and Hummer. We exploit the heterogeneity of the
GPU-CPU architecture as opposed to attempting to fully implement our simulations on the
GPU, as is the case in many MD simulations [17, 25] favouring overall throughput over single
thread performance.

A new software tool designed for hybrid high performance computing architectures com-
bining multi-core CPUs with GPU accelerators is produced. The relatively low-cost parallel
architecture of the GPU when combined with such software shows that significant results are
attainable at very low cost when compared to more traditional, exceptionally expensive CPU
clusters. This tool exhibits speedups comparable to those of other implementations, speeding
up simulations by factors ranging from 10 to 1400 times that of a serial CPU-only simulation.

In validating the GPU implementation, investigation of the affects of using either a trun-
cated or full length ubiquitin protein showed that the presence of ubiquitin’s C-terminus tail
increases its binding affinity and the ratio of correctly to incorrectly bound helix orientations in
simulations and furthermore increases the specificity of the binding.

Macromolecular docking simulations provide compelling evidence of the predicted effects of
macromolecular crowding on weakly bound complexes, resulting in increased binding affinity
in agreement with the scaled particle theory (SPT) derived theoretical model. The use of our
software is necessary for this verification due to the intractability of these simulations using only
conventional CPU clustering technology.

Finally, we show that Kim’s coarse grained model can successfully predict the binding inter-
face and configuration of the dimeric viral molecule 2g34 from the HBV virus. Initial studies
reveal the shortcomings of the typical two protein-complex simulation model in simulating en-
tire capsid assemblies and why these methods will ultimately fail, allowing us to derive a new
method which has the potential to accurately assemble course grain viral capsids.

The application studies outline the utility of our novel implementation and the importance
and potential in the combination of course-grained reduced complexity models and GPU accel-
eration in simulating massive assemblies or systems.

1.6 Thesis Organisation

The remaining chapters of this thesis are organised as follows: Chapter 2 reviews the GPU pro-
gramming model and protein-protein simulations with discussion regarding the overlap of these

1.6. Thesis Organisation 8

fields and prior results pertaining to molecular simulation using GPUs. This chapter serves as
an entry point for both computer science and computational chemistry practitioners, containing
sufficient explanation to motivate the decisions and provide perspective to the results obtained
in later chapters. Chapter 3 presents a system design, describing the implementation and the
rationalisation employed to produce our implementation. In Chapter 4, we discuss the imple-
mentation in depth, providing sufficient detail for others to accurately reproduce our results
using only this document. Chapter 5 validates our implementation though a series of accuracy
and simulation test cases. Chapter 6 reports our GPU kernel benchmarking and profiling re-
sults leading to the overall performance results reported in Chapter 7. Chapter 8 presents our
macromolecular crowding and partial viral capsid studies, ending with a discussion of future ap-
plicability to simulation. Conclusions are presented in chapter 9 together with a general future
work discussion to end the main body of work.

Appendices present supplementary data required for the simulations, pseudo-code and per-
formance figures omitted form the main text.

Chapter 2

Graphics Processing Units

Here we outline the development of general purpose GPU programming in recent years, with
particular focus on changes in the hardware that have enabled porting of algorithms to the
GPU. This is followed by an overview of protein folding and docking techniques, with reference
to existing GPU implementations of these methods in the following chapter.

Discrete graphics processing units are designed primarily as high performance devices for
rendering images and geometry in applications such as computer games. The term GPU was
coined by nVIDIA in 1999 for its GeForce 256: a processor with integrated transform, lighting,
triangle setup/clipping and rendering engines [29]. The steady increase in the demand for
graphics hardware performance, driven predominantly by the gaming industry, has resulted in
highly parallel, high performance commodity hardware [22].

In terms of compute performance, GPUs and CPUs were initially similar. However, by 2003
the demands of real-time 3D graphics applications resulted in GPU FLOPS and bandwidth out-
stripping the CPU. Currently, GPUs from both nVIDIA and ATI far outperform that of Intel
processors (Figure 2.1).

Unlike the CPU, the GPU does not use large data caches to decrease memory latency be-
cause spatially local caches only benefit a few threads. Instead, GPUs use fast context switching
and massive multi-threading to hide the performance gap between on-chip and off-chip memory
access. Computation and I/O are independent, so threads can be either processing, waiting, or
performing I/O, which ensures that all the cores and the wide data bus are always in use. This
strategy sacrifices single thread performance to overall performance across all threads.

Like CPUs, the clock speeds of GPUs are limited both by the materials from which they are
fabricated and power consumption. Thus, meeting the demands of the gaming industry required
wider architectures, culminating in the current flagship offerings from nVIDIA and ATI. From
nVIDIA, the 480 core Fermi architecture (GF100) is capable of 1.3 TeraFLOPS single precision
performance and 177.4 GB/s memory bandwidth [30]. ATI has the Cypress XT, with 1600

Chapter 2. Graphics Processing Units 10

Jul-2003 Mar-2005 Oct-2006 Jun-2008 Feb-2010

Release Date

10

100

1000

10000

G
ig

aF
L

O
P

S
ATI
nVIDIA
Intel

Fermi
GT200

G92

G80 Ultra
G80

G71
G70

NV40

NV35
NV30

Cypress XT

RV790
RV770

RV670R600R580

R480

R420

R360
R350

Northwood
Prescott

Woodcrest

Harpertown
Dunnington

Beckton

Figure 2.1: GPU and CPU 32-bit FLOPS Performance
Current GPU offerings from both ATI and nVIDIA outperform CPUs by an order of magnitude. Fermi
and Cypress chip-sets are capable of 1345 and 2720 GFLOPS peak theoretical 32-bit performance, respec-
tively, in a single GPU per PCB configuration compared to an octacore CPU theoretical peak performance
approaching the 100 GFLOP mark. In early 2003, GPUs and CPUs showed similar performance figures
but, driven by the need for higher throughput in computer graphics applications GPUs adopted wider
architectures opening up a performance gap between GPUs and CPUs.Peak theoretical performance for
nVIDIA GPUs can be calculated as the number of cores multiplied by the shader clock rate multiplied
by 2 for each fused multiply and add (FMAD) that these GPUs can perform per cycle. The GT200 can
perform both a FMAD and multiply in the same cycle due to its dual issue capability. ATI performance
is calculated by multiplying the shader clock speed by the number of unified shader cores, each of which
performs one operation per clock cycle.Each CPU core can perform 4 operations per cycle per core. Data
up to 2007 from Owens et al. [37]. Data for each processor is available from one of either the nVIDIA,
AMD or Intel websites.

stream processors capable of 2.7 TeraFLOPS single precision compute performance and 153.6
GB/s memory bandwidth [31].

GPUs are especially well suited to data-parallel algorithms with a high ratio of floating point
calculations to memory operations (or arithmetic intensity) Data-parallel computation is ideally
embarrassingly parallel - the same sub-program is executed on many data elements indepen-
dently suiting programs - lacking the requirement for sophisticated control flow hardware found
on conventional processors such as CPUs [22].

While similar in many ways, it is the local load and store capability of GPU that distinguishes
them from true SIMD/vector processors. The GPU can be viewed as a streaming processor be-
cause the programming model encapsulates computational locality through the use of streams

2.1. General Processing using Graphics Processing Units 11

and kernels, which are able to manage the local memory of each process; this is in contrast
to vector processors, which read data from off-chip memory and write back data to off-chip
memory. The term stream refers to a collection of records requiring a similar computational
operation performed on each element, while kernels encapsulate the computational operations
for each element of a stream. The streaming processor executes a kernel over all the elements
of an input stream, writing the result to an output stream.

Computer graphics algorithms map massive numbers of pixels and vertices to parallel
threads. Multimedia processing applications (such as post-processing, video encoding and de-
coding, image scaling, stereo vision, and pattern recognition) map image blocks and pixels to
parallel processing threads in a similar way. Further generalisation of these type of algorithms
have applications in many fields which stand to benefit from data-parallel processing, such as
signal processing, physics simulations, computational finance and computational biology [22].

GPU computation has matured in recent years, evolving from the GPGPU (General process-
ing using Graphics Processing Units) approach of mapping problems to geometry and texture
domain operations and using the graphics API to perform the calculations, to the fully pro-
grammable approach afforded by current generation hardware exposed through the Compute
Unified Device Architecture (CUDA) [22] and Close to Metal (CTM) [32] APIs.

2.1 General Processing using Graphics Processing Units

GPGPU programming originates in programmable frame-buffer devices and systems such as the
UNC PixelPlanes series [33] where SIMD embedded pixel processors on a single chip operated
as frame-buffer memory. The abstraction of OpenGL as a SIMD processor using programmable
shaders [34] allowed programmers to use GPUs through OpenGL API calls. Then, APIs such as
Cg, GLslang, HLSL allowed shaders to be written in a high level, C-like language [35]. However,
a shortcoming of all these techniques is that the programmer had no control over the remaining
components of the graphics pipeline, such as memory allocation, loading shader programs or
constructing primitives, which forced not only an understanding of the latest graphics hardware
and APIs, but also that the programmer express all of their algorithms in terms of graphics
primitives, i.e. polygons or textures.

Graphics processors circa 2004 featured programmable vertex and fragment processors, where
each processor executed an assembly level program consisting of standard mathematical instruc-
tions, e.g. 3 or 4 component dot products, texture fetch instructions and special purpose func-
tions. The programming model was a set of kernels acting upon streams, but this had to be
programmed as a sequence of shading operations acting upon graphics primitives. The program-
mer also had to perform explicit stream management, explicitly calling a graphics API function
on data manually packed into textures or vertices and transferred to the GPU [35]. Program-

2.1. General Processing using Graphics Processing Units 12

Figure 2.2: The Programmable Graphics Pipeline
On a programmable GPU, vertex and fragment processing is assigned to programmable units running the
vertex and fragment programs written by the programmer (green), these commands bypass parts of the fixed
function pipeline (grey) that would other wise perform vertex and fragment processing. All computation is
driven through the graphics API on the CPU (blue). Results stored in the frame-buffer can be transferred
back to the CPU or recirculated in the pipeline. (Diagram derived from The CG Tutorial [36])

mers needed to be mindful of hardware limitations, texture sizes, shader operation counts and
shader outputs. Furthermore, the lack of some fundamental computing constructs (e.g.. scat-
ter operations and integer operands) made GPUs ill-suited to certain computationally intensive
tasks, such as cryptography [37].

Nevertheless GPUs were effectively used for cell-based simulation techniques, such as cellular
automata [37], dynamics simulations governed by PDEs [38], and lattice simulation approaches
such as Lattice Boltzmann Methods (LBM) for modelling fluids [39].

Hardware improvements (e.g., integer support and improved single precision) enabled more
sophisticated general computation on a GPU, such as finite difference and finite element tech-
niques for solving partial differential equations [37], implementations of the Navier-Stokes equa-
tions [40, 41] and smooth particle hydrodynamics [42]. Rigid body dynamics were successfully
implemented on a GPU achieving over than 10 times speed-up compared to a multi-core CPU
implementation [43].

GPUs have also been used for image, video and signal processing [44, 45], such as segmen-
tation of MRI and CT scans [46], computer vision [47], fast Fourier transforms [48], discrete
cosine and wavelet transforms for use in MPEG and JPEG compression [49] and linear al-
gebra applications [40, 50, 51]. Geometric applications include ray tracing, photon mapping,
radiosity calculations, subsurface scattering [52,53], constructive solid geometry operations [54],
distance fields and skeletons, collision detection, transparency, particle tracing, geometric com-
pression and level of detail techniques [55,56]. GPUs have even been used to speed-up database
queries [57].

2.1. General Processing using Graphics Processing Units 13

Efforts to abstract the GPU programming model such that it no longer involved graphics
APIs emerged in forms such as BrookGPU. Brook, from Stanford University was originally de-
signed for streaming supercomputers [35] and exposes the GPU as a streaming coprocessor to
the CPU via the use of streams, kernels and reduction operators. This enables a programmer
to produce program in Brook which will compile and run on any hardware for which there is a
Brook implementation.

Cognisant of the increasing need for more programmable GPUs, vendors nVIDIA and ATI
have developed architectures that no longer restrict developers to a fixed function pipeline, in-
stead offering a fully programmable scalable architecture and associated APIs. CUDA from
nVIDIA [22] and CTM from ATI [32] expose current generation GPUs at a low level, bypassing
the graphics programming APIs. More general approaches such as OpenCL have also emerged,
allowing general computation on any GPU independent of vendor [58]. With these technologies,
no knowledge of graphics programming is required in order to use a GPU for general compu-
tation. Since their initial releases: nVIDIA continue to develop CUDA, while ATI is focussing
its efforts on ATI Stream Technology implementing OpenCL for general GPU computation.
nVIDIA supports both CUDA and OpenCL for its GPUs.

Other GPU computing technologies include Microsoft’s DirectCompute1 and Intel’s Larrabee
project. Larrabee is not a GPU specific hardware, but features a full x86 instruction set and
cache coherency [59]. The relative importance of this proposed architecture has been diminished
by 2010’s GPU offerings, such as Fermi from nVIDIA and Cypress from ATI, which further gen-
eralise computation on the GPU. The Fermi architecture implements unified address spaces with
full C++ support, full IEEE floating point precision, true cache hierarchies with unified caches,
error correction code memory support [60] and thus incorporates many features of Larrabee
which would have made it superior to true GPUs. The Fermi architecture improves on previous
generations with 32 CUDA cores (SPs) per SM and improved double precision floating point
performance, a dual warp scheduler, an increase in the amount of shared memory and double
the number of special function units (SFU), resulting in an even more generally programmable
GPU architecture in addition to the increase in performance [60].

With the increase in speed and accuracy coupled with the new programming interfaces,
the number of general purpose applications ported to GPUs have increased. nVIDIA’s CU-
DAZone2 and ATI’s Stream Developer Showcase3 offer showcases for each companies’ GPU
programming technology. Fields benefiting from GPU acceleration, specifically CUDA, include
molecular dynamics and computational chemistry [17,18,25,61–63], life sciences and bioinformat-

1http://www.microsoftpdc.com/2009/P09-16, accessed 2010-12-06
2http://www.nvidia.com/object/cuda_home.html, accessed 2010-12-06
3http://developer.amd.com/samples/streamshowcase/, accessed 2010-12-06

2.2. The CUDA Programming model 14

ics [64,65], physics [16,66,67], biological and medical imaging [68–70], financial mathematics [71],
mathematics [14], climatology and oceanography [72–74] and video, imaging and computer vi-
sion [43, 75–79]4. Many more applications benefit from CUDA by using CUDA mathematics
libraries [70] and random number generators [43] as well as CUDA accelerated versions of MAT-
LAB, R and Mathematica. Computational chemistry makes good use of both nVIDIA and ATI
GPUs for research. Stanford’s Folding@Home, the most powerful distributed computing cluster
in the world, reports that of the 5 PetaFLOPS of compute power at its disposal5, 3.2 PetaFLOPS
are attributed to GPUs (2.6 to nVIDIA and 0.7 to ATI respectively). Clients for Folding@Home
use either CUDA, CAL or OpenCL to interface with the GPU.

2.2 The CUDA Programming model

CUDA exposes the GPU as a generally programmable device, as opposed to a fixed function
graphics pipeline where GPGPU is achieved by programmable shaders. In essence, CUDA re-
quires the programmer to transfer data to the GPU, invoke a kernel upon that data and copy
the result back to the host. Three critical optimisation strategies be adopted in order to make
effective use of a GPU with CUDA: maximising parallel execution, optimising memory usage
to achieve maximum memory bandwidth and optimising instruction usage to achieve maximum
instruction throughput [23]. Optimisation within each thread and group of threads in the CUDA
aims to maximise the available bandwidth and compute resources of the GPU and so maximises
the compute performance of an algorithm.

2.2.1 The Compute Unified Device Architecture

The G80, introduced in 2006, was the first Compute Unified Device Architecture (CUDA) com-
pliant GPU. This architecture was the first GPU to support C, as opposed to a shading language.
The G80 combined vertex, geometry and pixel pipelines into a single unified processor, referred
to as a Streaming Multiprocessor (SM) [60]. A scalable array of these SMs is at the core of the
CUDA architecture. A high end GTX 280 has 30 SMs and a mainstream GT 220 has 6 SMs,
but both prescribe to an identical programming model.

A streaming multiprocessor consists of a number of 32-bit scalar processors (SPs) and special
function units, together with a multi-threaded instruction unit, shared memory, local registers
and a constant cache. The GT200 architecture has a 64-bit precision unit in addition to these
features, to enable double precision calculations in hardware. In G80 and GT200 series GPUs,
these SMs are clustered in a texture processing cluster (TPC) where they shared texture unit

4Application list available at http://www.nvidia.com/object/cuda_app_tesla.html, accessed 2010-09-09
5http://fah-web.stanford.edu, accessed 2010/08/05

2.2. The CUDA Programming model 15

Figure 2.3: CUDA 1.0-1.3 Architectures
Streaming multiprocessors contain an array of scalar processors (SPs) together with instruction, data,
local caches and special function units. SMs are grouped in a Texture Processing Cluster (TPC) with a
shared texture cache and texture unit. A streaming processor array of TPCs ultimately determines the
performance of the entire GPU, linearly scaling the performance of each TPC. The GT200 differs from
the G80 GPU architecture in that it contains an additional SM per TPC. For different products the size of
the streaming processor array is varied, so determining the number of cores: 240 core GTX280 (GT200)
GPUs contain 10 TPCs, 128 core 8800GTX (G80) GPUs contain 8 TPCs. (Figure derived from Stone
et al. [18])

and texture cache. G80 TPCs contain 2 SMs and GT200 TPCs contain 3 SMs, with the scalable
array being assembled from texture units. Figure 2.3 illustrates the hierarchy of streaming mul-
tiprocessors, texture clusters and streaming processor array in the G80 GPU. Each G80 SM has
8 stream processors and 2 special function units. The stream processors perform floating point
arithmetic in parallel with the special function units performing fast square roots, trigonometric,
exponential, power functions and other mathematical functions [22].

The CUDA parallel programming model overcomes the challenge of scalable hardware with
three key abstractions - a hierarchy of thread groups (thread blocks), shared memories, and bar-
rier synchronization - all of which are exposed to the programmer as a minimal set of language
extensions in C [22]. These abstractions provide fine-grained data parallelism and thread par-
allelism mechanisms. The thread groups impose a coarse subdivision of a problem into smaller
independently solvable parts, within which, fine-grained thread parallelism and data sharing
is used to find a solution. This data and task decomposition allows each sub-problem to be
independently scheduled (Figure 2.4).

2.2. The CUDA Programming model 16

Figure 2.4: CUDA Hardware Scheduling
The data parallelism of CUDA programs results in identical program behaviour across any number of
scalar architecture of streaming multiprocessors (SMs). Thread blocks are scheduled on the available
hardware and thereby ensure that the same CUDA application can execute on any CUDA capable device
without modification. (Figure derived from the CUDA Programming Guide [22])

CUDA requires no understanding of the GPU hardware in order to attain excellent perfor-
mance because of the level of abstraction the API provides. However, knowledge of the hardware
helps to optimise the performance of a CUDA program.

Multiprocessors create, manage and execute concurrent threads in hardware with no schedul-
ing overhead. Threads executing on an SM can communicate via shared memory. Hundreds of
threads running different programs can be managed by an SM by mapping each thread to one
scalar processor core such that it executes independently with its own instruction address and
register state. The multiprocessor SIMT unit creates, manages, schedules, and executes these
threads in groups, called warps, of 32 parallel threads. The individual threads in a warp start
with the same initial state and address, but are free to branch and execute independently.

More than one thread block can be assigned to an SM at a single time. Thread blocks
are collections of threads processing spatially-local data and can have one, two or three dimen-
sions.Thread blocks are arranged in a one- or two dimensional grid (Figure 2.5), thus allowing
the data to be divided into schedulable work units on the GPU.

For the GT200 architecture, a CUDA grid can be arranged in any manner, as long as the

2.2. The CUDA Programming model 17

Figure 2.5: CUDA Thread Hierarchy
CUDA organises threads into groups called thread blocks which in turn are assigned to a grid of thread
blocks. Blocks compose a 1 or 2 dimensional grid while threads compose 1, 2 or 3 dimensional blocks.

product of the dimensions does not exceed 216, i.e. grids of 65535 by 1 or 256 by 256 are both
valid, but the former will address data linearly and the latter in 2 dimensions. Thread blocks
are restricted to a maximum of only 512 threads per block, with maximum sizes of 512, 512
and 64 for its respective x,y and z dimensions. Thus, this architecture can schedule up to 33
554 432 threads. Unlike CPUs, which would “thrash” if this many threads were contending
for the processor, the GPU is specifically designed for the massively multi-threaded usage case.
These blocks are split into independent warps of 32 contiguous threads to be scheduled by the
SIMT unit. Warps are not controlled by the programmer: their size is defined by the driver
and CUDA runtime environment to make efficient use of the parallelism within each SM. When
issuing instructions, the SIMT unit selects a warp and issues the same instruction to the active
threads in that warp. Thus, warps are most efficient when all 32 threads follow the same path
of execution, because divergence is handled by executing each conditional branch serially.

CUDA requires no explicit knowledge of the underlying hardware configuration to program
a GPU. Kernels execute the same code for every thread in every block. The CUDA software
stack, shown in Figure 2.6 provides the mechanism by which kernels are invoked and data is
prepared on the GPU. At the bottom of the stack is hardware layer and on the top is the
programmers GPU computing application. The layer in the middle can be CUDA C, OpenCL,
Direct Compute or CUDAFortran, all of which interact with the GPU using the CUDA runtime.
The programmer controls the flow of the CUDA application: usually a copy of data from the
host to GPU memory, followed by a kernel invocation on the GPU. The kernel then processes
the data in parallel using as many threads as possible, whereupon the data is transferred back
to the host’s memory.

The CUDA programming model assumes that the CUDA threads execute on a physically
separate device that operates as a coprocessor to the host. Kernels execute on a GPU and the
rest of the program executes on a CPU. The CUDA programming model also assumes that both

2.2. The CUDA Programming model 18

Figure 2.6: The CUDA Software Stack
CUDA hardware forms the base of the CUDA software stack. An interface, such as the CUDA C API,
OpenCL, DirectCompute or CUDA Fortran provide a means by which to program the underlying hardware.
Thus, provided that there is a mechanism to access one of these interfaces, any application can make use
of the GPU. The underlying GPU is abstracted by the API, allowing the programmer to program at the
thread block level with high level C or Fortran. (Figure derived from the CUDA Programming Guide [22])

the host and the device have separate memory, referred to as host memory and device memory,
respectively.

Thread blocks and grids implicitly loop over all elements in a data set: serially, a 1D thread
block would be a simple loop, a 2D thread block would be a nested loop etc. Within a thread
block, threads can communicate via shared memory. Shared memory acts as an explicit low-
latency cache near each processor, much like L1 cache on a conventional CPU. Furthermore,
threads in the same block can be martialed by the intrinsic barrier synchronisation mechanisms
provided in the CUDA API. Inter-thread-block communication is not possible, meaning that
thread blocks execute independently and in no specific order. Thus, thread blocks can be tuned
for occupancy or memory use. The maximum thread block size may be unusable because there
are not enough resources on an SM to support the data requirements of this many threads, mean-
ing that the block dimensions determine the grid dimensions in order to address all elements of
the data set. The programmer focuses on ensuring that one thread block executes efficiently on
one SM: scaling and scheduling is handled implicitly by the CUDA runtime environment. For
example, the maximum number of threads a kernel may launch is 33 554 432 (512×65536), but
a GTX280 only supports the 768 concurrent threads per SM on its 30 SMs, meaning that only
23040 threads are running at any one time. Similarly, a GTX260 with only 24 SMs can perform
the same operation, only slower, since more thread blocks are queued per SM, as illustrated in
Figure 2.4.

In practice, only a fraction of those threads are actively processing at any one time. A
lightweight scheduling system can efficiently switch thread contexts/warps, ensuring that la-
tency is hidden and the GPU is kept busy. Occupancy is defined as the ratio of the number of
active warps per multiprocessor to the maximum number of possible active warps [23] and is
a measure of how well threads are able to hide the latency of the comparatively slow memory
transactions on the GPU. The thread block size must be tuned to achieve an optimal balance

2.2. The CUDA Programming model 19

between speed and occupancy for a kernel. While maximum occupancy is not a goal in itself, it
is a valuable tuning metric, as occupancy relates to latency hiding.

2.2.2 CUDA Kernels

The CUDA kernel is the function executed in parallel by every CUDA thread on the GPU. The
data operated on by a particular instance of the kernel is determined by the unique thread index
and block index of that thread. Internally, a kernel is aware of its position in the hierarchy of
threads and blocks, and so addresses its data based on this information.

Ideally, programmers use the basic GPU building blocks: map, reduction, scatter, gather,
sort or search to implement their algorithms. The reason a programmer uses these parallel
primitives is that they provide a means to decompose and efficiently map complex algorithms
to the GPU [80].

2.2.3 CUDA Memory

Complementing the threading model, CUDA’s memory model offers a variety of memory types.
The CUDA threading model encapsulates data parallelism, while the memory model exposes,
and minimises, the performance bottlenecks of data dependencies. Thus, use of suitable memory
structures and techniques is critical for application performance. CUDA threads have access to
a variety of memory spaces throughout their execution, (Table 2.1). Each thread can access its
own private local memory during execution as well as a pool of memory shared between all the
threads in its block, for as long as that block is running on an SM. At a global scope, all threads
from all blocks have access to global, constant and texture memory. From the host, data can be
written to global, texture and constant memory spaces for later use by kernels. These memory
spaces are declared on the host and are persistent for the entire duration of the CUDA runtime
associated with the host thread and are managed in the same way as host memory (using CUDA
memory management functions analogous to C’s malloc, memcpy and free functions).

Memory optimisation is the most performance-determining factor in CUDA [23]. Put con-
cisely, the goal is to maximise the hardware utilisation by by maximising bandwidth utilisation
by using as much fast memory (register, shared) and as little slow-access memory (global, con-
stant, texture) as possible. Even slow-memory access is preferable to memory transfer across
the PCI-E bus. GPUs possess in excess of 80GB/s bandwidth to DRAM and CPUs in the order
of 10GB/s to 50GB/s bandwidth to RAM, depending on the architecture. Gen2 PCI Express
buses can transfer at most 8GB/s between the host and device, necessitating that programmers
minimize data transfer between the host and the device, even if that means running kernels on
the GPU that do not demonstrate any speed-up compared with running them on the host CPU.

2.2. The CUDA Programming model 20

Table 2.1: CUDA Memory Spaces. There are six different types of memory space available on
the GPU. These range from small fast registers and shared memory to large volumes of high latency
constant, global and texture memory. Different types of memory posses different scopes, writability,
caching characteristics and lifetimes depending on their intended purpose.

Type Location Cached Access Scope Lifetime
Register On Chip r/w Thread Thread
Local Off Chip No r/w Thread Thread
Shared On Chip r/w Block Block
Global Off Chip No r/w Global Application

Constant Off Chip Yes r Global Application
Texture Off Chip Yes r Global Application

The primary function of cache is to reduce the latency of retrieving data from larger, and
higher latency, system memory. CPUs are designed for general computation and, consequently,
require large caches per core to maximise single thread performance. In contrast, GPUs are not
intended for truly general computing and so the cache is designed to suit highly separable data,
explicitly managing small subsets of this data in tiny local caches. The management of these
explicit caches and selective use of singly cached variables in constant memory and the arrange-
ment of memory to afford maximum performance is central to the CUDA memory model.

Each type of memory on the GPU serves a specific purpose (Table 2.1). Registers are fast and
store local variables during the execution of the thread. Registers effectively have zero latency
when used optimally. However, bank conflicts and read-after-write dependencies can increase
the latency. For example, a read-after-write dependency, requires a thread to wait 24 cycles after
writing to a register before it can be used again. Fortunately, multi-threading completely hides
this latency if at least 6 warps are active on an SM, because each warp is issued an instruction
once every 4 cycles. This occurs on any device when occupancy is greater than 18.75% [23] which
is a motivation to increase kernel occupancy. SMs from G80, GT200 and Fermi GPUs contain
8192, 16384 and 32768 32-bit registers respectively which are shared between the number of
threads in a block. Unfortunately, if a block contains more data in local variables than can be
contained in registers, these values “spill” to global memory residing off-chip, resulting in a 2
orders of magnitude read/write latency over registers.

Shared memory is physically identical to registers in that it is partitioned in to 16 distinct
32-bit memory banks, enabling a half-warp of 16 threads to read or write 16 values concurrently
in one instruction cycle. Like registers, shared memory has a 24 cycle wait when resolving read-
after-write dependencies [23]. The G80 and GT200 architectures have 16384 bytes of shared
memory per SM, but Fermi GPUs have a combination of L1 cache and shared memory config-
urable in a 16/48 or 48/16 split, depending on the applications needs [60]. The access latency

2.2. The CUDA Programming model 21

of appropriately managed shared memory is approximately 100 times less than that of accessing
the same data from global memory [23].

Global memory is the GPUs equivalent of system RAM. Physically located far from the GPU
core, global memory provides the programmer with anywhere from 512MB to 6GB in which to
store data required for simulations.

Streaming processors also have a constant cache, which is used to cache single read only
variables from constant memory for reuse across a thread block. First read performance of
constant and global memory is identical, incurring latency hundreds of clock cycles, but, once
cached, constant memory provides register like performance if the cached value is broadcast to
all threads in a warp.

Finally, texture memory is cached in the texture processing units, not the SM, sharing the
24KB of texture memory between the SMs. An advantage of using texture memory over con-
stant memory is that texture memory performs a spatially local cache of data near the accessed
element, as opposed to a caching a single element, making it more like a CPU cache. Texture
caches cache spatially in one, two and three dimensions. Therefore, if subsequent accesses are
spatially local to the initial value, threads can benefit from the texture cache. This is particu-
larly useful if the memory reads do not follow the access patterns required for good global or
constant memory performance. Another important function of texture memory is the ability to
perform linear interpolation in hardware. When accessed using normalised coordinates, a tex-
ture will automatically compute an interpolated value for the requested coordinates, facilitating
the pre-computation and discrete storage of expensive functions that can be used as constants
for computation on the GPU.

Possibly most important performance consideration in programming for the CUDA archi-
tecture is the coalescing of global memory accesses [22, 23]. If data is arranged and required
according to specific access patterns, all threads in a warp can load or store a 64-bit word in
global memory in as little as one coalesced transaction. Global memory is partitioned into 64
byte segments, thus a single segment can contain 16 floats. GPU hardware accesses these seg-
ments in transactions of 32, 64 or 128 bytes. Thus, to ensure optimal data transfer from global
to shared memory or registers, a single 128 byte transaction can service every memory request
for a warp. Memory transactions are performed at the half warp level, thus peak bandwidth is
attained when the kth thread in a half warp accesses the kth word in a segment aligned to 16
times the size of the elements being accessed.

Figure 2.7 illustrates the how various arrangements of memory affect coalescing with Figure
2.7a showing the simple case of 16 threads accessing 16 floats aligned correctly. Note that it is
not necessary for threads to access an element in order to maintain the coalesced behaviour. In
compute capability 1.2 or later devices, a single transaction will occur for any permutation of

2.2. The CUDA Programming model 22

(a) Coalesced Access (b) Out of Order Access

(c) Sequential Misaligned Access (d) Sequential Misaligned Access, Multi-
ple Transactions

(e) Strided Access

Figure 2.7: Global Memory Coalescing
Coalesced global access are vital for achieving high effective memory bandwidth. Global memory is par-
titioned into 32, 64 and 128 byte addressable segments. Depending on the transaction, the GPU will
attempt to use as few transactions as possible to service the request. Early CUDA architectures (≤ 1.1)
required a 64 byte aligned serial access pattern (a) in order to perform a coalesced read or write, otherwise
(b) to (e) all 16 transactions for a half warp would be performed as 16 serial transactions. Subsequent
architectures relax coalescing conditions such that access patterns (b) to (e) are handled more favourably.
Provided all addressed fall within the same 128-byte segment, even if they overlap a 64-byte boundary, a
single transaction occurs. If a transaction crosses a 128-byte boundary (d), the transaction is decomposed
into as few 32-,64- or 128-byte transactions as possible. (Figure inspired from Figures 3.3-3.6 and 3.8 of
the CUDA Best Practices Guide 2.3 [23])

access pattern within the same segment (2.7b). However, compute compatible 1.1 devices would
resolve this issue using 16 serial transactions, severely diminishing performance. The effect of
some threads failing to participate only impacts effective bandwidth, the ratio of bytes requested
over bytes transferred; kernel bandwidth is effected by the number of transactions and the size
of these transactions.

Access patterns such as Figure 2.7c and 2.7d occur when threads access sequential data at

2.2. The CUDA Programming model 23

an offset address than does not fall upon a 64KB boundary. Critically, if the threads in the half
warp access elements within the same 128 byte segment, (Figure 2.7c), a single transaction oc-
curs, wasting 50% of the available bandwidth. But, if these addresses cross a 128 byte boundary,
the request is decomposed into 2 transactions to facilitate the transfer. Figure 2.7d illustrates a
half warp’s request for 16 4-byte elements crossing a 128-byte boundary, the request is serviced
by a 64-byte followed by a 32-byte transaction.

Finally, if warps access elements in a strided manner, but all elements fall within the same
boundary, a coalesced access such as the one in Figure 2.7e occurs for GT200 architectures.
However, only 50% of the data transferred during each transaction is used, resulting in poor
effective bandwidth. As the stride increases, effective bandwidth degenerates until the GPU
has to perform one 32-byte transaction per element, resulting in serialisation of the request and
over 16 times poorer performance. The relaxed coalescing criteria on compute capability 1.2 or
higher devices means that any access that fits into 32 bytes for 8-bit words, 64 bytes for 16-bit
words, or 128 bytes for 32- and 64-bit words is coalesced. Furthermore, provided programmers
use arrays of the built in CUDA types and vector types such as float, float2, float3, float4, con-
tiguous arrays of such types guarantee coalesced global memory access.

To achieve high memory bandwidth for concurrent accesses, shared memory is divided into
16 equally sized memory modules, called banks. Any memory load or store of 16 addresses that
span 16 distinct memory banks can be serviced simultaneously, resulting in effective bandwidth
16 times that of a single memory module. A single is 4 bytes wide, meaning that no bank
conflicts occur for contiguous arrays of types such as int and float. However, types such as
double2 or float4 each require 16 bytes and thus occupy 4 banks per element. So a half warp
of 16 of these types can only write 4 elements simultaneously to shared memory, resulting in a
4 way bank conflict. The repercussions of such conflicts is that the latency of read-after-write
dependencies increases by the factor of the number bank conflicts. Thus, with no bank conflicts,
192 threads is sufficient to completely hide latency on an SM, but, with 4 way bank conflicts,
768 threads per SM are required to hide the resulting latency.

2.2.4 Limitations of the CUDA Architecture

An issue that has always hampered GPGPU is floating point accuracy and IEEE compliance.
GPUs are designed to favour speed over accuracy, because their intended use is in rendering
images, which are not particularly sensitive to these inaccuracies. The same does not hold for
scientific simulations. This, coupled with the performance penalty of performing double precision
calculations (8 times slower on a GT200, emulated on G80 hardware) has limited performance
in general purpose applications. Floating point inaccuracy is also an issue in CPU implementa-
tions, but it is often ignored because its effects are less noticeable on an IEEE compliant CPU.
Techniques exist to compensate for the lack of precision on both CPU and GPU. For example,
Kahan summation to reduce truncation errors [81] or arbitrary-precision arithmetic. Should the

2.2. The CUDA Programming model 24

GPU require such methods to produce the correct result, its likely that the CPU algorithm will
too. For single precision, CUDA implementations of special functions are generally accurate to
3 units of least precision (ULP), but certain functions, particularly power, gamma and Gauss
error functions, range in ULP error from 4 to 11. Double precision implementations of the same
functions sees smaller ULP errors in most cases [22].

Double precision was added to CUDA with the GT200 containing a double precision FMA
unit in hardware. This precision comes at a cost 8× slower than single precision because threads
cannot use parallelism of the single precision SPs for this arithmetic. Fermi improves this figure
with only a 50% reduction relative to single precision performance [60].

2.2.5 Asynchronous Heterogeneous Computing

To further increase the parallelism of the host-device system, memory transfers and kernel ex-
ecution can use either synchronous or asynchronous call semantics. In the simplest use case,
a memory copy or kernel invocation will behave like a standard function call, passing program
control from the host to the runtime and waiting for control to be returned upon completion
of the operation. However, the CPU, memory bus and GPU can all function independently
and concurrently. CUDA provides streams, asynchronous job queues, for this reason. Currently
the GPU runtime supports 16 independent streams which are in themselves, in order queues of
CUDA memory operations and kernel invocations.

By using streams, it is possible to further decompose problems in concurrent CPU and GPU
tasks, executing both tasks in parallel. A relevant example of this is parallel tempering sim-
ulations. These simulations perform multiple instances of the same simulation with differing
parameters concurrently, synchronising at a global level. Using a GPU asynchronously means
that such a simulation can occupy all the cores of the CPU with global control, synchronisation
and serial tasks ill suited to the GPU while the highly parallel parts of the simulations execute
on the GPU. This usage model aims to utilise all of a systems resources concurrently, as opposed
to one at a time in the synchronous case. Fermi architecture improves on this model allowing
concurrent kernel execution on the GPU, G80 and GT200 GPUs scheduled kernels in a serial
manner.

Streams provide a mechanism to divide algorithms into parallel tasks on both the GPU and
CPU. Thus, algorithms can be efficiently divided into data parallel operations that run on the
GPU, while concurrently, less data parallel portions of the algorithm are performed on the CPU.
Thus, both CPU and GPU can be used simultaneously, maximising the resource utilisation of
a process as opposed to using either the GPU or CPU in a mutually exclusive synchronous
manner.

2.3. Summary: Optimisations in GPU Computing 25

2.3 Summary: Optimisations in GPU Computing

Memory optimisations specific to the GPU are critical to effective GPU utilisation. Minimis-
ing the host-device bottleneck means that less time is wasted in transferring data between the
host and device. nVIDIA even recommends using kernels that are of no performance benefit if
they avoid data transfer. A more fine-grained level of memory optimisation is the GPU-DRAM
bottleneck which, although wider and faster than the PCI-E bus, is still comparatively slow in
providing the GPU with sufficient data to fully utilise the compute power of all the cores. Thus,
maximising the effective bandwidth of an application and coalescing global memory is accesses
is essential in minimising the degree to which a process is memory-bound. The finest level of
granularity is minimising the use of global memory though explicit caching via shared memory.
Replacing as many global accesses as possible with shared memory accesses, decreases the total
latency of a thread’s memory accesses.

Finally, at the warp level, it is more important to avoid thread divergence than optimise the
instructions of in a thread. CUDA programming primarily relies on data-parallelism and single
thread performance, the resultant high-level memory and thread optimisation generally yields
more speed-up than per-thread instruction-level optimisation.

Thus, the kernel, memory and thread models give rise to a multi-dimensional parameter
optimisation problem for a particular implementation. From a memory perspective, a choice of
global, constant, texture or shared memory must be made in designing a kernel. Unfortunately,
all of these resources, apart from global memory, are highly scarce, meaning that problems must
be partitioned into smaller sub-problems that fit into the available memory space. This dictates
the thread block size available to the programmer since shared memory, registers, local memory
and texture caches are shared between all the threads in a block determining that parameter
sets occupancy. In turn, altering the block size due to algorithmic reasons imposes a further
optimisation parameter. At a higher level, the choice of asynchronous or synchronous calls and
the number of streams on the GPU further increase the optimisation parameter set.

A successful CUDA implementation is mindful of all of these factors. In the generic case,
programming for the average case is sensible and, via the templates in C++, a degree of dy-
namic runtime optimisation is possible. Furthermore, the loadable module support of the CUDA
driver API allows for dynamic generation and loading of kernels if required [22]. But ultimately,
hand-tuning a kernel and CUDA configuration based on the semantics of the data is likely to
result is best performance, though at the cost of increased development time.

Conceptually, the GPU hardware characteristics can be phrased as a set of high-level opti-
misation strategies. However, algorithmic and method design are far more important than any
other GPU optimisations [23, 82]. Discovering the manner in which serial code can be made
parallel is the most important task of all; maximising the ratio of parallel to sequential code

2.3. Summary: Optimisations in GPU Computing 26

provides the most rewards in any HPC context, not specifically GPU computing.

2.3.1 Expected GPU Performance

GPU implementations typically achieve speed-ups of 10-100 times the CPU version [13]. nVIDIA
markets the benefits arising from its GPU technology with the phrase, “reduce time-to-discovery”
6. For example, a speed-up of 50× reduces a simulation from 1 year runtime to 1 week, decreas-
ing the waiting time when simulating highly complex systems.

GPUs excel when applied to problems of high computational intensity, with a high ratio of
calculations to memory accesses. The classical n-body simulation is well suited to the GPU be-
cause direct N-body methods involve an input vector of N positions and N velocities. The force
of each element acting upon every other element is calculated and a double integral performed
to attain the updated time-step velocities and positions. The high arithmetic intensity comes
from each pairwise force calculation requiring 20 floating point operations per pair of input el-
ements [15, 16]. This is in contrast to applications such as reduction, which performs only one
arithmetic operation per pair of input elements, leading to a memory bound algorithm [82].

The nVIDIA reference N-body implementation by achieves 204 GigaFLOPS [15] on the then
current G80 GPU. The GTX280 used in our work achieves 311 GFLOPS for the same param-
eters, which is similar to Belleman et al. [16] also implement the n-body problem using CUDA
and a 4th order Hermite integrator, instead of the Verlet integration scheme used by Harris,
achieving up to 230 GFLOPS on a 8800GTX (G80). Importantly, Belleman shows that a G80
GPU outperforms a GRAPE-6Af accelerator designed specifically for this application for a much
higher price tag.

Friedrichs et al. use both a Lennard Jones and Coulomb potential to perform molecular
dynamics on the GPU and achieve up to 212 GFLOPS performance for a 5078 atom simulation,
a 735 times speed-up over a CPU [17]. Other molecular dynamics [18,25,83] and physics [16,26]
simulations benefit from speed-ups of up to two orders of magnitude over a CPU implementa-
tion.

Unfortunately, the ability to extract these speed-ups requires explicit knowledge of the un-
derlying architecture and programming model, tuning code and algorithms for maximum data
parallelism, techniques often ignored, but of great benefit to CPU programs, especially in an era
when hardware is becoming wider rather than faster.

6http://www.nvidia.com/object/gpu_tech_conf_research_summit.html

Chapter 3

Protein-Protein Docking Simulations

3.1 Introduction

The problem of protein-protein binding, is described as one of the 10 most sought-after solutions
in bioinformatics [1]. Protein-protein or protein-ligand docking interactions play a central role
in biochemistry, since the formation of complexes is integral to biological function [84,85]. While
proteins-protein interactions are highly important, there are only a relatively small number of
structures experimentally determined at an atomic resolution. The use of computational meth-
ods is therefore most important as tools to complement these techniques [12]. Predicting such
interactions is as important as being able to predict the native structure that enables them to
bind in this way.

Proteins are composed of chains of amino acids. This chain is linked by bonds between
the carboxyl and amino groups of adjoining amino acids (Figure 3.1). Each amino acid of the
protein chain is referred to as a residue, while the covalent bond between them is referred to
as a peptide bond and the whole chain as a polypeptide. The various amino acids differ only in
the compositions of their side chains. Of the approximately 300 types of amino acids found in
nature, only 20 occur in proteins.

The peptide bonds form the backbone of a protein, exposing the side chains. The side chains
give each each particular amino acid and particular protein its structure and function. Polypep-
tides (proteins) are strictly linear chains with no branching of the peptide linkages.

In this chapter, we review methods for protein-protein docking. This is followed by a review
of algorithmic modifications which may be used in the implementation of the generic docking
techniques. These algorithmic changes arise from the computational demands of the protein
models and can therefore be considered as separate from the methods themselves.

The ultimate aim of a protein-protein docking simulation is to determine the molecular
structure of a complex formed from two or more proteins in the absence of experimental data.

3.1. Introduction 28

Consequently, docking methods have to generate configurations which contain a near-native
docking configuration (the configuration similar to the naturally occurring structure) and have
to be able to distinguish these configurations from other, less favourable, configurations.

Protein-protein complexes form due to the interactions of the residues in the participating
proteins. Complex formation is driven by the same interactions that cause the proteins to fold,
thus, the physical principles governing folding and docking are similar [86]. Complex forma-
tion can be viewed from either a physical or empirical perspective. Physically, the folding of
docking process is a energy minimisation problem, while empirically, it is a structural motif (a
three-dimensional structural element) matching problem. The empirical and physical interpre-
tations of the problem give rise to two broad approaches to docking. Physical techniques use
the electrostatic forces between proteins to perform simulations that minimise the energy of the
system and empirical techniques perform docking via complementarity. A 3D representation of
two proteins and their docked state is included in Figure 3.2, illustrating the implicit structural
motif aspect to the docking problem.

The whether electrostatic or structural, the search space traversal posed by docking is anal-
ogous to traversing the folding funnel from protein folding [88]. The concept of folding funnels
revolutionized the understanding of protein folding. Most importantly, the stipulation that
protein folding progresses via multiple routes going downhill rather than via single folding tra-

(a) Amino Acids

(b) Polypeptides

Figure 3.1: Amino Acids and Polypeptide Growth
Polypeptides are synthesised from amino acids. (a) Each amino acid contains one central carbon atom
and 4 subgroups. (b) Polypeptides form from covalent peptide bonds between the carboxyl and amino
groups of amino acids, growing from an initial sulphur containing amino acid in the amino terminal
group.

3.1. Introduction 29

Figure 3.2: A Docking Schematic
Protein-protein docking is the process whereby proteins form a complex. This is either an energy minimi-
sation problem or structural motif problem. Energetic or scoring functions applied to undocked compo-
nents using a suitable search method provide the means to predict the docked structure. Docking specifically
searches for these docked complexes, whereas binding simulations pertain to the manner in which the com-
plex forms. [This image and subsequent molecular visualisation graphics are generated using VMD [87]]

jectory has shown a way out of the Levinthal paradox [88]. By using a funnel shape (Figure 3.3
to describe the protein folding energy landscape as a function of conformational space, protein
folding is not a random search as it is driven to find the global minimum of the funnel. De-
pending on the folding model, a conformation can become trapped in the potential wells on the
well’s surface. What is also evident is that the higher these barriers, the longer it will take the
process to reach the native conformation at the bottom of the funnel [88]. Tsai et al. state that
the funnel of a protein complex can be expected to be rugged if the individual folding funnels of
the participating proteins are rugged [88]. In docking rigid proteins, there is likely to be a single
or few global minima due to the likelihood that the docking site will be very specific. However,
flexible proteins have rugged funnel bottoms, because they can occupy a range of conformational
isomers and with low energy barriers separating them [88].

The computational approaches to direct modelling of the physical interactions of proteins
are classed as either binding or docking simulations. The distinction between these simulations
is that docking simulations discover the configuration in which proteins form a complex and the
equilibrium conditions surrounding this formation, whereas binding simulations model binding
pathways and the kinetics of protein binding to study complex interactions [86]. Thus, binding
and docking simulations provide complementary methods by which to model and understand
protein interactions. Besides protein-protein interactions, proteins also interact with ligands,
DNA and other bio-polymers. While these interactions are driven by the same physics and
principles, the docking strategies and methods differ. In ligand-protein interactions, the ligand
is much smaller than the protein and the binding site on the receptor (the protein in the in-

3.1. Introduction 30

Figure 3.3: The Protein Docking Funnel
The docking problem is analogous to the folding problem in that both must locate a global minimum (bottom
of the funnel) representing either the native state in the case of folding or the docked configuration. Local
minima exist in the funnel, inducing local energy barriers which can trap the docking process. Depicted
here are pieces of a viral capsid, the correctly docked configuration occupies the lowest energy state at the
bottom of the funnel, with mis-docked configurations occupying potential wells of higher energies.

teraction) is either known or presumed: the purpose of such simulations is to determine the
finer details of the interaction. Conversely, in DNA-protein docking, DNA is far more flexible
and there is little in the way of structural recognition beyond the local DNA sequence [86].
Ultimately, protein-ligand and protein-protein simulations share the same principles, algorithms
and procedures.

Docking simulations can be classified into rigid and flexible docking. For rigid docking,
proteins are treated as rigid structures that interact without any internal change throughout
the docking process. Thus, rigid body docking occupies a six dimensional conformational space
consisting of relative translational vectors and rotational angles. Flexible docking includes the
stretching, twisting and bending of the atomic bonds within each protein and consequently al-
lows the protein to change shape during the docking process. This introduces an enormous
number of degrees of freedom to the docking process and, in turn, is computationally infeasible
from an all atom modelling perspective [89].

Flexibility can be introduced in several ways to docking. Implicitly, flexibility is intro-

3.1. Introduction 31

Figure 3.4: The Stages of Docking
Docking applications often adopt a multi-stage process, initially performing rigid body search for suitable
docking candidates before refining the structures with flexible docking simulations. At each stage of the
process, experimentally attained information can be used to guide the refinement and selection of the
docking candidates.

duced by smoothing the protein surfaces or allowing some degree of interpenetration of residues
(referred to as soft docking) or by performing multiple docking simulations from different confor-
mations (cross or ensemble docking) [90]. Explicitly, flexibility can be modelled with side-chain
and/or backbone flexibility. When proteins are treated as rigid bodies, docking is a self con-
tained problem, but, as soon as flexibility of the protein backbone and links between secondary
structures is incorporated into a docking model, the model simulates docking as well as the
changes to tertiary structure, a topic that falls in the folding domain [90].

Accounting for protein flexibility is challenging due to the degrees of freedom in such sys-
tems. Consequently, most simulations treat proteins as rigid bodies or allow for flexibility of
a fixed side chain structure [91]. In the cases where significant conformational changes occur
during docking, flexibility is necessary, but, in cases where only small changes occur during
docking, the trade off between the extra time required for flexible docking and its results is
less distinct [91, 92]. Solernou et al. reports that a flexible backbone and side chain docking
minimisation scheme based on the UNRES force field performs does little to improve the result
attained from FTDock using rigid body docking [92].

Therefore, docking studies follow a multiple part process, depicted in Figure 3.4, performing

3.2. Scoring Functions and Energy Potentials 32

a broad first-pass search on the global search space, before a more fine-grained search starting
from the best candidate docking sites. For docking, this involves a rigid docking simulation
followed by a flexible docking simulation to refine the docking structure. An example is rigid
body docking using ZDOCK and FFT methods followed by optimisation of the structure by
introducing flexibility with RDOCK [93].

Following the rigid body docking step, a stochastic method, such as a Monte-Carlo search,
will produce a large number of candidate solutions. In the case of multiple samples, a clustering
step is performed to extract representative structures for each set of similar poses. This is done
using similarity metrics or screening by the free energy of the poses. The choice of screening
method varies greatly by technique and ultimately depends on the purpose of the study. A blind
docking simulation should indicate the theoretical docking site of the participants, whereas in
screening studies the search may be for a specific binding site.

Ultimately, a question arising from any docking study regards the quality of the result. In
bound docking studies this is comparatively easy, as many of these studies seek to develop a
model and method based on model data, e.g. existing PDB complex entries. A metric such as
RMSD (root mean square deviation) can evaluate the differences between the model (experi-
mental) docking solution and the simulated structures. RMSD is the square root of the average
sum of squares distances between the between the atoms of the experimental and simulated
protein, making it a single precise measure for determining structural similarity.

However, in a blind docking study with no reference experimental structure, evaluation by
RMSD is impossible. The CAPRI (Critical Assessment of Predicted Interactions) experiment
was developed in response to this problem and provides blind docking challenges to evaluate
the efficacy of docking simulations. CAPRI has shown that easy docking problems, ones with
little backbone conformational changes, are generally well handled by the modelling community.
However, simulations of even small conformational changes during a docking simulations are
extremely challenging [90].

Whether rigid or flexible, two key parts to the docking procedure are an energy or scoring
function that can correctly determine the difference between bound and unbound complexes
and a search algorithm to find the orientation (or pose) of the molecules for evaluation by the
scoring or energy function.

3.2 Scoring Functions and Energy Potentials

The nature of the scoring or energy function used for docking will determine the techniques
available for docking. When approached geometrically, the scoring function serves as a measure
of the geometric similarity between the interfaces of the participating proteins, while physical

3.2. Scoring Functions and Energy Potentials 33

approaches evaluate quantities such the energy of the system caused by the electrostatic forces
between the atoms in each protein.

3.2.1 Electrostatic Potentials

Protein docking can be likened to determining the minimum energy state in an intermolecular
energy landscape [86]. This energy landscape resembles a rugged funnel [94] or potential well and
the understanding of the topology of this funnel has had a significant impact on the understand-
ing of both folding and docking as it accounts for the kinetic behaviours of both self-interacting
protein in folding and protein-protein interactions in docking [94]. As a scoring function, the
electrostatic potential of a system provides a means for traversing the docking funnel explicitly
using a search algorithm or implicitly, as in the case of molecular dynamics, using the resultant
force from each electrostatic iteration to accelerate each atom of a simulation in accordance with
Newtonian physics.

Typically, energy functions are derived from the non-bonded forces between proteins and
forces between the atomic bonds within a protein. Non-bonded forces are commonly composed
of a long range electrostatic component derived from the integral of Coulomb’s law, Fij , caused
by the point charges of every pair of atoms, qi, distance r apart,

Fij = k
qiqj
r2

and a short range force constructed from van der Waals force and Pauli repulsion. The short
range force is usually modelled using the Lennard-Jones potential,

V (r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

which approximates the effects of the van der Waals force using r−6 and Pauli repulsion due to
overlapping electron orbitals using r−12 causing a sharp increase in potential when the orbitals
overlap. [95].

Bonded forces include bond stretching, dihedral torsion, bond angles. All of these forces
occur within the structure of a protein. Each covalent bond will have a minimum energy con-
figuration, thus, these forces provide a means to quantify energy changes from flexing proteins
during docking. Bond stretching and bond angle energy calculations model each bond like a
spring, using Hooke’s law: F = −kx. Similarly, dihedral energies measure the torque pro-
duced by twisting the covalent bonds between atoms and obey the angular form of Hooke’s law,
τ = −κθ . Integration of the forces generated by the stretches, bending and twisting calculates
the potential stored in each bond and hence determines its contribution to the energy of the
system.

3.2. Scoring Functions and Energy Potentials 34

The final energy function sums all the aforementioned terms for every pair of atoms in a sim-
ulation resulting in an energy function with O(N2) computational complexity. Energy functions
can be simple, containing only the Lennard-Jones potential, or full-scale standard force fields
such as the OPLS, AMBER, CHARMM and ECEPP force fields [86]. The choice of which force
field to use is determined by the modelling approach and, since there are thousands of atoms per
protein, the time required to calculate the potentials becomes prohibitively large with increasing
simulation size and number and complexity of the terms in the function. Simpler force fields
leverage the collection of many samples for later refinement, whereas, more complex force fields
leverage the generation of fewer, more refined samples in the first stage of docking, lessening the
role of the refinement stage [86].

Various techniques are employed in electrostatic summation to improve the computational
efficiency of the direct summation method. Direct summation is simply the sum of each pairwise
electrostatic interaction; O(n2) for the n atoms in a system. Improvements on the Brute Force
approach are to perform the a summation on a three dimensional lattice (m lattice points) in
O(mn) [18]. Computational improvements to such summation are distance based potentials
which truncate the effect of a potential beyond a set distance to zero. This optimisation further
decreases computational complexity on a lattice to O(m + n) [18]. Multi-level summation also
reduces the complexity of direct summation complexity to O(m+ n). Methods such as Barnes-
Hut clustering and the fast multipole method (FMM), particle-particle particle mesh (P3M) and
particle-mesh Ewald (PME) fall into this category of algorithms, using a hierarchy of nested lat-
tices. Combination of cut-off summation for short range forces and multilevel summation for
long range forces results in a more efficient summation [18].

3.2.2 Scoring Functions

Empirical scoring functions are an alternative approach to the physical potential functions. Em-
pirical scoring functions often employ geometric registration, examining the complementarity of
the surface motifs in participating proteins. This method has been prominent in protein-protein
methodology since the first docking algorithm for the prediction of protein-protein interactions
using structural elements [96]. Most commonly, registration methods employ the correlation
technique of Katchalski-Katzir et al. [97] using a fast Fourier transformation (FFT) to maximise
the surface overlap between molecules to rapidly search the docking space. First, molecules are
loaded and represented using a discrete grid before a discrete Fourier transform (DFT) of each
representation is performed and convolved. The inverse Fourier transform (IFT) of the convolu-
tion produces a map of translation vectors and scores which correspond to the complementarity
of the translation [97]. To check all possible configuration, one of the participating proteins must
be rotated about each axis by a discrete increment, ∆, in a systematic manner creating a search
space of 360

∆
3.For each step of the systematic search, a new DFT, convolution and IFT must

be performed, each of algorithmic complexity of O(N3 ln(N3)) for an N3 grid [97] making the
viability of such a search dependent on the size if N and ∆. Unfortunately, smaller increments

3.3. Systematic Searches 35

and grid cells will produce higher resolution registration, making such an algorithm highly com-
putationally demanding. Typically, a low resolution initial search will be performed, followed
by high resolution localised searches on candidate configurations to improve tractability [98].
This method easily extends to electrostatic complementarity, where the each grid cell represents
the sum of atomic charges within a set radius of that cell as opposed a binary representation of
volume [98].

Chemical and surface complementarity can also be used to dock proteins. Chemical comple-
mentarity scores a configuration by the chemical composition of the surface using hydrophobicity
and hydrogen bonding as scoring criteria [99]. Similarly, surface complementarity maximises the
similarity of the surfaces using atomic surface contacts prior to hydrogen bond length optimisa-
tion [100].

Examples of rigid body methods developed for protein-protein docking are FTDock [98],
ZDOCK [101], and Soft dock [102]. However, these methods are too computationally expensive
for flexible body docking. When used in the protein-ligand docking scenario, the search space
of the problem is significantly decreased with prior knowledge of the docking site.

3.3 Systematic Searches

Computationally, the search algorithm used for docking determines the tractability of such a
search. Complementarity methods require systematic searches of conformational space, since it
is not possible to quantitatively evaluate the viable and non-viable docking locations using a
scoring function. In the global search, evaluating every possible solution requires that 6 degrees
of translational and rotational freedom be explored in addition to all the internal degrees of
freedom arising from the internal flexibility of the participating proteins. For even for the most
simple system, this is highly computationally intense. For example, docking a ligand to a 1000Å3

site using discrete translations of 0.5Å3 and rotations of 10 degrees requires the exploration of a
search space comprising 3.7× 108 configurations [103]. If sampled at the rate 10 configurations
per second it would require 432 days to complete this simulation. Unfortunately, protein-protein
docking requires that the entire surface of a protein be gridded in this manner, meaning that a
relatively small protein such as ubiquitin with a surface area of approximately 5000Å2 (deter-
mined using VMD from pdb:1UBQ) has a search space of 1.9× 1010 configurations. Flexibility
of the participating proteins increases the search space even further, introducing 4 additional
degrees of freedom to the system (bond angles, torsion and stretching forces). This results in
an intractably large search space, even for very small proteins.

Systematic searches are thus viable only for sampling either coarse (low resolution protein-
protein docking) or localised (protein-ligand docking) search spaces. An example of which is
EUDOC for the identification of drug interaction sites [104]. EUDOC has recently been ported

3.4. Genetic Algorithms 36

to run on IBM’s Blue Gene/L for the purpose of screening large volumes of chemicals for drug
development. This system has screened 23426 chemicals in 7 minutes using 4096 Blue Gene/L
processors, a 34 times speed-up over the 242 minutes required on a commodity computing clus-
ter of 396 Xeon processors [105]. This search performs an initial search of 10 degree rotational
increments and 1Å translations, followed by a local optimisation on candidates using 5 degree
samples and 0.25Å steps using the energy difference between the bound complex and unbound
complex to score configurations. In order for such searches to be tractable, EUDOC requires
knowledge of the binding site in order to perform its systematic search effectively within a small
enough region. In a docking simulation for two small proteins of 100 residues, each with trans-
lational and rotation freedom, the search space of 3.7× 108 expands to 3.2× 10197 .

Thus, more directed methods are required for sampling the large search space posed by the
docking problem.

3.4 Genetic Algorithms

A genetic algorithm (GA) mimics the process of evolution by manipulating a collection of chro-
mosomes. In the case of molecular docking, a chromosome encodes the variables that describe
the state of the proteins. Each chromosome encodes a possible solution to the docking problem
and is assigned a fitness score based on a fitness function, e.g, electrostatic potential, while a
genetic algorithm is the used to explore the confirmation space of the chromosomes [106].

In the GA, each state variable corresponds to a gene. Random pairs of chromosomes are
mated using a process of crossover, in which new chromosomes inherit genes from either parent.
In addition, some of the new chromosomes undergo random mutation in some genes. Once pro-
duced, each chromosome is evaluated using the fitness function and either retained or discarded,
in so doing the algorithm allows bad solutions to die of while good solutions survive [107].

Genetic algorithms are particularly good at global search problems where the degrees of free-
dom in a system results in a combinatorial explosion [107]. Generic genetic algorithms [108,109]
and evolutionary programming methods [110] have proved successful in drug design and dock-
ing. Packages such a AutoDock and Genetic Optimisation for Ligand Docking (GOLD) [106] are
examples of GA implementations for flexible docking. AutoDock 3.0 onward implements a both
genetic algorithm and Lamarckian genetic algorithm searches and shows that these algorithms
reliably reproduce known crystallographically obtained structures [107]. Similarly, GOLD per-
forms automated docking with ligand flexibility, and partial protein flexibility in the neighbour-
hood of the protein binding site [106]. Unfortunately, the aforementioned packages are usually
associated with protein-ligand docking applications although AutoDock can perform protein-
protein docking [107]. AutoDock has been released under the GNU General Public License and
functionality such as MPI parallelisation with near linear scaling [111] and because AutoDock

3.5. Molecular Dynamics and Monte-Carlo Simulation 37

uses electrostatic scoring functions such as AMBER, it benefits from GPU acceleration (GPU
AutoDock)1 in the same way as molecular dynamics and Monte-Carlo implementations.

3.5 Molecular Dynamics and Monte-Carlo Simulation

Molecular dynamics (MD) and Monte-Carlo (MC) are two global search algorithms viable for
protein-protein docking simulations. Both MD and MC are based upon statistical mechanics and
are applicable across a broad spectrum of simulation besides protein-protein docking [112] The
knowledge of the funnel means that a biased random search, such as Monte-Carlo (or a genetic
algorithm) can be directed toward low energy conformations by a scoring function. Molecular
dynamics also exploits this property, assuming the forces between the atoms in a protein will
guide the complex into a minimum in the funnelled landscape.

Monte-Carlo (MC) searches are similar to GA searches in that the search moves are per-
formed using rules based on understanding of the underlying physics that represent and only
subsequently evaluated. MD, by contrast, inspects the electrostatics and updates the system
accordingly. Where Monte-Carlo differs from genetic algorithms is that it is a biased random
search on a single simulation, employing only mutation like moves.

3.5.1 Molecular Dynamics

Molecular dynamics methods simulate the time evolution of atomic positions and velocities by
integrating Newton’s second law of motion,

a = F
m

The microscopic trajectories of the atoms in MD simulations are averaged using the laws of
statistical mechanics to describe the system macroscopically using quantities pertaining to the
system such as diffusion coefficients, phase transition temperature, potential energy and kinetic
energy [112]. In classical MD simulations, forces are generated by atom-atom interactions in
terms of an empirical potential consisting of both non-bonded and bonded potentials [113]. For
each discrete time step, an MD simulation will calculate the result forces acting upon each
atom, integrating these forces to update the velocities and positions of each atom. The choice
of potential and integrator has an affect on the accuracy and computational efficiency of an MD
simulation.

In as late as 2007, Weihe et al. state that the most obvious way in which to perform
docking would be to simulate the molecular dynamics to allow a complex to reach its native

1http://sourceforge.net/projects/gpuautodock/

http://sourceforge.net/projects/gpuautodock/

3.5. Molecular Dynamics and Monte-Carlo Simulation 38

state, but adds that the computational power necessary for such a simulation would make it
intractable [114].

Historically, the long range non-bonded interactions were ignored for computational effi-
ciency and truncated with cut-offs. This resulted in fewer computations than the n2 compar-
isons required without a cut-off radius and marked computational improvements at the cost of
substantial artefacts and inaccuracy in the systems simulated [113]. Advances in computation
and algorithms have subsequently addressed these problems with the aforementioned multi-level
summation, fast multi-pole method (FMM), particle-particle particle mesh (P3M) and particle-
mesh Ewald (PME) methods [18,113].

The first MD simulation studied the folding kinematics of the Bovine Pancreatic Trypsine
Inhibitor and simulated all of 9.2 picoseconds of the 500 atom simulation [115]. Subsequent
advances in supercomputing have seen the 2006 study of a complete Satellite Tobacco Mosaic
virus of over 1 million atoms to 13 nanoseconds [116]. Notably, 256 Altix nodes at the National
Center for Supercomputing applications (NCSA) were only able to simulate 1.1 ns/day in the
case of the viral simulation. Another noteworthy MD simulation is that of folding the Villin
Headpiece run to 500 microseconds. While not a docking application, it illustrates the com-
putational resources required to construct hundreds of 10000 atom trajectories of time-scales
comparable to experimental folding times [117].

Integration Methods

MD simulations typically require millions of time steps to produce only a few picoseconds of
data. This coupled with the chaotic nature of the simulations results in similar initial conditions
diverging exponentially fast with no correlation between them after only a few picoseconds [118].
This divergence is the result of MD being particularly sensitive to the inaccuracy of numerical
integration. Unfortunately, all numerical algorithms suffer from round-off and truncation errors.
The simplest of these integrators, Euler’s method, while being computationally the most effi-
cient, has an error that grows linearly, O(∆t) with the time-step, ∆t. Thus, Euler’s method is
never used in MD [112]. Conversely, Verlet integration is commonly used in MD due to its error
growing quadratically with the time-step. An O(∆t2) error means that a 10 times decrease in
time step results in a 100 times decrease in error [112]. This error restricts MD to prohibitively
short simulation time scales.

MD is an exceedingly popular method for protein simulations, implemented in packages such
as CHARMM [27], Amber [119], GROMACS [120], LAMMPS [121] and NAMD [122]. These
packages often contain multiple force field implementations, e.g, GROMACS implements AM-
BER, CHARMM, Coarse Grained, GROMOS and OPLS force fields for MD. The parallel nature
of MD has resulted in many high performance enhancements of these codes. Freddolino’s Satel-
lite Tobacco Mosaic virus simulation is a notable example, illustrating the clustering capability

3.5. Molecular Dynamics and Monte-Carlo Simulation 39

of the NAMD application [116].

GPU Implementations

The separable nature of the force calculations means that MD is highly amenable to GPU
acceleration, offering up to two orders of magnitude improvement over CPU counterparts. No-
table GPU implementations are NAMD [18], MDGPU [26], HOOMD [25], OpenMM [17] and
ACEMD [63]. Stone et. al. implement ion placement and molecular dynamics simulations with
NAMD on a GPU, achieving 36.4 billion atomic evaluations per second using direct coulomb
summation, a 790 times improvement over the CPU. Non-bonded force calculation in their MD
simulations experience a 8.9 times speed-up using one GPU and NAMD [18]. Meel et al. im-
plement an N2 MD method (MDGPU) experiencing a speed-up of up to 80 times that of their
CPU implementation for simulations of more than 4000 atoms. Anderson et al. (HOOMD)
demonstrate that GPU implementation of a pair-list short-range potentials algorithm analogous
to LAMMPS running on a single GT200 GPU performs at the same level as a 36 processor core
cluster [25]. Friedrichs et al. implement both short- and long-range potentials in their code,
accelerating a brute force N2 MD method by a factors ranging from 128 for a 544 atom simu-
lation to 735 for 5078 atoms using CUDA against a AMBER solution on a CPU [17]. AMBER
has also been ported to GPU. Explicit solvent simulations of 304, 2492 and 25095 atoms on
a Tesla C2050 achieve 368.2, 49.9 and 1.04 nanoseconds per day respectively, far out perform-
ing 8 CPU processors. Explicit solvent models using the same hardware configurations achieve
speed-ups of approximately 4 for 23558 (20.7 ns/day on a GPU) and 90906 (5.19 ns/day on a
GPU) atoms [123]. An algorithmic improvement on direct MD is to use verlet lists, and cell-
lists in cell based MD simulations. Verlet lists maintain a list of all particles within a given
cut-off distance, reducing the number of pair-wise comparisons and distance calculations with
a periodic O(N2) sweep as opposed to O(N2) pairwise calculations every iteration, resulting
in the overall complexity of less than O(N2) for N particles [124]. Cell lists provide a similar
mechanism to avoid all pairs computation. Generation of the neighbour list is performed by
probing for particles in neighbouring cells. Assigning particles to cells is O(N) operation for the
N particles and probing them is O(M) for M cells [124]. Choice of Verlet or cell lists is fixed by
the size of a simulation, with Verlet being more efficient for small numbers of particles and cell
lists becoming more efficient in larger systems [124]. NAMD, MDGPU HOOMD and ACEMD
all use cell lists.

3.5.2 Monte-Carlo Algorithms

Monte-Carlo simulation of proteins involves mutating an element of the simulation. In rigid
body docking this entails rotating or translating a protein. By also including mutations that
alter a bond angles, bond lengths and torsions, MC can perform flexible docking. The mutations
are random in both type and, optionally, quantity, exploring exactly the same search space as

3.5. Molecular Dynamics and Monte-Carlo Simulation 40

a systematic search. However, the the energy function allows for biased sampling, guiding the
search space to local minima.

Metropolis Monte-Carlo [125,126] is a popular Markov chain Monte-Carlo method for physi-
cal simulation [127]. Simply, this algorithm proceeds by randomly generating a new configuration
from the current configuration. The potential energy of the new configuration, Unew, is then
calculated, indicating whether or not the new configuration is better (lower) than the current
configuration, with potential Uold. In order to adequately sample the search space, Metropolis
MC accepts moves which are of higher energy than the current configuration, and so reduces
the tendency of simulations to become trapped local minima in the docking funnel. Repetition
of this process ultimately locates a minimal solution indicating a docking site.

As with MD, the computationally demanding aspect of MC simulations is the evaluation of
the energy function. Hence, MC can benefit from the same degree of speed-up on both GPU
and CPU as the same force fields are used in both simulations.

In the case of simulations of constant size, volume and temperature (NVT or canonical
ensemble) the behaviour of the proteins, adhere to to the Boltzmann distribution [127]. This
law states that if the energy state associated with a system is ε, the probability of this state
occurring is proportional to exp(−ε/kbT) where T is the absolute temperature and kB is the
Boltzmann constant [127]. This simplified description arises from the more complete discrete
form,

Pi = exp(−Ei/kBT)∑
z exp(−Ez/kBT)

which describes the probability of a state occurring Pi as a function of all possible states (z in
number) of the system [127]. To adhere to this distribution, simulations must allow transition
between all configurations in the distribution during the sampling process. The probability
of this transition can be determined from occurrence probabilities of both the configurations
meaning that the probability of a move from configuration i to configuration j is,

P (i→ j) = exp(−Uj/kbT)
exp(−Ui/kbT) = −(Uj − Ui)

kbT

if Uj > Ui [127], defining the Metropolis acceptance criterion as min{−(Uj−Ui)
kbT

, 1}. A uniform
random number is used to generate a number s in the interval [0,1] such that MC simulations
accept a mutation when s < min{−(Uj−Ui)

kbT
, 1} [127].

A critical aspect of any stochastic modelling process is the availability of good random
numbers. In Monte-Carlo simulations, the quality of the results deteriorates when the random
number lacks a sufficiently large period [128]. However, this problem is addressed by quasi-
random number generators, such as the Mersenne Twister with a period of 219937 − 1 [129].

3.5. Molecular Dynamics and Monte-Carlo Simulation 41

3.5.3 Methods for Enhanced Sampling

The deterministic nature of molecular dynamics limits its its ability to traverse rugged docking
funnels. Molecular dynamics simulations will tend to become trapped in local minima formed
by local energy barriers in the docking funnel, making it particularly sensitive to the initial con-
ditions [103]. Similarly, Monte-Carlo simulations can become trapped in potential wells when
only a single temperature is used for simulation. An approach to improving conformational
sampling is to increase the temperature of the system to provide more kinetic energy to the
system such that trajectories can overcome the kinetic barriers imposed by the docking funnel.
Both, simulated annealing and replica exchange methods can be used for this purpose.

The equilibrium properties of the canonical ensemble (constant volume, temperature and
number of particles) are dependent on the metropolis acceptance criterion, which is itself depen-
dent on the temperature of the simulation. Raising or lowering the temperature determines the
magnitude of the potential barriers that a simulation can overcome in its local search, but also
results in a change in the Boltzmann distribution, resulting more high energy configurations in
higher temperature simulations and more low energy configurations in low temperature simula-
tions [130].

Replica exchange is a method that improves the the search space visited by Monte-Carlo
searches and improves the reduces the likelihood of molecular dynamics trajectories becoming
trapped in potential wells that single temperature simulations encounter. Parallel tempering pre-
serves the canonical nature of the simulation my performing R parallel simulations or replicas,
maintaining constant number, temperature and volume in a given replica, and thus, preserv-
ing the statistical dynamics of each replica [130]. Computationally, RE is expensive because R
simulations are performed as opposed to just one, compounding the already expensive potential
energy evaluations. In replica exchange Monte-Carlo (REMC) this additional cost is amortized
by the increase in search efficiency because replicas at low temperature are able to sample more
regions that they would otherwise visit in a single temperature simulation [130]. Additionally,
the independent nature of each simulation in RE means that it is amenable to parallel imple-
mentation with favourable scaling characteristics [131,132].

In a typical replica exchange simulation, each of the R replicas are simulated at different tem-
peratures, usually such that the ratio between adjacent temperatures is constant. Each replica’s
simulation will proceed for a requisite number of iterations before replicas are exchanged. If
there are no conditions associated with an exchange, it is performed with probability,

p = min{1, P (i→ j)
P (j → i)} = min{1, exp[(Ui − Uj)(

1
kBTi

− 1
kBTj

)]}

exchanging configurations i and j from the adjacent replicas using the Metropolis acceptance
criterion [130] The purpose of the metropolis criterion to ensure that when are exchanged, the
ensemble statistics of each replica remain unaffected. The optimal acceptance ratio for replica

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 42

exchange is known to be 23% [130].

Replica exchange MC and MD are shown to be effective for applications such the prediction
of protein-membrane docking [133–135], protein folding [136–144] and protein-protein dock-
ing [12,145,146].

Specific examples of Monte-Carlo applied to the docking problem range from using MC to
perform the entire docking simulation as in the case of Kim et al. [12] and Gray et al. [146]
to using Monte-Carlo to refine docking configuration by rigid-body moves and side-chain op-
timization attained from FFT-based ZDOCK samples [145]. Simulations by Kim et al. and
Gray et al. are both able to discover docking sites using unbound initial conditions and refine
docked protein structure using flexibility with a high degree of success [12, 146]. By contrast,
Lorenzen et al. specifically aim to refine structures discovered through rigid body docking by
backbone flexing and side-chain optimisation [145]. The method Gray et al. describe is used by
the RosettaDock docking application [146].

Simulated annealing solves the frustration problem by increasing the temperature of the sim-
ulation to afford a greater conformational search space before cooling it to allow the simulation
to attain a new equilibrium. Unfortunately, simulated annealing changes the conditions of the
canonical ensemble and consequently the inferences that can be made regarding the statistical
dynamics of that simulation. However, simulated annealing is computationally favourable com-
pared to replica exchange because only one instance of the simulation is performed. Applications
such as AutoDock also provide MC methods for docking using simulated annealing instead of
replica exchange for this reason [107].

The majority of biological applications that employ replica exchange do so with molecular
dynamics methods instead of Monte-Carlo. Parallel tempered Molecular Dynamics is not phys-
ically accurate because of the temperature changes affect the canonical ensemble, meaning that
there is no reason to favour the use molecular dynamics for docking [130].

3.6 Dealing with Computational Complexity: Methods to Im-
prove Tractability

All of the aforementioned computational methods suffer from one or another form of computa-
tional intractability is the simulation they are studying contains too many atoms, e.g, all atom
MD of a viral capsid [116], the resolution of the lattice is too high, e.g, multi-level summation [18]
or complementarity [98], or the degrees of freedom results in an exceedingly large search space,
e.g. all methods. Second to the search-space/problem size issue is the complexity of the physical
model. In the case of MD and MC simulations, it is the evaluation of the electrostatic potential
that dominates simulation time. Naively, it can be assumed that the conformational changes

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 43

can all be performed in O(n) time complexity since they are essentially constant cost geometric
deformations applied to n elements as opposed to the O(n2) force calculations in MD or the
O(N3 ln(N3)) multilevel summation algorithm on an N3 grid.

While hardware advances in the form of GPUs and IBM’s BlueGene are affording researchers
more computational power, ultimately this will only increase the performance of a simulation
in proportion to the available hardware. Only with algorithmic optimisations and advancement
will the time-scales and size of simulations become more tractable.

There are several methods to improve the computation efficiency of the aforementioned
methods. These can be classified as enhancements on the aforementioned MD and MC methods
with little or no change to the algorithm itself, biased typed searches which alter the manner in
which the methods sample the search space or coarse-graining, which simplifies the problem.

Enhancements of MD include multiple time step methods such as RESPA (reference system
propagation algorithm) methods are popular. This method results in a speed-up of two to three
times faster than conventional MD [147]. By the use of Langevin dynamics, the number of time-
steps required for simulation can be decreased by maintaining equilibrium of bond lengths and
angles. This introduces stochastic behaviour in place of the most degrees of freedom, replacing
the bonded forces and motions with random noise [148]. Alternatively, simulated annealing
speeds up searches if the temperature of the simulation is made exceeding high in order to
rapidly explore the global search space, but at the cost of accuracy as most force fields are valid
for 300 Kelvin. Apart from the increased search space per step, this method does not actu-
ally improve the computability of MD and the method over-estimates the entropic contribution
to the systems free energy [147]. The next manner of optimisation is multiple-copy dynamics.
Multiple copies essentially swarm to locate local minima, and as a whole will locate a global min-
imum [147]. REMD and REMC can also be categorised as algorithmic enhancements because
performing R parallel simulations in this manner is more efficient than R distinct simulations,
such an approach has been used in Folding@home [130,147].

A bias can also be added to the search method so that it does not become trapped in po-
tential wells. The first of these is landscape engineering. The local elevation method adds a
penalty of some sort for any previously encountered configuration [147]. Unfortunately, the
major drawback of this method is maintaining the memory of moves, a problem that the Tabu
search also faces [103]. Alternatively, principle component analysis can be used to identify lo-
cal energy barriers and modify the potentials such that the the search space is sampled more
favourably [147].

Self-guided molecular dynamics (SGMD) are another option in biasing the behaviour of MD.
Conceptually, the motion of a system can be divided into two components: random and system-
atic motions. Random motions occur locally due to the atomic interactions while systematic

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 44

motions are caused by the force working along a free-energy gradient [149]. Similarly, self-guided
Langevin dynamics (SGLD) generates a guiding force in the direction of the systematic motion,
calculated as a local average of velocities. By introducing this into the equation of motion
governing each atom, Self-guided dynamics enhance time in which a protein simulation will
fold [150]. This approach is similar to that of Digitally filtered molecular dynamics (DFMD)
which filters atomic motions using digital signal processing, enhancing low frequency (system-
atic) and suppressing high frequency (random) motion [151].

Finally, coarse graining can be used to reduce the expense of a simulation by reducing the
number of individual participants. Any model that operates at a level of granularity above
that of individual atoms can be considered coarse grained. The algorithms for simulating coarse
grained models remain essentially unchanged from those above, introducing changes in quantities
such as electrostatic potential to emulate those of aggregate particles as opposed to every atom.
Coarse grain models include: elastic network models, Go-like models and bead models [10].

3.6.1 Coarse-Graining

While algorithmic changes will improve the performance of a method, they seldom decrease the
complexity of the underlying problem. By contrast, coarse-graining and other reduced repre-
sentation approaches use simplified systems to improve the tractability of a system.

Coarse-graining can be categorised by the degree and manner of approximation. Atoms can
be represented by one to many beads, simplifying the number of participants in a simulation and
thereby reduce its computational demand. Another approach is to simply the models spatial
representation as in the case of lattice models, which represent continuous 3D space using a
lattice. Finally, models such as Elastic network or Go models can be used to steer proteins
toward an native state.

In terms of spacial representation a choice can be made to model proteins using a lattice
model or a continuous space model. In lattice models, the atoms or residues are confined to a
discrete cubic lattice of continuous space [152]. The major drawback of a lattice model, is that
it is not suited to the study of real proteins, and in some cases, proteins folded with lattice mod-
els can show some overall geometric resemblance to real proteins. However, properly designed
lattice models have been shown to accurately predict the structure of a folded protein, although
the local geometry of the structure is inaccurate. The dynamics of some lattice models is also
shown to be similar to reduced continuous models [152]. Lattice models are almost exclusively
discussed in the context of folding and in the study of mechanisms using idealised protein models.
Lattice models to offer a computational advantage in their ability to model a multi-resolution
system, which leads to computationally favourable techniques such as multilevel summation on
the lattice.

Elastic networks (ENMs) represent a system of amino acids using a network of beads con-

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 45

nected by springs. ENMs are an extremely simple way to parametrize a system, provided that
the equilibrium state of the system is known [10]. Recent studies apply ENMs in conjunction
with REMD [153] and systematic searches [154] to model flexible protein-ligand docking. An
ENM provides a means of refining a low resolution structure, providing a means to reduce the
size of a systematic search space [154] or fit high resolution structures to low-resolution experi-
mental data [155].

Go-like models are similar to elastic network models in that they bias protein’s dynamic
behaviour to form a native structure. Go models where designed specifically for folding studies.
When the folding characteristics of a protein follow a weakly rugged funnel, Go models are ef-
fective, but in more rugged instances they fail to describe the intermediate states of the folding
process [10]. Although not a common approach, Go models can be used in binding simulations,
an example of which studies the binding two unfolded proteins in a homodimeric complex [156].

The bias in both elastic network models and Go models toward a reference structure results
in them only being weakly transferable to dynamics studies. To transfer the coarse grain bead
concept of Go and ENM to dynamics simulations, the parametrisation of amino acids emerged
in a variety of single- to multiple-bead models in continuous space.

One of the first examples of coarse graining to combat the immense size and degrees of
freedom in protein folding dynamics appeared in 1976 when Levitt and Warshel simplified the
representation of a protein to a protein to a Cα chain with a single point representation of the
side chain’s centroid, producing unique Cα-side chain pairs for each amino acid type [4]. This
simplified model assigned the same shape model to each amino acid, parametrising it by aver-
aging the amino acid characteristics from eight different protein and decreased the number of
interaction atoms by a factor of 15. Furthermore, only torsional moves are permitted through
the Cα chain, reducing the number of degrees of freedom in the protein they studied by a factor
of 4. Tests showed this model to rapidly reproduce the correct folding of a small protein molecule
under certain conditions [4].

Refinement of the CG model for folding appears more critical than in the docking context.
With folding, the orientation and packing qualities of the side chains in the folded structure
must be optimised beyond merely the electrostatics of the coarse grain [9]. Studies investigating
the inter-residue contact potentials [157,158], allow parametrisation of the pairwise interactions
between residue representations, e.g, modifying the Lennard-Jones potential

V (r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

such that it includes a scaling factor (ε) to account for the differences in interaction strengths
between the residues [11, 12]. Extending these models to protein docking reaps the same com-
putational benefits as folding, with studies using coarse-graining of systematic protein-ligand
docking with flexible side chains and energy minimisation [159]. A elliptical representation of

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 46

the side chain in this type of representation has proven successful due to the asymmetry and
directionality that elliptical side chains and together with a Blue Gene implementation, resulting
in a 120 fold speed-up for a single MD trajectory. The effect of the model is that the exper-
imental folding time is sped up by a factor of 1000, resulting in simulations of nanoseconds
representing reactions that occur in the millisecond time scale experimentally [160]

(a) All-atom (b) Coarse-grained

Figure 3.5: Vps27: All Atom vs Coarse Grained
(a) The all-atom representation of the Vsp27 helix. Atoms are coloured by amino acid residue overlaying
the helical secondary structure. (b) The same molecule is transformed from an all atom representation to
a single bead per residue, illustrating the approximation arising from the coarse-graining.

An even more coarse representation of an amino acid is to use a single bead per residue (Fig-
ure 3.5). These models are evolutions of the single bead Go models, with bias toward specific
inter-bead potentials in a specific solvent. This bias arises from the equilibrium bond torsions,
lengths and angles are calculated from folded proteins [10]. Kim and Hummer use Monte-Carlo
docking simulations of folded proteins, representing each amino acid residue as a single bead.
The model is able to correctly predict the binding interfaces of two proteins in approximately
90% of test cases and at least one binding/docking interface was produced correctly in the re-
maining cases, effectively simulating the thermodynamic and structural properties of complexes
with relatively low binding affinities [12]. Larger simulations using the same type of coarse
graining have been used to study the molecular dynamics of ligands binding, specifically an the
HIV protease inhibitor [131].

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 47

Scaling up from the one and two beaded models are four and six bead models. Four bead
models still represent the side chain with a single bead but retain the four atoms in the back-
bone chain of each amino acid [161] this and a similar model have been successfully applied
to structure prediction using both MD and MC methods [10]. Models of five to six beads per
amino acid have also been successful in folding small peptide sequences. Irbäck et al. developed
a model that contains three types of amino acids and five or six atoms per amino to study the
dynamics of secondary structure formation [162]. A similar model by Derremaux et al. has been
applied using Monte-Carlo sampling for structure prediction [163].

Multi-resolution approaches using coarse graining have also been proposed, showing that
representations can switch between all-atom to Cα as required without loss of information. This
method allows for an all atom representation of the regions of interest, such as the binding
site, while reducing detail in other areas, and in turn reducing the computational requirements.
Ultimately, multilevel approaches like this will allow for smooth transition between all atom
and coarse-grained models, preserving chemical details and end enhancing computational effi-
ciency [164]. Chen et al. use a multi-resolution technique in the study of virus capsid dynam-
ics [165].

An salient example using coarse graining for a first pass in docking before adding back the
detail is RosettaDock. In this example, the side chains are represented with a single bead along
with a complete backbone. Low resolution passes to identify docking sites with coarse-graining
are then followed up with all atom simulations to refine the fit [166]. RosettaDock is part of the
Rosetta suite of applications, designed to run on BOINC, with the Rosetta@home project using
volunteer computing in the same way as Folding@home [167].

The aforementioned coarse-graining techniques can be used with Monte-Carlo dynamics,
replica exchange Monte-Carlo, molecular dynamics, genetic algorithms and hybrid methods, im-
proving their tractability by reducing search spaces by discretisation and the number of bodies
in the simulation, implicitly reducing the degrees of freedom, by aggregating the atoms into
beads. Coarse-grain docking shows that it is of use in both the initial and refinement stages
of docking, examples of which are: rapid sampling of Monte-Carlo searching to locate native
binding sites using CHARMM [12], performing Langevin dynamics in GROMACS to simulate
protease inhibitor docking [131] or in the refinement of rigidly docked structures by coarse-grain
side chain optimisation [92].

Combining the computational efficiency of coarse-graining and the performance of GPU com-
puting is the subject of current research, producing results such as SOP-GPU, a coarse grained
self organising polymer model based on Langevin dynamics to perform folding [168]. HOOMD-
blue, the successor to HOOMD implements CG MD simulation on the GPU using the CGCMM

3.6. Dealing with Computational Complexity: Methods to Improve Tractability 48

model2, this work was presented at nVIDIA’s research summit in 2010. Currently, there is very
little literature on the subject of coarse graining on the GPU in the field of docking, but a with
GPU development of the major MD codes such as AMBER, CHARMM, DL_POLY, LAMMPS
and AutoDock [61], it stands to reason that the coarse grain implementations in these codes will
be used on the GPU.

2http://codeblue.umich.edu/hoomd-blue/

http://codeblue.umich.edu/hoomd-blue/

Chapter 4

Design

Our primary focus is on porting the coarse grained model and simulation method described
by Kim and Hummer [12] (hereafter referred to as the model) from a sequential algorithm to
a parallel algorithm. The key challenge is to design an implementation of the simulation that
scales from one to many CPU cores and to many GPU cores.

In this chapter, we first describe our assumptions and any changes made to the model, be-
fore discussing the characteristics of our algorithm and ways of improving its performance by
exploiting specific GPU hardware features. Application specific features will be discussed in
Chapter 5.

4.1 Approach

We followed an iterative approach to designing and implementing our parallel algorithm en-
abling us to benchmark and profile of various configurations of the simulation, to ultimately
converge on the optimal GPU usage model. Where possible, we aim to fully utilise all the cores
of the CPU (or multiple CPUs). However, it is difficult to estimate the optimal CPU and GPU
usage models. Thus, having the ability to use any configuration of GPU and CPU hardware is
essential for tuning application parameters based upon profiling and benchmarking data. We
therefore develop separate versions of the implementation, as follows.

Sequential CPU This is a direct implementation of the original model and method [12], pro-
grammed for the general case and hardware independent. This implementation allows the
model and simulation to be checked for correctness against the original before any perfor-
mance improvements are introduced. The sequential code also allows for initial profiling
of the algorithm, indicating which parts of the simulation consume the most time and
identifying performance bottlenecks.

Sequential GPU The evaluation of the interaction potential is performed on the GPU, with
the rest of the simulation remaining unchanged. Validation of the GPU implementation

4.2. The Coarse-Grain Simulation Model 50

is also performed to ensure errors do not persist as the complexity of the implementation
grows. The development and configuration of an optimal memory usage and thread model
is also performed with this implementation, focusing on minimising kernel execution time
before the introduction of multi-threading, CUDA streams and multiple GPUs.

Multi-threaded CPU The introduction of threading allows for concurrent execution of parts
of the simulation. Running multiple replicas concurrently has two theoretical advantages.
Firstly, on a multi-core system, full CPU utilisation is only possible with multi-threading.
Secondly, the sharing of a single GPU between multiple CPU cores can thus exploit the
amortised cost of CUDA context switches, provided that both the CPU and GPU are kept
sufficiently busy.

Asynchronous GPU The use of CUDA streams enables asynchronous computation on both
the GPU and CPU for a single thread of execution. Thus, maximisation of a system’s
resources is attained when the GPU performs the interaction potential calculations, while
the CPU performs operations of lower computational cost.

Multiple GPU The final implementation stage is the development of a version of the code that
uses multiple GPU devices. Should the GPU be fully utilised at all times, it will become
the performance limiting factor. In this case, having an implementation that scales to
multiple GPUs is desirable.

The most expensive part of the Monte-Carlo algorithm is the O(n2) non-bonded interac-
tion potential summation, necessitating its implementation on the GPU. Further improvements
in performance can be attained by using asynchronous GPU calls. By tuning the number of
threads and using asynchronous GPU memory and kernel operations, it is theoretically possible
to configure an implementation to maximise utilisation of both the GPU and CPU at all times.
An investigation into interleaving asynchronous memory operations and asynchronous compute
operations using multiple threads will be performed to evaluate the optimal usage model.

Before presenting the design for implementation, a summary of the Kim and Hummer coarse-
grain model is discussed, detailing the sources from which simulations will be performed.

4.2 The Coarse-Grain Simulation Model

There are a number of specific features which promise that the model and simulation method
will be amenable to GPU computation and, because of coarse-graining, speed up an already
computationally efficient search method.

The model uses Metropolis Monte-Carlo and Replica Exchange, both guided by the energetic
interaction potential of each conformation. For tractability, coarse graining is employed at the
residue level, decreasing the number of bodies by a factor of approximately 20.

4.2. The Coarse-Grain Simulation Model 51

The calculation of the electrostatic interaction potential in the model is similar in structure
to that of Anderson et al. [25], Friedrichs et al. [17] and Meel et al. [26]. Thus, the decom-
position of pairwise potentials to CUDA threads is solved for direct electrostatics calculating
the force/potential for each body. The second part of electrostatic potential calculation is
summation, achievable with the optimised CUDA reduction [82]. An alternative approach to
summation would be to use the direct summation on a lattice [18]. Given the complexity of
the electrostatic potential summation for the non-bonded forces, approximately O(N2

2), and the
linear complexity of the bonded potentials, division of work between the CPU and GPU would
favour concurrent calculation of the non-bonded potentials on the GPU and bonded forces on
the CPU.

Coarse graining introduces a contact potential lookup as a function of the types of amino
acid. This results in an indirective instruction in the pairwise potential calculations. Both
residues must be loaded and subsequently inspected before the contact potential value for the
short range interaction is retrieved. Thus, a suitable memory model and its result performance
must be assessed.

The Monte-Carlo moves on this model are not performance limiting; Monte-Carlo moves
perform operations of linear complexity with respect to the number of residues: translation,
rotation and crankshaft moves. The time required for such operations and the generation of
random numbers (effectively handled by generators such as the GNU Scientific Library) is much
less than the interaction potential calculation. Thus, calculation of the mutations on the CPU
with non-bonded calculations on the GPU is sensible, considering replica exchange and flexible
linkers.

Replica exchange introduces an additional level of separability to the simulations, resulting
in linear scalability to multiple CPU cores and GPUs. Beyond a critical simulation size, it will
suit asynchronous sharing of a GPU between replicas, calculating the non-bonded potentials
while calculating the bonded potential and the Monte-Carlo mutations of other replicas while
the GPU is busy.

In our implementation we treat proteins as rigid bodies, reducing the conformational search
space of the simulation and maintaining a constant contribution to free energy for a single pro-
tein throughout the simulation. Interactions between proteins are specified at the residue level
using coarse graining. Amino acid are represented by a single spherical bead, representing a
protein as a chain of beads with each bead centred at the position of the Cα atom of its corre-
sponding amino acid (Figure 4.2).

Kim and Hummer use Replica exchange Monte-Carlo to perform docking simulations. A
electrostatic interaction potential is used to evaluate the Monte-Carlo and replica exchange
moves [12]. Our design of this system assumes that the size and length of the simulations will

4.2. The Coarse-Grain Simulation Model 52

be dynamic, thus, the number of replicas and the number of Monte-Carlo iterations will be
specified at runtime.

Interaction Potentials

Pairwise interaction potentials are used to express the energy between residues [12]. The non-
bonded part of this potential consists of short-range Lennard-Jones-type pairwise potentials
and long-range electrostatic Debye-Hückel-type pairwise potentials. Bonded potentials evaluate
the contribution of flexible backbone links between secondary structures, and consist of bond
stretching, bending and torsion potentials. However, bonded potentials can be omitted from
our implementation because we treat proteins as rigid bodies.

Non-bonded potentials are calculated between all the pairs of coarse-grained amino acid
beads, with the interaction pair potential between residues i and j distance r apart, ϕij(r),
consisting of the sum of the Lennard-Jones-type potential, uij(r), and the long range Coulomb
potential, uelij(r).

ϕij(r) = uij(r) + uelij(r) (4.1)

Expanding this, Kim and Hummer define the short-range interactions to be

uij(r) =

4|εij |[(σij/r)12 − (σij/r)6], if εij < 0
4εij [(σij/r)12 − (σij/r)6] + 2εij , if εij > 0, r < r0

ij

−4εij [(σij/r)12 − (σij/r)6], if εij > 0, r ≥ r0
ij

(4.2)

where σij is the interaction radius between residue types corresponding to i and j.

The interaction is either attractive (εij < 0) or repulsive (εij > 0). σi, the interaction radius
of a residue, is determined using the van der Waals diameter of that residue [12]. εij can be fur-
ther decomposed into λ(εij−ε0). The contact potential εij is adjusted by the scaling factor λ and
offset parameter ε0, ensure that the contact potential between residues contributes the correct
value to the van der Waals component [12]. The contact potential εij is calculated from known
contact potentials between residues and are experimentally derived (Table A.2) [157, 169, 170],
while the scaling factors are fitted empirically to simulation data [12].

The interaction radii for a pair of potentials i and j is

σij = σi + σj
2 (4.3)

The long-range Coulomb potential, accounting for an implicit solvent using Debye-Hückel-type
potential is

uel
ij =

qiqjexp(−rξ)
4πDr (4.4)

4.2. The Coarse-Grain Simulation Model 53

Figure 4.1: Flexible Linkers
Kim and Hummer include potentials for flexible linkers (red) undergo crankshaft rotations, rotating one
residue about the axis of its neighbours while keeping the secondary and coarse tertiary structure of the
protein unchanged.

The constants D and ξ refer to the dielectric constant of the solvent, in this case water, and
the Debye screening constant respectively. In our implementation we will be using D = 80 and
ξ ' 10Å as described in the original model. qi and qj refer to residue charges for pH7 [12]. Both
interaction radius and charge are specific to each amino acid (Table A.1) with the van der Waals
radius of each amino acid defining its bead’s volume.

A weighting factor is introduced to account for solvent-accessible surface area (SASA) of each
residue, modelling residues exposed to the solvent as having more influence on the interaction
potential of the protein complex than residues contained beneath the molecular surface of the
protein. In the simplest case fi = 1, weighting the contribution between all residues interactions
equally, (For other cases refer to Kim and Hummer [12]).

The total interaction potential confirmation,

Utot =
∑
ij

fifjϕij(rij) (4.5)

is the sum of all the distinct pairwise potentials. Utot is the used the evaluation of Monte-carlo
mutations. When Utot is less than 2KbT the complex formed between proteins is considered to
be in a bound state.

Kim and Hummer allow for flexibility in their model by modelling the chains of residues be-
tween secondary protein structures as flexible links (red in Figure 4.1) and applying crankshaft
moves. These moves rotate an amino acid bead about the axis formed between its neighbours.
Thus, the secondary structure remains rigid (grey in Figure 4.1). Removing the crankshaft
moves from the model results in rigid body protein domains. Keeping the structure of each

4.2. The Coarse-Grain Simulation Model 54

(a) All-atom (b) Coarse-grained

Figure 4.2: Coarse-grain Residue Representation. (a) an all-atom ball and stick representation
of the amino acid Threonine. Coarse-graining reduces the complexity of the representation to a single
spherical bead, centred at the position of the alpha carbon (Cα) atom (b).

protein rigid causes the energy contribution of the bonds, the angles and the torsions between
residues to remain constant. Consequently, they do not affect the Monte-Carlo and the Boltz-
mann acceptance criteria (Figure 4.5, lines 4 and 8, respectively) because both criteria depend
on the change in potential between iterations (∆E) and not absolute potential.

Another computational benefit of rigid body domains is that the solvent accessible surface
area (SASA) of each residue is constant. SASA is the fraction of the residue that is exposed to
space outside of the molecule out of its total surface area. Kim and Hummer have six different
weighting functions for the SASA, each of these can be substituted into fi and fj from Equation
4.5, provided the SASA of each residue is pre-calculated. We use the the simplest parameters
setting both fi and fj equal to 1.

Our simulations are designed to accept Protein Database (PDB) descriptions of proteins in
the PDB file format. In our case, a coarse-grained model is constructed from the atomic PDB
data as follows. Each coarse-grain bead represents an amino acid residue using a sphere centred
at the location of the alpha carbon (Cα) atom of each amino acid in the protein. The coarse
grained residues are parametrised with specific values (see Table A.1) according to the type of
amino acid they represent. Figure 4.2 shows an illustration of the conversion from all-atom
amino acid representation to coarse-grain residue representation. Proteins are subsequently
constructed as chains of coarse-grain amino acid residues from all-atom structures (Figure 4.3).
Implementing a PDB file reader for the purpose of this project is trivial, as only the ATOM entries
of the alpha carbons are relevant. Cα entries are invariably of the form:

4.2. The Coarse-Grain Simulation Model 55

(a) All-atom (b) Coarse-grained

Figure 4.3: All-atom and Coarse-grain Representations of CspA Major Cold Shock Protein of
Escherichia coli (CspA) is a 69 residue long protein, consisting of 1004 atoms in total (513 non-hydrogen
atoms). Coarse-graining reduces the all-atom structure (a) from a 1004 atom structure to a 69 grained
structure. (b) coarse-grain beads representing each amino acid residue overlay the original structure,
illustrating the differences between the two structures.

ATOM 1597 CA GLU B 49 26.452 16.593 19.165 1.00 41.35 C

where CA denotes Cα.

4.2.1 Simulation Outputs

A statistical docking simulations such as this, can output statistical information regarding the
replicas in the simulation and the docked poses discovered during the simulation.

The statistical nature of Monte-Carlo docking requires our simulation to report metrics re-
lating the the state of each replica. Our simulations will output the acceptance ratios for each
replicas Monte-Carlo simulation and the replica exchanges. The fraction bound, the ratio of
bound samples out of the total number of samples will also be recorded. This metric ultimately
allows us to determine the dissociation constant for the complex [12] and the associated binding
strength of the complex.

The bound samples need to be recorded for analysis at a later stage. This analysis will use
existing tools to determine relevance of each docked structure. Clustering isolates candidate
structures by population; a good model and successful will result in these structures being rep-
resentative of the structures occurring in nature.

4.3. Algorithm Design 56

4.3 Algorithm Design

Efficient exploitation of the hardware on which an algorithm is to be run dictates how the al-
gorithm is designed in order to scale favourably and maximise its ability to use its hardware
resources. A scalable solution will be able to run on any feasible combination of multiple CPU
cores and GPU devices efficiently without major modification. We aim to produce a single so-
lution capable performing simulations with or without a GPU using multiple CPU cores. This
is complemented with ability to use one or many GPUs, synchronously or asynchronously as
required.

4.3.1 The Replica Exchange Algorithm

A generic version of the replica exchange, or parallel tempering, algorithm [171] for Monte Carlo
(REMC) simulations (Figure 4.4) provides a starting point for designing a parallel algorithm.
This algorithm contains an inherent degree of parallelism; each replica involves a Monte Carlo
simulation which can be run independently and in arbitrary order. Consequently, the Monte
Carlo searches performed (Figure 4.4, line 4) in this algorithm can be run concurrently in an
“embarrassingly parallel” fashion. By performing the Monte-Carlo searches (4.4, lines 3-5) as
collection of CPU threads, a multi-threaded version of the REMC algorithm is created to exploit
the parallelism of the CPU that allows for a scalable implementation that can run on multiple
cores using a shared memory model.

Others have used a similar approach to distributing replica exchange across a cluster, map-
ping one replica to each cluster node, due to the low communication requirements between
replicas [132]. This design also provides a mechanism to distribute computation across multiple
GPUs. Data can be transferred to the relevant device or machine before beginning the Monte
Carlo search. Once all Monte Carlo searches are complete, the replicas are synchronised and
wait while performing the exchange portion of the algorithm, before being allowed to continue
with the next iteration of the simulation.

4.3.2 Monte-Carlo Searches

The most computationally expensive part of this docking application are the interaction po-
tential calculations in each Monte-Carlo simulation due to their O(N2) complexity. Therefore,
most effort will be focused on speeding up a single instance of the Monte-Carlo part of the
simulation (Figure 4.5) and attempt to perform concurrent instances of the same algorithm on
CPU multiple cores.

The steps of the Monte Carlo loop can be summarised as save, mutate and evaluate proce-
dures, followed by either acceptance of the mutation or rejection and restoration of the previous

4.3. Algorithm Design 57

Data: C: The set of all replicas

offset← 01

while !ExitCondition do2

foreach ci ∈ C do3

MonteCarloSearch(ci, φ)4

end5

i← offset + 16

while i+ 1 ≤M do7

j ← i+ 18

∆← (βj − βi)(E(ci)− E(cj))9

if ∆ ≤ 0 then10

swaplabels(ci, cj)11

else if U(0, 1) ≤ e−∆ then12

swaplabels(ci, cj)13

i← i+ 214

end15

offset← 1− offset16

end17

Figure 4.4: Sequential Replica Exchange Monte Carlo. A generic listing of the REMC algorithm.
E(ci) is function to calculate the total potential energy of the system. U(x, y) is a real uniform random
number (x, y). M is the number of replicas.

for i = 1 to φ do1

c′ ← c2

m← U(0, N)3

t← U(0, 1)4

c′ ←Mutate(c′,m, t)5

∆E ← E(c′)− E(c)6

if ∆E ≤ 0 then7

c← c′8

else if U(0, 1) < e
−∆E

T then9

c← c′10

end11

end12

Figure 4.5: Sequential Monte Carlo Search Each Monte-Carlo search performs a random mutation,
sampled uniformly (U()) to determine the mutation type (t) and molecule (m). The interaction potential
(E) of each replica is then used to accept or reject the mutation.

4.4. GPU Design 58

state. Of these steps, mutate and evaluate are the most computationally intensive.

Mutation steps involve either a translation or rotation of a specific molecule in the simulation.
The molecule and mutation type are both selected using uniform random number generators.
Translations are simply the addition of one 3-dimensional vector to N other 3-dimensional vec-
tors. Rotations are more computationally intensive, as each vector must be rotated using a
rotational matrix or quaternion. Regardless of the method, all mutation operations are O(n) in
time, where n is the number of mutated residues in N residues.

Evaluating a mutation is the most expensive operation, with time complexity O(N2). For
large simulations, it is anticipated that n << N . Consequently, if a mutation is rejected, the
cost of copying and restoring the previous state of the replica should be less than evaluation of
the new potential. The evaluation of the interaction potential (E(c′)) should account for the
majority of computation time in any mutation scenario. In the least computationally intensive
case, a molecule is translated and the translation is accepted because it results in a lower en-
ergy state (∆E ≤ 0); in the most computationally intensive case, a molecule is rotated and the
rotation is rejected (∆E ≤ 0 and U(0, 1) < e

−∆E
T). In both cases, the rotation and translation

operations are of lower time complexity than the interaction potential calculation.

4.4 GPU Design

It is important to optimise the the division of work between a CPU and GPU to ensure the
minimum number of idle bottlenecks occur. While a GPU may offer orders of magnitude more
computing power than a CPU, it is important to not allow the CPU to wait while the GPU
performs calculations or transfers data. While a GPU is busy, the CPU can prepare data for
the next interaction potential calculation. This reduces the overall time spent waiting for CPU
to GPU memory transfers and increased the overall throughput of a simulation. This strategy
requires the use of asynchronous computation and at least two concurrent Monte-Carlo simula-
tions.

The GPU initially performs the calculation of a replica’s potential after a mutation. This
requires a replica’s data be copied to GPU memory or updated in GPU memory before every
iteration (Figure 4.6). For a simulation using N residues, the transfer time of those residues is
dependent on the data structures used for the replica and number of residues. By performing
concurrent Monte-Carlo searches, both GPU and CPU can be kept busy. While one thread is
performing a mutation, another is copying data to or from the GPU, while a third thread waits
while the GPU evaluates a replica’s potential. This allows both CPU and GPU to perform work
at all times instead of one blocking the other. Technically, one can only perform GPU memory
transfers and kernel invocations concurrently when using CUDA’s stream mechanism [22] as
each thread will own a CUDA context which has exclusive use of the GPU while it is active.

4.4. GPU Design 59

Iterations < phi

Start

End

 No

Choose mutation

Is M a translation?

Translate molecule Rotate molecule

Compute Delta

Delta < 0
OR

U(0,1) < exp(-Delta)

Reject Mutation
Restore Molecule

Yes

Accept Mutation

No

Initialise GPU
replica instance

Update Replica on GPU

Copy potential
from GPU to CPU

Free GPU instance

GPU operations

Compute potential

Save Molecule

Yes
Yes

No

Figure 4.6: GPU Monte Carlo Search. The sequential Monte-Carlo simulation loop, including GPU
operations (in blue).

4.4.1 Problem Mapping

Implementing an efficient GPU application will rely on correctly mapping the potential calcu-
lation to GPU hardware. We design our “kernel” to evaluate each pairwise in the same manner
as Friedrichs et al. [17], using a tiling approach. Remembering that Friedrichs et al. perform
molecular dynamics, which reduces the n2 interactions to n velocity and position vectors, we
must reduce all n2 interactions to a single value.

The CUDA grid of thread blocks is used to address residues. For this a 2-dimensional grid
of 1-dimensional thread blocks should prove optimal. If every pairwise interaction is viewed as
a cell of a matrix (Figure 4.8), then thread blocks perform the accumulation of the interaction

4.4. GPU Design 60

Figure 4.7: Thread Block Mapping
In a thread block, Block(bx,by), each thread is assigned a residue in the bx subset of residues according
to its thread index, tx. This thread, in lock step with the other threads, loops though the subset by and
computes the pairwise potential for its element on each element of the by subset. The results of each
thread are again reduced to a single partial sum using a parallel reduction.

potential of spatially local residues. In each thread block, threads can efficiency cache a con-
tiguous block of residues (the sub-row partitioned by bx) in shared memory on the GPU such
that the latency of fetching each residue is reduced. Each thread block can then iterate through
the cache, accumulating the pairwise interaction potentials between its residue (Figure 4.7).
Potentials are mirrored diagonally and need not be performed twice [17]. Using this method a
GPU kernel can process potentials between 33 554 432 (65536× 512) residues.

Part of the pair potential, uij(r) (equation 4.2), requires a random access look up. Since
residues can be one of 20 different types, there are 210 unique interaction coefficients εij deter-
mining this short-range component of the potential. The CUDA programming guide states that
reading a randomly accessed value such as this from GRAM will take in the order of 400-600
clock cycles. This cost can be amortised, provided there is a sufficient number of instructions
being performed while the value is retrieved. However, alternate storage, such as constant or
texture memory on the GPU, should be used to improve the performance of these look-up.
Implementations of each type of memory look-up will be performed to evaluate their impact on
performance.

4.4.2 Multiple GPUs

The model described uses independent threading and will scale to multiple GPU devices as
well as multiple nodes using one or more GPUs. Each Monte-Carlo thread can have one GPU
associated to it. In the case of a single GPU, multiple threads can share that GPU. In the case
of multiple GPUs, threads will be divided into groups and each group will share a GPU. As the
number of GPUs in a simulation increases, the cost of transferring data also increases as the
GPU devices must all share the same PCIE bus. This configuration model should also scale for

4.4. GPU Design 61

Figure 4.8: GPU Tiled Kernel. Each thread calculates the potentials between one residue and all
other residues in the same block. Thread blocks below the major diagonal will be terminated early, as they
mirror the calculations performed by thread block above the diagonal, while blocks on the diagonal merely
half their partial interaction potential to correctly account for the double calculation of certain pairs.

4.5. Design Summary 62

multiple nodes of single or multiple GPUs due to the differing levels of parallelism implemented
at replica exchange level using threads or Monte Carlo level using GPUs.

The major problem with this design is that GPUs should not be shared amongst CPU
threads. Each time a command is issued to the GPU, the CUDA runtime context associated
with that thread must be swapped onto the GPU, a costly operation if performed often. Thus,
GPU sharing amongst threads is only a viable model if kernel execution times dwarf the cost of
context switches.

A better alternative is to use asynchronous GPU calls. Replicas can be grouped and assigned
a stream. This mean that, even on a single GPU and CPU core, a single runtime context is
used and, GPU and CPU computation is overlapped. But, CUDA GPUs without asynchronous
functionality [22] perhaps stand to benefit from the shared GPU usage case, even if it does
add the additional context switching cost to computation. Both cases will be implemented and
compared.

4.5 Design Summary

Many performance related factors influence a high performance implementation of the Kim and
Hummer model. Hardware configurations range from CPU only computation configurations to
multiple CPU and GPU computation configurations. Consequently, algorithms and methods
need to be designed to scale for both problem size and hardware configuration. Tunable GPU
kernels and multi-threading facilitates an implementation capable of exploiting the hardware on
which it will execute. Together with benchmarking and profiling, an implementation based on
the designs in this chapter will provide an insight into the utility of using GPUs to accelerate
simulations using this model.

Chapter 5

Implementation

A detailed discussion of the methods used and decisions taken to implement the design discussed
in the previous chapter follows. The implementation also provides practical insight into deter-
mining additional variables and factors influencing performance. Documentation of such factors
and the techniques employed to improve them are included in the relevant sections.

We begin with a basic CPU only implementation, discussing the use of data structures and
methods preparing data for simulation. Use of the appropriate random number generators is
important for a good quality Monte-Carlo simulation, we discuss, briefly, the use of the Mersenne
Twister and the benefits of using this random number generator for our simulations. A short
description of our Monte-Carlo simulations and interaction potential calculation follow before a
more detailed discussion about our particular implementation of the replica exchange algorithm.

Following this, detailed explanations of CPU and GPU implementations are included to
show how the multi-threaded and GPU versions of code differ and accelerate the original algo-
rithm and method. First, details regarding the steps taken to transform our sequential CPU
code into multi-threaded CPU code by the use of Posix threads to scale to multiple cores are
discussed. Following this a lengthy explanation of our GPU implementation follows. We build
an optimised kernel, adhering to the CUDA Best Practice guidelines. We also discuss the use
of specific hardware features on the GPU to attempt to find a solution to the problem of ran-
dom contact potential look-ups, pertinent to the van der Waals component of the interaction
potential between every pair of residues and the use of GPU special functions to maximise the
computational throughput of our kernels.

Finally, the use of asynchronous GPU computing and the use of multiple GPUs is discussed,
detailing the final level of optimisation we pursue.

Sundry details regarding our management of simulation statistics such as fraction bound and
simulation sampling is included at the end of the chapter.

5.1. Sequential CPU Implementation 64

All of the code for the sections that follow is written in C and C++ for a Linux 32 bit operat-
ing system using an NVIDIA GTX280, CUDA 1.3 capable GPU device. Versions ranging from
2.0 to 2.3 of the CUDA tool kit are used for development. The GNU Scientific Library, the C++
posix thread library and the C++ Standard Template Library are also used for implementation.

5.1 Sequential CPU Implementation

Development of an implementation began with the design of a class hierarchy encapsulating
aspects of the model to be implemented. Although the coarse-graining of a model simplifies
its computational demands, it increases the meta-data required in the simulation. Interactions
between each distinct pair of residues is unique and requires a lookup table for its van der Waals
interaction potential. In this case it would be an inefficient use of memory to encapsulate the
entire table in each residue as it would require at least 80 bytes (twenty 32-bit floats) more per
residue than storing them in a table or map. The implications of such random access behaviour
pose interesting questions regarding implementation on a GPU. Different strategies of imple-
mentation are employed to attempt to achieve speed-ups that vastly reduce simulation times.

5.1.1 Data Structures

A hierarchy of objects encapsulating the model’s structure is detailed here. The smallest element
in the simulations is the amino acid bead or residue. The following data is associated with each
residue:

• Type: What amino acid it represents.

• Position: Where in 3D space it is situated.

• Charge: Its net electrostatic charge.

• Interaction Radius: Its van der Waals interaction radius.

• Contact Potential: How it interacts with other residues depending on their type.

Protein molecules are represented as a contiguous chain of these residues. For performance
reasons, implementing an object that encapsulates all the data described above is undesirable.
Were all the data for a residue to be stored in a residue object, it would require 20 floating point
entries for its interaction potential values. Removing this array of values and replacing it with a
lookup-table mechanism results in a residue object that contains a type (4 bytes), a position (12
bytes), an interaction radius (4 bytes) and a charge (4 bytes). In total, an object is 24 bytes large
in contrast to a 104-byte object when the 20 contact potentials are included. This means that
a model’s memory footprint when using a lookup table is reduced to approximately a quarter
of the original size. This design results in more cache hits due to the higher spatial locality of
residue data in memory. By representing the residues as compactly, less memory bandwidth

5.1. Sequential CPU Implementation 65

is required to transfer them from RAM to CPU. Consequently time taken by data transfer is
reduced, lowering dependence on memory bandwidth which is beneficial for performance.

Figure 5.1: CPU Object Hierarchy
Residues are aggregated into arrays in molecule objects, which are in turn aggregated in Replica objects to
represent a single conformation of the simulation. The contact potentials between residues are stored in
a separate data structure (Amino Acid Data) to avoid repetition and allow for a compact representation
each residue.

Residue objects are aggregated together into a contiguous array belonging to a Molecule
object. Storing both the absolute position of each residue and its relative position (with respect
to the molecule centre) simplifies computation at various stages of execution. Because molecules
are treated as rigid bodies, the position of each residue relative to a molecule’s centre is con-
stant and can be calculated when initialising the molecule. Were only one position to be stored,
although space saving, it would cost CPU cycles during simulations.

If only the absolute position is stored, the center of each molecule would need to be calculated
for each rotation, subtracted from the absolute position, stored and finally added to the new
position once the rotation has been performed. Altogether this is an O(2N) operation, where N
is the molecules length in residues.

If only the relative positions are stored, translations would be more efficient as performing
a translation would only require modifying the center variable of each molecule. However, to
calculate the interaction potential between molecules, one of two implementations can be used.
The relative position and the center must be added together to calculate the correct interaction
potential. This can be done before any calculations are performed and then reversed after all
the calculations (O(2N) for all N residues in the simulation), or, in the worst case, the absolute
position is calculated at each pair-wise interaction (O(N2)).

To summarise, storing both relative and absolute positions eliminates the need for interme-
diate calculations.

5.1. Sequential CPU Implementation 66

Replica objects aggregate Molecule objects along with the replica’s temperature, encapsulat-
ing all the data required to perform Monte-Carlo simulations. Figure 5.1 illustrates a simplified
representation of the data structures used for CPU simulations.

A single instance of all contact energies can be attached to the simulation in the form of
the Amino Acid Data object. This object is a 2 dimensional array of values from Table A.2.
Each replica contains a pointer to a single instance of the lookup table, eliminating the need for
multiple instances of the same data. Altogether there are 210 unique pair interactions. A 20 by
20 array represents this data. By storing the matrix of lookups mirrored about its major axis,
pair values can be retrieved using M[y][x] or M[x][y], which is useful because one would have to
otherwise sort the inputs and access the values using M[min(x,y)][max(x,y)]. This would also
introduce computing overhead, since min and max operations are not free.

5.1.2 Monte-Carlo and Random Numbers

Monte-Carlo simulations rely heavily on good-quality random numbers [128]. In this case, a
random number is consumed by each of the following tasks:

• Choosing which molecule to mutate.

• Determining the type of mutation.

• Generating the axis about which to perform the mutation.

• Determining if a mutation can be accepted because it fits the Boltzmann distribution.

• Performing replica exchange.

Hellekalek’s article Don’t Trust Parallel Monte Carlo! [128] lists the inherent properties a
simulation requires from its random numbers. In the case of parallel Monte-Carlo algorithms,
the deterministic algorithms that generate random numbers will produce correlated numbers if
enough random numbers are consumed. If this correlation is such that it interferes with the
simulations random nature, the results that the simulation produces may be useless [128].

The Mersenne Twister is specifically designed with Monte-Carlo simulations in mind and
provides a random number generator with a period of 219937 − 1 [129]. Considering that our
implementation of the model consumes approximately 5.5 (1 for molecule section, 1 for mutation
type, 3 for generating the mutation axis and 0 or 1 to conform to the Boltzmann distribution
if the interaction potential for the new configuration of residues is greater than the old con-
figuration) random numbers per Monte-Carlo iteration, a 20 replica simulation will consume
approximately 240 random numbers after 1010 Monte-Carlo steps. Consequently, the use of a
single instance of the Mersenne Twister will be sufficient for simulations of the same duration as
those performed by Kim and Hummer to gather data. Consuming only 240 random numbers for
simulations of 1010 Monte-Carlo steps means that if simulations were run for far longer durations

5.1. Sequential CPU Implementation 67

that those stated, one instance of the Mersenne Twister would still be sufficient.

In addition to the large period of the Mersenne Twister (MT), it is able to generate num-
bers quickly [129] and an implementation is included in the GNU Scientific Library. Assuming
that GSL implements the algorithm correctly, using such a recognised implementation elimi-
nates unnecessary re-implementation with potentially incorrect code. The SIMD-oriented Fast
Mersenne Twister (SFMT) is also available for SSE2 enabled architectures. SFMT improves on
the MT’s speed by using the 128 bit calculations afforded to it by SSE, resulting in a speed-up
of approximately 4 times that of the original 32-bit MT implementation. SFMT also increases
MT’s period from 219937 − 1 to 2216091 − 1 [172]. SFMT is not used as it is not included in a
standard library such as GSL.

Monte-Carlo Mutations

Performing a rotation or translation is the same for both CPU and GPU implementations.
Generating the axis about which to perform the rotation is implemented by generating a 3
dimensional vector using a dedicated instance of the Mersenne Twister. Random numbers are
generated using GSL’s get_rng_uniform function which returns numbers in the range [0; 1). A
random vector is generated with all its components in the range [0; 1). It then has 0.5 subtracted
from each of its components and it is normalised. This ensures that it is random in any direction
and not only the first Cartesian octant. The vector is then used as a rotational axis to generate
a rotational matrix or a quaternion, representing a clockwise rotation of 0.2 radians [12]. The
rotation is then applied to the position of each residue relative to the centroid of the rotating
molecule. Both quaternion rotation and matrix rotation are implemented due to the numerical
errors that became apparent during validation (see Section 6.1.2).

Translations are dealt with similarly: scaling the random vector to length 0.5Å and adding
it to the position of each residue of the relevant molecule.

Mutations of this sort can be made into parallel operations. The use of SSE would probably
speed-up the above method by between 2 and 4 times. However, both rotation and translation
are O(N) operations, meaning their effect on simulation time is much less significant compared
to calculating the interaction potential, which, as discussed below, is of O(N2) complexity.

5.1.3 Evaluating Global Potential Energy

Monte-Carlo moves are evaluated using the interaction potential:

Utot =
∑
ij

fifjϕij(rij)

where pairwise potential, ϕij(r), expands to

ϕij(r) = uij(r) + uelij(r)

5.1. Sequential CPU Implementation 68

representing the Coulomb and short range interactions. Implementing Utot involves looping
though each molecule and performing a pairwise comparison between its residues and residues
belonging to other molecules, generating distinct pair of interacting residues.

Data: M[m]: Molecule m of a replica instance with N molecules. M[m][r] denotes residue
r of molecule m.

Data: LJ(i,j): Lookup table for short range residue interactions.

U ← 01

for mi = 1 to N do2

for mj = mi + 1 to N do3

for ri = 1 to M [mi].residues do4

for rj = 1 to M [mj].residues do5

r ←‖M [mi][ri].position−M [mj][rj].position ‖6

eij ← λ(LJ(i, j)− e0)7

σij ← (M [mi][ri].radius+M [mi][ri].radius)/28

uij ← −4 · eij · σij6(σij6 − 1)9

if eij > 0 and r < 6√2 · σij then10

uij ← −uij + 2eij11

uelij ←M [mi][ri].charge ·M [mi][ri].charge · exp(−r/ξ)4πDr12

U = U + uij + uelij13

end14

end15

end16

end17

return U18

Figure 5.2: CPU Implementation of Interaction Potential
Implementation of Equations 4.1 to 4.5 results in four nested loops to iterate over all the residues in a
simulation. The divergence in Equation 4.2 can be reduced to only 2 calculations as shown in lines 9-11,
since its first and third parts are equivalent.

This also provides a starting point from which to begin optimisation. Computing the inter-
action potential is order O(N(N−1)

2) complexity since, each unique pair of residues contributes
to the interaction potential. The aggregation of residues into molecules further reduces the
complexity as residues belonging to a molecule are only compared to residues belonging to other
molecules. In the UIM1/Ub reference case, the two molecules of size 24 and 76 mean that only
1824 comparisons actually occur, as against the theoretical worst case of 4950 (N2

2 −
N
2 where

N = 100).

For larger systems containing more molecules, the number of comparisons will tend to N2

2 as

5.1. Sequential CPU Implementation 69

the number of molecules increases. Simulating macro-molecular crowding resembles such larger
systems, requiring a scalable implementation of the code in Figure 5.2.

5.1.4 Replica Exchange

Replicas are initialised from a single instance of a replica object which is then duplicated as
needed. The Simulation object in Figure 5.1 is initialised as a dynamic array of Replica objects
copied from the initial replica. Values for initialising replicas, such as number, temperature and
molecules are taken from the input file for a simulation run and copied into the initial instance
of a replica as they are common to all replicas. Finally, the temperature of each replica is set
to the appropriate value.

For replica exchange, the range of temperatures for the replicas is a geometric progression,
β∗0 ;β∗1 ...β∗i−1;β∗i [130], and β∗i ≡ T

Ti
where T is room temperature. This progression is calculated

using the maximum temperature and minimum temperature input values (Tmax and Tmin) mak-

ing Ti = Tminr
i where r =

(
Tmax
Tmin

) 1
N−1 . Setting Tmax = 500K and Tmin = 250K, reproduces the

temperature progression as used by Kim and Hummer in their simulations [12].

Each temperature in the simulation has an associated fraction bound and acceptance ratio.
These values are encapsulated in the replica to which they apply to at a specific time in the
simulation. However, this causes a minor problem when performing replica exchange. It is most
efficient to perform replica exchange in place, as it minimises the amount of memory copies
required for exchanges.

This is done by exchanging only the temperature, fraction bound and acceptance ratio data
of replicas, avoiding an unnecessary exchange of all the data in replicas being exchanged. How-
ever, the replica exchange operation requires an ordering of replicas by temperature and not
array position, introducing a potential problem that can be alleviated by either sorting by tem-
perature before each replica exchange or by maintaining an ordered map from temperature to
a replica’s location. The latter option is implemented and illustrated in Figure 5.3. The map
TR(x) is used to maintain an ordering of replicas by temperature while keeping the replicas
in their original location in memory. The most important reason for not sorting replicas is to
simplify multi-threading and using multiple GPU devices. In the multiple GPU case, replica
data swaps require data to be swapped between GPU memories, an operation that is undesirable
because all molecule data will need to be swapped between the two participating replicas. If
only temperature is exchanged, zero bytes relating to the structure of the replicas is modified
meaning that the GPU will not need any re-initialisation or updates after a replica exchange.

The aforementioned sections complete our sequential CPU implementation with the core
functionality of this implementation is listed in Figure 5.4. The implemented code differs

5.1. Sequential CPU Implementation 70

Data: R: Replicas
Data: T : Temperatures, ordered lowest to highest
Data: TR(x): Map from Tx to its corresponding replica.

offset← 01

while !Exit Condition do2

foreach Ri ∈ R do3

MonteCarloSearch(Ri, φ)4

end5

i← offset + 16

while i+ 1 ≤ T.size do7

j ← i+ 18

a = TR(Ti)9

b = TR(Tj)10

∆← (βa − βb)(E(Ra)− E(Rb))11

if U(0, 1) < min(1, e∆) then12

Exchange(Ra, Rb)13

swap(TR(Ra.temperature),TR(Rb.temperature))14

i← i+ 215

end16

offset← 1− offset17

end18

Figure 5.3: Replica Exchange Implementation
Swapping the data between Ri and Rj would prove inefficient for very large replicas as it scales linearly
with replica size. However, the primary benefit of maintaining the TR map becomes significant when
replicas reside in different memory locations, e.g. R1 to R10 on one GPU and R11 to R20 on another
GPU.

marginally when compared to the pseudo-code listed in design Figures 4.4 and 4.5 in the previ-
ous chapter.

Differences between the design and implementation are largely due to minimising memory
operations in both replica exchange and Monte-Carlo mutations. In the original design, before
a mutation, a copy is made of the entire replica, the copied replica was then mutated and the
original replaced if the mutation was accepted. This operation can be improved in two ways.
Firstly, by copying only the molecule being mutated instead of the entire conformation. This
results in fewer memory operations as the overall size of the saved structure is smaller. Secondly,
depending on the acceptance ratio of a simulation, if there are more accepts than rejects, it is
better to mutate the original molecule and restore it if it is rejected, resulting in fewer memory
operations over time.

5.1. Sequential CPU Implementation 71

The sequential CPU implementation aims to directly implement the method described by
Kim and Hummer [12] as simply as possible to verify that the implementation of the model is
correct. This code forms a reliable starting point for multi-threaded and GPU accelerated code,
discussed in the sections that follow.

5.1. Sequential CPU Implementation 72

Data: R(t): The set of N replicas at step t
Data: Mk[x]: Molecule x, of replica k

offset← 01

while steps++ < REsteps do2

for k = 1 to N do3

for s = 1 to φ do4

u← Uℵ(1, N)5

m←Mk(u)6

Mutate(Mk[u])7

∆E ← E(Rk(s))− E(Rk(s− 1))8

if ∆E > 0 and U(0, 1) > e
−∆E
RT then9

Mk[u]← m10

end11

end12

i← offset + 113

while i ≤M − 1 do14

j ← i+ 115

∆← (βi − βj)(E(Ri)− E(Rj))16

if U(0, 1) < min{1, e∆} then17

Exchange(Ri, Rj)18

i← i+ 219

end20

offset← 1− offset21

end22

Figure 5.4: Sequential CPU Implementation
The complete implemented Replica Exchange Monte-Carlo algorithm for this model differs in a few places
from the design in chapter 4. Uℵ(1, N) and U(0, 1) are uniformly distributed random numbers, on natural
and real domains respectively. The Mutate function performs MC rotation and translation operations,
while the Exchange function performs part of the replica exchange.

5.2. Multi-core CPU Implementation 73

5.2 Multi-core CPU Implementation

Replica Exchange Monte-Carlo scales well on multi-core architectures primarily due to the Monte
Carlo parts of the algorithm, each of which map onto a thread of execution or compute node
in a cluster [131, 132]. This is possible because this section of the algorithm is a collection of
independent Markov processes, each requiring no communication or synchronisation, while the
Monte-Carlo simulations between replica exchanges are performed. In the case of our algorithm,
the ratio of Monte-Carlo moves to replica exchanges is high (5000:1), resulting in large sections of
sequential embarrassingly parallel, computationally demanding code. If Amdahl’s law is applied
to a configuration of 20 replicas, each taking 5000 MC steps between exchanges and assuming
both a Monte-Carlo step (TMC) and a replica exchange (TRE) take 1 time unit each (TMC is
actually far greater than TRE , but this doesnâĂŹt change the result) executing across N threads,
the theoretical execution time and resultant speed-up for this number of replicas would be N,
were there sufficient processors:

Tseq = TRE + 20 · TMC = 1 + 20 · 5000 = 100000

Tpar = TRE + 1
N
· 20 · TMC = 1 + 100000

N

Speed-up = Tseq
T‖

≈ N

As the ratio of compute time between the Monte-Carlo portion of code and the Replica ex-
change increases, speed-up becomes linear. Were the simulation to execute on multiple nodes,
communication time would negatively affect the speed-up if the amount of time required for
synchronisation and data transfer was significantly large. Remapping of the replica exchange al-
gorithm (as discussed in section 5.1.4) from temperature ordered data to replica locality ordered
data will significantly reduce such communication time. For replica exchange, the only time
when replicas mush synchronise and communicate, only 6 floating point variables are swapped
between replicas. These variables relate to temperature and counters for accumulated bound
state and acceptance ratio.

Our initial threading model, involves launching the application (main thread) and this thread
is then responsible for Replica Exchange. Between exchanges, N threads are created to perform
the Monte-Carlo simulations. These threads are then joined and replica exchange performed.
This process is repeated until the simulation has performed enough Monte-Carlo steps, as is
illustrated in Figure 5.5.

However, due to the hardware, simply allocating 1 replica to 1 thread is highly inefficient
because this is a computationally expensive problem. Threads will be competing for CPU time
unless the number of CPU cores is equal to or greater than the number of threads. The simula-
tion will begin to thrash because the operating system’s scheduler will attempt to give all threads
an equal share of CPU time. Hence, threads are swapped in and out rapidly, to the detriment

5.2. Multi-core CPU Implementation 74

of overall efficiency. To avoid thrashing, there needs to be sufficiently few threads running to
ensure that as many CPU cycles as possible are spent computing rather than swapping threads.

Assigning a set of replicas to each thread achieves this. Conceptually, this layout is identical
to that in Figure 5.5, except that there is now an N to 1 mapping of replicas to threads. The
addition of an outer loop in each thread to process all its associated replicas instead of only one
replica is the only change to the implementation. To assign N replicas to T threads, T sets of
dNT e contiguous replicas are assigned to a thread until all replicas have been assigned. Should T
not divide N the final thread is merely assigned N −dNT e · (T − 1) replicas. The idea of in-place
replica exchange now becomes beneficial. If replicas are initialised and remain with their data in
a permanent place in memory, or on a specific compute node in a cluster, the division of labour
between threads becomes trivial as the replica to thread mapping needs to be performed only
once at the beginning of the simulation and any context sensitive data, such as GPU memory,
remains associated with the thread that created it. Thus, it eliminates the need to copy data
between threads after replica exchange.

The mapping of N replicas to T threads parametrises the implementation such that it is con-
figurable for multiple architectures. Initialising T = 1 enables the runtime configuration of the
implementation to run sequentially, which is optimal for running a simulation on a single-core
CPU. Because these simulations are largely compute bound, the optimal number of threads to
cores is one-to-one.

Were GPUs not used, the above implementation would suffice. However, GPU acceleration
necessitates that the simple model described thus far be changed due to a bug that causes a
memory leak between the NVIDIA device driver and the CUDA runtime. This bug arise due to
the way CUDA runtimes are initialised.1

Before a GPU is used it needs to be initialised using the call CUDA API call, cuInit. What
this does is attach an instance of the CUDA runtime to each thread from which CUDA functions
are called. Every time a new thread is launched the first CUDA call leaks a small amount of
memory. Over time this amounts to a large amount of memory, causing the application to run
out of memory and crash. There are two was of overcoming this impasse; wait for NVIDIA to
fix the bug, or workaround it.

Eliminating this bug via a workaround is fairly straight forward because it only occurs if
threads are continually created. The easiest method to eliminate it is to use a single set of
threads for the entire simulation. The problem of parallel replica exchange then becomes a
type of producer-consumer problem. The Monte-Carlo simulations can be viewed as producers,

1Reported on CUDA forum and said to be resolved internally on 22 Sept 2008, updating the tool kit at this
time did not resolve our problem.

5.2. Multi-core CPU Implementation 75

producing the next versions of the replicas, which the replica exchange then consumes.

Producer-consumer problems typically have two processes depending on each other, where
the consumer needs the producer to prepare its data before it can proceed. Essentially, while the
producer is producing, the consumer is waiting for items to be produced before it can consume
them. Replica exchange bears similarities to this because it requires Monte-Carlo to be finished
before it can exchange replicas which then allows Monte-Carlo to continue.

The action of joining a thread is by default a blocking call if there is no expiration time asso-
ciated with the join. The synchronisation at the end of all Monte-Carlo simulations is performed
by using a join that will wait indefinitely, resulting in all threads synchronising before any replica
exchange is performed. However, as soon as the Monte-Carlo threads become reusable, some
degree of explicit inter-thread communication is required as there is no implicit synchronisation
caused by joining the threads.

To incorporate the workaround, the initial program thread, which performs replica exchange
(on the left in Figure 5.6), creates and assigns replicas, before creating as many threads as re-
quired. These threads then run for the duration of the simulation, only ever initialising a CUDA
runtime once, thereby eliminating the accumulation of leaked memory. The replica exchange
thread, after creating all the worker threads has to wait for a signal from a worker thread.
Once created worker threads perform Monte-Carlo simulations and enter a waiting state once
complete. The last thread to complete its Monte-Carlo simulations is tasked with signalling the
parent thread to perform replica exchange. After replica exchange completes, all the threads
are signalled to continue with their next Monte-Carlo simulations. This loop continues until
enough steps have been taken, at which point the threads are joined with the main thread and
the simulation exits.

What is immediately apparent is that there needs to be a mechanism to determine if all
threads are waiting before performing replica exchange. This is done by using a waiting thread
counter variable, which is incremented as threads complete their Monte-Carlo steps. Using a
mutex to lock and unlock the variable ensures that the count remains accurate and that when
it indicates that T − 1 threads are waiting, the Tth thread entering a waiting state, signals that
the replica exchange to start. The signal passes the same mutex used to increment the counter,
thereby making it impossible for any worker threads to continue past the waiting state they are
in, which is dependent on the mutex that the replica exchange holds. Once complete, the replica
exchange broadcasts to all the threads that they may continue.

Posix threads implement waiting such that when the wait condition is fulfilled, the sig-
nalling thread atomically passes the mutex token associated with the wait condition to the
waiting thread, should it be holing that mutex. In the broadcast case, where multiple threads
are signalled, they compete for the mutex. Only one thread can secure the mutex after the

5.2. Multi-core CPU Implementation 76

broadcast, therefore, the mutex is released immediately by the Monte-Carlo thread to allow the
other Monte-Carlo threads to continue.

To avoid race conditions, which would ultimately cause all Monte-Carlo threads and the
replica exchange thread to reach their waiting states simultaneously and the simulation to be-
come deadlocked, the following locking mechanism is used. It employs a single mutex and two
wait conditions. Having only one wait condition suffices if there is only one Monte-Carlo thread,
but the possibility of N threads necessitates the use of two.

Figure 5.7 shows, in black, the paths which may not be executed concurrently. If for any
reason, all threads are in states 3© and 4© simultaneously, the system deadlocks. Deadlock
is completely avoided by using a mutex, shared between the replica exchange thread and the
Monte-Carlo thread. Before initialising all the Monte-Carlo threads, the main thread, responsi-
ble for replica exchange holds the mutex. After initialising all worker threads, the main thread
waits for the first iteration of the Monte-Carlo simulations to complete (state 4©). The posix
documentation recommends that the thread calling the wait should own the mutex associated
with that wait to ensure predictable behaviour2. Because of this, sharing a single mutex amongst
all threads prevents the Monte-Carlo threads from signalling (state 2©) unless the main thread
is waiting, and conversely, the main thread will only own the mutex if the Monte-Carlo threads
are in a waiting state (state 3©). This works because the mutex is released atomically when a
thread enters a waiting state, eliminating the possibility of a race condition to own the mutex.
To allow multiple Monte-Carlo threads to run concurrently, the mutex is immediately released
after resumption (state 3©), this allows the other threads to resume on the same condition/mutex
pair. When a thread is finished its Monte-Carlo iterations, it contends for a lock on the mu-
tex and, after attaining the lock, increments a counter. When the final thread increments the
counter and determines that all threads are waiting, it signals the main thread and then waits.
The main thread, subsequently, performs replica exchange and resets the counter of waiting
threads to zero before broadcasting to the Monte-Carlo threads that they may continue. The
main thread then waits, releasing the mutex such that the Monte-Carlo threads may continue.
This process repeats until sufficient Monte-Carlo steps are performed. It is always possible to
determine when each thread must terminate without any inter-thread communication because
each thread counts how many iterations have been performed.

The threading model and the use of CUDA are in many ways decoupled. The number and
layout of threads does not affect the ability of an application to use CUDA. However, it is rea-
sonable to assume, because each thread by default has its own associated CUDA runtime that
there will be scheduling overhead in swapping between concurrent GPU contexts. Performance
predictions are made even more difficult by using asynchronous GPU calls. These factors are

2The Single Unix Specification, Version 2, The Open Group, 1997

5.2. Multi-core CPU Implementation 77

benchmarked and compared in Chapter 7. The efficiency of multi-threading will also be dis-
cussed at a later stage. It stands to reason that, because calculating interaction potential is a
compute bound problem, optimal CPU usage will occur when each Monte-Carlo thread has its
own CPU core. However, if work is outsourced to the GPU this may no longer apply. Bench-
marking and profiling of the system described in this section will be performed to ascertain how
it would theoretically benefit from GPU acceleration, followed by actual tests of acceleration
due to the GPU implementation.

5.2. Multi-core CPU Implementation 78

Figure 5.5: Multi-threaded Replica Exchange
Replicas are assigned to threads and these threads are created when Monte-Carlo simulations need to be
performed. After the required number of steps, the threads are joined and replica exchange is performed.
This cycle is repeated until the required total number of Monte-Carlo steps has been taken. This imple-
mentation is sufficient when no GPU, or only one GPU, is used for acceleration. The cost of launching
and joining threads between every replica exchange iteration is amortised, provided the Monte-Carlo sim-
ulations are long enough.

5.2. Multi-core CPU Implementation 79

Figure 5.6: Multi-threaded Replica Exchange with Thread Reuse
The producer-consumer model used for multi-threading improves on the simple model illustrated in Figure
5.5 by reusing threads for the entire duration of the simulation. This implementation was necessary at
the time of development due to a memory leak occuring on the first use of a CUDA call in a new thread
context. With the previous model, a small amount of memory was irretrievably lost each time a thread
was launched. This model requires the use of semaphores and signals for synchronisation, techniques not
previously required due to the simplicity of the initial implementation.

5.2. Multi-core CPU Implementation 80

Figure 5.7: Mutexes and Replica Exchange
The thread reuse model requires that threads invoke replica exchange once all have completed their Monte-
Carlo simulations. In this diagram, paths depicted in black can only execute if they own the simulation’s
mutex. This mutex is both owned and released at step 4 for replica exchange, ensuring that replica
exchange only occurs once all Monte-Carlo threads are in a waiting state because this would otherwise
corrupt the simulation data. By owning the mutex from state 2 to state 3, the Monte-Carlo thread ensures
that the Replica exchange cannot continue until after it is waiting. State 1 does not require ownership
of a mutex as the Monte-Carlo simulations in different threads can operate concurrently as no writeable
data is shared between them.

5.3. GPU Implementation 81

5.3 GPU Implementation

The GPU in our implementation is responsible for calculating the interaction potential between
all the molecules in a replica following the design from Chapter 4. Graphically, Figure 4.6 shows
the key areas of implementation associated with the GPU.

For the GPU to complete its task of calculating the interaction potential between all
molecules in a replica, the following tasks, represented by the blue blocks in Figure 4.6, are
performed:

1. Initialise the CUDA runtime and initialise GPU data (initialise GPU replica Instance).

2. Transfer residue data to the GPU after a mutation (Update Replica on GPU).

3. Calculate the interaction potential using a CUDA kernel (Compute potential).

4. Copy the interaction potential from the GPU to the host (Copy potential from GPU to
CPU).

5. Free GPU resources once complete (Free GPU instance).

The implementation details regarding these tasks are discussed in the sections that follow.

GPU acceleration was implemented in two iterations. The first iteration of GPU code merely
affirmed that the application could execute successfully on a GPU. This implementation used a
naïve version of the algorithm in a CUDA kernel, encoding the functionality of the points listed
above without any significant optimisations.

Improvements in the second iteration of GPU development, adhering to the performance opti-
misation guidelines in the CUDA Programming Guide [22] and CUDA Best Practices Guide [23],
increased speed-up significantly when compared to the initial GPU kernel. The introduction of
performance enhancing features introduce a fair degree of complexity to the GPU solution and
these features are thus discussed in later sections.

5.3.1 Performance Optimisation Guidelines

The NVIDIA CUDA Best Practices Guide states that performance optimisation revolves around
three basic strategies [23]:

1. Maximise parallel execution

2. Optimise memory usage to achieve maximum memory bandwidth

3. Optimise instruction usage to achieve maximum instruction throughput

5.3. GPU Implementation 82

The first strategy, maximising parallel execution, involves structuring our algorithm such
that as much of it can be executed in parallel as possible. Once restructured, the kernel param-
eters need to be tuned to achieve peak performance for a single kernel. Then, at a higher level,
concurrent execution using streaming and concurrency between host and device execution need
to be employed to achieve maximum performance. To summarise, implementation of the GPU
code needs to maximise the degree of parallel execution, otherwise the 240 cores of the GTX280
will not be used effectively.

Optimising memory usage is best done by minimising the amount of data transferred be-
tween the host and GPU device. This is because the memory bandwidth between host (RAM)
and device (GRAM) is slow relative to the bus speed between the CPU and RAM and the GPU
and GRAM. This project uses an Intel Core 2 CPU. This CPU family is capable of 1.3 GT/s
on a 64 bit memory bus resulting in a modest peak memory bandwidth of 10.6 GB/s. Newer
CPUs, such as the Intel i7 can perform 6.4 GT/s, with a theoretical 51 GB/s of peak memory
bandwidth. However, due to the current speed of memory the actual performance of a stock
i7 and DDR3-1600 combination is 32 GB/s. GPU’s further improve on this figure due to a
bus width of 512 bits, meaning that an NVIDIA GTX280 (GT200) has a theoretical maximum
memory bandwidth of 141 GB/s. In contrast to this, the PCIE bus connecting GRAM to RAM
has a peak transfer rate of only 8 GB/s per second. From these figures, it is apparent that,
from a memory bandwidth perspective, even if a GPU accelerated simulation significantly out-
performs a CPU simulation, transferring data between GRAM and RAM on the PCIE bus will
be a bottleneck. Structuring the implementation such that this bottleneck is hidden by other
operations is vital.

The final strategy, optimising instruction usage is a trade off between speed and accu-
racy [22, 23]. CUDA implements a full range of mathematical functions, such as exp, pow,
sqrt, etc. However, only add, divide, multiply and sqrt are IEEE compliant. The remain-
ing commonly used functions are accurate to 1 unit of least precision (ULP) or in the case of
trigonometric functions, 2 ULP [22]. These functions are further optimised on the GPU. Termed
intrinsic functions, they are implemented in hardware to execute in fewer clock cycles than the
standard functions at the cost of far greater ULP errors. This optimisation also involves choosing
appropriate instances when the use of intrinsic functions is beneficial. There is no reason to use
an intrinsic function if it results in a performance gain disproportionate to its loss of accuracy.

5.3.2 GPU Initialisation and Resources

The first step in using a GPU is initialising the device. Using CUDA for GPU acceleration
requires adherence to the appropriate programming model to fully utilise the GPU and CUDA
runtime environment.

Each process or thread must to be associated with its own instance of the CUDA runtime.

5.3. GPU Implementation 83

CUDA does allow for saving and loading of CUDA contexts, but like a posix thread, CUDA
cannot access data dynamically declared outside its scope as it has no knowledge of the data.
Consequently, each thread must call the CUDA initialisation function cuInit to instantiate an
instance of the CUDA runtime for future use. All subsequent calls to CUDA from the thread are
part of this context. Section 5.2, describing the multi-threaded aspects of the CPU implemen-
tation, showed that it is possible to run the code with any number of threads. Thus, a CUDA
runtime is initialised in each thread before any CUDA API calls. The scoping of CUDA runtimes
provides a convenient way of encapsulating data. Each thread is responsible for initialising its
own CUDA runtime and managing the replicas associated with it.

When running a simulation, threads are created as stated in Section 5.2. After initialising a
CUDA runtime, the lookup table of contact potentials, required to calculate the van der Waals
component of the interaction potential, is initialised on the GPU. This is followed by the initiali-
sation of GPU memory for all the residue data required for calculating the interaction potential.
All memory is reserved for the entire duration of a thread’s life. At the end of the simulation
the device memory for the lookup table and the residues are freed.

The declaration of variables that use GPU resources from inside a Monte-Carlo thread scope
also solves the multiple GPU problem and issues of distributing simulations across compute
nodes in a cluster. In the case of multiple GPUs, the selection of the GPU is performed once at
the beginning of the thread and never needs to be managed. In the case of a cluster of nodes,
each with a GPU, each thread can run on a compute node in the cluster. Configuration of the
hardware is thereby decoupled from the simulation because adherence to the one thread per
CUDA context rule is enforced.

5.3.3 GPU Design and Data Structure

The mapping of a problem from its logical structure or object-orientated design to a problem
suited to the GPU architecture is of key importance when using a GPU. Inspection of our algo-
rithm indicates several apparent performance bottlenecks. The summation of all pair potentials
is an O(N2) problem and by nature looking up the van der Waals interaction component of the
potential is unpredictable, implying that it will be inefficient. The speed of the interconnect be-
tween GPU and host is also a bottleneck because of the need to update the GPU representation
at each step of the Monte-Carlo simulation.

The data structures for the GPU can have a significant effect on GPU performance because
of the first two points mentioned under the performance guidelines, namely: maximise parallel
execution and optimise memory usage to achieve maximum memory bandwidth.

The data structures implemented for the CPU cannot be used directly on a GPU. The data
sets passed to the GPU are fundamentally arrays of type float, double, int, long, short, char or

5.3. GPU Implementation 84

their unsigned equivalents. CUDA also implements vector types derived from these basic types
such as float2, float3, float4, uint2, uint3, uint4, etc. These vector types are merely structs of
the basic types, where components are accessed by x,y,z and w variables. The advantage of
using the vector types over basic types is that their byte alignment is explicit. This means that
once allocated on the GPU, they are byte aligned optimally for parallel memory fetches. While
it is possible to define new types on a GPU it is simpler to use the built-in types because this
avoids issues with memory alignment and its effect on performance.

As mentioned in Section 5.1.1, residues in the system encapsulate the following data: posi-
tion (x,y,z), type, charge and radius. The position is a set of 3 single precision floating point
values representing x,y and z components. Type is an integer used as an index of the residue’s
amino acid type. Charge and Radius are also single precision floats.

The manner in which the CPU calculates interaction potential is bound predominantly by
the number of cores. This necessitates the use of four nested loops, as illustrated in Figure 5.2,
to sum the potential between all pairs. The 4 nested loops can be re-factored into two nested
loops by removing the Molecule as a form of partition. The CPU loops over every molecule and
compares it to all the other molecules and in turn the molecule pairs loop over all their residues.
However, if the notion of a Molecule is removed and only residues remain, it becomes 2 loops,
which, for each residue, loop through all the other residues and calculate the pairwise potentials.

While this re-factoring does not change the number of calculations required to perform the
interaction potential calculation, but due to the thread level parallelism exposed by the GPU,
this algorithm structure maps each interaction pair calculation to a GPU core, calculating each
pairwise interaction in parallel without outer loops for each molecule.

However, removing the molecule abstraction causes a problem. The interaction potential is
calculated between pairs of residues from different molecules. Therefore an additional variable
identifying to which molecule a residue belongs is required. Thus each GPU residue representa-
tion encapsulates:

• Position (3 floats)

• Molecule (1 integer)

• Amino acid type (1 integer)

• Charge (1 float)

• Radius (1 float)

This structure is integrated into the existing Replica class. The following representation is
adopted as it minimises the number of fetch requests to GRAM required to calculate the in-
teraction potential for a single pair. Two arrays contain the residue data on the GPU, namely,

5.3. GPU Implementation 85

deviceResiduePosition of type float4 and deviceResidueMeta of type float3.

deviceResiduePosition[i] maps to the following components of the ith residue:

• deviceResiduePosition[i].x → x component of position

• deviceResiduePosition[i].y → y component of position

• deviceResiduePosition[i].z → z component of position

• deviceResiduePosition[i].w → molecule to which the residue belongs

deviceResidueMeta[i] maps to the following components of the ith residue:

• deviceResidueMeta[i].x → amino acid type

• deviceResidueMeta[i].y → electrostatic charge

• deviceResidueMeta[i].z → van der Waals radius

As previously mentioned, these arrays are initialised once at the start of the simulation.
Device memory is reserved until it is explicitly freed or the thread to which it was allocated
exits. Were this data initialised and transferred for every Monte-Carlo iteration it would be far
more costly than merely updating it after each iteration. Furthermore, when only the molecule
that has been mutated in the Monte-Carlo move is updated, we observed transfer to GPU to be
an order of magnitude faster than initialising and copying the entire replica to the GPU each
time. This in turn reduces the transfer time between host and GPU, decreasing the time it takes
between mutating a molecule and completing its transfer to the GPU.

Packing data in this compact representation (of only 7 floats) also helps decrease the band-
width required by the GPU. If one has to fetch data for 32 residues from global GPU memory, it
is decomposed into 2 fetches, one of 32×4 bytes and one of 32×3 bytes in two contiguous blocks.
It is crucial that the blocks are contiguous since this means that the fetch is more efficient than
if it were interleaved with other data or bytes that act as byte alignment padding. [23].

Some variables, such as molecule index and amino acid type, are not floating point numbers,
Although they are stored as such. Thus, separate arrays for molecule identification and amino
acid type are not required. IEEE 754 compliance ensures that the conversion to and from float
will not affect the values stored in these variables [173]. In the cases of molecule identifica-
tion and amino acid type identification, integers in the range [0;19] and [0;N] are used to label
residues.

GPU kernels are only able to access pointers to GPU memory within the current context.
Thus, pointers to float4 and float3 arrays on the GPU are stored in the Replica object to which
they belong and passed to GPU kernels on invocation. The position of each molecule in the
array is stored in the Replica as this removes the need to recalculate it every time a molecule is

5.3. GPU Implementation 86

updated and transferred to the GPU.

Identical device and host copies of the data are maintained such that no initialisation is re-
quired when packing and preparing data for transfer to the GPU. When GPU streams are used,
this method of storing data allows for asynchronous host to GPU memory transfers because the
data can be page locked (as discussed further in Section 5.3.6).

Data Padding

GPU kernels also impose restrictions on data for efficiency reasons. Kernels are launched as grids
of thread blocks. This concept is explained more fully in later sections since it is important in
implementing GPU kernels. With regard to data structures, a GPU kernel using grids of thread
blocks can only launch grids with the same number of threads.

Were data to be of a size not divisible by the number of threads in the block, additional code
for handling edge cases would have to be included in a kernel. For example, consider a kernel
configured as 3 blocks of 64 threads to compute the sum of 187 elements. Elements are accessed
using the block number, b, multiplied by the block width, 64, added to the thread number, t:
A[b × 64 + t]. The first two blocks may proceed without any edge case handling as all values
produced by b × 64 + t are valid elements of the array. However, the final block will attempt
to access elements 187 to 191, which do not exist. This will cause a segmentation fault unless
control code is added to check that the addresses are valid.

Introduction of code to check for the end of an array is detrimental for two reasons:

1. All threads are identical, requiring all threads to test if their element is in the array bounds.
This results in additional computation.

2. It introduces a branch condition. SIMD architectures, like the GPU, cannot concurrently
execute divergent branches of code, one half of the branch must first execute while the
second half waits and vice versa. [22].

NVIDIA also recommends that the number of threads in a block be a multiple of 64 for
optimal scheduling of threads on the GPU [22].

Padding the data on the GPU addresses the above-mentioned issues. Elements are added
to the end of the GPU arrays such that the array length is a multiple of 64. This removes the
need for code to check for out of bounds elements and avoids branching.

Figure 5.8 illustrates the effect of padding on the number of pairs produced while calculating
the interaction potential. Although padding does introduce more computation, calculating 64
pair interactions versus 49 pair interactions as per the example in Figure 5.8, it does not cost

5.3. GPU Implementation 87

Figure 5.8: Parallel Execution and Padding On the left, each interaction pair between the residues
maps to a square matrix of size N2. Once padded, elements are introduced to make the data size a power
of two for efficiency and so that a parallel sum may be performed on the data. Elements 0,0 to 6,6 in the
block contribute to the interaction potential while elements produced by padding, x,7 and 7,x, contribute
zero. Because all pairs are generated simultaneously, padding elements remove the need to handle edge
cases, which in turn makes the computation more efficient.

more time because the computation is performed in lock-step with other threads of the same
block.

This implementation identifies padding residues by setting deviceResiduePosition[i].w, the
molecule identifier, to −1.

Parallel Reductions

On the CPU, a contribution of a residue pair to the overall interaction potential is accumulated
as the algorithm proceeds, but if each pair interaction is computed in parallel, N2 intermediate
values need to be summed to determine the overall interaction potential. It is highly inefficient
for N2 concurrent threads to accumulate the overall sum as they proceed, because it will require
code for frequent synchronisation. Were all threads attempting to concurrently read, modify and
write to a single accumulation variable, unpredictable results would occur. All threads would
read the same value, because they execute the same instruction at the same time in lock step,
but write back different values. Atomic instructions prevent this from happening by ensuring
that the read-modify-write operation is atomic, but would result in the operation becoming se-
quential because they lock the variable they modify for each thread in turn [22]. Consequently,
the thread level parallelism afforded by the GPUs threading model is lost.

Assuming that each pairwise potential has already been calculated by the GPU, calculating
the total interaction potential involves a summation of all the elements. In sequential form this

5.3. GPU Implementation 88

is merely:

Data: M[x]: an array of values

for i = 1 to N do
sum = sum+M [i]

end

Adding together the elements of a matrix with N elements is O(N) if done in this fashion.
However, this can be done in O(log2N) using a parallel sum reduction.

Parallel sum reductions can only sum datasets which are a power of two in size. Assuming
N threads, each indexing element x of an array of length N, a parallel sum reduction works in
the following way:

Data: M[x]: an array of values, indexed by x, the current thread index.

mask = N/2
while mask > 0 do

tmp = M [x] +M [x⊗mask]
syncthreads()

M [x] = tmp

syncthreads()

mask = mask/2
end

Threads operate in pairs on the values in the array. Before a pair can write back the results
of addition, it must synchronise to ensure that no thread writes back before the other thread
in the pair reads. Both threads then write back and synchronise again such that iteration is
complete for all threads before beginning the next iteration for a different masking value.

The XOR (⊗) of the array index, x and mask results in two threads accessing distinct pairs
of elements for each iteration. A thread always operates on a pair of elements at positions tx and
tx
⊗
mask. Because N is a power of two, the distance between the pair always halves until every

elements contain a complete sum. A parallel sum reduction of eight elements is illustrated in
Figure 5.9a. The figure shows that threads work in complementary pairs. Thread 0 and thread
4 operate on the same pair of elements in the first iteration because 4⊗ 4 = 0 and 0⊗ 4 = 4.
In the next iteration threads 0 and 2 interact, and finally thread 0 and thread 1 to complete the
sum.

Although 24 additions occur during the parallel sum, log28 times more than a sequential
sum, these additions are performed in parallel, resulting in O(log2n) time versus the O(N) time
of the sequential sum. To make the reduction fast, efficient and minimise bank conflicts on the
GPU, reduction is performed on elements in a shared memory on the GPU. Bank conflicts are

5.3. GPU Implementation 89

(a) Parallel Reduction (b) CUDA Reduction

Figure 5.9: CUDA and CPU Reductions (a) An array of eight elements requires only 3 iterations
performed by eight threads to execute a parallel sum reduction on the values in an array. Thread 0 and
its pair, thread 0

⊗
mask perform reduction in O(log2 n) time, but O(n log2 n) work. After the parallel

sum reduction, each element of the array contains the sum of the values in the original array. (b) CUDA
reduction implements the same algorithm, but in a work efficient O(log2 n). The strided implementation
also results in only the first element containing the reduced value, unlike using bitmasks (a), which place
the reduced value in all elements.

minimised by using a stride, as opposed to a bit mask. Work efficiency is achieved using n

threads to reduce 2n elements for every iteration of the algorithm and half as many threads are
used in each subsequent iteration. This optimisation results in fewer active warps per iteration
if the number of CUDA threads per block is a multiple of 32 [82], but also results in only the
first element containing the reduction result.

This type of reduction also minimises the amount of thread synchronisation required. Once
only 32 threads are involved, one warp, no synchronisation is required because warp operations
are synchronous with respect to each thread in that warp. Hence, 64 values can be reduced with
no synchronisation, 128 with a single synchronisation, 256 with two synchronisations, etc... [82].

If the GPU is to accelerate simulations with many thousands of residues, the use of a parallel
sum on the GPU to add the interaction pair results together is crucial due to the number of
residue pairs. The specific use of the parallel reduction will be discussed with the kernel with
which it is used, as this affects its implementation so some degree.

5.3.4 GPU Kernels

The GPU kernel must perform the task of calculating the interaction potential of a replica. This
involves porting the CPU algorithm, listed in Figure 5.2, from a sequential algorithm to a data
parallel algorithm. Initially, a naïve approach to the problem and was used as a proof of con-
cept, mapping each pairwise calculation to a thread. While functional, the maximum speed-up

5.3. GPU Implementation 90

achieved by this kernel peaked at approximately 60 times that of the basic CPU implementation.
The final implementation of the kernel uses the tiled MD methods of Friedrichs et al. [17] and
Meel et al. [26] with a parallel reduction to produce a partial sum array of interaction potentials
on the GPU.

Specifically, a kernel must accumulate each interaction potential pair between a residue and
all other residues, executing the code in Figure 5.10 each time for every distinct pair of residues
in a replica before summing them to calculate the overall interaction potential.

For the NVIDIA GTX280 a maximum of 65536 thread blocks may be launched for a sin-
gle kernel. A grid defining these thread blocks may be configured in any way the programmer
wishes by setting the gridDim variable of type dim3(x,y,z) equal to dim3 ([1:65536],[1:65536],1)
provided the product of the dimensions does not exceed 65536. Each thread block may contain
up to 512 threads. An instance of dim3 ([1:512],[1:512],[1:64]) defines blockDim with the product
of the dimensions not allowed to exceed 512.

GPU kernels can only read and write to memory in GPU memory. This means all data
must already be on the GPU before a kernel can execute. The data structures discussed in
Section 5.3.3 are passed to the kernels as pointers to GPU memory, such that each kernel has
the following arguments:

float4 *ResiduePosition Array of residue positions and molecule associations packed by the
host into global memory.

float3 *ResidueMeta Array of meta-data for each residue consisting of amino acid type,

Data: M[m]: Molecule m of a replica instance with N molecules. M[m][r] denotes residue
r of molecule m.

Data: LJ(i,j): Lookup table for short range residue interactions.

r ← eps+ ‖M [mi][ri].position−M [mj][rj].position ‖
eij ← λ(LJ(i, j)− e0)
σij = (M [mi][ri].radius+M [mi][ri].radius)/2
uij ← −4 · eij · σij6(σij6 − 1)
if eij > 0 and r < 6√2 · σij then

uij ← −uij + 2eij
uelij ←M [mi][ri].charge ·M [mi][ri].charge · e−r/ξ/r
Uij = uij + uelij

Figure 5.10: The Interaction Potential Kernel
This code fragment is most basic unit of computation in the model. This code must execute for each
distinct pair of residues. Uij is the interaction potential for a pair of residues and must be summed for
all pairs to produce the total interaction potential of a replica.

5.3. GPU Implementation 91

charge and van der Waals radius.

float *LJPotentials The table of contact energies for calculating the van der Waals pairwise
interaction.

float *Result An array for storing the result of each thread block.

CUDA provides built in variables to retrieve information regarding the thread block and
thread currently executing. These variable are used to index elements of the input data. Each
of these built-in variables is a three-dimensional vector containing x, y and z dimensions of the
structure or index they represent. Using combinations of these built in variables allows one to
access the elements of the input data in an appropriate manner.

Using a thread to perform multiple pairwise potential calculations, as opposed to one com-
parison per thread, means that each thread does more work and the kernel requires fewer threads
to calculate the total interaction potential. This also implies that there is a higher ratio of work
to scheduling and fewer thread blocks per kernel are required. This technique allows thread
blocks to cache data in shared memory explicitly, reducing the latency of each threads residue
data lookups.

A single thread associates itself with a particular residue (Figure 5.11), R[bx×blockDim+tx],
according to its block index, bx, thread block size, blockDim, and its thread index, tx. It then cal-
culates pairwise potentials between this residue and blockDim other residues, R[by× blockDim]
to R[by × blockDim+ blockDim], accumulating the results in shared memory. Shared memory
results are then summed the optimised CUDA reduction and the global array of partial sums is
updated with a thread block’s pairwise potential sum.

A block begins with each thread reading its bx referenced residue into local memory on the
symmetric multiprocessor. This makes all future accesses to this data as fast as accessing a reg-

Figure 5.11: A Tiled Thread Block
In a given thread block, Block(bx,by), each thread is assigned a residue in the bx subset of residues according
to its thread index, tx. This thread, in lock step with the other threads, loops though the subset by and
computes the pairwise potential for its element on each element of the by subset. The results of each
thread are again reduced to a single partial sum using a parallel reduction and stored in the appropriate
position in the Results array in global memory on the GPU.

5.3. GPU Implementation 92

ister. Local memory also stores all the variables required to perform calculations with thread,
tx, such as accumulating the pairwise potentials. Each thread in the block then reads, in lock-
step, the same by referenced residue from memory in each iteration until all pairwise potential
calculations for that block are complete.

Copying residues for a thread block from global memory into shared memory at the be-
ginning of that thread block also decreases the bandwidth required by a kernel when looping
though residues. A thread block must loop though all residues from index by × blockDim to
by × blockDim + blockDim. Global memory reads suffer a latency of 400 and 600 clock cycles
per read [22] so if each residue is read from global memory for each iteration of the loop, block-
Dim global reads of 7 bytes would be performed, each suffering significant latency. But using
shared memory reduces this to one global memory read of blockDim × 7 bytes, as depicted in
Figure 5.12, achieving optimal memory usage pattern [22]. This is also the approach taken by
Friedrichs et. al. [17] and Anderson et. al. [25] to perform molecular dynamics simulations and
Bellemen et. al. [16] to perform N-body simulations. Figure 5.13 illustrates the pattern in which
the residues are stored in shared memory. Bank conflicts do not occur because all threads in a
block read the same residue data in shared memory in lock step.

Figure 5.12: Thread Access Patterns
Threads iterate though the set of residues in shared memory. Because all threads access the same data in
shared memory in lock step, this results in blockDim accesses, serving the blockDim2 requests due to the
broadcast capability of shared memory.

5.3. GPU Implementation 93

Figure 5.13: Memory Allocation per Thread Block Each thread in the a thread block stores a
copy of its residue and its interaction potential accumulator in local memory. Shared memory contains
data from residuePosition and residueMeta that each thread accesses in lock-step. There are no bank
conflicts when reading residue data because all threads access the same bank simultaneously. Results for
each thread are stored in shared memory, with each thread assigned a different bank of shared memory
for its result up to 16 threads before threads begin to share banks, resulting at in 2 way bank conflicts for
a warp.

Intermediate results for each thread block are stored in shared memory. An array, Results,
is declared of size gridDim and each thread uses it to accumulate the pairwise potentials it
calculates. These values are stored according to thread index. Because threads are indexed 0
to gridDim − 1, the 32-bit floating point values in Result are assigned to contiguous banks in
shared memory (Figure 5.13). Once again, this avoids bank conflicts because no two elements
share a bank. If there are more than 16 threads per block this is still the case because shared
memory transactions are schedualed in half-warps of 16 threads each [22].

Finally, once the threads in a block have iterated though the residues in shared memory, the
contribution to the overall interaction potential for that block is calculated using a parallel re-
duction of the elements in shared memory. Upon completion a kernels partial sums are summed
on either the GPU or host to calculate the overall interaction potential.

The thread and block indexing method results in this kernel being able to address up to

5.3. GPU Implementation 94

√
65536 distinct blocks of residues where each block contains up to 512 residues. In total, this

allows the kernel to access up 131072 residues. Multiple kernels will only be needed to calculate
the interaction potential between more than 131072 residues, adding an additional 2 outer loops
to the algorithmic representation in Figure 5.2.

Figure 5.14: A Shared Memory Kernel Grid Each thread calculates the potentials between one
residue and all other residues in the same block’s shared memory. Reusing threads to calculate the potential
from multiple pairwise interactions between residues stored temporarily in shared memory exploits the
speed of shared memory over the high latency of global memory.

Thus far, discussion has focused on the manner in which kernels subdivide and manage simu-
lation data. This only satisfies the part of the optimisation guidelines, discussed in section 5.3.1.
The final guideline, optimising instruction usage to achieve maximum instruction throughput,
will be discussed in the following sections. In optimising instruction usage, the algorithmic
restrictions of the model determine the degree of optimisation.

5.3.5 Algorithmic Restrictions

For the kernel, the two components of the interaction potential between a pair of residues must
be calculated, these components being; the van der Waals potential:

5.3. GPU Implementation 95

uij(r) =

4|εij |[(σij/r)12 − (σij/r)6], if εij < 0
4εij [(σij/r)12 − (σij/r)6] + 2εij , if εij > 0, r < r0

ij

−4εij [(σij/r)12 − (σij/r)6], if εij > 0, r ≥ r0
ij

and the electrostatic potential:

uel
ij =

qiqjexp(−rξ)
4πDr

Both equations are dependent on the Euclidean distance, r, between the two interacting residues.
Calculating r stands to benefit from the GPU special function unit as r =

√
(p1 − p2) · (p1 − p2).

Since all values are stored as 32-bit floats, the GPU sqrtf function is used. There is always the
possibility that r could be zero. To avoid checking this condition in order to prevent division
by zero from occurring ε = 10−38, is added to r before any calculations dependent on r are
performed. This value of ε is chosen because nearest value to zero that a 32-bit floating point
number can represent is 2−126, approximately 10−38 [173]. Expected values for r are greater
than 1 because the amino acid course grains have radii of approximately 5Å. Consequently, the
addition of 10−38 will be truncated to the original value for values in the expected range for r.
If r were zero, division by ε occurs and the subsequent introduction of NaNs, is avoided.

Calculation of the van der Waals potential requires that branching be introduced into what-
ever kernel is used. In its original form there are three branches, but closer inspection reveals that
there is a common component to the equation and that it can be simplified to two branches.
Firstly, the contact potential interaction between the residues, εij (discussed further in sec-
tion5.3.5), can be stored in a register after being calculated. The three part equation can then
be calculated in two steps with one branch instruction, where only one of the branches has any
instructions. This is done by first calculating:

uij = −4εij [(σij/r)12 − (σij/r)6]

Then, updating the value of uij :

uij = −uij + 2εij , if εij > 0 and r < r0
ij

The first and third parts of the van der Waals component of the potential are identical because
if εij < 0 then 4|εij | is equivalent to −4εij , meaning that the first and third parts of the formula
can be combined, becoming: −4εij [(σij/r)12 − (σij/r)6]. Since ε is stored in a register, the
second part of the calculation the involving the addition of 2εij , can be calculated without a
lookup.

The reduction in the number of branches and the elimination of all instructions for one half
of the branch favours the GPU [22].

5.3. GPU Implementation 96

The electrostatic part of the potential:

uel
ij =

qiqjexp(−rξ)
4πDr

suits implementation on the GPU as it requires 3 variables, qi, qj and r together with con-
stants ξ, π and D: The charge of one of the residues, qi, is resident in local memory and qj is in
shared memory. r has meanwhile been calculated and its value is in a register. Finally, fetching
qj is efficient because it is a single floating point value in shared memory, accessed by all the
threads in a block at the same time. Consequently, this function maps well to the prescribed
GPU programming models and access patterns [22].

The use of the GPU’s intrinsic functions, __powf and __expf to perform the calculation of
(σij/r)6 and exp(−rξ) further decrease the computation time required to calculate the potential
between a pair. While intrinsic functions are less accurate than their non-intrinsic counter-
parts [22], the fact that some input values for the simulations have, at most, 4 significant figures
of precision seems to make the simulation largely insensitive to the inaccuracy of the intrinsic
functions, causing the GPU results to be identical irrespective of whether intrinsic functions or
non-intrinsic functions are used. However, use of the intrinsic functions results in significantly
better speed-up.

The Contact Potential Look Up Table

The optimisation of the arithmetic operations used for a pairwise potential calculation and the
manner in which residues are accessed to reduce latency addresses the majority of the issues
pertinent to an N -body simulation. What makes the model we implement different from a
regular N-body problem is that the interaction between residues is dependent on pre-calculated
values independent of the data encapsulated in each residue. The van der Waals component
of each pairwise potential uses these predetermined values to calculate εij which determines
whether or not residues attract or repel each other and the relative strength of the interaction.
These values, εij , are be read from a table (attached as Table A.2) and calculate:

εij = λ(εij − ε0)

with scaling and offset parameters λ and ε0 from from Kim and Hummer [12]. εij is then used
to determine the van der Waals potential between two residues, uij(r) (Equation 4.2).

Fetching εij requires a lookup in memory that is random because each pair of residue types
has a unique value, meaning that there are 210 possible values of εij for any one pairwise inter-
action. The random nature of this operation is likely to degrade performance in a kernel because
the memory access pattern will not map optimally to any well ordered memory access pattern
is optimised in hardware. Additionally, random access operations on a GPU are undesirable,
because of the GPU’s SIMD like architecture. In a worst case scenario for these simulations, if

5.3. GPU Implementation 97

there are 20 residues, all of a different type and in a random order, there is no mapping to SIMD.
For all threads to read memory in parallel, the memory address of εij needs to be a function of
thread index. Consequently, memory reads of εij become serialised because the randomness of
their location in memory.

To minimise the complexity of implementing the lookup function, the GPU implementation
of the table containing εij is an linear array of 400 32-bit floating point numbers. The 2D
lookups are mapped to a 1D array such that εij = A[row + 20 · column]. As with the CPU,
data is duplicated so that a lookup A[x][y] is equivalent to A[y][x] making the ordering of the
residues is unimportant. Depending on now padding elements are used in the calculation of
interaction potential, the array may need to be larger. One strategy for padding elements is
to set the amino acid type identifier of the padding residues to 20, effectively creating an new
type of amino acid with zero contact potentials and zero charge. This means that the table
would be 21 by 21 elements linearly arranged such that if x or y is equal to 20 it returns zero.
The alternative option for implementation padding residues is to test whether they are padding
elements and then to skip any computation using an empty divergent branch.

Texture memory ultimately suits the usage model described above and the impact of choosing
it as the memory container for the lookup table is reflected in our speed-up results. The choice
of texture memory comes from one of four memory types on the GPU, each of which has its
advantages and disadvantages. The four options for memory are:

Global Memory Global memory has the highest latency of all the GPU memory and is not
cached. Accesses to global memory is only advantageous if many values are fetched at the
same time.

Shared Memory Shared memory is on the GPU die and can be accessed very quickly. How-
ever, there is only 16K of shared memory and this needs to be used by the GPU kernels
for storing residue data and results. Using 1600 bytes of shared memory will reduce the
memory available for kernel images, thereby reducing the thread level parallelism if that
memory is required due to the parametrisation of the kernel.

Constant Memory Constant memory is stored in the same place as global memory, but cached
on first use, for the duration of a thread block. There is 64K of constant memory. Caching
means that the first read from constant memory costs the same as a read from global
memory, but subsequent reads of the same value cost the same as a read from local cache
which is as fast as shared memory.

Texture Memory Texture memory is cached. However, texture memory differs from constant,
shared and global memory in that it is not as sensitive to random access patterns. Its
caching of data near values already retrieved also means that it can afford operations that
do not conform to good access patterns. [22]

5.3. GPU Implementation 98

Global memory will perform the worst of all memory available for the lookup as it has the
highest latency. But, if there are enough threads running concurrently they will hide this latency
to a some extent. Constant memory will not perform any better than global memory for this
application, unless the same lookup value is used over and over again. The reuse of a subset
of contact potential would benefit from its caching mechanism. But, because any one of 400
values could be used at any time by any one of the currently executing threads, the performance
of constant memory is likely to be variable because of many situations being unable to exploit
the constant memory cache. Additionally, the constant cache will only exist for the duration
of a thread block, meaning that future thread blocks will not benefit from the caching affect of
previous thread blocks. Considering that it is stored in the same place as global memory, its
performance in this case can thus be considered comparable to using global memory.

Shared memory is on chip and is therefore much faster than global and constant memory.
However, it is only this fast because of its banks and their layout, which provide access speed
equivalent to that of registers [22]. Consequently, shared memory is fastest when accessed in
a coalesced pattern. By using shared memory, our lookups would not match the access pat-
tern required for the performance shared memory provides. Furthermore, the lifetime of shared
memory is again only that of the thread block in which it is used, requiring it to be reinitialised
every time a thread block begins execution.

Texture memory provides the most promising mechanism for implementing the lookup table.
CUDA implements textures by mapping a texture onto an array in global memory. The original
data is then accessed via the texture lookup functions. Accessing the texture causes the texture
units on the GPU to fetch the data requested and 16K of data surrounding that location. This
means that all lookups to texture memory will be cached after the first lookup because the size
of the texture is only 1.6K.

We have implemented all of these options for lookup table storage and the performance of
each one analysed in Chapter 7. Choosing the particular memory to use for the lookup table is
determined at compile time using C preprocessor macros.

With regards to programming, using constant or global memory is identical, with the ex-
ception that constant memory requires the inclusion of the identifier __constant__ before the
variable declaration. In the case of texture and shared memory, the data is copied to global
memory before being transferred to shared memory or bound to a texture. Shared memory re-
quires that the kernel copies the data from global memory into shared memory at the beginning
of each thread block. The threads then need to synchronise to ensure that all memory is loaded
before continuing with their execution. For texture memory, a texture object is declared and
bound dynamically to the memory assigned to the lookup table using the CUDA call cudaBind-
Texture. Because CUDA supports several texture types, the texture is defined using a template
of the form texture<float,1,cudaReadModeElementType>. The parameters correspond to the

5.3. GPU Implementation 99

type of data (float), the number of dimensions (1) and the read mode (cudaReadModeElement-
Type). With the read mode set to cudaReadModeElementType the texture coordinates can be
referenced using integers instead of normalised floating point numbers.

5.3.6 Asynchronous GPU Computing

Thus far, the performance gains of our kernels are dependent on the optimal instruction and
memory usage individual CUDA threads. Using blocking CUDA calls mean that once a kernel
is invoked or a memory transfer between the CPU and GPU is performed, the CPU must wait
for the GPU or GPU memory manager to complete its task before being allowed to continue.
Without asynchronous execution, either the CPU or the GPU must wait idle for the other to
execute, decreasing throughput.

The aim of using both the GPU and CPU asynchronously is to exploit as much latency hid-
ing as possible by overlapping computation with memory operations. This is done by allowing
both the host and the device the opportunity to execute concurrently.

The CPU and GPU are allowed to execute concurrently because asynchronous CUDA func-
tions are non-blocking, passing control back to the host immediately when called. Thus, execu-
tion can be overlapped between GPU and CPU where possible.

CUDA terms this mechanism for asynchronous execution CUDA streams. Each GPU has 16
streams associated with it. A stream is essentially a job queue with a maximum capacity of 16
instructions. Asynchronous calls populate the stream, behaving in a non-blocking manner, until
the stream becomes full. Once full, further asynchronous calls become blocking until items are
cleared from the stream, at which point they again become non-blocking [22].

One critical feature of CUDA streams is that they guarantee, for a particular stream, that
instructions are processed in the same order in which they were queued, even though they are
processed asynchronously with respect to other streams and the host. [22]

The GPU dependent parts of the algorithm for performing Monte-Carlo simulations can be
separated into the following distinct steps for each replica in a worker thread:

1. Update the mutated molecule in GPU global memory.

2. Calculate an array of partial interaction potentials.

3. Reduce the array of partial interaction potentials.

4. Write back the final interaction potential.

5. Restore the mutated molecule if the mutation is rejected.

5.3. GPU Implementation 100

Each subsequent step requires the previous step be complete before continuing. Of all of these
tasks, the second one, calculating the partial interaction potentials, takes longest to return,
blocking the calling thread from performing any other work while it executes. While the CPU
is performing tasks between these steps, the GPU is idle. Because of this, the system is not
being fully utilised since the use of blocking (synchronous) calls means that either the GPU or
the CPU is working at any one time, never both.

Data: R(t): The set of N replicas at step t
Data: Mi(x): Molecule x, of replica i

for k = 1 to N do
for s = 1 to φ do

u← Uℵ(1, NM)
m←Mk(u)
Rk ←Mutate(Ri, u)
∆E ← E(Rk(s))− E(Rk(s− 1))
if ∆E > 0 and U(0, 1) > e

−∆E
RT then

Mi(k)← m

end
end

Figure 5.15: Sequential Monte-Carlo Simulation
The inner loop of the Monte-Carlo simulation performs all the individual Monte-Carlo steps one after
another in a sequential manner for a single residue, before the same simulation is performed for the next
residue. This effectively means that replica Ni blocks replica Ni+1 from executing until it is complete.
Provided the steps within each replica are in the correct order, sequential ordering of the replicas is
unnecessary, suggesting changes in the algorithm to allow for the use of streaming.

A logical thread of execution in this case is a Monte-Carlo simulation. Without streams,
a posix thread performs each Monte-Carlo simulation sequentially. Because these simulations
are data independent, the order in which they are executed and the duration of execution do
not affect their respective simulations. Figure 5.15 illustrates the algorithm used to perform N

Monte-Carlo simulations of φ steps each on N replicas. An outer loop iterates over all replicas,
performing the simulations one after the other until all the required simulations are complete.

Using multiple CPU threads to execute the Monte-Carlo steps concurrently is possible if
there is more than one GPU. As discussed in Section 5.2, the mapping of one thread per run-
time context and preferably one thread per GPU to avoid context switching results in this
approach performing unfavourably on a single GPU. Additionally, one GPU can only execute
one kernel at a time, resulting in the threads blocking each other.

Introducing streams enables the execution of up to 16 instances of the Monte-Carlo simula-

5.3. GPU Implementation 101

Data: R(t): The set of N replicas at step t
Data: Mi(x): Molecule x, of replica i

for s = 1 to φ do
for k = 1 to N do

uk ← Uℵ(1, NM)
mk ←Mk(u)
Rk ←Mutate(Ri, u)
∆Ek ← E(Rk(s))− E(Rk(s− 1))

end
for k = 1 to N do

if ∆Ek > 0 and U(0, 1) > e
−∆Ek

RT then
Mi(k)← mk

end
end

Figure 5.16: Interleaved Monte-Carlo Simulations
Switching the inner and outer loops of the sequential Monte-Carlo algorithm results in all Monte-Carlo
steps for all replicas being interleaved. This partitions them into 2 distinct parts. The first part mutates
the molecules and calculates the interaction potential and the second part evaluates the mutation.

tion within the same CUDA context on a single GPU. Multiple streams do not block each other
because kernel operations are queued due to the asynchronous nature of the streams.

By interleaving the steps required for performing the Monte-Carlo simulations, the algo-
rithm, from a logical perspective is identical, although the structure is unusual. This reordering
is illustrated in Figure 5.16, and is performed by switching the inner and outer loops of the
algorithm. Now, instead of iterating over all replicas and for each one performing Monte-Carlo
steps, one iterates through all Monte-Carlo steps, performing the same step for each replica in
two parts. The evaluation of the new interaction potential is the operation that takes the longest
to perform. If it is placed at the end of a loop and made into an asynchronous call, then the
Monte-Carlo mutation for the next replica may be performed on the CPU while the interaction
potential is computed on the GPU. This results in keeping both the GPU and CPU busy and
thereby increases the throughput of the system in terms of FLOPS, which ultimately results in
a faster runtimes for the simulation.

CUDA places certain restrictions on host data that has asynchronous operations performed
on it, requiring, in particular, that it be page locked. This means that the host’s memory man-
ager may never swap that data out of system memory and write it to paged memory because this
would result in unpredictable behaviour [22]. Page locking memory for asynchronous transfer
also increases the data transfer rate of that data between the CPU and GPU [23]. One unde-
sirable consequence of page locked memory is that the simulation must be able to fit entirely

5.3. GPU Implementation 102

Figure 5.17: GPU Streams Streams overlap CPU and GPU computation. At the top, 3 iterations
of a simulation are executed on a single replica using blocking, synchronous, GPU calls. The CPU has
to wait for each call to return before it can continue, meaning that CPU time is wasted. Using streams,
replicas are interleaved. This diagram illustrates the use of 3 streams operating on three replicas using
asynchronous calls for memory transfers and computation. Even though the GPU can only perform one
kernel execution or memory transfer at a time, the fact that they can work concurrently results in the
CPU and GPU performing more work than the synchronous algorithm in the same amount of time, this
work being divided across more than one replica. DtH and HtD refer to device to host and host to device
transfers respectively.

unpaged in both RAM and GRAM. Given the way residues are represented in our implementa-
tion, it would require over 700 000 residues to use a gigabyte of memory. This, combined with
the coarse-graining, means the number of residues is unlikely to ever reach this number and,
consequently, no measures are currently taken to accommodate this many residues.

The steps of the Monte-Carlo simulation, from the perspective of a single replica, must be
executed sequentially. It is therefore logical to map one replica to one CUDA stream as the
instructions in a stream are guaranteed to be executed in the order that they have been called.
The data independence of the replicas means that this suits the stream model because the in-
structions in multiple streams do not necessarily execute in the order they were queued, only
their order in each stream [22]. This reordering is illustrated in Figure 5.17, where three streams
execute concurrently. Here, it is possible to see that, given that the algorithm profile is appro-
priate, streams significantly increase the number of Monte-Carlo steps that the simulation can
perform in a given time due to the overlapping computation of the GPU and CPU. We measure
the effect of streaming on our implementation’s performance in section 8.1.1.

Logically, as the number of residues in a replica increases, the benefit of streaming will be-
come more apparent since the time taken for calculating the interaction potential will inevitably
increase, whereas, if all molecules remain approximately the same size, CPU computation time
per Monte-Carlo step will remain almost constant.

5.3. GPU Implementation 103

The number of streams the CUDA runtime must use is determined from an input parameter
for the simulation. Any number of streams may be used from 1 to 16 and threads dynamically
assign replicas to a stream. The stream associated with a replica is determined by the thread
index, tx, modulo the number of streams per thread, spt. The number of replicas per stream,
rps, is calculated as: replicas in the thread divided by the streams available, rounded up to
the nearest whole number. For this reason, it is generally better for the number of replicas per
thread to be a multiple of the number of streams. Our algorithm for using streams is listed in
Figure 5.18, using the aforementioned method to divide replicas between streams to perform the
Monte-Carlo simulations.

Data: R(x): The set of N replicas at step t

for t = 1 to φ do
for index = 1 to N/rps do

for r = 1 to rps do
mutateMolecule(R[index× rps+ r])
updateGPU(R[index× rps+ r])
calculatePotential(R[index× rps+ r])
writeBackResult(R[index× rps+ r])

end
for r = 1 to rps do

syncStream(r)

evaluateMutation(R[index× rps+ r])
end

end
end

Figure 5.18: Streamed Monte-Carlo Simulations
Each Monte-Carlo step of the simulation is divided into two parts. The first part mutates the molecule
on the CPU, the CPU’s most computationally intensive task, followed by an asynchronous transfer to
the GPU together with an interaction potential calculation. Streams are synchronised before the second
part of the Monte-Carlo step to ensure that the new interaction potential is ready before acceptance or
rejection of the mutation for that iteration is determined.

Dividing the Monte-Carlo steps of the algorithm into two stages transforms the the system,
as depicted in the lower half of Figure 5.17. The mutation and evaluation of the mutation for
the previous iteration of the simulation, account for the CPU Computation blocks in the figure.
Updating and writing back the result of the interaction potential calculation are host to device
(HtD) and device to host (DtH) operations and are also asynchronous (executed concurrently
with GPU kernel execution of another stream). GPU computation refers to work done by any
GPU kernel. Depending on the size of the simulation, this may also include a parallel reduction

5.3. GPU Implementation 104

of the result on the GPU.

A synchronisation barrier is inserted between the two parts of the Monte-Carlo step to en-
sure that the result from the asynchronous write back is complete. This is done on a stream
by stream basis so that only the stream that the CPU is waiting for is synchronised, ensuring
maximum overlap of CPU and GPU operations.

The introduction of streams also necessitates the use of storage for intermediate GPU results.
Previously, an array in global memory was initialised just in time for a kernel’s thread blocks to
store their results. It was processed immediately and a single value returned to the host. Now,
because the calculation of the result is asynchronous and the GPU reduction of the result or
the transfer of the result is also asynchronous, this memory must be passed from the first to
second stages of the Monte-Carlo steps to avoid introducing either errors or a synchronisation
barrier. Paired patches of GPU global memory and page-locked CPU memory are reserved at
the start of a simulation and reused for storing partial results for a particular stream throughout
the lifespan of the simulation.

The implementation of streams in the manner described is included alongside the blocking
GPU code, allowing profiling and benchmarking of each method of implementation by setting
an appropriate preprocessor variable. The threading model also allows for full encapsulation of
the asynchronous code as all other aspects of the simulation, remains the same.

5.3.7 Multiple GPUs

The implementation of the reusable threading model discussed in Section 5.2 and depicted in
Figure 5.6 suits a multiple GPU solution. The scope that each thread provides matches that of
the CUDA runtime. Because each thread has its own runtime, using a different GPU is merely a
matter of selecting the required device for a thread to use by executing the CUDA call cudaSet-
Device, because all subsequent calls in a thread are context sensitive, bound to that thread’s
CUDA runtime. GPUs are assigned to a thread by the thread identifier modulo the number of
devices. In this way multiple threads can either have one GPU each, or share GPUs. However,
the CUDA Programming Guide suggests that there be a mapping of 1 GPU to 1 thread. Testing
of our implementation agrees with this guideline as performance notably decreases if more than
one thread uses a single GPU.

The manner in which multi-threading is implemented means that there is no difference be-
tween a single and multiple GPU implementations. Simulation parameters merely specify the
number of GPUs to use at runtime.

5.4. Sampling and Clustering 105

5.3.8 Compensated Summation

The numerical accuracy of the interaction potential is sensitive to round off errors when adding
together individual pairwise potentials. The efficiency of 32-bit precision of on the GPU means
that it not be beneficial to use double precision operations to accumulate potentials within each
thread as it would be 8 times slower than single precision. Unfortunately, the 23-bit significand
of a 32-bit number can only store 710 significant figures, too few to avoid the accumulation of
errors when there are potentially millions of pairwise potentials.

We compensate for the round-off error in two ways. Implicitly, the reduction performed in
each kernel results in pairwise or cascade summation within each thread block which imposes
an upper bound of O(log2n) on the accumulated error in the summation [174], here n is the
number of threads in the block. Practically, RMS error grows as O(

√
log2 n [175] making a

parallel summation much less sensitive to round-off errors than sequential summation which
accumulates errors proportional to

√
n (n in the worst case) [174].

We implement Kahan summation within each thread to minimise round-off errors in the
sequential sections for our kernel code, limiting the accumulated error in an individual thread
in a thread block to a constant upper bound of ε, the precision of 32-bit floating point repre-
sentation, and independent of the number of additions. We also implement Kahan summation
for summing the results of each thread block on the CPU.

The above two methods mean that the RMS error in the addition of the pairwise potentials
in our simulations has an upper bound of O(ε

√
log2(blockDim)). Errors outside this bound will

be caused by differences in calculation on either the GPU of CPU.

5.4 Sampling and Clustering

The implementation details of the previous two sections are the main focus of this work. How-
ever, additional features need to be implemented to allow for analysis of implementation perfor-
mance and validity of the simulation results.

5.4.1 Sampling

Generating data from simulations is performed by sampling replicas at discrete intervals. The
simulation accepts two parameters at run-time that govern sampling. The first value, Sample
After, is the number of Monte-Carlo iterations, per replica, after which sampling begins and the
second value, Sample Interval, is the sampling interval, which is also a number of Monte-Carlo
iterations.

The purpose of sampling is to determine whether or not a replica is in a bound or unbound

5.4. Sampling and Clustering 106

state. A molecule is considered bound to another molecule if the interaction potential between
them is less than or equal to 2 KbB or 1.184 kcal/mol for this model [12]. A sampling function is
inserted into the Monte-Carlo simulation code and is called only when the number of iterations
is a multiple of the sampling rate and the requisite number of initial iterations has passed.

Fraction Bound and Acceptance Ratios

The fraction bound of a replica is the ratio of the number of bound samples to the total number
of samples. It is a scalar quantity between 0 and 1 and is indicative of the binding affinity
between particular molecules at a particular temperature [12]. The closer the fraction bound is
to 1, the higher the binding affinity of the proteins. The fraction bound is used to determine
the dissociation constant, Kd, which is used as a metric for binding affinity.

The simulations themselves do not determine Kd, instead, the fraction bound, is output for
each temperature in the simulation as a pair consisting of an instantaneous fraction bound and
an accumulated fraction bound. The cumulative value corresponds to the overall dissociation
constant.

The acceptance ratio of the Monte-Carlo simulation is the ratio of accepted mutations via the
Boltzmann distribution to all mutations. Acceptance ratios are again recorded for the current
sample interval and over the entire duration of the simulation for each replica.

Fraction bound and acceptance ratios from simulations are used to validate our implemen-
tation against the results attained by Kim and Hummer [12]. Further explanation of fraction
bound and acceptance ratio follow in section 6.2.

Bound Structures

Once a set of molecules achieves a bound state, the sampling process records the positions and
rotations of the molecules relative to their input PDB data. This allows for the PDB data to be
transformed using these relative values in order to be able reconstruct the bound complex for an
all atom representation. Each bound state is output to file as a record of plain text strings, the
first of which lists the Monte-Carlo iteration, interaction energy and the temperature pertaining
to the specific structure in question. This is followed by a list of strings, one for each molecule in
the bound structure, containing the absolute position of the centroid of each molecule and the
rotation quaternion transforming the PDB input from its original orientation to the orientation
of the bound structure.

A trivial tool to transform this output file into a PDB format files has have been imple-
mented.

5.5. Implementation Summary 107

5.4.2 Clustering

A Monte-Carlo simulation of this type outputs many instances of bound molecules. To discover
the most likely way that molecules will bind requires the use of clustering. Clustering allows for
better overall analysis of the output from simulations because the simulations are likely to find
many instances of the bound complexes that are nearly identical, separated by perhaps a small
shift in one direction or rotational difference for the same centroid position.

Experimentally, clustering allows simulations to discover the most likely binding sites be-
tween molecules in a complex. For validation, it allows simulation outputs to be directly com-
pared to experimentally observed structures such as those found in the Protein Database.

Kim and Hummer cluster structures according to the distance between each pair of residues
from each protein molecule in the complex. A distance matrix is constructed from the distances
between pairs of residues from different proteins. Structures are assigned to a cluster based on
this distance matrix using a “simple clustering algorithm” [12].

We perform clustering using GROMACS’ g_cluster utility, producing representative struc-
tures of docked complexes. A distance root mean square (DRMS) comparison between the
simulated structure and native structures is performed according the description of DRMS by
Kim and Hummer [12], providing a quantitative metric to compare the structural similarity
between the simulated and native structures.

5.5 Implementation Summary

In this chapter an iterative approach to implementing various CPU and GPU functionality was
presented.

The implementation of a CPU solution, encompassing only the core functionality of the
model, provided a code base from which multi-threading and GPU acceleration could be devel-
oped. The initial GPU acceleration showed that the model could be implemented on a GPU
and benefit from the performance advantages on offer.

Implementation of a multi-threaded CPU version of the simulations resulted in encapsu-
lating Monte-Carlo simulations at thread level, providing a theoretically scalable layout of the
algorithm for combinations of multiple cores, multiple GPUs or multiple compute nodes.

In further development we delved into the instruction and algorithmic implications of using
a GPU. Managing the memory bandwidth dependency and division of work between threads
further improved the GPU solution such that it performed faster and could scale favourably to
a far greater problem size than the initial GPU implementation. Applying specific techniques

5.5. Implementation Summary 108

for bandwidth management coupled with methods for maximising the utilisation of both CPU
and GPU together ensures that the GPU code is optimised to an acceptable degree without the
need to program at the assembly level (CUDA PTX).

Detailed discussion of the methods used to implement the GPU and CPU implementation
also highlighted areas of interest when benchmarking the system and tuning the parameters
for performing simulations such as those discussed in Chapter 9 pertaining to macromolecular
crowding.

Finally, implementation of a minimal set of applications to transform and interpret output
from our simulations allows for validation of the results produced by the application, as well as
interpretation of any novel simulations to be run using our implementation.

Chapter 6

Verification and Validation

A model is built by abstracting a real world system. This model, in the form of a computer
program will run and produce results in the form of simulated data. These results can, and
must, be compared to the real world system from which it came [176]. Validity can be divided
into three types, replicative validity, predictive validity and structural validity [176].

For a model, or simulation, to be replicatively valid, it must be able to reproduce data ac-
quired from a the system it models. Extending this concept, predictively valid models are able
to produce valid data before this data is observed in the real world. Finally, structural validity
will produce data reflective of real world data and the manner in which the system operates in
order to reproduce this behaviour [176].

In our implementation we assume that the model [12] possesses both replicative and struc-
tural validity. Kim et al. base their model upon general understanding of intermolecular forces
by using Lennard-Jones and Coulomb potentials. With these forces, the Boltzmann distribution
and the laws of thermodynamics are followed. Kim et al. found that the binding affinity esti-
mates that their model produced from the set of simulated structures agreed quantitatively with
experimentally derived values. In the case of UIM1/Ub, it effectively located both of the binding
interfaces in 90% of the simulations, at least one of the interfaces correctly in the other 10%.
The structures also agree with experimental structures to within 2Å to 5Å. When clustered the
dominant cluster contains both native structures and has a population exceeding 40% [12].

We can therefore use similar metrics to compare our simulations to what can be considered
replicatively and structurally valid references. In our case, predictive validity is impossible to
guarantee and the experimentally validity of the results of a blind docking simulation is beyond
the scope of this work. Given that the model is valid, our validation take is so show that we can
reproduce the results of Kim and Hummer [12], explicitly showing replicative validity and by so
doing assume structural validity.

Separate to validation of the simulation and model, is the verification of the implementation.

Chapter 6. Verification and Validation 110

The non-trivial nature of GPU programming and the numerical inaccuracy encountered on a
GPU necessitates verification of the simulation from a numerical perspective. We inspect our
calculation of interaction potentials on the CPU, comparing our values to those attained using
the original implementation. The same calculations are then repeated using our GPU imple-
mentation, assessing how close they are to the CPU implementation and reference values.

In conjunction with correct interaction potentials, we ensure that the mutation operations
preserve the integrity of molecular structures for the duration of a simulation. Preserving these
structures is critical because the structure of a molecule dictates its biological function which,
in turn, affects its behaviour when docking. Thus, changes in structure due to numerical error
will affect the validity of the simulated structures and statistics.

Verifying the integrity of both the interaction potential calculations and the molecular struc-
tures, allows us to perform validation of the Monte-Carlo simulations and replica exchange.
Monte-Carlo simulations are dependent on acceptance/rejection sampling using the Boltzmann
factor, thus, we need to show that the simulations accept only legal mutations and not muta-
tions that cause collisions between molecules. The correctness of our implementation of replica
exchange is evaluated using the fraction bound ratio as an indication that the replicas at a range
of temperatures fit the Boltzmann distribution. The temperature of each replica determines the
likeliness of it possessing a particular energy configuration, hence, the probability that it will be
bound is related to its temperature by the Boltzmann distribution.

Finally, to validate that simulations function correctly, we perform two reference simulations.
The first of these models the binding of ubiquitin and the UIM1 domain of Vps27 (abbreviated
to UIM/Ub). The second simulation models the binding of the yeast cytochrome c and cy-
tochrome c peroxidase (Cc/CcP) complex. The Protein Database (PDB) provides entries 1Q0W
and 2PCC, containing the data for each respective complex. Kim and Hummer use the same
simulations to validate their model [12], providing data against which we can perform replica-
tive validation for our implementation. Output from these simulations is used to calculate the
binding affinity of each complex at 300 Kelvin, allowing direct comparison of our simulation
outputs with their results.

All of the work relies on the accuracy of the structures stored in the Protein Data Bank. In
the case of UIM/Ub, protein nuclear magnetic resonance spectroscopy was used to generate the
structural data in a study performed by Swanson et al. [177], published in The EMBO Journal,
part of Nature. The Cc/CcP structure was attained using X-Ray diffraction in a study by Pel-
letier and Kraut published in Science [28]. Altogether, these works have been cited 102 and 328
times receptively as of January 2010.

6.1. Verification 111

6.1 Verification

Verification is performed on the interaction potential calculations. We casualty and compare
our CPU and GPU computations with a reference set of interaction potential values calculated
using the original implementation in CHARMM. Thereafter, verification of the Monte-Carlo
mutations are performed. The relative simplicity of Monte-Carlo simulations limits verification
to these aspects of the simulation; tasks such as sampling, recording of docked poses and the
running of the simulations are trivial.

The verification of the interaction potential summation implicitly verifies the structural valid-
ity of the internal representation of proteins. Any structural corruption at the residue level will
result in distinct differences in interaction potential. Thus, second to the calculation of accurate
interaction potentials, minimising the accumulation of numerical error caused by Monte-Carlo
mutations is critical.

6.1.1 Interaction Potentials

Kim and Hummer. use CHARMM to implement their model and perform their simulations [12].
The new implementation using C++ and CUDA needs to be validated against it to ensure that
the calculation of the interaction potential concurs with the original implementation before any
new simulations can be performed.

Ten reference conformations of the UIM1/Ub complex, subject of Kim and Hummer [12],
are used for validating the correctness of the interaction potential calculations. Table 6.1 lists
the CHARMM generated values of interaction potential for each conformation. These confor-
mations are reproduced using our implementation and the interaction potentials we calculate
for each of them are listed in Table 6.2. In the tables, UvdW and UDH are the respective accu-
mulated values for the short range, uij , and electrostatic, uelij , components from Equation 4.1.
The reference values were provided by Dr R. Best using ten randomly selected configurations of
UIM/Ub. PDB files containing the Cα positions of each amino acid residue in these conforma-
tions are output before being loaded into our implementation and the interaction potentials for
each configuration are calculated using the CPU.

Tables 6.1 and 6.2 show that our implementation matches that of Kim and Hummer. to, at
least, 3 significant figures (conformations 5 and 7). Further inspection of the potentials showed
that CHARMM and our implementation output different values in some cases for the uij compo-
nent. Specifically, when our implementation outputs zero, CHARMM would output a non-zero
value. The interaction between GLU and ARG is a good example, using e0 = −2.27 [12], and the
contact energy from Table A.2, the value of εij (Equation 4.2) is zero. Consequently, the correct
contribution from the short range interaction potential, uij , is zero. CHARMM, in the case
specific to this test, calculates uij = 4.6 × 10−8. As a result, our calculation of the interaction

6.1. Verification 112

Table 6.1: Reference Conformation Energies
Reference conformation energies produced using the CHARMM. UTot is the total potential of the confor-
mation, comprises UvdW , the total Lennard-Jones pair interaction potential component, and UDH , the
total Debye-Hückel electrostatic potential component.

Conf. UTot (kcal/mol) UvdW (kcal/mol) UDH (kcal/mol)
1 -0.294 -0.081 -0.213
2 -1.056 -1.323 0.266
3 -10.278 -9.095 -1.184
4 -7.584 -5.905 -1.680
5 -7.91× 10−5 -2.12× 10−5 -5.8× 10−5

6 -5.565 -4.812 -0.753
7 -5.453 -4.184 -1.269
8 -10.670 -9.223 -1.447
9 -9.904 -7.952 -1.952
10 -8.518 -7.448 -1.070

potential and CHARMM’s calculation of the interaction potential differ. With regard to the
3 significant figures, one reason for our values and CHARMM’s values differing might be that
the value of e0 is truncated, meaning that the value of −2.27, may need to be more accurate
for our implementation results for each potential interaction caclualtion to match those of Kim
and Hummer. But, it can be argued that these differences do not affect the outcomes of the
simulations due to the influence of the Boltzmann factor.

Table 6.2: Implementation Conformation Energies
The CPU implementation of the algorithm determining conformation energy closely matches the reference
values in Table 6.1.

Conf. UTot (kcal/mol) UvdW (kcal/mol) UDH (kcal/mol)
1 -0.294 -0.081 -0.213
2 -1.056 -1.322 0.266
3 -10.277 -9.095 -1.182
4 -7.580 -5.903 -1.678
5 -7.90× 10−5 -2.10× 10−5 -5.8× 10−5

6 -5.562 -4.810 -0.752
7 -5.480 -4.213 -1.267
8 -10.712 -9.266 -1.446
9 -9.900 -7.951 -1.949
10 -8.528 -7.459 -1.069

6.1. Verification 113

All contact potentials are truncated to 3 significant figures, therefore, we cannot claim to
calculate interaction potential to more than 3 significant figures using this data.

Additionally, the input PDB files truncate the absolute positions of each atom to 3 decimal
places, and so the value of r, the distance between two residues, is calculated using between 3
and 6 significant figures depending on a residue’s distance from the origin point in a PDB file.
This means that r is only accurate to the same number of significant figures, meaning that the
interaction potential can only be accurate to the same degree of precision because the calculation
of the Debye-Hückel electrostatic component of the interaction potential, uelij , and the van der
Waals component of the potential, uij , are both dependent on r.

Table 6.3: Relative Difference Between Calculated and Reference Values
The CPU implementation of the algorithm matches the reference values to a reasonable degree of accuracy.
The largest discrepancy between the implementation and the reference values is in the calculation of the
short-range van der Waals potential, UvdW .

Mean Relative Error η̄ Maximum Relative Error ηmax
UTot 0.00143 0.00507
UvdW 0.00238 0.00756
UDH 0.00114 0.00142

The relative error, η = |x−xsim|
|x| , between the reference values in Table 6.1 and our values

in Table 6.2 shows our implementation to have a mean relative error of 0.0014 compared to
CHARMM’s values. Table 6.3 shows that the largest differences occur in the calculation of the
van der Waals component of the interaction potential. Considering the above discussion regard-
ing significant figures, achieving a maximum relative error of less than 1% (0.0014), shows the
implementation to be accurate to an acceptable degree of precision for this simulation.

GPU Verification

The only function of the GPU in our simulations is to calculate the total interaction potential.
We verify that our GPU calculations are correct in two ways. First, we calculate the interaction
potentials using the GPU for the ten conformations used to validate the CPU and compare them
to those in Tables 6.1 and 6.2. Second, we run a 1000 iteration Monte-Carlo simulation of both
the UIM/Ub and Cc/CcP complexes, and compare the calculation of interaction potential on
both CPU and GPU for each mutation.

To begin, calculation of the total interaction potential on the GPU is performed for each
of the ten reference conformations, the results of which are included in Table 6.4. Analysis
of the values shows that the mean relative error between our CPU and GPU implementations

6.1. Verification 114

is 3.8 × 10−7 and the mean relative error between our GPU implementation and CHARMM
is 0.00146, almost identical to the mean relative error between our CPU implementation and
CHARMM (0.00143).

Table 6.4: GPU Conformation Energies The UTot values for the 10 conformations from Table 6.2
are compared to the GPU calculated UTot or the same conformations. Relative errors are shown to be
between 2× 10−6 and 5× 10−11 for the reference sets.

Conf. CPU (kcal/mol) GPU (kcal/mol) η

1 -0.293705 -0.293705 5.21×10−8

2 -1.056291 -1.056291 3.63×10−7

3 -10.277435 -10.277431 2.78×10−7

4 -7.58038 -7.58039 1.00×10−6

5 -7.924×10−5 -7.924×10−5 5.03×10−11

6 -5.562238 -5.562239 2.01×10−6

7 -5.480216 -5.480217 3.74×10−7

8 -10.711964 -10.711967 1.92×10−6

9 -9.900360 -9.900360 5.68×10−7

10 -8.527744 -8.527749 1.75×10−6

All values have been calculated using single precision on the GPU. While double precision
is available on a GPU, there is one double precision unit for every eight single precision units
on the GT200. Consequently, performing calculations using double precision is more accurate,
but at a speed eight times slower than single precision.

Compensated Summation

To reduce the effect of truncation error on our simulations, we use a combination of Kahan
summation and pairwise summation in the manner discussed in the previous chapter (cf. 5.3.8).
The effects of using compensated summation on our simulation are small, resulting in only a mi-
nor improvement in the relative error between the GPU and CPU calculated values. Of greater
significance is that the standard deviation in the error is always smaller when using compensated
summation. More importantly, compensated summation ensures that the theoretical worst case
error will be bounded by O(ε

√
log2(blockDim)) independent of the size of the simulation con-

figuration. Thus, we can infer that the errors in the simulations we perform for validation will
be similar to errors incurred in simulating larger structures.

To investigate the effects of compensated summation, perform simulations calculating the
interaction potential for each step on both the CPU and GPU, recording the relative error at
each step. In this test, the CPU uses a double precision compensated sum (effectively 104-bit

6.1. Verification 115

precision) and the GPU uses a compensated sum of floats within each thread, this provides 46-
bit precision for 4096 pairwise interactions (the block size of 64 results in 64× 64 comparisons)
before being truncated by reduction to the 23-bits most significant bits. A Kahan sum is once
again performed on the grid results. We simulate problems ranging in size from 100 residues to
7008 residues, producing 30000 samples.

This comparison calculates that we may expect 99.7% (3σ) of all values to agree with a
relative error of less than 1.6× 10−5 without compensation and 1.0× 10−5 when compensating.
Thus, we may discard the use of compensated summation for our simulations as its computa-
tional cost does not realise a significant increase in accuracy.

Table 6.5: The Effect of Compensated Summation Summary Compensated summation
marginally improves results at the cost of approximately 10% more computation. Given This result
and the fact that we are interested in binding values in the range of -1.18 or less. The greater degree of
accuracy afforded by compensated summation does not necessitate or require its use for our simulations.
For 30000 samples we note a decrease in the standard deviation, σ, indicating that compensated summa-
tion results in the interaction potentials values evaluated by the GPU and CPU to agree more closely.
But, as the mean relative error figures suggest, there is little improvement on the already acceptable error
in the calculation.

Sequential Compensated
Mean η 1.06× 10−6 9.56× 10−7

σ 5.53× 10−6 3.34× 10−6

Minimum η 0 0
Maximum η 6.89E − 004 3.49E − 004

Analysing the components of the interaction potential reveals that the predominant reason
for differences in GPU and CPU calculated values lies in the calculation of the van der Waals
component of the interaction potential. This function relies on powf, and is sensitive to the
relative inaccuracy of such a function. The functions used to implement our GPU solution,
generally, have a maximum ULP error of one, two or three places, however, the powf function,
has a maximum ULP error of 8 places [22]. This means that the mantissa of the single precision
value returned by this function can only be guaranteed to be accurate to 15 of its 23 bits. This
translates to accuracy of only 5 significant figures in the worst case. Fortunately, the Monte-
Carlo simulations will compensate for this inaccuracy because the Boltzmann factor statistically
accepts or rejects mutations using the change in interaction potential, meaning that small errors
in accuracy will not cause significant changes in the the probability of acceptance of rejecting a
mutation.

A critical point to consider in the calculation of the relative error is that neither the CPU nor
GPU can be considered absolutely accurate. Tables 6.2 and 6.4 show that the CPU and GPU

6.1. Verification 116

agree with values calculated using CHARMM but there is no guarantee that either CHARMM,
the CPU or the GPU calculate the true interaction potential. Because the GPU and CPU cal-
culate interaction potentials which match with relative errors many orders of magnitude smaller
than the value of interest in these simulations, the CPU and GPU affirm that the accuracy of
our implementation, using single precision interaction potential calculations, is sufficient.

6.1.2 Monte-Carlo Mutations

The calculation of the interaction potential is preceded by a Monte-Carlo mutation and followed
by either accepting or rejecting the mutation based on the value of the interaction potential.
Specifically, it is the Boltzmann Factor that is used to perform acceptance/rejection sampling.
Validation of the Monte-Carlo simulations is performed in two parts, firstly, the acceptance and
rejection of mutations must be shown to work correctly, such that incorrect mutations are not
accepted. Secondly, the mutations must preserve the structure of the molecules they mutate,
ensuring that their structure does not become corrupted during simulation, because this would
invalidate all data produced by that simulation.

To ensure that the Monte-Carlo moves conserve the structure of the molecules, the rotation
and translation methods are tested. Unlike the calculations performed on the GPU and CPU
to determine interaction potential, the rotation and translation operations modify the state of
the model. Consequently, the effect of these operations needs to be as accurate as possible in
order to perform valid simulations.

Testing translations is trivial since it merely involves the addition of the translation vector
to each residue’s absolute position. This operation was shown to be implemented correctly as
calculation of the interaction potential does not change unless the position of molecules relative
to each other changes. This was tested by applying a series of identical translation operations to
all molecules before evaluating the interaction potential which, as expected, was identical before
and after translation.

To verify that mutations rotate the molecules correctly, a test to evaluate rotations was per-
formed. Unlike translations, rotations are sensitive to numerical instability due to truncation
errors. Initially, only single precision rotations were used for our implementation, resulting in
distortion of a molecules shape over time. Molecules tended to become elongated along a partic-
ular axis while simultaneously squashed along another. Further analysis of this problem showed
that the source of the distortion was the precision used when rotating the molecule.

For data acquisition, simulations are expected perform between 108 and 109 Monte-Carlo
iterations. This means that, given equal probability of a rotation or translation in a binary
complex, approximately 2.5 × 107 rotations will be performed on a single molecule. Therefore,
rotations must preserve the structure of the molecule to an acceptable degree for at least this

6.1. Verification 117

many operations. Due to the Markov chain nature of the Monte-Carlo simulation, each time a
rotation occurs, the effect is accumulated

To test the validity of our rotations, a vector is rotated 109 times using the following methods
of rotation:

• Single (32-bit) precision matrix rotation.

• Double (64-bit) precision matrix rotation using a single precision rotational axis.

• Double precision matrix multiplication using a double precision rotational axis.

• Single precision quaternion rotation.

• Double precision quaternion rotation using a single precision rotational axis.

• Double precision quaternion rotation using a double precision rotational axis.

The two methods of rotation, quaternion and matrix, are implemented in the following ways.
Rotations are relative to the origin since all rotation operations are performed on a residue’s
position relative to the center of the protein to which it belongs.

A rotational matrix, R, (Equation 6.1) is generated from the angle/axis pair (û, θ) and ro-
tates any vector anticlockwise θ radians about the arbitrary axis û [178].

R =

u2
x + (1− u2

x) cos θ uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uys

uxuy(1− cos θ) + uz sin θ u2
y + (1− u2

y) cos θ uyuz(1− cos θ)− ux sin θ

uxuz(1− cos θ)− uy sin θ uyuz(1− cos θ) + ux sin θ u2
z + (1− u2

z) cos θ

 (6.1)

Rotation via quaternions is performed by generating a quaternion, Q(w, x, y, z), representing
the rotation using the same angle/axis pair, (û, θ) [178].

Q =
(

cos θ2 , ûx sin θ2 , ûy sin θ2 , ûz sin θ2

)
Using the Hamilton-Cayley formula (Eq. 6.2),

V ′ = QV Q−1 (6.2)

V ′ is the vector V rotated using the quaternion Q. Expanded this becomes the 3 × 3 matrix
multiplying the vector V to produce V ′ [179].

V ′ =

w2 + x2 − y2 − z2 −2wz + 2xy 2wy + 2xz

2wz + 2xy w2 − x2 + y2 − z2 −2wx+ 2yz

−2wy + 2xz 2wx+ 2yz w2 − x2 − y2 + z2

V (6.3)

The test to inspect the effects of a rotation over many iterations involves choosing a vector
of known length, and rotating it by 0.2 radians (the rotation from the model) about a random

6.1. Verification 118

axis 109 times. If the rotation operation is acceptably accurate, the length of the vector will be
preserved. The relative error |x0−xi|

|x0| is calculated using the length of the original vector, x0, and
its current length after i iterations, xi.

4 8 10 16

Rotations (10
7
)

20

40

60

80

R
e
la

ti
v

e
 E

rr
o

r

Quaternion

Matrix

(a) 32-bit Rotations

2 4 6 8

Rotations (10
8
)

0.2

0.4

0.6

0.8

R
e
la

ti
v

e
 E

rr
o

r

Matrix
Quaternion

(b) 64-bit Rotations, 32-bit Rotational
Axes

2 4 6 8

Rotations (10
8
)

0.5

1.0

1.5

R
e
la

ti
v
e
 E

rr
o
r

(1
0

-4
)

Matrix
Quaternion

(c) 64-bit Rotations, 64-bit Rotational
Axes

Figure 6.1: Rotational Error
(a) A large number of rotations using single, 32-bit, precision performed on a single vector induces
severe numerical instability. After 107 rotations, using a rotation matrix or quaternion, rotations suffered
absolute errors of 29% and 26% respectively, with the error growing at an exponential rate. (b) Using a
mixture of 32-bit inputs and 64-bit operations improves accuracy considerably, but still not to an acceptable
degree. (c) Only by using double precision for rotations, does the accumulated error in the operations
become tolerable, tending, after many iterations, to a numerically stable state.

Using our initial implementation, rotation about an arbitrary axis proved accurate for very
few iterations of the test. After less than 107 rotations the length of the test vector was distorted
by at least 29% using quaternion rotations and 26% using a rotation matrix. As illustrated in
Figure 6.1a, the error compounds quickly using only single precision. The errors introduced after
109 iterations distorted vectors by a factor of 4 × 1012 using rotational matrices and 3 × 1010

using quaternions.

6.2. Simulation Validation 119

Changing all operations that perform the rotation to double precision improved the accu-
racy considerably, containing the numerical instability to a better degree than single precision.
However, as illustrated in Figure 6.1b, this still results in distortion of the vector by up to the
same order of magnitude as the vector itself.

Only by generating the random axis of rotation, û, using double precision, does the rotation
operation become stable, experiencing accumulated errors of no more than 1.35 × 10−4 times
the original vector length. Inspection of the rotation operations used in our implementation
shows that double precision must be used to preserve the structure of the molecules involved
in simulations. Furthermore, double precision becomes numerically stable with an acceptable
error bound after approximately 108 operations. Figure 6.1c shows that error incurred by using
quaternions or rotation matrices is similar, with quaternion operations, in our case being slightly
more accurate.

The GPU is not used for rotation operations, thus, use of full 64-bit precision for all parts
of the rotation algorithm are viable.

The Monte-Carlo mutations can thus be considered to conserve the structure of molecules
in the simulation, which, in turn, ensures that the interaction potential will be calculated as
accurately as possible. Interaction potentials and Monte-Carlo mutation are the basic building
blocks for this simulation, which, now verified, can be used for the higher level simulation oper-
ations such as acceptance/rejection sampling via the Boltzmann factor.

6.2 Simulation Validation

We perform two reference simulations of the docking of the UIM/Ub and Cc/CcP complexes.
These simulations are evaluated using the fraction bound metric, to determine the binding
strength of the complex, and clustered to determine the structures discovered by the simulation.
These outputs, in turn, allow for replicative validation against known binding strengths and
structures from both experimental observations by Kim and Hummer.

The fraction bound,
y = [A]

[A] +Kd

is a function of the concentration, [A], of the molecules in a simulation, allowing us to deter-
mine the dissociation constant, Kd, for the interaction modelled by the simulation. This value
can then be compared directly with Kim and Hummer’s results to ascertain the validity of the
simulation.

6.2. Simulation Validation 120

Our simulations are performed using a periodic bounding box where the size of the bounding
box determines the concentration of the simulation. Six box sizes are used in our test simulations
ranging from 100 micro-molar (µM) to 1000µM .

Simulations for UIM/Ub ran for 15 million Monte-Carlo steps per replica for 12 replicas.
Replica exchange was performed once for every 1000 Monte-Carlo steps, exchanging replicas
between temperatures ranging from 300K to 600K. In each simulation, fraction bound was cal-
culated from data gathered for replicas at 300K. The dissociation constant, Kd, is solved for by
fitting the fraction bound values of each simulation to the curve, y = x

x+Kd
.

We produce two values for Kd due to the use of truncated Ubiquitin by Kim and Hum-
mer [180]. The difference between the truncated and non-truncated ubiquitin is the absence of
the last four residues in the protein resulting in different structures as illustrated in Figure 6.2
with truncated ubiquitin on the left and full length ubiquitin on the right. The blue residues on
the right are the residues removed through truncation.

(a) Truncated (b) Full Length

Figure 6.2: Truncated and Full Length Ubiquitin
(a) Simulations performed by Kim and Hummer use a truncated form of ubiquitin with only 72 residues.
(b) Full length ubiquitin, is 4 residues longer than the truncated form. The difference between the proteins
is illustrated in blue. We perform the UIM/Ub docking simulation with both proteins to validate our
simulations against both Kim and Hummer, using the truncated from, and Best using the full length
protein as found in PDB entry 1Q0W.

Kim and Hummer use Model “A” (the surface accessible surface area for each residue equals
1) to calculate Kd = 1240µM for UIM/Ub using truncated ubiquitin [12]. Our simulations
produce a similar result, with Kd = 1345µM . For full length ubiquitin simulations, our value
of Kd is compared with that of Best [180]. Best calculates Kd = 595µM using CHARMM to
perform simulations. Our simulations agree with this value, determining Kd = 561µM . Kim
and Hummer do not publish a Kd value for full length ubiquitin. For truncated simulations,

6.2. Simulation Validation 121

Best calculates Kd = 1493µM , a value which our simulations agree closely. Figure 6.3 plots
fraction bound as a function of concentration for all six of these simulations, illustrating that
our simulations produce values comparable to both Kim and Hummer [12] and Best [180].

200 400 600 800

Concentration (µM)

0.2

0.4

0.6

0.8

F
ra

ct
io

n
 B

o
u
n
d

Simulation Full Length

Best Full Length

Kim Truncated
Simulation Truncated
Best Truncated

K
d
= 561µM

K
d
 = 595µM

K
d
= 1345µM

K
d
= 1240µM

K
d
= 1493µM

Figure 6.3: UIM/Ub Fraction Bound As A Function of Concentration
Simulations using both truncated and full length ubiquitin agree strongly with simulations performed by
Best. Our simulations determine Kd to be 1345µM and 561µM , respectively. These values closely match
those of Best. in both cases and with Kim and Hummer for truncated ubiquitin.

Simulation pertaining to Cc/CcP are configured in the same manner as the afore-mentioned
UIM/Ub simulations. Kim and Hummer determine the dissociation constant to be 1570µM [12].
Our simulations produce Kd = 1456µM , closely matching this value as illustrated by Figure 6.4.

Alarmingly, by changing the fixed translation of 0.5Å to a range of translations between
0.1Å and 0.5Å depending on temperature, simulations discover a higher binding affinity for the
Cc/CcP complex with a dissociation constant of 755µM . This value concurs much more strongly
with the “Model C” SASA values used by Kim and Hummer as opposed to the simple “Model
A” where the SASA of each residue is 1 [12]. “Model C” weights a residues interaction by the
factor tanh(5 tan(πs/2)). By comparison, UIM/Ub simulations performed with both variable
and fixed translation sizes produce negligible differences to the dissociation constant for the
reaction.

On the basis of our implementation agreeing strongly with the simulations by Best, in the

6.2. Simulation Validation 122

200 400 600 800

Concentration (µM)

0.2

0.4

0.6

0.8

F
ra

c
ti

o
n

 B
o

u
n

d
Simulation (RM)

Kim (Model C)

Simulation (SM)

Kim (Model A)

K
d
= 755µM

K
d
 = 1456µM

K
d
 = 850µM

K
d
 = 1570µM

Figure 6.4: Cc/CcP Fraction Bound As A Function of Concentration
Our simulations calculate the dissociation constant of the Cc/CcP complex to be 1456µM when using a
constant translation and rotation step size for Monte-Carlo moves. This value agrees strongly with the
value for Kd that Kim and Hummer calculate, namely 1570µM for “Model A”. Introducing a translation
and rotation proportional to temperature results in a binding curve more closely resembling that of “Model
C”.

case of UIM/Ub and with Kim and Hummer in the case of Cc/CcP, we consider our implemen-
tation valid for determining the binding affinity of a complex. The ability of our implementation
to calculate correct dissociation constants implies that it reaches equilibrium during the simu-
lation and that this equilibrium is valid.

The DRMS of each structure is calculated to evaluate the structural similarity of the com-
plexes to the native complex. Kim and Hummer find that the most populous structure is within
5Å of the respective X-ray crystal and NMR solution structures of that complex. DRMS is cal-
culated as the sum of difference in the distance matrices for all pairs of residues in the simulated
and experimental structures over the total number of pairs:

1
N

∑
i,j

|dsimij − d
exp
ij |.

DRMS is a better measure for structure comparison than the RMSD for large protein complexes
because it is insensitive to the small relative orientational differences within the complexes that
would result in large RMSD changes [12].

6.2. Simulation Validation 123

-12 -10 -8 -6 -4 -2
Energy (kcal/mol)

4

8

12

16

D
R

M
S

(Å
)

Inverse
Native

(a) UIM/Ub

-12 -10 -8 -6 -4 -2
Energy (kcal/mol)

4

8

12

16

D
R

M
S

(Å
)

(b) Cc/CcP

Figure 6.5: Bound Structure DRMS versus Energy
UIM/Ub (a) and Cc/CcP (b) simulations discover clusters of native like structures (red), exhibiting both
low energy and DRMS values. In UIM/Ub simulations, the inverted UIM helix results in a secondary
structure (blue) with increased RMSD and energy. Complexes are considered bound when the interaction
potential between then is less than -1.184kcal/mol.

Plots of the DRMS versus potential energy for both UIM/Ub and Cc/CcP complexes (Fig-
ure 6.5) show that the low-energy structures exhibit small DRMS values. Kim and Hummer
attribute the higher DRMS values associated with Cc/CcP to the orientational changes found
in larger proteins (402 for Cc/CcP vs. 100 for UIM/Ub) will result in an increase in DRMS.
Thus, for clustering, a larger cut-off value is required for Cc/CcP than UIM/Ub. Qualitatively,
our DRMS versus energy plots strongly resemble the results attained by Kim and Hummer.

Finally, structural analysis of the conformations discovered is performed. Frames of the
bound complexes discovered by our simulations are output as a PDB trajectory for clustering
with GROMACS’ g_cluster utility using a 1Å cut-off value for UIM/Ub and 2Å for Cc/CcP.

UIM/Ub simulations, with both truncated and full ubiquitin, discover two dominant clus-
ters. These clusters account for 79% and 72% of bound complexes discovered in the full and
truncated simulations respectively. In the full length simulations, a cluster representing the na-
tive structure (Figure 6.6a) accounts for 67% of all complexes discovered. The native cluster has
a DRMS of 2.4Å ±1.0Å with the closest structure 1Å DRMS from the experimentally attained
structure. The second cluster (Figure 6.6b) has DRMS of 5.5Å ±0.7Å with the minimum DRMS
of 3.7Å. This second cluster inverts the orientation of the UIM helix in the binding pocket and
is also present in Kim and Hummer’s simulations [12].

Truncated ubiquitin produces similar results with respect to structure. Again a native like
and secondary structure emerge with DRMS measures of 2.4Å ±0.8Å and 5.0Å ±0.6Å, respec-
tively. Like Kim and Hummer, we find that the second cluster has a population of 20% and

6.2. Simulation Validation 124

(a) UIM/Ub Native (b) UIM/Ub Inverted

(c) Cc/CcP (d) Cc/CcP Native

Figure 6.6: UIM/Ub and Cc/CcP Clusters
Simulations discover a native docking pose (a) and a docking pose in which the UIM1 helix is inverted (b).
Cc/CcP simulations produce a single dominant structure (c) containing a near native structure 0.53Å
DRMS from the experimental structure (d).

6.3. Summary 125

a DRMS of 5Å [12]. In this case the minimum DRMS structure is the same for the inverted
UIM cluster at 3.7Å, the presence of which has been observed experimentally [12]. In the native
cluster, the minimum DRMS discovered is 0.78Å and approximately 1% of conformations have
a DRMS of less than 1Å.

Clustering cytochrome c/cytochrome c peroxidase (Cc/CcP) simulations produce a single
dominant cluster accounting for 56% of the bound complexes discovered. The cluster (Figure
6.6d) has a DRMS of 4.9Å ±1.3Å and a minimum DRMS of only 0.5Å. If clustered using a 1Å
cut-off, it emerges that this cluster can be categorised as two equally sized sub-clusters. These
clusters occupy the same binding site, with the cytochrome c protein rotated 180 degrees about
the axis between the proteins. The “native” structure (Figure 6.6d) has a DRMS of 3.8Å ±0.5Å
and a minimum DRMS of only 0.5Å. The rotated structure has a DRMS of 5.2Å ±0.6Å and a
minimum of 2.9Å. An additional cluster locates an alternative binding site, also located by Kim
and Hummer, with an associated DRMS of 11Å accounting for 2% of the simulated complexes.
Kim and Hummer discover this site with a DRMS of approximately 12Å [12].

DRMS values of 2.4Å for UIM/Ub and 3.8Å for the near native Cc/CcP clusters agree qual-
itatively with those of 2Å and 4Å for the same structures [12]. The ability of our simulations to
reproduce such structures and binding characteristics convinces us that it is replicatively valid.
In the case of UIM/Ub, the presence of flexible linkers in the UIM protein allows simulations to
discover bound conformations with lower energy and DRMS than in our case.

6.3 Summary

In this chapter, our implementation of replica exchange Monte-Carlo simulation is validated
by first assessing the critical operations composing the simulation before comparing our output
with known results, to verify that our implementation functions correctly.

The interaction potential calculations on both the CPU and GPU are validated against
the values generated by Dr Robert Best using Kim and Hummer’s CHARMM implementaton.
The average relative error between our calculations and the reference values is calculated to be
0.0014, which is within acceptable limits. Our CPU and GPU calculations can be considered
equivalent as the relative error between them is, at worst, in the order of 10−6 for our reference
simulations. We also show that accumulated error behaves favourably as problem size increases
when compared to the CPU, thus allowing for accurate simulations of large complexes.

Validation of the Monte-Carlo mutations shows that our implementation rotates and trans-
lates molecules with sufficient accuracy to preserve structure when double precision operations
are employed over single precision. For this reason, double precision rotation operations are
used exclusively.

6.3. Summary 126

The outputs of our simulations of UIM/Ub and Cc/CcP at various concentrations are shown
to agree Kim and Hummer’s results and the supplementary data provided by Best. These re-
sults show that our simulation, at equilibrium, produces accurate results, which implies that the
integrity of the simulation data is preserved and that calculation of the interaction potential is
sufficiently accurate.

Finally, we illustrate that our simulations are capable of producing near native structures
with low DRMS and energy values. The discovery of such structures, in agreement with Kim
and Hummer.

Chapter 7

Interaction Potential Performance

We performed profiling and benchmarking of our application to quantitatively evaluate the ben-
efits of using GPU technology for acceleration of our simulations, with the ultimate goal of
maximising simulation speed-up.

Speed-up is measured as the quotient of serial time over parallel time, producing a factor,
which, when greater than one indicates an improvement in performance and when less than one
indicates a decrease in performance. In parallel computing the execution time of an application,
T , is calculated as the sum of the time taken to execute the serial and parallel components,

T = Tserial + Tparallel
N

implying that Tserial will run in a mutually exclusive fashion to Tparallel. Thus, speed-up is
achieved by dividing the parallel work among numerous processors, N . In doing so, the overall
runtime decreases. Traditionally, N would be the number of CPU’s or nodes on which the code
runs.

In replica exchange Monte-Carlo, the relationship between parallel and serial code occurs at
two levels. At the highest level, each Monte-Carlo simulation is independent, thus the simula-
tions can be divided into serial replica exchange and parallel Monte-Carlo. At the second level,
each Monte-Carlo simulation is a serial Markov chain containing a parallel interaction potential
kernel. This chapter evaluates the performance of the lowest level of parallelism, the interaction
potential calculation, seeking an optimal configuration of the GPU kernel while the following
chapter evaluates simulation performance using higher level parallelism.

We begin by profiling our application to determine the time costs associated with each part
of the algorithm and the effects of input size on runtime. This identifies the portions of the
algorithm requiring most optimisation. Inspection of the algorithm indicates that the calcula-
tion of the interaction potential is the most computationally intensive aspect, accounting for the
majority of simulation runtime. The profile also identifies the maximum amount of speed-up for
a simulation.

7.1. Interaction Potential Calculations 128

Concomitantly, we benchmark simulation times for a representative set of simulations on a
CPU only, providing a baseline against which all subsequent simulation configurations can be
compared and evaluated.

There are a variety of ways in which to configure a GPU kernel, as discussed in Chapter
5. Certain parameters, due to the manner in which they map the algorithm to hardware, will
result in better performance than others. It is difficult to determine an optimal parameter set
by inspection, necessitating the use of benchmarks to determine this configuration. This task is
further complicated by multi-threading on the CPU and the use of asynchronous computation
on the GPU.

Each permutation of kernel configuration is benchmarked independently to determine an
optimal configuration, which is then used to evaluate the effects of multi-threading and asyn-
chronous GPU computing in Chapter 8. This chapter specifically inspects the performance of
the interaction potential calculations determining the optimal block, and memory usage model
for the implementation.

The system configuration used for profiling and benchmarking, in this and the next chap-
ter, is included in Table B.1 and the proteins participating in each simulation are from those
listed in Table B.2. Eight simulations are used for performance evaluation: Vsp27 and Ubiquitin
(UIM/Ub) simulation of 100 residues (24 and 76 for each protein, respectively) contains 1824
pairwise interactions, Yeast cytochrome c/cytochrome c peroxidase (Cc/CcP) simulations of 402
residues (108 and 294 respectively, 31752 pairs) and Hepatitis B virus capsid proteins (HBV)
simulations of 2 (568 residues, 80656, 4 (1136, 483936), 8 (2272, 2258368), 16 (4544, 9678720), 24
(6816, 22261056) and 27 (7668, 28310256) instances of the capsid pieces. UIM/Ub and Cc/CcP
complexes, provide two small scale simulations, neither of which are large enough to saturate
the system resources on both the CPU and GPU. Although small, these complexes are well
studied using the Kim and Hummer model and are representative of simulations between only
two participating proteins. HBV, allows us to benchmark biologically relevant structures on a
linear scale from 568 up to 34080 residues, in increments of 284 and simulates performance in a
multi-protein complex study.

7.1 Interaction Potential Calculations

The interaction potential is calculated as the sum of each pairwise interaction potential between
all residues in each molecule. In the context of benchmarking this is referred to as the ker-
nel. Using the CPU to calculate the overall interaction potential requires no data preparation,
molecules and residues are in contiguous arrays in system memory, as described in our imple-
mentation chapter.

7.1. Interaction Potential Calculations 129

For each data point, the average of 20,000 individual kernel invocations is taken to be the
runtime of a specific kernel.

Figure 7.1 shows the average kernel execution for a range of problem sizes. Note that this
is the average time to calculate a single interaction potential for one replica. The O(N2) com-
plexity of the operation is evident: the time required for the calculation of the total interaction
potential on the CPU grows quadratically with the number of residues. The CPU implemen-
tation scales predictably for problems of this size, for 100 residue simulations, the interaction
potential can be calculated in as little as 1 millisecond, while the same operation takes almost
14 seconds for 7886 residues.

1000 2000 3000 4000 5000 6000 7000

Residues

2

4

6

8

10

12

14

P
o
te

n
ti

a
l

C
a
lc

u
la

ti
o
n
 T

im
e
 (

s)

Figure 7.1: CPU Kernel Calculation Time
The average CPU time required to calculate the interaction potential sum for increasing simulation sizes
from 100 to 7668 residues.

Profiling the simulation with respect to time indicates the effect of the interaction potential
on the overall runtime of the simulation. Consequently, a theoretical calculation of maximum
speed-up can be made with this data. Initially, profiling is performed without a GPU, providing
a performance baseline against which all future benchmarks are compared.

We only consider time inside the REMCSimulation for profiling. The Monte-Carlo searches
are called within POSIX threads called by the simulation function. However, these threads are
created once and reused for the duration of the simulation, waiting while the replica exchange
part of the algorithm executes. For profiling, the Monte-Carlo searches are performed in a single
thread and profiled using TAU, while the parent thread is timed using the cutil timers (the C

7.1. Interaction Potential Calculations 130

utility provided in the CUDA SDK).

The modularity of our code means that the blocking REMCSimulation function call is the
only part of code that is profiled, all code outside this function executes in comparatively neg-
ligible time.

Monte-Carlo simulations are computationally demanding: for the smallest simulation of only
100 residues, for each second of Monte-Carlo simulation, far less than 1 millisecond is required
for replica exchange. This is expected, as our implementation of replica exchange only exchanges
counter variables and temperature values, resulting in almost zero memory transfer overhead.
The time required for replica exchange is O(R2), involving iteration over the list of replicas and
switching distinct adjacent pairs for each exchange step, where R is the number of replicas in
the simulation. By contrast, the Monte-Carlo simulations are dependent on the size and num-
ber of molecules per replica: each Monte-Carlo rotation or translation requires an operation on
each of the residues of the selected molecule, meaning it is an operation of linear complexity.
Evaluation of this move requires that the new interaction potential be calculated, an operation
that is approximately O(1

2n
2), where n is the number of residues, as it requires a comparison

between each distinct pair of residues from distinct molecules in the replica.

Saving and restoring molecules in the Monte-Carlo simulation is achieved using a simple
memory copy, and can therefore also be considered linearly dependent on the size of the mu-
tated molecule.

Profiling analysis allows us to estimate, assuming a pairwise comparison and a mutation on
a single residue are of approximately equal cost, how our application will perform serially. Using
the ratio of interaction potential pairs over the combination of the interaction potential pairs
and the average number of mutation operations performed per Monte-Carlo step, we estimate
that the interaction potential will require over 97% of all simulation time. Table 7.1 shows that,
once measured, the estimated percentage CPU time used for interaction potential calculations
increases from 97.332% to 99.999% with ascending benchmark size. This is in agreement with
the benchmark results. Clearly, the ratio of the interaction potential execution time to all other
code is so large that, for even small problems, no optimisation of code other than interaction
potential will be of significant benefit.

Within each Monte-Carlo loop, computation time can be divided between interaction po-
tential calculations, mutations (either translation or rotation), saving and its complementary
restoration operation and the Monte-Carlo specific operations such as acceptance/rejection and
random number generation. Broadly, these are grouped as interaction potential, rotation, trans-
lation, save and other operations for profiling. Figure 7.2 shows that the contribution of com-
putational operations is similar relative to the cost of calculating the interaction potential. The
memcpy reliant save and restoration proves least expensive, approximately an order of magni-

7.1. Interaction Potential Calculations 131

Table 7.1: Interaction Potential CPU Profile
Estimation of the proportion of time required for interaction potential calculations. Systems of Vsp27
and Ubiquitin (UIM/Ub), Yeast cytochrome c/cytochrome c peroxidase (Cc/CcP) and Hepatitis B virus
capsid proteins (HBV) require more computation time as the number of residues in the system increases.
Estimated and actual proportions of runtime prove similar.

Molecules Residues Interaction Pairs Ave Mutations Estimate % Actual %
2 100 1824 50 97.332 98.030
2 402 31752 201 99.371 99.702
2 568 80656 284 99.649 99.796
4 1136 483936 284 99.941 99.922
8 2272 2258368 284 99.987 99.983

16 4544 9678720 284 99.997 99.996
24 6816 22261056 284 99.999 99.998

tude faster than mutations.

9
8
.0

3
0

9
9
.7

0
2

9
9
.7

9
6

9
9
.9

2
2

9
9
.9

8
3

9
9
.9

9
6

9
9
.9

9
8

1000 2000 3000 4000 5000 6000

Residues

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

In
c
lu

si
v

e
 E

x
e
c
u

ti
o

n
 T

im
e
 (

%
)

Est Interaction Potential
Interaction Potential
Rotate
Translate
Save
Other

Figure 7.2: CPU Inclusive Profile
CPU profiling indicates that the interaction potential accounts for over 98% of the time required for
simulations. The Monte-Carlo simulations are profiled by measuring the time required for the interaction
potential calculation, rotation, translation, saving (if a MC move must be reversed) and other operations
such as random number generation.

Potentially, we could port mutations to the GPU, as many of the floating point operations
performing both rotation and translation map to fused multiply add (FMA) instructions. How-
ever, this would remove all computation from the CPU, resulting in underutilisation of the CPU

7.2. Interaction Potentials on the GPU 132

in the asynchronous CPU-GPU case.

If a single Monte-Carlo simulation is performed, it would be faster to perform all operations
on the GPU since there would be zero memory overhead. But, this would prove problematic
considering our findings regarding the accumulation of inaccuracy in the rotation operation us-
ing floating point arithmetic on the GPU (see Section 6.1.2).

7.2 Interaction Potentials on the GPU

Referring back to the CUDA Best Practices Guide [23], performance of a GPU code is depen-
dant on three overall optimisation strategies: maximising parallel execution, optimising memory
usage and optimising instruction usage to achieve maximum throughput.

In implementing the interaction potential kernel, these criteria are followed. Algorithmically,
the tiled approach to the n-body problem is known to provide optimal memory bandwidth for
the underlying problem [17,18,25,26] and the optimised CUDA reduction solves the summation
of each body’s contribution to potential [82]. The instruction usage strategy is largely invariant
with decisions regarding the choice of instructions determined by theoretical knowledge of the
GPU. But, parallel execution and memory bandwidth characteristics are more dependent on the
problem and data, because they are sensitive to latency and execution parameters.

In benchmarking the interaction kernel we evaluate the influence of three factors: the lo-
cation of the contact potential lookup table, thread block size and occupancy. The contact
potential lookup table can reside in shared, global, constant or texture memory on the GPU.
Characteristically, shared memory is fast but scarce, constant memory caches values and is best
used to broadcast constants and frequently used values, global memory is not cached and has
very high read/write latency and, finally, texture memory caches values spatially local to the
value accessed, affording better memory performance to threads with non-coalesced access pat-
terns. Benchmarking the performance of kernels using these types of memory will illustrate the
efficacy of each type of memory for the purpose of random access lookups from a table such as
ours.

The relationship between all three factors is more difficult to determine. Thread block size
determines occupancy because the amount of shared memory on each SM must be shared be-
tween all the threads in a block and all the blocks on an SM. Occupancy, in turn, determines
the amount of latency hiding within a thread which ultimately affects the performance of the
lookup table since more threads will lessen the effect of a bad access pattern. Also, SMs limit the
number of warps per block and the number of thread blocks per block. Hence, smaller thread
blocks mean fewer warps, which means lower occupancy. For example, a thread block size of
32 threads per block will mean that 8 blocks and 8 warps will execute. This is only 25% of the

7.2. Interaction Potentials on the GPU 133

maximum number of warps allowed on a GT200 SM, but the maximum number of allowable
thread blocks. Raising the block size to 64 immediately results in better occupancy because now
16 of a 32 possible warps execute concurrently. Using shared or texture memory for the residue
data changes the optimisation problem again. In this case, occupancy can be raised because
there is less dependence on shared memory.

Due to the use of reduction in our kernels, thread block size may be any power of 2, up to
512. For practicality, we benchmark kernels of 32, 64, 128 and 256 threads per block as they
are all divisible by 64 as per the programming guide and powers of 2, which allows us to use
nVIDIA’s optimised CUDA reduction [82]. Regarding addressability, the number of threads per
block imposes a limit on the maximum number of addressable residues due to CUDA’s grid and
block size limits and our algorithmic tiling. The limits are 8192, 16384, 32786, 65536, 131072
for 32, 64, 128, 256 and 512 threads, respectively. Consequently, the optimal configuration of
kernel may be limited by the problem size dictating the minimum number of threads per block.

Benchmarking uses the following approach to evaluate the performance of each of the afore-
mentioned factors.

We configure kernels to use either shared memory, texture memory or a combination of the
two types to store a low latency cache of residues as per the CUDA n-body model [17,18,25,26].
This allows us to determine the deterministic characteristics of our implementation without
random contact potential lookups and thus determine the optimal memory usage model before
introducing the lookups. The cost of a lookup should theoretically be constant as there is exactly
one lookup between each pair of residues and a constant cost proportional the number of residue
pairs. This benchmark provides a baseline against which to compare the effects of the lookup
table.

The random lookups for each contact potential can be configured to use texture, constant,
global or shared memory in our kernels. With the data from the deterministic part of the inter-
action potential calculations, we can evaluate the effects of introducing the random lookup and
the performance implications of the type of memory used for it.

Finally, the best memory performance cases are paired with either using shared, texture or
a mixture of texture and shared memory for residue data with the aim of increased occupancy.
The results of which are compared to the theoretical best case of shared memory for the residue
cache and texture memory for the lookup table. The CUDA Occupancy Calculator1, is used for
this purpose.

1included in the CUDA SDK

7.2. Interaction Potentials on the GPU 134

7.2.1 Shared vs. Texture Memory Caches

To access the underlying kernel performance, we benchmark our kernels without the contact
potential lookup, replacing it with e0 (Equation 5.3.5). This means that no lookup will occur,
allowing us to benchmark only the performance of shared or texture memory when used as a
pre-fetched cache for the residues. The purpose of this benchmark is to provide a baseline value
to show clearly how the introduction of the random lookup changes performance characteristics.

Our GPU-accelerated kernel comprises calculation of the interaction potential of a replica.
This involves zeroing the memory which the CUDA kernel writes back to the host, launch-
ing the CUDA kernel and performing a final reduction on the CPU. As already shown in the
CUDA SDK reduction example, reduction on a GPU is only worthwhile for very large datasets.
Therefore, we perform the final reduction on the CPU, which is limited to a maximum of 65535
elements (216 residues), as CPU and GPU implementations of this function are comparable in
this context.

1000 2000 3000 4000 5000 6000 7000

Residues

2

4

6

8

10

A
v

er
ag

e
K

er
n

el
 E

x
ec

u
ti

o
n

 T
im

e
(m

s) Shared, 32 Threads
Shared, 64 Threads
Shared, 128 Threads
Texture, 32 Threads
Texture, 64 Threads
Texture, 128 Threads
CPU Launch and Reduction

1000 2000
0

1.25

Figure 7.3: Baseline Kernel Performance
(a) Generally, the performance of 64 or 128 threads per block using either texture or shared memory
for residue caches is best because of the performance of shared memory or the latency hiding and higher
occupancy due to using texture memory. (b) For smaller simulations, 32 threads per block and shared
memory for the residue cache is best due to an inability to latency hide because of the maximum occupancy
of only 25% when using either texture or shared memory. 32 threads per block also results in more
concurrent blocks being scheduled on the GPU, and hence greater throughput at low occupancy because
more SM’s will be active than if more threads per block are used. For all problem sizes, the host bound
portion of the interaction potential is increasingly less significant with problem size.

Invocation of a CUDA kernel takes in the order of 30 microseconds with the additional cal-
culations required to configure the kernel before launch being trivial (and of constant cost). The

7.2. Interaction Potentials on the GPU 135

host functions require from 0.03 milliseconds to 0.32 milliseconds of the kernel time, accounting
for 34% of the runtime for a 32 thread-per-block kernel (the fastest kernel for small simula-
tions), this includes the time required to perform the CPU reduction. As simulations increase
in size, the runtime required by the host increases at a slower rate than the time required for
the pairwise interaction calculations on the GPU and tends to account for only 4% of runtime
for the largest simulations (figure 7.3). We conclude that the proportion of interaction potential
performed on the host scales favourably with problem size.

CUDAProf reports that there are no non-coalesced access patterns to global memory for
this kernel type, indicating that it minimises the time required to read residue data from global
memory. The GT200 architecture relaxes the conditions under which coalescing occurs, allowing
a programmer to use arrays of type float4, which we do. G80 architectures are more strict and
require 4 arrays of type float [22]. We also implement this manner of storing residue data, but
find it to be slower than using float4 to store each residue’s variables as it requires eight 32-bit
loads versus two 128-bit loads per thread when initialising a block.

The two types of GPU memory for residues perform comparably (Figure 7.3). Shared mem-
ory only convincingly outperforms texture memory in the case of 32 threads per block. This
is due to a combination of occupancy and block-level parallelism, for example, a simulation of
512 residues will be divided into 16 thread blocks for 32 threads per block, 8 if 64 threads per
block are used and only 4 in the case of 128 threads per block. The block-level parallelism of 32
threads per block is higher than the others, resulting in improved performance for small prob-
lems because the simulation physically runs over more SMs. Additionally, 32 threads per block
results in only one warp per block, eliminating the synchronisation steps required for reduction
when more than one warp is present. This mean that reduction is more efficient in the case of
32 threads per block, with decreasing efficiency as block size increases.

When more threads per block are used (64 or 128) then the occupancy of the kernel becomes
significant for more than 1000 residues. At this point, kernels using only texture memory achieve
higher occupancy and consequently more latency hiding and can therefore perform in similar,
or in some cases, faster time than kernels using shared memory. Once the degree of block level
parallelism saturates the GPU, occupancy is important in determining performance and the
block sizes of 64 and 128 threads perform better than those of 32 or 256 for this reason. Note
that the performance of 256 threads per block is not included in the figure as it is worse than
that of 32, 64 and 128 threads in all cases. The use of 256 threads per block is unsuitable unless
simulations are so large that they require 256 threads to address all residues.

These results hinge on the effect of occupancy. Our kernel requires 36 bytes of shared mem-
ory per thread, 32 bytes for each residue it loads into the tile and 4 bytes for its accumulator. We
note that no configuration can achieve greater than 50% occupancy due to the shared memory
requirements of this application. For block sizes smaller than 32 threads, the hardware limit of

7.2. Interaction Potentials on the GPU 136

8 warps per block, limits the occupancy of the GPU to 25% in all cases. For 64 or more threads
per block, shared memory is the limiting factor. Using 64 threads per block allows 6 blocks to
execute concurrently on a multiprocessor compared to 3 blocks per multiprocessor when using
128 threads per block. Our configuration limits the hardware to 8 blocks per multiprocessor,
resulting in 37.5% occupancy for both 64 and 128 threads per block. 256 threads require over
half the amount of shared memory on one SM, consequently only one block can run per SM.
Because an SM can schedule 1024 threads concurrently, this results in 25% occupancy.

Using texture memory for the residue cache raises the occupancy of each thread block con-
figuration, with the exception of 32 threads per block. This sees 64 threads per block rise to
50% occupancy and both 128 and 256 rise to 75% occupancy, limited now by the number of
registers on the SM as opposed to shared memory.

Two observations arise from this benchmark. Firstly, the use of 64 threads per block will
give good general performance across the entire range of simulations. Secondly, the principle of
using shared memory wherever possible in CUDA is not necessarily optimal for every problem.
In our case, pairwise interactions implicitly exploit the locality of the 1D texture cache in exactly
the same manner that shared memory does when managing this cache explicitly. Thus, other
algorithms which require more shared memory than a 16 byte per body case (gravitational or
electrostatic simulations) stand to benefit from using texture memory over shared memory, with
this becoming increasingly true as the memory requirements per body increases.

The introduction of the random lookups will change these benchmarks considerably. The
lookup table has to reside somewhere on the GPU die (in shared, texture or constant memory),
otherwise the latency would be too great when accessing values. Shared, texture or constant
memory will be essential for this reason. This, in turn, will increase the memory bound features
of the algorithm because now both residue and contact potential values need to be sent to regis-
ters on the SM on the same data buses. This aspect is discussed at a later stage in section 7.2.3
when combinations of memory are used to achieve both occupancy and performance cognisant
of these limitations.

7.2.2 Lookup Table Memory Performance

We now report the performance of various kernels, each using different types of GPU memory
for the contact potential lookups. We begin with texture memory, as we suspected that it would
perform best of the four due to its tolerance of random memory access patterns. There is exactly
one random contact potential lookup per pairwise interaction, which should add a constant time
to each pairwise interaction, as determined by the memory type, to the baseline benchmarks.
For the following benchmarks, we opt to use shared memory for residues because it is guaranteed
to be faster when performing the coalesced memory accesses used to retrieve residues.

7.2. Interaction Potentials on the GPU 137

There are four choices of memory location for the lookup table: texture, global, constant
and shared memory.

Texture memory caches an 8 Kb patch of linear memory 2, meaning that a residue interac-
tion lookup will cache all the lookup values in the 1600 byte table on the first read. The texture
cache per SM is the same size as the amount of shared memory per SM, 16 kilobytes, meaning
that the remaining 90% of this cache can be used for residue data if we do not employ shared
memory.

Constant memory caches up to 64 Kb of values accessed by a thread block. Unlike texture
memory, which caches spatially local values, constant caching caches singular values. For this
reason, we expect texture memory caching to outperform constant memory caching because,
assuming a completely general protein structure, any combination consisting of the 20 amino
acid types could occur in one thread block.

Global memory is not cached, relying on the latency hiding effect of many threads. By using
global memory for contact potential lookups, we incur an overhead of hundreds of clock cycles
for every lookup. In the case of the constant memory kernel, this would only be on the first
occurrence of a particular lookup. Therefore, the performance of a global memory lookup kernel
indicates the effectiveness of the constant memory lookup kernel.

Shared memory is explicitly managed and banked for performance, the upside to shared
memory is that it is as fast to access as a register under the right circumstances, namely, coa-
lescing. Unfortunately, before use, values need to be explicitly loaded into shared memory. For
this to be efficient, the dimensions of this load need to be functionally dependent on the thread
block size, i.e, each thread loads t values in a coalesced manner with the other threads. The
second downside to shared memory is that it is scarce on the GPU, meaning were each thread
block to store a 1.6 Kb table, very little would be left for residue data, decreasing occupancy.

We begin with texture memory benchmarks. Figure 7.4 shows that thread blocks configured
to use 64 or 128 threads per block perform best for more than 1000 residues with kernels of 64
threads executing between 5% and 10% faster than 128 threads for larger problem sizes. Due
to block size, 32 threads per block performs best for our benchmarks of less than 1000 residues
(up to 584), executing between 12% and 31% faster than the 64 threads per block configuration
and twice as fast as 128 threads per block. This repeats the results of the baseline benchmark.
Overall the kernel using 64 threads per block is about 12% slower than when no lookups are
performed.

2CUDA 2.1 FAQ

7.2. Interaction Potentials on the GPU 138

1000 2000 3000 4000 5000 6000 7000

Residues

2

4

6

8

10

12

14

A
v

er
ag

e
K

er
n

el
 E

x
ec

u
ti

o
n

 T
im

e
(m

s)

32 Threads
64 Threads
128 Threads
256 Threads

0 2000

1

Figure 7.4: Texture Memory Kernel Time
Benchmarks using texture memory are performed for simulations from 100 to 7668 residues. For fewer
than 1000 residues, block-level parallelism proves most important. Larger simulations hide the latency of
the lookups, with higher occupancy resulting in better performance.

A small block size of 32 threads per block performs best for the smallest benchmarks, this
configuration requires less padding and affords the most parallelism to a problem too small to
benefit from latency hiding through multiple blocks. A configuration of 32 threads per block is
capped by the limit of 8 warps per SM, and can thus only achieve 25% occupancy unlike the 38%
occupancy of 64 and 128 threads, which are limited instead by the amount of shared memory on
the SM. Shared memory also constrains 256 threads per block to 25% occupancy. The effect of
occupancy for each configuration is evident in Figure 7.4, with 32 and 256 threads performing
approximately 50% slower than 64 and 128 threads. For fewer than 1000 residues, 32 threads
per block provides the best balance between block-level parallelism and padding. Conversely,
256 threads per block confines computation to fewer SMs and over pads simulations, resulting
in poor performance at the bottom end of the scale.

The order in which the texture is addressed does not change performance, indicative of the
fact that the entire texture is cached when one value is read. Each texture unit for a 1D texture
will cache an 8Kb line of values, since our lookup table is only 1.6Kb, we always cache the entire
table. But, theoretically, if the contact potential table were larger than 8 Kb, the cache size,
addressing the table using a row major scheme (T [nx+ y]) would result in cache hits for residue
x because we iterate over y residues. Column major addressing (T [x+ny]) would result in each
lookup belonging to a different cache line in the texture, degrading the performance.

Subsequent benchmarks will be compared to texture memory lookups for 64 threads per
block (Tex64). This configuration offers good generic performance across the entire range of

7.2. Interaction Potentials on the GPU 139

benchmarks, marginally outperforming 128 threads per block.

Conceptually, the only difference in using constant and texture memory for contact poten-
tial lookups is the degree of caching. While texture memory caches values spatially local to
the initial read, constant memory only caches singular values on first use. This is acceptable if
all lookups are of the same type or broadcast. Unfortunately, they are likely to differ much of
the time. Benchmarking results confirm this finding with the use of constant memory for pair
potential lookups performing slower than the equivalent configuration using texture memory to
perform lookups in all cases. A block size of 64 is again fastest for larger problems.

As with texture memory, no cache hit can occur on the first iteration of a thread block,
but, in the worst case there is an extremely low chance of a cache hit occurring on the second
iteration, improving as the block iterates over all residues, resulting in performance illustrated in
Figure 7.5. But, due to the random access nature of the lookup, warps are required to serialise
the memory transactions to fetch the contact potentials. The effects of this are most evident for
simulations larger than 1000 residues. Thread blocks of 32, 64 and 128 threads require approx-
imately 20%, 14% and 12% more run time than the texture memory equivalent, respectively,
with larger thread blocks being more likely to cache a value, resulting in performance closer
that of texture memory. Once again, 256 threads per block is limited by occupancy, impairing
its ability to latency hide and make use of its higher likelihood of cache hits. This kernel is
approximately 8% slower than its texture memory equivalent, but still slowest overall.

The latency hiding effect is evident in thread blocks of either 32 or 64 threads when dealing
with 1704 residues or more, since constant memory manages to perform, on average, only 6.5%
slower than texture memory in these cases.

When compared to using global memory, (Figure 7.6), it becomes apparent, that the use of
the GPUs constant cache fails to perform significantly better than merely loading values from
global memory on demand. Although constant memory kernels outperform global memory ker-
nels in all but 2 of the 44 benchmarks the differences are not significant. Generally, the lack of
caching is seen for smaller block sizes when the simulation size is small (1136 residues or less).
In these cases, global memory usage is approximately 13.5% slower than using texture memory
compared to a more favourable 6.5% performance deficit when using constant memory. For the
remaining cases, global memory is less than 2% slower than constant memory. For all block
sizes of 32, 64 and 256, global memory exhibits near identical performance to constant memory.

The sensitivity of a kernel to occupancy is more noticeable when using either global or con-
stant memory. For constant caches to speed-up the kernel, kernels must attain higher occupancy
such that the constant cache is as accessed as many times as possible. This highlights that, even
though the randomness of the lookups is identical whether constant, texture, shared, or global
memory is used, the texture units on the GPU better accommodate such an access pattern.

7.2. Interaction Potentials on the GPU 140

1000 2000 3000 4000 5000 6000 7000

Residues

2

4

6

8

10

12

14

A
v

er
ag

e
K

er
n

el
 E

x
ec

u
ti

o
n

 T
im

e
(m

s)

32 Threads
64 Threads
128 Threads
256 Threads
Tex64

0 2000

1.25

Figure 7.5: Constant Memory Kernel Time
Constant memory performs approximately 10% to 20% worse than texture memory when performing
contact potential lookups. Tex64, the texture lookup configuration of 64 threads per block shows the
comparative difference between the different types of memory. Notably, the performance profile of each
thread block configuration is the similar to texture memory.

1000 2000 3000 4000 5000 6000 7000

Residues

2

4

6

8

10

12

14

A
v

er
ag

e
K

er
n

el
 E

x
ec

u
ti

o
n

 T
im

e
(m

s)

32 Threads
64 Threads
128 Threads
256 Threads
Tex64

0 2000

1.25

Figure 7.6: Global Memory Kernel Time
The performance of global memory is almost identical to that of constant memory (fig 7.5), differing on
average by less than 2%. This indicates a very low cache hit rate for the lookup table.

7.2. Interaction Potentials on the GPU 141

1000 2000 3000 4000 5000 6000 7000

Residues

5

10

15

20

25

30

35

40

45

A
v
er

ag
e

K
er

n
el

 E
x
ec

u
ti

o
n
 T

im
e

(m
s)

32 Threads
64 Threads
128 Threads
Tex64

Figure 7.7: Shared Memory Kernel Time
Shared memory lookup performance is determined almost entirely by occupancy, with performance 5, 3.4
and 2 times slower than the fast Tex64 kernel.

While performance remains similar in the cases of texture, constant and global memory, it
degrades severely if shared memory is used for the lookup table. Shared memory is ill suited
to storing the lookup table because its dimensions are independent of, and indivisible by the
thread block parameters. Each thread block must copy its own instance of the lookup table
into shared memory, and the consequent smaller thread block size results in lower occupancy
and lower performance due to this operation accounting for a greater proportion of runtime.
Second, shared memory is shared between all the blocks on an SM, thus, configurations already
limited by shared memory experience even lower occupancies. Thread blocks of 32 or 64 threads
achieve 6% occupancy and thread blocks of 128 threads 13%. A kernel of 256 threads per block
cannot run as there is insufficient shared memory to initialise such a kernel. For our smallest
problem size of 100 residues, the use of shared memory for the lookup table is comparable to
the other types of memory, but as the problem size grows, the performance of shared memory
degrades. When compared to our fastest kernel using texture memory, configurations of 32, 64
or 128 threads per block are, on average, 5, 3.4 and 2 times slower, respectively (Figure 7.7).

7.2.3 Thread Blocks and Occupancy

A feature of all kernels using the shared memory cache for residue data is low occupancy, with
the best kernels only achieving 37.5% due to the scarcity of shared memory. A strategy for in-
creasing occupancy would be to use constant or texture memory for meta-data lookups, making

7.2. Interaction Potentials on the GPU 142

thread blocks less dependent on shared memory at the cost of higher latency. This exploits the
implicit caching of texture memory in place of the explicit shared memory cache. An occupancy
of 50% is achieved for 64, 256 and 512 threads per block and an occupancy of 63% for a block
of 128 threads is achieved using this strategy. The change also enables use of the maximum
allowable thread block size of 512 and raises the addressable residue limit to 131 072 residues
for a single kernel. Previously, shared memory limited thread blocks to a maximum size of 256
threads, resulting in a limit of 65 536 residues per kernel.

Constant memory can immediately be discounted for this purpose due to the fact that it
would perform as badly as global memory in this usage pattern, something all other algorithms
in MD and gravitation avoid due to high latency [15–18,25,26].

This leaves texture memory as the only other option to shared memory. Texture memory,
because of its cache, achieves the same objective as shared memory: values are cached to avoid
the high access latency of global memory. We implemented texture arrays of residue data, in
part or entirely. Splitting the data between an array containing the position and molecule iden-
tifier and another containing charge, radius and type. The downside to this strategy is that this
may rely too heavily on the four texture load/store units on each SM, essentially causing a 4
way access conflict within each half warp, in addition to the serializing the table lookups.

By using texture memory for all residue data on the GPU, the occupancy of 128 and 256
threads per block can be raised to 75%. But as illustrated in Figure 7.3, the performance of 128
threads per block becomes notably worse when shared memory is no longer exploited. This is
also the case for 256 threads per block which is consistently slowest. In this section, kernels are
referred to using lookup table location, threads, residue position/data location for brevity. For
example, Tex, 64, shared/shared means a texture lookup table, a thread block size of 64 and all
residue data cached in shared memory.

A search of block and memory parameters in the range of 32 to 256 threads per block and the
choice of either texture or constant memory for the lookup were benchmarked with either some
or all of the residue data in texture memory. Figure 7.8 shows that through higher occupancy
alone, each manages to perform as well as the theoretical best fit model of using only shared
memory for residues and texture memory for lookups. Included in the plot is the best case Tex,
64, shared/shared (Tex64) benchmark which represents the 64 thread per block kernel using
texture lookups and shared memory for residues which achieves 37.5% occupancy.

Generally, configuring a kernel by specifically trying to increase occupancy results in an im-
provement in runtime for most kernels with the exception of our Tex64 kernel. For simulations
larger than 2000 residues, we achieve compatible performance from kernels using texture or
constant memory for the lookup data. This is largely do to with the increase in occupancy and
the ability to latency hide texture fetches. By using texture memory for either residue position

7.2. Interaction Potentials on the GPU 143

1000 2000 3000 4000 5000 6000 7000

Residues

2

4

6

8

A
v

er
ag

e
K

er
n

el
 E

x
ec

u
ti

o
n

 T
im

e
(m

s) Tex, 64, shared/shared (37.5%)

Tex, 64, tex/shared (50%)

Tex, 64, shared/tex (50%)

Tex, 128, tex/shared (62.5%)

Tex, 128, shared/tex (62.5%)

Const, 128, tex/tex (75%)

Tex, 64, tex/tex (50%)

Tex, 128, tex/tex (75%)

0 2500

1

Figure 7.8: Alternative Kernel Memory Configurations
The performance of kernels using texture memory for residue data. Kernels are keyed according to the
location of the lookup table, the number of threads per block, the location of the residue arrays and
occupancy.

and molecule identifier, configurations of 64, 128 and 256 thread per block experience respective
increases in occupancy from 37.5%, 37.5% and 25% to 50%, 63% and 50%. By only using texture
memory for residue data, both 128 and 256 threads per block rise to 75% occupancy.

Tex, 64, shared/shared performance is faster for less than 1000 residues, but almost matched
by Tex, 64, shared/tex and Tex, 64, tex/shared, indicating that the block-level parallelism is
more vital for small simulations, provided some type caching mechanism is used for residues.
Also of interest is that configurations of 32 threads per block outperform 64 threads per block,
but degrade much more for larger problems than their equivalent shared/shared configurations
due to the 25% cap on occupancy for any configuration of 32 threads per block.

A kernel which experiences a distinct improvement from this strategy is the Const, 128,
tex/tex kernel with 75% occupancy. Notably, this kernel uses constant memory for its lookups
and texture memory for its residue caches and is counter-intuitively fast. Previously, the best
performance for constant memory lookups was generally 10% to 16% slower than texture mem-
ory (Fig. 7.5). But the increase in occupancy from 37.5% to 75% appears to be the reason
why the increase in performance occurs for larger problem sizes. For smaller problem sizes, less
than 2000 residues, we observe that this kernel is slower than the original configurations, and
in simulations smaller than 1000 residues, it is almost three times slower than a kernel using 32

7.2. Interaction Potentials on the GPU 144

threads per block with an occupancy of only 25%.

These characteristics are repeated when only texture memory is used with 128 threads, see-
ing Tex, 128, tex/tex and Const, 128, tex/tex perform almost identically.

The increasing latency of using texture memory for the position data is evident with 64
threads per block, with Tex, 64, tex/tex and Tex, 64, tex/shared performing slower than the
original Tex, 64, shared/shared configuration.

Ultimately, all of the aforementioned configurations perform acceptably well for simulations
of more than 1000 residues as they speed-up the CPU kernel by a similar amount in almost all
cases.

In summary, the presence of the lookup table has less of an impact on the results than ex-
pected. While the lookup can be considered a random access pattern, it is confined to relatively
few values. If a larger tale of 2000 values as opposed to 400 were used, we could expect to see
performance equivalent to that of global memory lookups. Thus, the presence of the texture
memory cache of 8 Kb per SM on the GT200 will be able to accommodate up to 2000 lookup
values with equivalent performance to that of our kernel (figure 7.4). However, when we use
texture memory for both the lookup table and residue data, the texture cache will have to be
shared, resulting in a drop in performance. But, configurations such as this stand to benefit
older hardware, such as the G80, which only has 8 Kb of shared memory per SM and would
consequently only achieve half the occupancy of our kernels using shared memory caches. On
this hardware, placing some residue data in texture memory and some in shared memory would
prove beneficial.

The point at which optimal block size for a simulation changes from 32 to 64 threads per
block is lowered by the lookup function from between 1000 and 1500 residues for no lookups
(Figure 7.3) to between 750 and 1000 residues. The shift is solely due to the increased latency
of the lookup and the latency hiding that larger systems afford. It also indicates that a dynam-
ically selected block size, determined by simulation size must switch between 32 and 64 threads
per block at this point. Using this strategy, we find that the lookup introduces an average
overhead of 22% runtime for the majority of benchmark sizes with simulations of 2272 residues
experiencing the worst performance degradation, requiring 41% greater runtime.

Generically, choosing a block size of 32 or 64 dynamically, based upon simulation size, caused
the use of either global or constant memory for the contact potential to be at most 18% slower
than using texture memory (figure 7.9) with alternative configurations of texture and shared
memory for the residue caches performing with comparable performance to texture memory
lookup and the shared memory residue cache. We note that the relative performance of shared
memory using the scheme is over three times slower, prohibiting its use under all circumstances,

7.2. Interaction Potentials on the GPU 145

1000 2000 3000 4000 5000 6000 7000

Residues

0.5

1.0

1.5

2.0

2.5

3.0

3.5
N

o
rm

a
li

s
e
d
 R

u
n
ti

m
e

Texture

Constant

Global

Shared

Figure 7.9: Relative Kernel Performance
The relative runtime of kernels by memory type relative to texture memory. Using either 64 threads per
block for more than 1000 residues or 32 threads for fewer than 1000 residues, the relative performance
of global and constant memory is never worse than 18% slower than texture memory. Shared memory is
between 3 and 3.5 times worse using the same scheme for more than 500 residues.

apart from the very smallest simulations.

7.2.4 Data Transfer

A primary difference between using a GPU and CPU is the requirement that data be trans-
ferred from host to device before any computation can be performed. We only transfer updates
to molecules on the GPU for every iteration of the Monte-Carlo simulation because GRAM is
persistent for the duration of the simulation. The bandwidth bottleneck between the host and
device is a known shortcoming in the GPU programming model. Thus, knowledge of how this
bottleneck affects our algorithm is important.

To minimise the amount of data transferred across the PCI-Express bus, we restrict transfer
to the position vectors of the mutated molecule only; meta data such as the amino acid type,
charge, radius and identification is already on the GPU an remains unchanged for the duration
of a simulation. We found that by only updating and individual molecule after each mutation
resulted in transfer times of the same order of magnitude as the initialisation time required for
each transfer. The amount of data transferred each time is at most 4704 bytes, the size of a cy-

7.2. Interaction Potentials on the GPU 146

tochrome c peroxidase protein, taking in the order of 0.02 milliseconds, an effective transfer rate
of less than 300 megabytes per second, far below the performance of the PCI-E 16× bus. This
performance can be explained by the size of the transfer, a transfer of such a small magnitude
will not provide an accurate measure of transfer speed, especially if the initialisation cost of the
transfer is of the same order of magnitude as the transfer time itself (The CUDA bandwidth test
example in the CUDA SDK 2.3 reports that our system performs larger transfers at 2 GB/s).

Kernel execution times put transfer times in perspective, with kernels requiring tens of mil-
liseconds to execute compared to the 0.02 milliseconds required for transferring data, a difference
of four orders of magnitude. This shows us that the transfer bottleneck between the host and
device is not a determining factor in the case of our application.

7.2.5 Performance Discussion

The performance of our GPU kernel is comparable with that achieved by Friedrichs et al. [17]
for similar molecular potential evaluations on the same GTX280 architecture (Figure 7.10). The
potential evaluation in molecular dynamics (MD) map similarly to the GPU. However, there are
some key differences in the Monte-Carlo (MC) algorithm that makes it more computationally
expensive and accounts for the better performance of the MD code. Our kernel is required
to perform a reduction of the n2 pairwise potential to a single energy value (which is used to
either accept or reject the MC move). Reduction requires synchronization before each of its
iterations and performs one arithmetic operation for every two loads and one store, which im-
pacts negatively on the kernel performance relative to the MD code. Reduction operations are
memory bound with low algorithmic intensity and therefore have relatively poor gigaFLOPS
performance on the GPU architecture. Conversely, the MD kernel includes an O(n) integration
step after the pairwise accumulation, the higher algorithmic intensity, separability of the force
calculations and lack of synchronization is better suited to the GPU architecture and results in
better GFLOP performance. Furthermore, we include the transfer and CPU reduction as part of
our performance evaluation of the interaction potential, often performance measurements only
consider the kernel invocation and execution on the GPU.

We count every mathematical operation in the kernel code between a pair of residues as one
floating point operation. We determine the number of operations required to calculate a pairwise
interaction and add it to the total interaction potential as being 45. This allows us to calculate
the effective FLOPS achieved by our implementation. The actual FLOPS achieved would in-
corporate all control structures, parallel summation and compensated summation. however, the
effective FLOP rating may be used as it measures the amount of useful work done as opposed
to total FLOPS. For example, on the GPU square roots, exponentials and power functions are
considered a single FLOP but on the CPU these operations require 15, 20 and 20 flops respec-
tively [17].

7.2. Interaction Potentials on the GPU 147

Furthermore, we can only compare the FLOPS for interaction potential. That being the cal-
culation of each pairwise potential and the summation over all pairs, which is performed within
each thread block on the GPU and for the grid blocks on the CPU.

Table 7.2: Kernel FLOP Performance
Our CPU implementation performs at a consistent 95-96 MFLOPS due to the indirection of the lookups
in the algorithm, whereas, the GPU performs increasingly well as the problem size grows with performance
averaging 160 GFLOPS.

Residues CPU GFLOPS GPU GFLOPS Speed Up
100 0.095 2.74 28.8×
402 0.095 42.8 450.5×
568 0.095 72.0 757.9×
1136 0.095 113.3 1192.6×
1704 0.096 124.8 1300.0×
2272 0.096 124.8 1300.0×
3408 0.096 147.2 1533.3×
4544 0.096 160.4 1670.8×
5680 0.096 148.0 1541.7×
6816 0.096 166.9 1738.5×
7668 0.096 162.4 1691.7×

The apparent lack of performance from the CPU implementation is comparable to simula-
tions implemented in CHARMM for Cc/CcP and UIM/Ub, implying that the memory-bound
nature of contact potential look-ups is what slows it down when compared to an n-body sim-
ulation. It is important to distinguish the difference between a pipeline friendly gravitational
n-body method and the Kim and Hummer model. Firstly, the memory access characteristics of
gravitational or electrostatic problems differ in that these simulations require less than half the
data per body in comparison to ours and, secondly, require no additional data unique to the
current pair being evaluated. Finally, we require a reduction operation to be performed on the
force/charge experienced by each body as opposed to the independent streaming nature of grav-
itation or electrostatic forces acting upon a body. Consequently, the data independent model
in gravitational case results in a method that maps well to the instruction pipelines on both
a CPU and GPU, as opposed to our data model which contains conditional random memory
access which limits our simulation to the cache and memory access performance of the processor
core. Thus, the lack of ability to pre-fetch the random access variable on the CPU and the
inability to latency hide this operation result in constant performance of 0.095 GFLOPS on our
Intel Core 2 Duo.

To put both CPU and GPU FLOP results in context, the indirection in the lookup table is

7.2. Interaction Potentials on the GPU 148

1000 2000 3000 4000 5000 6000 7000

Residues

0.01

0.10

1.00

10.00

100.00

1000.00

G
ig

aF
L

O
P

S

GPU (160 Peak)

CPU (Single thread, 0.095 Average)

Friedrichs et al. (212 Peak)

Figure 7.10: Kernel FLOP Performance
CPU performance is limited to approximately 0.1 GFLOPS for any problem size, indicating that problem
size does not adversely affect the performance of the CPU. The GPU/CPU hybrid algorithm sustains
computation of the interaction potential at 147 to 167 GFLOPS for larger problems. This indicates
favourable scalability on the GPU since larger problem sizes, of biological significance, do not cause a
drop in GPU performance.

a major stumbling block on a scalar processor such as a CPU. Modern CPUs have long instruc-
tion pipelines and achieve high FLOP rates by efficiently scheduling instructions such that these
pipelines are always full. The indirection, determining the position of the data as opposed to
the data itself, i.e. the index of the correct contact potential based upon the current residues,
results in the instruction pipeline having to wait while that value is loaded, severely hampering
performance. In N-body gravitation or electrostatics simulations where the model determines
the interactions of bodies based solely on their type, as opposed to aggregate behaviour through
course graining, this is not a performance issue. Furthermore, branching within the pairwise
potential and checking whether or not the pairwise interaction potential calculation must be
performed (e.g. residues must be from different molecules) also limits ultimate performance.

In comparison, other GPU electrostatics implementations, such as Friedrichs et al., achieve
0.29 GFLOPS (calculated using quoted values of 212 GFLOPS on a GPU and 735 times speed-
up) on a CPU for their MD kernel [17] and Stone et al. achieve 0.28 GFLOPS for a highly
optimised direct electrostatic summation kernel with GCC and SSE extensions [18]. The 3D
vector operations of MD make it more amenable to SSE acceleration than our kernel, as many
component-wise calculations can be performed independently, whereas, we can only calculate
our distance squared (a dot product) in this way. Achieving FLOPS performance within 30%
of these SSE implementations shows that our kernel performance can be considered a generic
performance estimate for high level C++ algorithmic optimisations without exploiting the SSE’s

7.2. Interaction Potentials on the GPU 149

four way SIMD.

Unlike the CPU, CUDA warps can hide the latency of the indirection, far out-performing
the CPU implementation and achieving values in the expected performance range. Figure 7.10
shows our CPU and GPU kernel FLOPS performance and that of Friedrichs et al. Both simula-
tions use the same forms of non-bonded forces and GPU, providing a comparable performance
figure, even though it is for MD as opposed to interaction potential summation. Friedrichs et al.
also point out that the FLOPS performance of the CPU is an underestimate since the fast GPU
functions such as sqrt and exp require in the order of 15 and 20 CPU floating point operations
as opposed to one on the GPU, creating a large difference between effective and actual FLOP
count of the kernel.

With regard to scaling, GPU performance for small problem sizes is modest, performing
only 2.7 GFLOPS in the case of a 100 residue problem, but scales quickly to performing up to
approximately 160 GFLOPS for larger problems, as listed in Table 7.2. The performance figures
for the GPU-enhanced evaluation include a final reduction of the partial sums on the CPU,
meaning that the FLOP rate on the GPU is actually higher than the values in Table 7.2. These
figures also assume that the conditional branch of the algorithm is executed every time, when in
reality it will only execute for a subset of residues in contact at the surface of a molecule. This
will degrade performance marginally as it results in one additional store, FMA and subtract,
when compared to the other side of the branch.

Finally, the effects of kernel optimisation can be determined by profiling the GPU using a
set kernel configuration. Figure 7.11 shows that the even with the use of the GPU for interac-
tion potential calculations, this function still accounts for over 92% of runtime for the smallest
simulation. Interestingly, the time required for kernels in the three smallest problems is similar,
implying that the time required for mutations and saves is long enough to make the proportion
of kernel runtime decrease to as low as 90%. However, once the critical 1000 residue point is
passed, interaction potential dominates runtime once more, increasing to 99.75% of simulation
runtime for 6816 residues.

7.3. Summary 150

9
2
.1

6
0

9
1
.6

9
7

9
0
.8

5
2

9
5
.0

2
6

9
8
.2

1
5

9
9
.4

7
0

9
9
.7

5
4

1000 2000 3000 4000 5000 6000

Residues

10
-1

10
0

10
1

10
2

In
c
lu

si
v

e
 E

x
e
c
u

ti
o

n
 T

im
e
 (

%
)

Interaction Potential
Rotate
Translate
Save
Other

Figure 7.11: GPU Inclusive Profile
Re-profiling of the benchmarks with a GPU accelerated kernel sees the proportion of runtime devoted to
the kernel decrease from 98% to 92% for the smallest benchmark, resulting in an overall decrease in
runtime of 8.9 times from 18 seconds to 2 seconds. Benchmarks show that even with GPU acceleration,
the proportion of runtime required for interaction potential calculations makes optimisation of other parts
of the simulation unnecessary.

7.3 Summary

Profiling reveals that the interaction potential kernel accounts for over 98% of runtime, even for
simulations of 100 residues. Theoretically, a perfectly efficient 100-way parallel implementation
would allow this to be sped up by a factor of 34. Larger simulations should experience more
speed-up due to larger problem sizes.

We find that the underlying performance of our implementation is limited by the algorithmic
implementation on the GPU, not the choice of memory for the random lookup table. We note
that thread block sizes of 32, 64, 128 or 256 threads perform similarly for constant, global and
texture memory lookups compared to the CPU. As expected, shared memory, due to its scarcity,
does not provide a viable solution for random lookups, and when used for this and as a cache
for residues, kernels suffer from severe resource starvation and low occupancy. Even so, shared
memory affords up to 2 orders of magnitude improvement over the CPU kernel.

It is possible, given such parameters to auto-tune a simulation at runtime. In terms of a
parameter search space, the block size is dynamic, requiring only one kernel implementation.
However, the fundamental differences in the use of shared and texture memory usage would ne-
cessitate kernel methods, generated at compile time, and selected by the host at runtime. Such a
system would allow for the host to perform a search of the parameters in the manner performed

7.3. Summary 151

for our benchmarking to select an optimal kernel configuration. The configuration may not be
the optimum solution, but careful inspection during the algorithm design and implementation
will narrow the parameter set such that an exhaustive search of the reduced candidate parameter
space will result in an acceptable simulation parameter set with minimal time cost.

Kernel execution can be considered the smallest work unit on the GPU. As such, simulation
time and overall speed-up are limited by the time required to execute the kernel. Additional
methods such as multi-threading and asynchronous methods do not affect the kernel execution
time, as these methods overlap computation with memory operations. They will improve the
time required to calculate the interaction potential, since part of this is operation is performed on
the CPU, but, the GPU performs the bulk the work. The following chapter discusses the overall
performance of simulations using both sequential CPU-GPU use and multi-threaded CPU-GPU
use and finally, asynchronous GPU use.

Subsequent benchmarks assume a kernel using texture memory for lookups and the use of
shared memory for residue caches. Block size is selected based on the simulation size, choosing
32 threads per block for simulations of less than 1000 residues and 64 threads per block for
larger simulations.

7.3. Summary 152

Chapter 8

Simulation Benchmarking

The effects of high level optimisation and parametrisation are measured in this chapter, provid-
ing ultimate speed-up figures for simulations with consideration of the use of multi-threading,
GPU sharing and asynchronous computation on the GPU. With a set of predetermined kernel
parameters, the effects of GPU acceleration on the runtime of a simulation can be determined.
As stated in the previous chapter, the interaction potential calculation can be viewed as an
atomic unit of work in the context of the overall simulation.

The use of texture memory for lookups, shared memory for caching residue data and a block
size of either 64, for simulations of greater than 1000 residues, or 32 for simulations of 1000
residues or less is fixed for the following benchmarks.

The multiple levels of parallelism in the REMC problem are now addressed at the high level.
The runtime of the simulation,

T = Tserial + Tparallel
P

is determined by the number of parallel Monte-Carlo simulations, P . The Monte-Carlo simula-
tions can run in parallel without any communication, other than synchronisation for performing
replica exchange. Furthermore, the ratio of Monte-Carlo simulation to replica exchange causes
execution time, T , to tend to Tparallel

P resulting in a theoretical speed-up of P for the Monte-Carlo
simulations, provided that there are sufficient non-blocking processes, P .

For the CPU, this is the case using a dual core processor, i.e. a 2× speed-up. Simulations of
20000 Monte-Carlo steps are performed, 1000 steps per replica, using one, two and four threads
of execution, performing the Monte-Carlo simulations in different replicas concurrently. The re-
sults from these benchmarks are plotted in Figure 8.1. The serial (single threaded) simulations
perform approximately 1000 Monte-Carlo iterations per second for the smaller benchmarks with
run-times increasing quadratically with benchmark size, slowing the number of Monte-Carlo
iterations per second to approximately 0.07 for a simulation of 7668 residues.

The use of POSIX threads to perform concurrent Monte-Carlo simulations results in a speed-

Chapter 8. Simulation Benchmarking 154

up proportional to the number of CPU cores in our test machine. Figure 8.1 illustrates, for a
dual core machine, that the performance of 4 threads is nearly identical to that of 2 threads.
Four threads scales with approximately 97% to 98% efficiency on two processors for all but the
100 residue benchmark, where it is 92% efficient. When only two threads are used this result is
largely unchanged, with larger simulations scaling with 1% less efficiency than in the case of 4
threads. However, performance dips for the 402 and 584 residue benchmarks scaling with 95%
and 92% efficiency, respectively.

This result shows the CPU implementation to be limited by the hardware parallelism of the
CPU. Due to its compute bound nature, it is likely that similar performance will be observed
for four, six and eight cores, with decreases in the efficiency of the scalability due to sharing the
architecture connecting the CPU to the rest of the system. This assumption also relies on there
being sufficient replicas in the simulation to occupy all CPU cores.

1000 2000 3000 4000 5000 6000 7000

Residues

5

10

15

20

25

T
im

e
 (
×

1
0

3
 s

)

1 Thread
2 Thread
4 Threads

Figure 8.1: CPU Simulation Time (20000 MC Steps)
Timing the reference simulations on a single core shows that, for small simulations, approximately 1000
Monte-Carlo steps are performed every second, this rate slows as the problem size grows, dropping to a
mere 0.07 steps per second for 7668 residues (approximately one every 14 seconds). Multi-threading the
simulations, by performing the Monte-Carlo loops in parallel on the CPU, speeds up the simulation, but
is limited by the number of cores available. Thus, a speed-up of 2 is recorded for a multi-threaded CPU
implementation. Increasing the number of threads to 4 (2 per CPU core), marginally improves run-time.
Because of the compute bound nature of the interaction potential, the use of multiple threads per core does
not benefit significantly from overlapping memory operations with computation.

8.1. GPU Benchmarking 155

To put these figures in perspective, it is possible to perform 1.9× 108 Monte-Carlo steps per
day when simulating the interactions of UIM/Ub and 1.1× 107 steps per day for Cc/CcP simu-
lations using 4 threads and two cores. Kim and Hummer used CHARMM for their simulations,
which only performs 9 × 106 and 8 × 105 steps per day respectively, notably slower than our
CPU implementation for these simulations.

Table 8.1: CPU Implementation vs. CHARMM Performance
For the reference simulations, UIM/Ub and Cc/CcP, our CPU implementation outperforms CHARMM
by an order of magnitude when measured in Monte-Carlo iterations per day.

Complex Residues CHARMM CPU Implementation Speed-up
UIM/Ub 100 9× 106 1.9× 108 21.1×
Cc/CcP 402 8× 105 1.1× 107 13.7×

Attaining a baseline benchmark with the CPU allows us to evaluate our GPU implementa-
tion. All GPU benchmarks are relative to the serial figures presented in Figure 8.1. For sim-
plicity, speed-up is quoted relative to a sequential CPU simulation on the Intel 3 GHz E8400.
This means that speed-up figures can be halved or quartered for 2 or 4 CPU cores, respectively.
Additionally, for these and the following figures, initialisation time is ignored as it contributes
negligibly to overall simulation runtime. Simulation time is measured from the beginning of the
first Monte-Carlo simulation until the all threads exit after the final Monte-Carlo step.

8.1 GPU Benchmarking

For GPU benchmarking, we initially use a serial CPU solution with synchronous GPU accel-
eration of the interaction potential calculations. This model is extended to a multi-threaded
benchmark, with Monte-Carlo simulations divided among CPU threads. Each thread initialises
its own CUDA runtime and shares the GPU with other threads. However, nVIDIA advises
against such an approach because of the overhead in managing run-times [22]. Finally, we use
asynchronous CUDA streams to overlap computation on the CPU and GPU to make best use
of system resources yielding our best results.

For synchronous GPU execution each replica’s Monte-Carlo simulation is performed in its
entirety before the next replica performs its Monte-Carlo loop. This mean that only one CUDA
runtime context is used and the only extra overhead is the copying of residue data between the
CPU and GPU.

For our GPU benchmarks, execution time ranges from 2.2 seconds up to 455 seconds, in stark
contrast to the CPU which for the same benchmarks, requires from 17 seconds to 275000 seconds.

8.1. GPU Benchmarking 156

1000 2000 3000 4000 5000 6000 7000

Residues

1

10

100

1000

T
im

e
 (

s)

1 Thread
2 Threads
4 Threads

Figure 8.2: GPU Simulation Performance
When the GPU is used exclusively by a single POSIX thread smaller benchmarks, up to approximately
3000 residues, perform best before the performance of multiple threads and increased duration of inter-
action potential kernels outweighs the cost of CUDA context switches. The performance of both 2 and 4
CPU threads sharing the GPU is equivalent once context switches are negated by the need to parallelism.
However, for smaller problem sizes, 4 threads outperform 2 threads because of they can hide CUDA context
switches behind host computation more effectively than 2 threads.

GPU benchmarks are performed using 1, 2 and 4 threads on the host, sharing a single GPU.
Figure 8.2 shows that the serial case of 1 host thread performs best for up to approximately 3000
residues, but for larger simulations, 2 and 4 thread configurations outperform a single thread.

For simulations of less than 3000 residues, the overhead of switching CUDA contexts and the
resultant blocking effect on the CPU threads is clearly evident from the relative performance of
1, 2 and 4 thread benchmarks. One thread of execution requires no context switching, seeing
control pass from CPU to GPU for computation and memory operations. For two threads,
the introduction of a context switch and the blocking effect of GPU calls from each thread on
the other causes a slow down for smaller simulations. But, interestingly, use of two additional
threads and the resultant CPU-GPU computational overlap, results in much better performance
than merely two threads. The behaviour of these benchmarks clearly exhibits the expected be-
haviour that nVIDIA advertises [22], limiting the programmer to the recommended single CPU
thread and CUDA context per GPU.

However, in contrast to the CUDA guidelines, independent Monte-Carlo simulations with

8.1. GPU Benchmarking 157

the GPU only used for the interaction potential calculations achieve a break even point when the
runtime of each kernel invocation negates the cost of context switching due to the computational
overlap between host and device. Here, GPU sharing between two or four threads is of similar
cost, as the CPU is always waiting for the GPU. Thus, the final reduction step on the CPU is
fully hidden behind kernel invocations and memory copies from other contexts. Once the CUDA
kernel execution time far outweighs the context switch time, the number of threads sharing the
GPU becomes less important because the GPU becomes the scaling bottleneck. The difference
between 1 CPU and multiple CPU threads sharing the GPU lies in time wasted by having an
idle GPU. The GPU/CPU combination is also limited by memory transfers between the CPU
and GPU since they are blocking and prevent the CPU from working ahead on Monte-Carlo
mutations while the GPU calculates the interaction potential, causing that thread to be idle
until its associated runtime completes its instructions.

On hardware such as Tesla C870 cards using the original G80 1, asynchronous GPU function-
ality does not exist, meaning that the performance achieved using synchronous GPU operations
are optimal, and our results therefore scale according to the resources available on a G80. Hard-
ware of CUDA 1.1 compute capability supports asynchronous GPU usage and can benefit from
streaming. We employ this technology as our final strategy in implementing our algorithm.

8.1.1 Asynchronous Performance

The objective of asynchronous GPU computing is to maximise the utilisation of computational
resources on both the CPU and GPU, as well as memory transfers. The host is able to transfer
page locked memory between RAM and the GPU while both the GPU and CPU perform concur-
rent compute tasks. A fortunate feature of our algorithm is that the Markov-chains within the
Monte-Carlo simulations are independent, comprising O(N) CPU operations and O(N2) GPU
operations. Furthermore, having 20 replicas means that all 20 can be at different instructions of
the Markov-chain such that some can be performing memory transfers between CPU and GPU,
some can be performing mutations on the CPU, and others can be calculating the interaction
potential on the GPU, making the algorithm highly suited to asynchronous GPU streams.

The modification to the algorithm is simple. Instead of performing all the steps in a Monte-
Carlo iteration sequentially for one replica, followed by all the steps of the next in the same
manner, the first step of every replica is performed, followed by the second step of every replica,
continuing until all steps in an iteration are performed. While in a CPU only usage model this
makes no difference to performance because all processing occurs on the same device, in GPU
programming it enables processing overlap between GPU and CPU.

1Cambridge University’s chemistry cluster zero.ch.cam.ac.uk uses Tesla C870 GPUs.

8.1. GPU Benchmarking 158

The sequential usage case requires the GPU to return control to the host before the simu-
lation can continue, deviating from this behaviour would violate the rules of the Monte-Carlo
simulation. Thus, either the GPU or the CPU is idle while the other is processing. To avoid
this, the GPU and CPU can perform concurrent computation by interleaving blocking sections
of the Monte-Carlo simulations.

1000 2000 3000 4000 5000 6000 7000

Residues

1

10

100

1000

T
im

e
(s

)

CPU, Best performance

Streams: 1 CPU Thread
Streams: 2 CPU Threads
∆: Context switch overhead

Figure 8.3: GPU Stream Performance
The use of the asynchronous CUDA API vastly improves runtime for the performance benchmarks. In-
stead of using POSIX threads to implicitly overlap computation on the host and device, streams explicitly
manage this within a single CUDA context. Results are the average of 1,2,4,5 and 10 streams per POSIX
threads which for a particular thread, result in practically identical performance. The context switch is
most noticeable for smaller problem sizes due to the relative proportion of runtime devoted to context
management. The cost of using more than one context is relatively constant for all benchmarks, ranging
from 8 to 10 seconds across the entire range of residues, illustrated here by ∆, the blue dashed line.

Plotted in Figure 8.3, we observe that streams outperform all other configurations of kernel
due to the efficiency of concurrent CPU and GPU computation. Additionally, CUDA kernels
are guaranteed to be scheduled continuously on the GPU, thus maximising its utilisation. The
performance of 1, 2, 4, 5 or 10 streams is almost identical, meaning that the GPU’s hardware
performance is the limiting factor in the simulation. If the CPU and context switching were a
bottleneck, we would observe a significant increase in performance as more streams were used.
In fact, more streams are not significantly more efficient. Multiple streams are on average 0.4%
faster than a single stream and smaller simulations tend to be slower by approximately 1%. The
optimal number of streams, according to our benchmarks is 5 per thread, achieving the best

8.1. GPU Benchmarking 159

benchmark scores for every simulation size. This performance variation is indiscernible when
plotted in Figure 8.3.

When streams and threads are mixed, the cost of context switching becomes critical. Unlike
sequential GPU operations, the performance gained by streams is reliant on the GPU runtime
context remaining active. The difference in performance between 1 and 2 runtime contexts is
evident in Figure 8.3. Again, as the size of the simulation increases, the difference between
the performance of one thread with no context switching and 2 threads with context switches
becomes less significant. The penalty of context switches is clearly measurable (∆ in fig. 8.3),
with benchmarks of 2 threads requiring from 8.6 to 10.1 seconds longer than a single thread
across all benchmarks. As is the case with synchronous GPU use, the difference decreases as
the simulation size increases, but critically, multi-threaded streams cannot outperform a single
thread of streams for a single GPU.

The cost of the overhead associated with context switching is also evident in Figure 8.4 which
compares the runtime of both single threaded and multi-threaded stream use, showing that the
multi-threaded asynchronous benchmark is slowest for benchmarks of fewer than 1000 residues,
but unlike the number of pairwise interactions, the events causing the overhead remain constant
for all benchmarks, resulting in the inefficiencies of such a benchmark becoming less critical for
larger simulations.

We find that CUDA streams significantly improve our simulations, resulting in performance
better than synchronous GPU operations in all but the smallest case. When the single threaded
asynchronous case is compared to the best synchronous case, that is, single threaded for less
than 3000 residues and 4 threads for greater than 3000 residues, the asynchronous simulation
can be expected to perform between 1.25 and 2.6 times faster. This is illustrated in Figure
8.3 where the minimum runtime for the each synchronous CUDA benchmark is plotted. The
recommended model of 1 CPU thread per GPU [22] proves best when all GPU benchmarks are
compared to each other. As illustrated in Figure 8.4, the synchronous single threaded solution
is fastest for the smallest benchmark, but is bettered in all other cases by its asynchronous
counterpart, with the asynchronous benchmark tending to be 2.4 times faster once simulations
are larger than 1704 residues. The improved performance of multiple CPU threads sharing the
GPU over the single threaded GPU implementation is dwarfed by the benefits of using streams.

An important illustration of customised performance parameters are the three smallest
benchmarks. A simulation in the order of 10 million Monte-Carlo steps per replica for as few
as 100 residues would be delayed by up to 100000 seconds (27 hours) if multiple CPU threads
with streams were used as opposed to a single CPU thread with or without streams, illustrating
that a well chosen set of performance parameters will save much simulation time.

Importantly, the ability to share the GPU between threads is a valuable feature to have in

8.2. Simulation Speed-up 160

1000 2000 3000 4000 5000 6000 7000

Residues

1

10

100

1000

T
im

e
(s

)

Sync. 1 Thread

Sync. 4 Threads

Async. 2 Threads

Async. 1 Thread

Figure 8.4: Synchronous vs Asynchronous GPU Performance
A comparison of asynchronous and synchronous CUDA API reveals the asynchronous single threaded
benchmark to be best in all but the smallest benchmark where the sequential synchronous GPU benchmark
is marginally better. The single threaded asynchronous benchmark, outperforms the synchronous CPU
single and multi-threaded benchmarks by a factors of 2.4 and 2.6 respectively, peaking in the 2000 to 3000
residue range. For simulations larger than 1000 residues, asynchronous GPU use is generally twice as
fast as synchronous GPU use.

cases where an application is able to use the GPU for independent processes. This case beyond
computational chemistry to any field that benefits from GPU acceleration. The POSIX thread
model is analogous to separate processes. In our case we can perform multiple simulations of
replicas in different threads sharing a GPU, but practically, this is no different from independent
simulations on the host which share the GPU, allowing for concurrent simulation on each core as
opposed to waiting in a queue. Notably, this approach is beneficial in incrementally improving
a model, where multiple simulations can run concurrently on a single GPU as opposed to the
same simulations in series, in turn the time saved reduces the time to discovery.

8.2 Simulation Speed-up

When compared to the CPU benchmarks (figure 8.5), the GPU outperforms the CPU by at least
2 orders of magnitude in all but the smallest benchmarks. This result would hold true even if our
CPU implementation were excessively tuned to extract the same performance from our CPU as
Stone et al. [18] or Friedrichs et al. [17]. Additionally, the emergence of dual hexacore processors

8.2. Simulation Speed-up 161

1000 2000 3000 4000 5000 6000 7000

Residues

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

)

CPU, 1 Thread

CPU, 2 Threads

GPU, 1 Thread

GPU, 2 Threads

GPU, 4 Threads

GPU async, 1 Thread

GPU async, 2 Threads

Figure 8.5: CPU vs. GPU Simulation Performance
The CPU scales efficiently, exhibiting a 1.98 times speed-up when both cores are utilised by either 2 or
4 threads. Once a GPU is used to accelerate the simulation, we observe large decreases in runtime for
our benchmarks. These improvements may be minor, in the region of 17 seconds down to 2 seconds for
100 residues, or major: 275 000 seconds (76 hours) to 455, 332 or 191 seconds for the largest benchmark
of 7668 residues, depending on the configuration. Effectively configured GPU benchmarks are 2 orders of
magnitude faster than both single and multiple threaded CPU solutions at merely 568 residues. Practically,
this equates to a speed-up over 100 for simulations involving the docking of 2 small proteins. The data
for this figure is available in tabular form in Appendix C.

in supercomputing means that CPU hardware alone can increase our serial CPU benchmarks
by up to a factor of 12 on a single compute node without any GPU acceleration. In fairness,
the same approach may be taken when scaling up the number of GPUs in a node, maintaining
the 2 to 3 orders of magnitude performance gap between the CPU and GPU implementations.

Overall the speed-up we observe using synchronous GPU operation, plotted in Figure 8.6,
ranges from 8.9 times to over 600 times for a single GPU with a single CPU thread pairing. If
the GPU is shared between CPU threads, speed-up increases to up to 828 times. Noteworthy
data points are those of 402 and 568 residues, the second and third smallest simulations. These
are simulations for docking 2 proteins, a common molecular modelling task and one for which
we attain speed-ups of 109 and 217, respectively 2.

What is of critical importance is that the speed-up is dependent on the problem size. For

2A complete tabulation of all benchmark times and speed-ups is included in Appendix C.

8.2. Simulation Speed-up 162

1000 2000 3000 4000 5000 6000 7000

Residues

200

400

600

800

1000

1200

1400
S

p
ee

d
u

p

1 Thread
2 Threads
4 Threads
2 Threads Async

1 Thread Async

Figure 8.6: GPU vs. Serial CPU Speed-up
Speed-up peaks at an impressive 1553 times the serial solution for 6816 residues when using a single
POSIX thread and one of 1, 2, 4, 5 or 10 CUDA streams. The 5 largest benchmarks all experience speed-
up in the order of 1400 times or more for this configuration. Speed-up grows quickly with simulation
size, starting at only 8.3 but immediately jumping to 137, 288 and then 724 before reaching the 1000
times speed-up mark for 1704 or more residues. The overhead in multiple threads using CUDA streams
results in this configuration’s speed-up figures being less than the former, but still in excess of 1000 once
a simulation is large enough. Without asynchronous calls, both 2 and 4 threads achieve speed-ups tending
to just over 800, whereas a single threaded synchronous GPU configuration will be limited to 600 times
the performance of a single CPU thread. All figures exhibit a ‘sawtooth’ like trend due to the blocking and
scheduling on the GPU, most noticeable for 5680 and 7668 residue benchmarks.

example, our 568 residue simulation is two halves of a viral capsid component. In our simulation
the interactions between the 284 pieces in each, result in a speed-up of 217. But this is on top of
the performance by the reduced representation of course graining which reduces the simulation
from 4658 atoms.

Recalling Table 7.2, which indicates that the GPU can perform interaction potential calcu-
lations up to 1928 times faster than the serial CPU, a peak speed-up of 607 is less than optimal
when you consider that it accounts for almost all of the runtime. Similarly, the multi-threaded
case peaking at 828 times speed-up is less than expected.

In isolation, the performance of the blocking, sequential GPU benchmarks are better than
expected. Initial estimates were on the order of less than 100, taking into account what both

8.3. Discussion 163

GPU and CPU are theoretically capable of.
The introduction of asynchronous CUDA streams has a profound impact on speed-up, with

the best case performing 1553 times faster than the serial CPU solution, an increase of 2.6 times
that of the serial synchronous benchmark, and 1.9 times that of the multi-threaded synchronous
benchmark.

The asynchronous figures match those of the interaction potential calculations far more
closely, indicating that the efficiency of the streaming model is superior to that of the blocking
synchronous model. The efficacy of the asynchronous configuration is an excellent illustration
of how a heterogeneous CUDA/CPU algorithm should work. The only calculations performed
on the GPU are the O(N2) pairwise electrostatics and reduction among threads in a block. All
other CPU operations are O(N) or, in the case of the final pairwise reduction, [N

blocksize]2 floating
point additions with an upper bound of 216. The CPU is able to perform this sum of 216 32-bit
floating point elements in less than 500 microseconds. The CPU is able to perform all tasks of
lower order complexity within the time that the GPU requires to execute the CUDA kernel, thus
allowing complete overlap of computation on the GPU and CPU with only one stream. Peak
performance occurs when the limiting factor in computation is the runtime of the interaction
potential kernel on the GPU.

Particularly noticeable in Figure 8.6, is that the performance of kernels tends to fluctuate. In
these benchmarks, this occurs most noticeably for 5680 and 7668 residues. The difference occurs
within the CUDA kernel and is a function of number of residues. We observe the same perfor-
mance trends for block sizes of 32, 64, 128 and 256. Speed-up for an entire benchmark merely
amplifies the effect of minor differences between the behavioural trend and specific benchmarks.
This effect is due to the runtime of each kernel being discretely divisible by the number of thread
blocks on the GPU. For example, if there were 30 SMs on a GPU, a kernel executing 10, 15,
20, 25 or 30 blocks will run in similar time because none of the blocks compete for resources,
however, as soon as 31 blocks are present, overall kernel runtime should double as 30 of the 30
blocks will be finished before the final block runs (discounting the latency in data transfers to
each SM). Hence, runtime and speed-up figures on a GPU for a constant block size will have a
“sawtooth“ pattern due to this scheduling peculiarity, absent from a CPU bound program.

8.3 Discussion

All of the benchmarks and analysis performed here applies to a single host and single GPU.
However, due to the parallel nature of replica exchange Monte-Carlo and our decomposition
scheme for multi-threading, this code scales almost linearly on 2 or 3 GPUs. Simulations in the
following chapter have used used 3 GTX470 GPUs. Using 12 replicas, these simulations scale
with 99% efficiency for 2 GPUS and 2 POSIX threads and 94% efficiency for 3 GPUs and 3
POSIX threads. The scaling effect further speeds up simulations over an above the performance

8.3. Discussion 164

increase due to the use of the GTX470 over the GTX280.

Due to nVIDIA’s scalar SM array architecture, the increase in cores from 8 to 32 per SM, and
the doubling of shared memory per SM means that larger thread blocks are no longer limited
in the same manner as on the GT200. This results in an automatic occupancy increase in the
case of 64 and 128 threads per block using shared memory tiles and the texture lookup for the
contact potential.

The algorithm we implement scales across a cluster due to the embarrassingly parallel nature
of the Monte-Carlo simulations. Multiple replica can be bound to a compute node with or with-
out GPU acceleration. As discovered in the profiling process, the synchronisation of threads and
the performing of replica exchange is trivial and fast, meaning that the communication overhead
of using multiple nodes via MPI or a similar technology factor favourably into speed-ups.

The effect of the speed-up achieved using the GPU is most significant in its effect on wall
time which translates into simulation runtime. Even for the smallest simulation of 100 residues,
on a single CPU/GPU platform, we can perform 36 million Monte-Carlo iterations per hour.
This equates to a one billion step simulation in approximately 28 hours. By comparison the
CPU, with both cores fully occupied, would require over 5 days.

The second simulation, the binding of cytochrome c to cytochrome c perioxidase performs
even better due to a four fold increase in problem size, resulting in a runtime reduction from 91
days on the CPU to merely 39 hours on the GPU.

The jump in performance between these simulations is massive in terms of time saved but
highlights the inefficiency of the GPU for a small simulation since an improvement of 4 days
is not particularly valuable. However, a reduction in simulation time of 98% for slightly larger
simulations is critically important and allows for the iterative development of models and meth-
ods that would otherwise require runs of 3 months or longer between iterations.

Realistically, simulations such as these would be performed on high performance clusters and
would not require 91 days of wall time. The speed-up from a GPU can be read as the relative
increase in the amount of work possible. The quality of a Monte-Carlo simulation relies on the
number of samples performed and from this perspective, a GPU can allow over 50 to 100 times
more sampling in the same time for a 2 protein simulation in the same runtime. Furthermore,
these results apply generally to GPU-enabled nodes, since each node with a similar GPU to
ours should experience similar performance. The scalability imposed by the number of replicas
is application dependent. If only a single simulation performed with multiple replicas, a large
cluster of GPUs will not be utilised, but, as in the next chapter, many combinations of concen-
tration and the number molecules are needed for a data set, meaning that simulations can be
performed independently as a set of GPU-enabled tasks on a cluster, or as a sequential set of

8.3. Discussion 165

1000 2000 3000 4000 5000 6000 7000

Residues

1×10
4

1×10
5

1×10
6

1×10
7

1×10
8

1×10
9

M
o
n
te

-C
ar

lo
 S

te
p
s

p
er

 D
ay

GPU (Streams)
GPU (Synchronous)

CPU (Multi-threaded, Best case)

Figure 8.7: Monte-Carlo Steps per Day Performance
Simulation throughput from our GPU implementation is two orders of magnitude better than a CPU.
These results illustrate that GPU acceleration of an inherently time consuming task such as docking can
compress months of computation on a CPU into a matter of days on a single GPU. This means that either
more samples can be performed in the same time, providing better quality data, or more simulations can
be performed, providing more data..

batch jobs on a single GPU-enabled desktop.

8.3. Discussion 166

Chapter 9

Applications

The benefit of possessing a fast docking code enables more tractable investigation into docking
simulations. The utility of our application is demonstrated in this chapter. To begin, the
validation stage of development reveals an interesting structural feature in the Ubiquitin/UIM
simulations, highlighting the significance of the Ubiquitin tail. Thereafter, two applications of
a fast docking code are discussed. We use our code to investigate the effect of macromolecular
crowding by CspA, the cold shock protein of Escherichia coli, on binding of the cytochrome c to
cytochrome c peroxidase. Finally, we investigate the assembly of viral capsid fragments using
the Kim and Hummer model.

9.1 Ubiquitin C-Terminus Tail Truncation

Validation of the implementation resulted in an interesting observation in the Ubiquitin-UIM1
interaction. During the validation of the implementation, it was observed that the dissociation
constant, Kd, was much lower than the expected value attained by Kim and Hummer [12].
Using the Miyazawa and Jernigan contact potentials [158] with equal solvent accessible surface
area weightings (all residues have SASA equal to 1) [12], the expected dissociation constant is
1240µM . However this value is determined by truncating the ubiquitin molecule to 72 residues
(figure 9.1b), removing the final four residues from the C-terminal tail of the complete molecule
(figure 9.1a).

Truncation has a significant effect on the dissociation constant. Simulation using the GPU
at 100µM, 200µM, 400µM, 600µM, 800µM and 1000µM concentrations using both full length
and truncated ubiquitin reveal that the truncated molecule results in weaker binding (higher
Kd), with a dissociative constant value of 1574µM . A similar result from Best of 1493µM using
CHARMM confirms this finding.

Modelling the full ubiquitin molecule, even with a rigid tail, has a positive effect on the
results of the simulation. Both our GPU implementation and Best report lower dissociative
constants of 634µM and 595µM respectively. This result can be considered more favourable

9.1. Ubiquitin C-Terminus Tail Truncation 168

(a) Ubiquitin (b) Truncated Ubiquitin

(c) UIM/Ubiquitin (d) Inverted UIM/Ub

Figure 9.1: UIM/Ub Structure and Docking Poses
(a) Ubiquitin consists of 76 residues, terminating in a flexible 4 residue C-terminus tail (blue). (b)
Removing the C-terminus tail results in rigid 72 residue ubiquitin molecule, used by Kim and Hummer
[180]. (c) The correctly orientated (experimentally observed) docking configuration of UIM/Ub. (d) The
inverted docking configuration of UIM/Ub with the inverted UIM helix.

9.1. Ubiquitin C-Terminus Tail Truncation 169

5 10 15 20

RMSD (Å)

0.05

0.10

0.15
Pr

op
or

tio
n

R
M

SD
 (

Å
-1

)

Full C-terminus
Truncated C-terminus

Figure 9.2: UIM/Ub Cluster Population Shift
Truncation of the ubiquitin tail causes greater occurrence of inverted UIM orientation (red) accounting
for approximately 20% bound configurations discovered through simulation. Inclusion of the ubiquitin
C-terminus tail results in a decrease in inverted UIM orientations (14%) and a greater propensity for the
formation of the correctly bound complex.

200 400 600 800

Concentration (µM)

0.2

0.4

0.6

0.8

F
ra

ct
io

n
 B

o
u

n
d

Full Length

Truncated

K
d
= 634µM

K
d
= 1574µM

Figure 9.3: Ubiquitin Truncation: Effect on Binding Affinity
The presence of the ubiquitin C-terminus tail results in a decrease in the dissociation constant KD for
the formation of UIM/Ub. The difference in Kd for the simulations indicates that the presence of the tail
results in stronger binding behaviour.

9.2. Cc/CcP Macromolecular Crowding 170

because it is much closer to the experimentally observed result of 280µM.

Most significantly, the inclusion of the ubiquitin tail changes the ratio of incorrect to correct
poses discovered by the simulations. In the original study, the truncation resulted in a cluster
of native-like structures accounting for 40% of the bound complexes discovered by simulation.
This cluster featured two orientations of UIM1 helix, 80% of which were orientated correctly
(Figure 9.1c) and 20% were inverted (Figure 9.1d). Inclusion of the tail results in a population
shift from 4:1 to 6.2:1, indicating that the C-terminus tail interactions stabilise the correctly
bound complex. A frequency plot of the RMSD of the bound complexes using the truncated vs
full length simulations (figure 9.2) illustrates the population shift.

In the rigid body case, the presence of the tail enhances both the specificity and the strength
of the binding. The strength of the binding increases, inferred from the decrease in Kd from
1574µM to 634µM (figure 9.3). The population of the correct binding orientation increases from
80% to 86% of the bound samples. Treating the flexible tail as a rigid structure is biologically
unrealistic, future study of flexible and rigid tails and their effect on the correctly orientated
binding state would prove interesting.

9.2 Cc/CcP Macromolecular Crowding

Macromolecular crowding is the phenomenon whereby the properties of molecules in a solution
are altered due to the high concentration of macromolecules such as proteins are present in that
solution [181]. Since molecules have evolved and function within intracellular environments that
are crowded with other macromolecules, it is beneficial that simulations studying the interac-
tions of such molecules be conducted in crowded environments as opposed to protein-protein
interactions studied in uncrowded buffers [181].

Experimental studies have shown that crowding results in large quantitative affects on both
the rate of reaction and the equilibrium of the system [181]. The interiors of cells are crowded
places, as opposed to concentrated since there are no high concentrations of a specific molecule,
but when considered as one, macromolecules typically occupy between 20% and 30% of the
volume inside a cell. This volume is physically inaccessible to other molecules in the cell, effec-
tively increasing the concentration of the reaction. However, these additional the intermolecular
forces, e.g. steric effects, arising from the crowding effect generate energetic consequences that
not generally considered in more conventional in vitro simulations [181].

Several theories accounting for the crowding effect in protein docking are based on the ex-
cluded volumes [182–184]. These theories are based on a simplified description of the protein
molecules, such as a spheres. The value of such models will be greatly enhanced if experimental
or simulation data fits the predictions [185].

9.2. Cc/CcP Macromolecular Crowding 171

Kim, Best and Mittal use scaled particle theory (SPT) to quantitatively predict the effects
of macromolecular crowding [185]. The dissociation constant is the ratio of concentration of the
unbound proteins to bound proteins,

Kd = [A][B]
[AB]

governing the the equilibrium of the reaction:

AB
A+B

where proteins A and B transition between the complex, AB, and unbound proteins, A and B.

Thus, Kd is related to the free energy change of the reaction, ∆Gbind, by the relation
∆Gbind = −RT lnKd. ∆Gbind can also be expressed as the sum of chemical potentials: µA,
µB, and µAB:

∆Gbind = µA + µB − µAB

SPT calculates the excess potential, µ, for inserting a sphere, Rs (Cc/CcP, Cc or CcP) into a
bath of hard spheres Rc (CspA):

∆µ(φ) = (3z + 3z2 + z3)ρ+ (9
2z

2 + 3z3)ρ2 + 3z3ρ3 − ln(1− φ)

where φ is the packing fraction (the ratio of crowder volume to simulation volume), z is the
ratio of radii from Rs over Rc and ρ is φ(1 − φ) [180, 185]. The difference in free energy as a
result of crowding is calculated to be

∆∆Gbind = ∆µA(φ) + ∆µB(φ)−∆µAB(φ)

allowing the a new dissociation constant for a specific packing fraction, Kd(φ), to be calculated
from the reference dissociation constant K0 using

Kd(φ) = K0 exp(−∆∆Gbind)

Kim et al. performed crowding simulations of both UIM/Ub and Cc/CcP in the presence of
spherical crowders, finding their results to agree closely with those predicted by SPT [185].

We extend this study by introducing a greater level of detail to each crowder because our
implementation makes this level or detail tractable. We perform in docking simulations of cy-
tochrome c and cytochrome c peroxidase and multiple CspA crowders. CspA is one of the most
abundant small proteins in E. Coli, which is one reason it was chosen [180]. It is a suitable
“crowder” because it doesn’t interact strongly with cytochrome c and cytochrome c peroxi-
dase. Our initial simulations show that the dissociation constants associated with Cc/CspA
(34080µM), CcP/CspA (21785µM) and itself (50264µM) are two orders of magnitude higher
than the reference dissociation constant of 755µM for the Cc/CcP complex (Figure 9.4) Thus,
CspA can be used to study the the crowding effects of a hard repulsive sphere [185] or as a fully
interactive protein [180].

9.2. Cc/CcP Macromolecular Crowding 172

200 400 600 800

Concentration (µM)

10
-4

10
-3

10
-2

10
-1

10
0

F
ra

ct
io

n
 B

o
u
n
d

Cc/CcP
Cc/CspA

CcP/CspA

CspA/CspA

K
d
= 755µM

K
d
 = 21785 µM

K
d
 = 34080 µM

K
d
 = 50264 µM

Figure 9.4: Cc/CcP and CspA: Isolated Binding Affinities
how each interacts in isolation with the other, CspA exhibits extremely weak binding with both Cc, CcP
and itself.

9.2.1 Crowding Models

The effect of crowders on the free energy of the configurations is modelled in two ways. The
simplest way, assuming that the crowders will effectively repel the other proteins in a simulation.
This the interaction potential is composed of the pairwise Kim and Hummer potential (Chapter
3, Equation 4.1),

ϕij(r) = uij(r) + uelij(r)

for the interaction of the molecules of interest, namely, Cc and CcP in these simulations. All
other pairwise contributions to the interaction potential are

Vij(r) = (6/r)12

modelling a weak repulsive potential between the crowders and all other molecules in the system
in accordance with the model of Kim et al. [185]. V (r) effectively models the crowders as hard
spheres with r−12 providing a continuous short range repulsive force. Thus, crowder residues
sharply repel other residues when their molecular surfaces overlap.

For performance, a cut-off distance of 15Å is used for repulsive crowder potential. Inclusion
of the repulsive potential in the interaction potential kernel is achieved via a simple branch.
Inclusion of an identifier in each residue’s meta-data provides the means to discern between
crowder and non-crowder residues and thus, select either the full or repulsive potential as re-
quired. Due to the ordering of residues in memory such an operation avoids the performance
hit of divergent branches in warps other than those processing both crowder and non-crowder

9.2. Cc/CcP Macromolecular Crowding 173

residues.

9.2.2 Simulations

Replica Exchange Monte-Carlo simulations are performed in the crowded environment using
periodic boundary conditions. These simulations are configured at packing fractions (φ) of 0.05,
0.1, 0.2 and 0.3. That is, the volume of the crowders accounts for 5%, 10%, 20% or 30% of
the volume of the periodic bounding cube which edge lengths determined by the number (n)
and volume (Vc) of the crowders as 3

√
nVc
φ . For each crowder is considered to have a volume of

12770Å3, determined using Monte-Carlo integration with a probe of 20Å on the PDB files used
for simulation. Similarly, SPT predictions of the dissociation constant use the volume of the
CspA, Cc, CcP and Cc/CcP.

Simulations are initialised by distributing crowders on a cubic lattice within the bounding
volume and inserting the Cc/CcP complex of interest in the centre of the volume in a near bound
pose to effect a bound docking simulation with crowders. During each MC step, a protein is
allowed to make both translations and rotations. Like Kim et al., these simulations are for 12
replicas from at temperatures of 300K to 600K, with Ti/300 forming a geometric progression.
Similarly, translational moves range from 0.5Å to 5Å and rotations range from 0.1 to 0.5 rad.
All proteins are subject to the same translational and rotational moves; the increased level of
detail in each crowder requires explicit rotation. Simulations are allowed equilibrate for 5× 106

steps before sampling is performed every 1000 steps.

9.2.3 Results

Simulations of 10, 15, 20 and 25 crowders were performed for packing fractions 0.1, 0.2 and
0.3. Due to the speed of our implementation, each of these 180 million Monte-Carlo iteration
simulations, totalling over 2 billion interaction potential evaluations are performed in just over
6 days on a dual GTX470 GPU desktop.

Simulated fraction bound results for each simulation agrees with SPT predictions. Expected
values, plotted as dotted lines in Figure 9.5, differ by a mean relative error of 2.8% from SPT
predicted values. Dissociation constant calculations agree both quantitatively and qualitatively
with those predicted by SPT (Table 9.1).

Energy vs DRMS plot of the simulations (Figure 9.6) illustrate the tendency of the Cc/CcP
complex to favour the native binding site as opposed to simulations of only Cc/CcP. This effect
can be illustrated by the manner in which complexes not contained or near the native binding
site disappear from the DRMS/Energy plots. By taking the ratio of bound samples in the native
cluster over the the total number of bound samples for a simulation at a specific packing frac-

9.2. Cc/CcP Macromolecular Crowding 174

500 1000 1500 2000 2500 3000 3500

Concentration (µM)

0.2

0.4

0.6

0.8

F
ra

c
ti

o
n

 B
o

u
n

d

φ = 0.3, K
d
 = 91µM (136)

φ = 0.2, K
d
 = 255µM (264)

φ = 0.1, K
d
 = 473µM (468)

φ = 0.05, K
d
 = 606µM (601)

φ = 0.0, K
0
 = 755µM

Figure 9.5: Crowded Cc/CcP: Fraction Bound
The introduction of crowders results to the Cc/CcP simulation results in increased binding affinity (solid
lines) depending the packing fraction, φ. These results closely match the SPT predictions for each packing
fraction (dotted lines). Simulated dissociation constants Kd are included in the legend, with expected values
in brackets.

tion, the proportion of native to total bound complexes increases linearly with packing fraction
(Table 9.2) from 56% for uncrowded simulations to 91% for the simulations performed at the
highest packing fraction of 0.3.

The native structure does not possess the lowest interaction potential for this model. Using
the structure from the PDB entry 2PCC of experimentally observed cytochrome c cytochrome
c peroxidase (Figure 9.7a), an interaction potential of -6.96 kcal/mol is calculated. The lowest
energy structure discovered by simulation (Figure 9.7b) has an interaction potential of -11.7
kcal/mol and differs from the native structure by a DRMS of 4.27Å. Structurally, the poses
differ by a rotation of approximately 30° only.

Table 9.1: Crowder Dissociation Constants
Simulated dissociation constant (Kd) values, agree strongly with SPT predictions.

Packing Fraction (φ) SPT Prediction (µM) Simulation (µM)
0.05 601 606
0.1 468 473
0.2 264 255
0.3 136 91

9.2. Cc/CcP Macromolecular Crowding 175

-12 -10 -8 -6 -4 -2
Energy (kcal/mol)

4

8

12

16

D
R

M
S

(Å
)

(a) Crowded Cc/CcP

-12 -10 -8 -6 -4 -2
Energy (kcal/mol)

4

8

12

16

D
R

M
S

(Å
)

(b) Cc/CcP

Figure 9.6: Crowded Cc/CcP: Energy vs. DRMS
Energy vs DRMS plots for crowded simulations (a) illustrate the tendency of the Cc/CcP complex to
favour the native binding site as opposed to simulations containing only Cc/CcP (b). As evident from both
(a) and (b) illustrate that samples with the lowest DRMS possess an interaction potential of approximately
-6 kcal/mol to -8 kcal/mol in contrast with the DRMS of 4.3Å for the lowest energy complexes.

As evident from the DRMS and interaction potentials of the samples, accessible non-native
structures with energies less than -7 kcal/mol with cause simulations to favour these configura-
tions over the higher energy native configuration producing clusters in the correct binding site,
but closer to the lower energy configuration (according to the model) than the native config-
uration. Thus, the predominant cluster has a representative DRMS of between 3.3Å and 5Å
and an interaction potential of between -8.4 and -9.5 kcal/mol when performed under crowded
conditions. In uncrowded conditions, configurations cluster similarly with DRMS and energy
values of 4.5Å and -10.1 kcal.mol respectively.

Reduction of the clustering cut-off value (from 2Å to 1Å) results in an almost equal division
of structures in the native binding region for all simulations, one with a representative DRMS
of approximately 3.6Å containing the lowest energy structures and native-like structures. The

Table 9.2: Proportion Native Conformations
Clustering reveals that the proportion of native confirmations discovered by sampling increases almost
linearly with the packing fraction, for packing fractions in the range 0 to 0.3.

Packing Fraction (φ) Proportion Native
0.0 0.56
0.1 0.66
0.2 0.79
0.3 0.91

9.2. Cc/CcP Macromolecular Crowding 176

(a) Cc/CcP Native Structure (b) Cc/CcP Lowest Energy

Figure 9.7: Cc/CcP Structures
(a) The native Cc/CcP structure, taken from the PDB (2PCC) has an interaction of -6.96 kcal/mol using
the Kim and Hummer potential. (b) The lowest energy structure from our simulations has an interaction
potential of -11.68 kcal/mol and differs from the native structure by a DRMS of 4.27Å. Consequently,
configurations are attracted toward more energetically stable (lower potential) states during Monte-Carlo
simulations.

non-native cluster contains a 180 degree rotation of the CcP protein with a representative DRMS
of approximately 5.2Å.

To ensure that proteins do not aggregate within a simulation, that is, that crowder proteins
form cohesive clusters within the periodic bounding box, the radial distribution function for
each residue in the simulation space is calculated relative to the centroid of every other protein.
The procedure for calculating the radial distribution functions, g(r), is to loop over all proteins,
using the centroid of that proteins residues as r = 0. For increasing values of r, a count of all
residues in the spherical shell from distance r to r+ dr is recorded for values of r from 1 to half
the size of the bounding box. These values are normalised by the volume of each shell using a
normalisation factor of V

N4πr2dr to ensure a dimensionless g(r) that tends to 1 when no structure
occurs within the distribution of residues.

Thus, a higher value of g(r) will occur for protein interactions due to the increased density
and structure at ranges of r associated with a docking site; g(r) will be zero when residues
do not occur within distance r of each other, indicative of repulsion and intersection; and g(r)
will tend to 1 at arbitrarily large r as no interaction occurs between proteins at this distance,
implying no aggregation or structure [180].

9.2. Cc/CcP Macromolecular Crowding 177

20 25 30 35 40 45 50

r (angstrom)

4

8

12

16

20

24

28

32

g
(r

)

Cc/CcP
Cc/CspA

CcP/CspA

CspA/CspA

Figure 9.8: Radial Distribution of Cc/CcP/CspA
The radial distribution function g(r) shows that in both repulsive and fully interactive simulations, that
the crowder CspA proteins avoid aggregative poses. The hard sphere repulsion of the CspA crowders
results in no residues within 20Å of its centroid. Additionally, g(r) reveals no emergent structure between
either of the proteins from cytochrome c/cytochrome c peroxidase and CspA. The convergence of radial
distribution of CspA-CspA to 1 beyond self repulsive distances (20Å) shows that crowders lack structure
due to aggregation.

Crowder simulations performed exhibit such behaviour (Figure 9.8). The radial distribution
function for Cc/CcP is largely unchanged from its uncrowded distribution, with a peak in g(r)
occurring between 25Å to 50Å due to the Cc/CcP binding site. The lack of structure and,
consequently, aggregation of any CspA complex is as expected. Values of g(r) for Cc/CspA,
CcP/CspA and CspA/CspA approach 1 for larger radii. Each complex registers a g(r) of zero
for radii within its molecular boundary.

Future investigation into the effects of crowders will require the modelling of fully interactive
crowders. Within a cell, molecules will not behave repulsively with potential functions mimick-
ing V (r). Therefore, fully interactive crowding is a future area of interest for this study.

An initial investigation into crowders with attractive potentials is performed by using a sin-
gle CspA crowding molecule. Two simulations of Cc/Ccp and CspA are performed, one using
repulsive potentials for the crowder and the other using the Kim and Hummer potentials for
both crowder and complex. Both simulations are performed at a 755µM concentration contain-
ing 12 replicas at temperatures between 300K and 600K. The results of these simulations show
an expected increase in binding affinity for the repulsive crowder, with Kd dropping from the
reference 755µM to 670µM . For the fully interactive CspA, Kd increases to 886µM , implying
that the presence of the single crowder interferes with the formation of the Cc/CcP complex.

9.2. Cc/CcP Macromolecular Crowding 178

(a) Structure

20 30 40 50

r (angstrom)

2

4

6

8

10

g
(r

)

Cc/CcP
Cc/CspA

CcP/CspA

(b) Radial Distribution

Figure 9.9: CspA Interference
(a) Docking simulations containing fully interactive cytochrome c (red), cytochrome c peroxidase (blue)
and CspA (grey) reveal that a fully interactive crowder can occupy the native binding site for the Cc/CcP
complex, lowering the binding affinity in the single crowder simulation. Numerous samples indicate that
the presence of a Cc/CspA or CcP/CspA will inhibit the formation of the native Cc/CcP complex. (b)
The radial distribution of the fully interactive crowder and Cc/CcP shows that the crowder molecule
is able to approach both Cc and CcP more closely than its repulsive counterpart. Both Cc/CspA and
CcP/CspA begin emerge at radii related to molecular boundaries.

Samples supporting this clearly illustrate that the CspA protein binds with Cc in the native
binding site of CcP (Figure 9.9a). Thus, less stable Cc/CcP complexes are formed at secondary

9.3. Viral Capsid Construction 179

binding sites, causing a lower binding affinity. The radial distribution of the fully interactive
crowder supports this finding, with the distributions of CcP/CspA and Cc/CspA approaching
1 at much lower radii corresponding to the molecular boundaries of the respective complexes
(Figure 9.9b). A comparison of fully interactive crowding and repulsive crowding for the simu-
lations performed here is left as future work, promising some interesting results.

While we produce results consistent with scaled particle theory and in agreement with purely
repulsive hard spheres, the environment within a real cell is fully interactive, requiring the sim-
ulation of interactive proteins to attempt to replicate these in vivo conditions. This task the
subject of future work with this model and implementation.

9.3 Viral Capsid Construction

The final application of docking performed using our implementation is that of viral capsid
assembly. Viruses are infectious agents about 100th of the size of bacteria. Viruses, unlike bac-
teria can be considered to be non-living because they lack a cellular structure and use their host
to replicate and synthesise new products. There are over 5000 types of known viruses, many
gaining notoriety throughout history for causing epidemics and pandemics [165].

Virus life cycles differ depending on the type of virus, but the cycle adheres to six basic
stages: the binding or fusion of the viral capsid to receptors on the host cells surface, pene-
tration of the virus into the host cell, the release of viral genomic nucleic acid into the host
cell, replication and assembly within the host cell, post-translational modification of the viral
proteins and, finally, release from the host cell [165].

Viruses consist of either a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) molecule
contained in a protective package. The package transmits the infectious agent in a functionally
intact state to a susceptible host cell. In most animal viruses this package or capsid, is spherical
with icosahedral symmetry [165] (Figure 9.10b)

The smallest DNA viruses are the hepadnaviruses, such as Hepatitis B, which is 42 nm
across [165]. This virus consists of 240 similar chains, labelled A, B, C and D (Figures 9.10e and
9.10f) forming “V-shaped” tetrameric complexes (PDB ID:2G24). These complexes tessellate in
the manner depicted in Figure 9.10d, with five complexes forming a sub-capsid hood structure
(Figure 9.10c). The full capsid consists of 12 of these hoods, and a total of 240 peptide chains.
This equates to 279480 atoms or 35280 coarse-grained beads.

The formation of the capsids themselves is an marvel of nature; the protein subunits as-
semble into complete, reproducible structures under different conditions, avoiding kinetic and
thermodynamic traps [186]. Understanding of this process has enormous potential impact in the

9.3. Viral Capsid Construction 180

(a) Hepatitis B (b) HBV (All-Atom with lattice)

(c) Sub-capsid (d) Docked Viral Proteins

(e) AB:CD Chains (top) (f) AB:CD Chains (side)

Figure 9.10: Hepatitis B
a) The full Hepatitis B Capsid, illustrating the shape of the peptide chains only. b) The capsid comprises
sub-complexes tessellated on a truncated icosahedral lattice. c) The capsid comprises 12 subunits of 20
peptide chains. d) Subunits form by docking “V-shaped” tetrameric complexes (PDB ID:2G24). e and f)
Top and side views illustrating the secondary, tertiary and quaternary structures of the 2G34 complex.

9.3. Viral Capsid Construction 181

design of antiviral drugs inhibiting the construction, and consequently, the propagation of the
virus. Although viruses assemble with the aid of a DNA or RNA molecule, effectively providing
a scaffold upon which to assemble. The study of the dynamics of the capsid pieces is important
in understanding the assembly process.

Hagan et al. have studied the HBV capsid at a coarse-grained level [186], but, this coarse-
grain representation encapsulated an entire 4-chain complex (depicted in figures 9.10e and 9.10f)
as a single bead. Advances in computational tractability, such as our GPU implementation al-
low us to inspect these interactions at a residue level, and thus, increase the complexity and
specificity of interactions in the simulation. Thus, 60 capsomer beads used by Hagan et al. to
model the HBV capsid are scaled to 60 molecules, each containing 584 residues and their full
geometry.

Due to the size of the viral capsid, it is an ideal test candidate for the study of large assem-
blies with the GPU implementation. Ultimately, the aim of such a study would be to simulate
the assembly mechanism of viral capsids from their constituent components. To test the feasi-
bility of such a study, a trial docking simulation of a pair of protein fragments (Figure 9.11 was
performed.

The results from this trial are very encouraging. The bound conformations were initially
clustered using the same method as for the Ubiquitin/UIM complex. Due to the symmetry of
the participants, some of the clusters were then combined once the symmetry of the complex
(i.e., AB:CD is equivalent to CD:AB) was accounted for, resulting in five clusters emerging.

Figure 9.11a plots the distance root-mean-square (DRMS) of structures from each cluster
against their energy, showing that the near native cluster, with a DRMS of 4.2Å and energy of
24.9 kcal/mol, to be the dominant emergent structure. Second to this is a malformed complex,
where the proteins pack too closely together in the space available. This complex has a DRMS
16Å from the native configuration, but, significantly, has a low interaction potential of -22.7
kcal/mol. A number of subsidiary, higher energy, bound clusters are also identified, indicative
of mild frustration on the binding energy landscape.

When simulations attempt to discover the docking pose between only two (or three) pro-
teins, the frustration is handled by the ability of simulations to move most of the proteins away
from the bound configuration due to the Boltzmann distribution. But once large assemblies of
strongly interacting proteins are present, individual proteins become trapped due to the stabil-
ity of the malformed complexes. The topology of the proteins results in many complexes with
interaction potentials of -10 kcal/mol and -21 kcal/mol occurring.

Unfortunately, due to the complexity, in number and topology of proteins in the viral capsid
and the manner in which Monte-Carlo simulations occur in the current implementation, the

9.3. Viral Capsid Construction 182

-26 -24 -22 -20 -18 -16
Energy (kcal/mol)

5

10

15

20

25

D
R

M
S

(Å
)

1 (0.880)
2 (0.090)
3 (0.014)
4 (0.012)
5 (0.004)

(a) DRMS Clustering

(b) Cluster 1 (c) Native (d) Cluster 2

Figure 9.11: HBV Clusters
Clustering HBV simulations discovers 5 clusters, grouping and treating symmetric poses as belonging to
the same cluster. (b) The cluster with the highest population, 88% of all samples, forms a complex within
4.2Å of the native configuration, (c). The second largest cluster forms an incorrectly docked structure (d),
with a considerably higher DRMS of 16.0Å. However, the interaction potential of both clusters is similar,
-24.9 kcal/mol and -22.7 kcal/mol respectively.

9.3. Viral Capsid Construction 183

(a) Native (b) Sample 1

(c) Sample 2 (d) Sample 3

Figure 9.12: Capsid Hood Configurations
(a) The native capsid hood with an interaction potential of -48.1 kcal/mol. (b-d) Simulation samples from
simulating the assembly of the viral capsid hood. These samples range in interaction potential from -43.1
kcal/mol to -58.4 kcal/mol.

9.3. Viral Capsid Construction 184

construction of a capsid hood (Figure 9.12a) cannot occur without some modification. Figure
9.12 illustrates the effect of the frustration on multiple proteins. In figure 9.12, proteins occur-
ring frustrated orientations result in the misinformation of the capsid hood. The interaction
potential of the native configuration is -48.1 kcal/mol. From these configurations, it is clear
that using the interaction potential as a measure of native state is insufficient as the simulated
structures, all with major configurational faults, have interaction potentials of -43.1 kcal/mol
(Figure 9.12b), -51.0 kcal/mol (figure 9.12c) and -58.4 kcal/mol (figure 9.12d). Hagan et al. note
that the strength of the interaction potential is critical in the formation of the capsid. If the
interactions between the capsomers is too strong, simulations are unable to escape the potential
traps formed by non-native complexes [186].

To facilitate the formation of native viral complexes, the use of either a weaker potential or
higher temperature may be required. If the electrostatics of the potential cause the frustration,
increased ionic strengths may improve the simulations ability to find the native structure [180].

If this model is used for larger simulations, it is likely that effects similar to those experienced
by Hagan et al. [186] will occur. In their model, sub-capsids assemble, but form frustrated, in-
complete, malformed or unclosed capsids due to the orientations and assembly order of the viral
fragments [186].

Our results clearly show that Kim and Hummer’s simulation and model [12] will discover
the native structure between the viral subunits, but lacks the ability to maintain the structure
necessary for assembling the viral proteins, such that all of them occupy near native poses
simultaneously. This feature is required if an entire capsid is to be assembled by Monte-Carlo
simulation.

Chapter 10

Conclusions

In this work, we document a successful parallel CPU-GPU CUDA implementation of the Kim
and Hummer coarse-grained model for replica exchange Monte Carlo (REMC) protein simula-
tions. This software is designed specifically to exploit current heterogeneous GPU-CPU comput-
ing architectures and shows excellent speed-up and scalability compared to a single processor
implementation. This type of relatively low-cost parallel architecture has great relevance for
researchers in developing countries such as South Africa, where High Performance Computing
centres are generally not available.

We have described in detail the approach and optimisations required to achieve maximum
performance for our parallel code. The final optimal heterogeneous parallel implementation
employs multithreading for the concurrent Monte Carlo simulations required by the replica ex-
change protocol. Each simulation thread performs asynchronous calls to the potential evaluation
kernel running on the GPU. Optimisations focussed on this interaction potential calculation, as
our detailed code profiling shows that the pairwise force calculations consume over 90% of the
run time, even for the smallest systems.

On the GPU, we found that the latency of global memory accesses was the chief bottleneck.
Performance on the GPU was further degraded by the random access pattern of the interaction
potential lookups for the short range potential. We achieved optimal performance through ad-
herence to the tabled CUDA best practices: maximising parallel execution (kernel occupancy)
and optimizing memory and instruction usage. Of these, alleviation of latency through the use
of shared memory had the most impact on GPU runtime. However, as the random contact
potential lookups do not match the perfect GPU programming model, counter-intuitive mem-
ory configurations also performed surprisingly well. Generally, we found that the use of texture
memory minimised the random access penalty, resulting in a 10 to 20% improvement over other
types of memory. However, the impact of kernel occupancy is greatest: we found that once
occupancy is raised to 37.5% or more, the latency of contact potential lookups is effectively
hidden and even the relative performance advantage of texture memory over shared memory for
storage of the residue data is removed. Further, we found that optimisation of the thread block

Chapter 10. Conclusions 186

size is important for small simulations. Simulations of fewer than 100 residues perform best with
a thread block size of 32 threads because this maximises block-level parallelism and the work
efficiency of thread warps. For larger simulations, the use of 64 threads per block shows the
benefits of greater block-level parallelism than 128 threads, highlighting that, once simulations
saturate GPU resources, high occupancy becomes increasingly important.

Benchmarks of simulations between 100 and 7668 residues experience in between 10 and
1400 times speed-up on a single GPU-CPU pairing depending on the configuration. By utilizing
multiple GPUs and CPU cores, this speed-up scales the Monte-Carlo simulations near linearly.
Application studies have shown, informally, that our simulations scale with 99% and 94% effi-
ciency to 2 and 3 GPU’s respectively due to the separability and low PCI-E bus dependence of
our simulations. Optimal performance is achieved though concurrent computation on the GPU
and CPU, overlapping Monte-Carlo moves on the CPU and interaction potential calculations
on the GPU using asynchronous GPU calls. For a single GPU and CPU thread, this results
in almost double the performance of sharing the GPU between multiple CPU threads using
synchronous GPU calls.

In terms of utility, a dual-core machine with one GTX280 card is capable of up to 9 million
Monte-Carlo iterations per day when performing a simulation containing 7668 residues using
GPU-accelerated code. By contrast, a CPU, fully utilizing both cores, manages only 12 000
iterations per day. Practically, this means a 10 million iteration simulation needs just over a day
using a GPU but over 800 days if it only uses the CPU. In nearly all cases, GPU acceleration
decreases simulation runtime by two orders of magnitude.

Verification and validation of our GPU code shows that it is capable of reproducing known
results and that the effect of the inaccuracies of GPU mathematics hardware are manageable
by delegation of appropriate operations to either the CPU or GPU.

Three case study applications were successfully performed using the implementation. We
find that inclusion of the ubiquitin C-terminus tail increases both the binding affinity and the
specificity of binding for the UIM/Ub system, even with a rigid model. This sees proportion of
native to inverse configurations at the binding site rising from 80:20 to 86:14.

The most significant application performed using our implementation is the macromolecular
crowding of cytochrome c and cytochrome c peroxidase by CspA. Using a repulsive crowder
model, we find our simulations to produce results in agreement with scaled particle theory and
Kim et al. [185]. We find that crowded simulations increase both the binding affinity and the
specificity of binding as the packing fraction of these simulations increases. Preliminary investi-
gation into fully repulsive crowding is promising, but reveals that the complex interactions with
fully attractive and repulsive residues in all proteins will alter the behaviour of the simulation
because of the blocking effect caused by crowder complexes in otherwise native binding pockets.

Chapter 10. Conclusions 187

These crowding simulations are also an excellent illustration of the utility of a fast simula-
tion system. Refinement of the repulsive crowder model and the detection and correction of any
human errors in performing the simulations is also accelerated. A complete representative set of
simulations can be performed in less than 2 weeks on a single GPU enabled desktop. To perform
the same simulations a cluster containing 48 cores would require over a month of continuous,
exclusive use. Over the course of our studies, these simulations were performed a total of five
times.

Our final simulation of the docking of two HBV capsid components proves that the model
can locate the native complex formed by a pair of these viral proteins. However, the energetic
frustration experienced by fragments composed of multiple viral proteins denotes that refinement
of the model is required before complete capsids or sub-capsids can be assembled using Kim’s
method. Accomplishment of this process will give new insights into molecular self-assembly and
may yield insights useful in the development of therapeutic drugs.

Finally, we note that, although we have only considered a specific model for protein-protein
interactions, our implementation could easily be generalized to other types of interaction func-
tions, as well as to other types of coarse-grained macromolecules (e.g. DNA). The effective
parallelisation approach developed in this work is generally applicable to N-body problems that
require similar random access to lookup tables, where aspects of the interaction between bodies
are dependent on their type or state. More immediate improvements to our docking imple-
mentation are in the form of flexible linkers. This addition to our simulation will enable the
refinement of protein docking poses for non-rigid molecules, e.g. the ubiquitin tail, allowing for
the discovery of structures even closer to experimentally observed native structures. The ad-
dition of these linkers is of little additional computational cost, merely an altered Monte-Carlo
mutation and the linear time complexity bonded force evaluations on either the CPU or GPU.

Flexibility and refinement can also be incorporated by the inclusion of a molecular dynamics
simulation based on the Kim-Hummer potential, vectorising and integrating the potentials to
derive updated positions on the GPU as opposed to performing an interaction potential reduc-
tion. Such a simulation will be amenable to greater speed-ups than the existing code as more
tasks can be performed in parallel on the GPU.

Chapter 10. Conclusions 188

References

[1] A. Tramontano, The Ten Most Wanted Solutions in Protein Bioinformatics (Chapman &
Hall/CRC Mathematical & Computational Biology). Chapman & Hall, 1 ed., May 2005.

[2] N. A. Pierce and E. Winfree, “Protein Design is NP-hard,” Protein Eng., vol. 15, pp. 779–
782, October 2002.

[3] I. Halperin, B. Ma, H. Wolfson, and R. Nussinov, “Principles of docking: An overview of
search algorithms and a guide to scoring functions.,” Proteins, vol. 47, pp. 409–443, June
2002.

[4] M. Levitt, “A simplified representation of protein conformations for rapid simulation of
protein folding.,” Journal of Molecular Biology, vol. 104, pp. 59–107, June 1976.

[5] M. S. Friedrichs and P. G. Wolynes, “Toward protein tertiary structure recognition by
means of associative memory hamiltonians.,” Science (New York, N.Y.), vol. 246, pp. 371–
373, October 1989.

[6] E. I. Shakhnovich and A. M. Gutin, “Implications of thermodynamics of protein folding
for evolution of primary sequences,” Nature, vol. 346, pp. 773–775, August 1990.

[7] J. Skolnick and A. Kolinski, “Simulations of the Folding of a Globular Protein,” Science,
vol. 250, pp. 1121–1125, November 1990.

[8] J. Karanicolas and C. L. Brooks, “The origins of asymmetry in the folding transition states
of protein L and protein G.,” Protein Sci, vol. 11, pp. 2351–2361, October 2002.

[9] N.-V. Buchete, J. E. Straub, and D. Thirumalai, “Anisotropic coarse-grained statistical
potentials improve the ability to identify nativelike protein structures,” The Journal of
Chemical Physics, vol. 118, no. 16, pp. 7658–7671, 2003.

[10] V. Tozzini, “Coarse-grained models for proteins,” Current Opinion in Structural Biology,
vol. 15, pp. 144–150, April 2005.

[11] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, “The
MARTINI Force Field: A Coarse Grained Model for Biomolecular Simulations,” The
Journal of Physical Chemistry B, vol. 111, pp. 7812–7824, July 2007.

References 190

[12] Y. C. Kim and G. Hummer, “Coarse-grained Models for Simulations of Multiprotein
Complexes: Application to Ubiquitin Binding,” Journal of Molecular Biology, vol. 375,
pp. 1416–1433, February 2008.

[13] D. Kirk and W.-M. Hwu, Programming massively parallel processors : a hands-on ap-
proach. Morgan Kaufmann Publishers, 2010.

[14] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra solvers for multicore
with GPU accelerators,” in Proceedings of IPDPS 2010: 24th IEEE International Parallel
and Distributed Processing Symposium, pp. 1–8, April 2010.

[15] L. Nyland, M. Harris, and J. Prins, “Fast N-Body Simulation with CUDA,” in GPU Gems
3 (H. Nguyen, ed.), ch. 31, Addison Wesley Professional, August 2007.

[16] R. G. Belleman, J. Bédorf, and S. F. Portegies Zwart, “High performance direct gravita-
tional N-body simulations on graphics processing units II: An implementation in CUDA,”
New Astronomy, vol. 13, pp. 103–112, February 2008.

[17] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Beberg,
D. L. Ensign, C. M. Bruns, and V. S. Pande, “Accelerating molecular dynamic simulation
on graphics processing units,” Journal of Computational Chemistry, vol. 30, pp. 864–872,
April 2009.

[18] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schul-
ten, “Accelerating molecular modeling applications with graphics processors,” Journal of
Computational Chemistry, vol. 28, pp. 2618–2640, September 2007.

[19] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and W. Mei, “GPU acceleration of
cutoff pair potentials for molecular modeling applications,” in CF ’08: Proceedings of the
5th conference on Computing frontiers, (New York, NY, USA), pp. 273–282, ACM, 2008.

[20] D. J. Hardy, J. E. Stone, and K. Schulten, “Multilevel summation of electrostatic potentials
using graphics processing units,” Parallel Computing, vol. 35, pp. 164–177, March 2009.

[21] N. Schmid, M. Bötschi, and W. F. Van Gunsteren, “A GPU solvent-solvent interaction
calculation accelerator for biomolecular simulations using the GROMOS software,” J.
Comput. Chem., vol. 31, no. 8, pp. 1636–1643, 2010.

[22] NVIDIA, “CUDA Programming Guide 2.3.” http://developer.download.nvidia.com/
compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf Last
accessed: 2009-09-08, 2009.

[23] NVIDIA, “CUDA Best Practices Guide 2.3.” http://developer.download.nvidia.com/
compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf Last
accessed: 2009-09-08, 2009.

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf

References 191

[24] A. D. Mackerell, “Empirical force fields for biological macromolecules: Overview and is-
sues,” J. Comput. Chem., vol. 25, pp. 1584–1604, October 2004.

[25] J. Anderson, C. Lorenz, and A. Travesset, “General purpose molecular dynamics simula-
tions fully implemented on graphics processing units,” Journal of Computational Physics,
vol. 227, pp. 5342–5359, May 2008.

[26] J. A. van Meel, A. Arnold, D. Frenkel, O. Portegies, and R. G. Belleman, “Harvesting
graphics power for MD simulations,” Molecular Simulation, vol. 34, no. 3, pp. 259–266,
2008.

[27] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus, “CHARMM: A program for macromolecular energy, minimization, and dy-
namics calculations,” J. Comput. Chem., vol. 4, pp. 187–217, February 1983.

[28] H. Pelletier and J. Kraut, “Crystal structure of a complex between electron transfer part-
ners, cytochrome c peroxidase and cytochrome c.,” Science (New York, N.Y.), vol. 258,
pp. 1748–1755, December 1992.

[29] nVIDIA, “GeForce 256.” http://www.nvidia.com/page/geforce256.html Last accessed:
2010-10-04.

[30] nVIDIA, “GeForce GTX 480.” http://www.nvidia.com/object/product_geforce_gtx_
480_us.html Last accessed: 2009-10-04.

[31] ATI, “ATI Radeon HD 5870 Graphics.” http://www.amd.com/us/products/desktop/
graphics/ati-radeon-hd-5000/hd-5870 Last accessed: 2009-10-04.

[32] J. Hensley, “AMD CTM overview,” in SIGGRAPH ’07: ACM SIGGRAPH 2007 courses,
(New York, NY, USA), p. 7, ACM, 2007.

[33] M. Olano and A. Lastra, “A shading language on graphics hardware: the pixelflow shading
system,” in SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, (New York, NY, USA), pp. 159–168, ACM, 1998.

[34] M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar, “Interactive multi-pass programmable
shading,” in SIGGRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, (New York, NY, USA), pp. 425–432, ACM
Press/Addison-Wesley Publishing Co., 2000.

[35] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,
“Brook for GPUs: stream computing on graphics hardware,” in SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, (New York, NY, USA), pp. 777–786, ACM Press, 2004.

[36] R. Fernando and M. J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable
Real-Time Graphics. Addison-Wesley Professional, March 2003.

http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/object/product_geforce_gtx_480_us.html
http://www.nvidia.com/object/product_geforce_gtx_480_us.html
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870

References 192

[37] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, and T. J.
Purcell, “A Survey of General-Purpose Computation on Graphics Hardware,” Computer
Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[38] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-based vi-
sual simulation on graphics hardware,” in HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 109–118, Eurographics
Association, 2002.

[39] W. Li, X. Wei, and A. E. Kaufman, “Implementing Lattice Boltzmann Computation on
Graphics Hardware,” The Visual Computer, vol. 19, pp. 444–456, 2003.

[40] J. Krüger and R. Westermann, “Linear algebra operators for GPU implementation of
numerical algorithms,” in ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, (New York,
NY, USA), p. 234, ACM, 2005.

[41] M. Harris, “Fast fluid dynamics simulation on the GPU,” in SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Courses, (New York, NY, USA), p. 220, ACM, 2005.

[42] A. Kolb and N. Cuntz, “Dynamic particle coupling for GPU-based fluid simulation,” in In
Proc. of the 18th Symposium on Simulation Technique, pp. 722–727, 2005.

[43] H. Nguyen, GPU Gems 3. Addison-Wesley Professional, 2007.

[44] R. Strzodka and C. Garbe, “Real-Time Motion Estimation and Visualization on Graphics
Cards,” in VIS ’04: Proceedings of the conference on Visualization ’04, (Washington, DC,
USA), pp. 545–552, IEEE Computer Society, 2004.

[45] M. Y. Ansari, “Video Image Processing Using Shaders,” 2003.

[46] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker, “Interactive Deformation
and Visualization of Level Set Surfaces Using Graphics Hardware,” in VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03), (Washington, DC, USA), p. 11, IEEE
Computer Society, 2003.

[47] J.-P. Farrugia, P. Horain, E. Guehenneux, and Y. Alusse, “GPUCV: A Framework for
Image Processing Acceleration with Graphics Processors,” in 2006 IEEE International
Conference on Multimedia and Expo, pp. 585–588, IEEE, December 2006.

[48] K. Moreland and E. Angel, “The FFT on a GPU,” in HWWS ’03: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 112–119, Eu-
rographics Association, 2003.

[49] M. Hopf and T. Ertl, “Hardware Accelerated Wavelet Transformations,” in Proc. TCVG
Symposium on Visualization, pp. 93–103, 2000.

References 193

[50] E. S. Larsen and D. Mcallister, “Fast matrix multiplies using graphics hardware,” in
Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), p. 55, ACM Press, 2001.

[51] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix solvers on the GPU:
conjugate gradients and multigrid,” in SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,
(New York, NY, USA), pp. 917–924, ACM, 2003.

[52] S. Popov, J. Günther, H. P. Seidel, and P. Slusallek, “Stackless KD-Tree Traversal for
High Performance GPU Ray Tracing,” Computer Graphics Forum, vol. 26, pp. 415–424,
September 2007.

[53] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan, “Photon
mapping on programmable graphics hardware,” in HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pp. 41–50, Eurograph-
ics Association, 2003.

[54] J. Hable and J. Rossignac, “Blister: GPU-based rendering of Boolean combinations of
free-form triangulated shapes,” in SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, (New
York, NY, USA), pp. 1024–1031, ACM, 2005.

[55] L. Bavoil, S. P. Callahan, A. Lefohn, Ao, and C. T. Silva, “Multi-fragment effects on the
GPU using the k-buffer,” in I3D ’07: Proceedings of the 2007 symposium on Interactive
3D graphics and games, (New York, NY, USA), pp. 97–104, ACM, 2007.

[56] M. Olano, B. Kuehne, and M. Simmons, “Automatic shader level of detail,” in HWWS ’03:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pp. 7–14, Eurographics Association, 2003.

[57] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast Computation of
Database Operations Using Graphics Processors,” in Proc. of ACM SIGMOD, pp. 215–
226, 2004.

[58] “OpenCL overview.” http://www.khronos.org/opencl Last accessed: 2009-10-04.

[59] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan, “Larrabee:
a many-core x86 architecture for visual computing,” ACM Trans. Graph., vol. 27, pp. 1–15,
August 2008.

[60] “nVIDIA’s Next Generation CUDA Compute Architecture: Fermi.” http:
//www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_
Architecture_Whitepaper.pdf Last accessed: 2010-08-23.

[61] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten, “GPU-accelerated molecular
modeling coming of age,” Journal of Molecular Graphics and Modelling, vol. 29, pp. 116–
125, September 2010.

http://www.khronos.org/opencl
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

References 194

[62] P. Eastman and V. S. Pande, “Efficient nonbonded interactions for molecular dynamics
on a graphics processing unit,” J. Comput. Chem., vol. 31, pp. 1268–1272, October 2010.

[63] M. J. Harvey, G. Giupponi, and G. D. Fabritiis, “ACEMD: Accelerating Biomolecular
Dynamics in the Microsecond Time Scale,” Journal of Chemical Theory and Computation,
vol. 5, pp. 1632–1639, June 2009.

[64] J. P. Walters, V. Balu, S. Kompalli, and V. Chaudhary, “Evaluating the use of GPUs in
liver image segmentation and HMMER database searches,” in IEEE International Sym-
posium on Parallel & Distributed Processing (IPDPS’09), pp. 1–12, 2009.

[65] H. Shi, B. Schmidt, W. Liu, and W. Mueller-Wittig, “Accelerating Error Correction in
High-Throughput Short-Read DNA Sequencing Data with CUDA,” in IEEE International
Workshop on High Performance Computational Biology (HiCOMB 2009), 2009.

[66] D. Komatitsch, D. Michéa, and G. Erlebacher, “Porting a high-order finite-element earth-
quake modeling application to NVIDIA graphics cards using CUDA,” Journal of Parallel
and Distributed Computing, vol. 69, pp. 451–460, May 2009.

[67] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated Monte Carlo simula-
tion of the 2D and 3D Ising model,” Journal of Computational Physics, vol. 228, pp. 4468–
4477, July 2009.

[68] S. S. Stone, J. P. Haldar, S. C. Tsao, Hwu, B. P. Sutton, and Z. P. Liang, “Accelerating
advanced MRI reconstructions on GPUs,” J. Parallel Distrib. Comput., vol. 68, no. 10,
pp. 1307–1318, 2008.

[69] C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, K. Mueller, and S. B. Jiang, “GPU-based
ultrafast IMRT plan optimization,” Physics in Medicine and Biology, vol. 54, pp. 6565–
6573, November 2009.

[70] B. Zhang, X. Yang, F. Yang, X. Yang, C. Qin, D. Han, X. Ma, K. Liu, and J. Tian, “The
CUBLAS and CULA based GPU acceleration of adaptive finite element framework for
bioluminescence tomography,” Opt. Express, vol. 18, pp. 20201–20214, September 2010.

[71] N. Singla, M. Hall, B. Shands, and R. D. Chamberlain, “Financial Monte Carlo simulation
on architecturally diverse systems,” in 2008 Workshop on High Performance Computa-
tional Finance, pp. 1–7, IEEE, November 2008.

[72] V. Simek, R. Dvorak, F. Zboril, and J. Kunovsky, “Towards Accelerated Computation of
Atmospheric Equations Using CUDA,” Computer Modeling and Simulation, International
Conference on, vol. 0, pp. 449–454, 2009.

[73] R. Kelly, “GPU Computing for Atmospheric Modeling,” Computing in Science and Engi-
neering, vol. 12, no. 4, pp. 26–33, 2010.

References 195

[74] M. W. Govett, J. Middlecoff, and T. Henderson, “Running the NIM Next-Generation
Weather Model on GPUs,” Cluster Computing and the Grid, IEEE International Sympo-
sium on, vol. 0, pp. 792–796, 2010.

[75] Y. Luo and R. Duraiswami, “Canny edge detection on NVIDIA CUDA,” in 2008 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
pp. 1–8, IEEE, June 2008.

[76] X. H. H. Wang and W. F. Good, “Real-time stereographic rendering and display of medical
images with programmable GPUs.,” Computerized medical imaging and graphics : the
official journal of the Computerized Medical Imaging Society, vol. 32, pp. 118–123, March
2008.

[77] J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based Image Processing
and Computer Vision,” in 2008 IEEE International Conference on Multimedia and Expo,
pp. 9–12, IEEE, June 2008.

[78] B. Pieters, D. V. Rijsselbergen, W. D. Neve, and R. V. de Walle, “Performance evaluation
of H.264/AVC decoding and visualization using the GPU,” Applications of Digital Image
Processing XXX, vol. 6696, no. 1, pp. 606–629, 2007.

[79] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV: A GPU-Accelerated
Framework for Image Processing and Computer Vision,” in Advances in Visual Comput-
ing (G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. A. Peters,
J. Klosowski, L. Arns, Y. Chun, T.-M. Rhyne, and L. Monroe, eds.), vol. 5359 of Lec-
ture Notes in Computer Science, ch. 42, pp. 430–439–439, Berlin, Heidelberg: Springer
Berlin/Heidelberg, 2008.

[80] J. Owens, “Data-parallel algorithms and data structures,” in SIGGRAPH ’07: ACM SIG-
GRAPH 2007 courses, (New York, NY, USA), p. 3, ACM, 2007.

[81] W. Kahan, “Pracniques: further remarks on reducing truncation errors,” Commun. ACM,
vol. 8, no. 1, p. 40, 1965.

[82] M. Harris, “Optimizing Parallel Reduction in CUDA.” http://developer.download.nvidia.
com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf Last accessed:
2009-09-08.

[83] J. Yang, Y. Wang, and Y. Chen, “GPU accelerated molecular dynamics simulation of ther-
mal conductivities,” Journal of Computational Physics, vol. 221, pp. 799–804, February
2007.

[84] G. R. Smith and M. J. Sternberg, “Prediction of protein-protein interactions by docking
methods.,” Current Opinion in Structural Biology, vol. 12, pp. 28–35, February 2002.

[85] A. Tozeren and S. W. Byers, New Biology for Engineers and Computer Scientists. Prentice
Hall, May 2003.

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf

References 196

[86] G. Marshall and I. Vakser, “Protein-Protein Docking Methods,” in Proteomics and
Protein-Protein Interactions (G. Waksman, ed.), vol. 3 of Protein Reviews, ch. 6, pp. 115–
146–146, Boston, MA: Springer US, 2005.

[87] W. Humphrey, A. Dalke, and K. Schulten, “VMD – Visual Molecular Dynamics,” Journal
of Molecular Graphics, vol. 14, pp. 33–38, 1996.

[88] C. J. Tsai, S. Kumar, B. Ma, and R. Nussinov, “Folding funnels, binding funnels, and
protein function.,” Protein Science, vol. 8, pp. 1181–1190, June 1999.

[89] K. Lee, “Computational study for protein-protein docking using global optimization and
empirical potentials.,” International Journal of Molecular Sciences, vol. 9, pp. 65–77, Jan-
uary 2008.

[90] A. Bonvin, “Flexible protein-protein docking,” Current Opinion in Structural Biology,
vol. 16, pp. 194–200, April 2006.

[91] L. P. Ehrlich, M. Nilges, and R. C. Wade, “The impact of protein flexibility on protein-
protein docking,” Proteins, vol. 58, pp. 126–133, January 2005.

[92] A. Solernou and J. Fernández-Recio, “Refinement of rigid-body protein-protein docking
using backbone,” Open Access Bioinformatics, vol. 2010.2, pp. 19–27, April 2010.

[93] L. Li, R. Chen, and Z. Weng, “RDOCK: refinement of rigid-body protein docking predic-
tions.,” Proteins, vol. 53, pp. 693–707, November 2003.

[94] A. Tovchigrechko and I. A. Vakser, “How common is the funnel-like energy landscape in
protein-protein interactions?,” Protein Science, vol. 10, pp. 1572–1583, August 2001.

[95] J. E. Jones, “On the Determination of Molecular Fields. II. From the Equation of State
of a Gas,” Proceedings of the Royal Society of London. Series A, vol. 106, pp. 463–477,
October 1924.

[96] S. Wodak, “Computer analysis of protein-protein interaction,” Journal of Molecular Biol-
ogy, vol. 124, pp. 323–342, September 1978.

[97] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, and I. A. Vakser,
“Molecular surface recognition: determination of geometric fit between proteins and their
ligands by correlation techniques,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 89, pp. 2195–2199, March 1992.

[98] H. A. Gabb, R. M. Jackson, and M. J. Sternberg, “Modelling protein docking using shape
complementarity, electrostatics and biochemical information.,” Journal of Molecular Biol-
ogy, vol. 272, pp. 106–120, September 1997.

[99] P. Burkhard, P. Taylor, and M. D. Walkinshaw, “An example of a protein ligand found
by database mining: description of the docking method and its verification by a 2.3 A

References 197

X-ray structure of a thrombin-ligand complex.,” Journal of Molecular Biology, vol. 277,
pp. 449–466, March 1998.

[100] V. Sobolev, R. C. Wade, G. Vriend, and M. Edelman, “Molecular docking using surface
complementarity.,” Proteins, vol. 25, pp. 120–129, May 1996.

[101] R. Chen, L. Li, and Z. Weng, “ZDOCK: an initial-stage protein-docking algorithm.,”
Proteins, vol. 52, pp. 80–87, July 2003.

[102] F. Jiang and S. H. Kim, “"Soft Docking": matching of molecular surface cubes.,” Journal
of Molecular Biology, vol. 219, pp. 79–102, May 1991.

[103] R. D. Taylor, P. J. Jewsbury, and J. W. Essex, “A review of protein-small molecule docking
methods,” Journal of Computer-Aided Molecular Design, vol. 16, pp. 151–166, March 2002.

[104] Y.-P. P. Pang, E. Perola, K. Xu, and F. G. G. Prendergast, “EUDOC: a computer program
for identification of drug interaction sites in macromolecules and drug leads from chemical
databases.,” Journal of Computational Chemistry, vol. 22, pp. 1750–1771, November 2001.

[105] Y. P. Pang, T. J. Mullins, B. A. Swartz, J. S. McAllister, B. E. Smith, C. J. Archer, R. G.
Musselman, A. E. Peters, B. P. Wallenfelt, and K. W. Pinnow, “EUDOC on the IBM Blue
Gene/L system: Accelerating the transfer of drug discoveries from laboratory to patient,”
IBM Journal of Research and Development, vol. 52, pp. 69–81, January 2008.

[106] G. Jones, “Development and validation of a genetic algorithm for flexible docking,” Journal
of Molecular Biology, vol. 267, pp. 727–748, April 1997.

[107] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and
A. J. Olson, “Automated docking using a Lamarckian genetic algorithm and an empirical
binding free energy function,” J. Comput. Chem., vol. 19, pp. 1639–1662, January 1998.

[108] C. M. Oshiro, I. D. Kuntz, and J. S. Dixon, “Flexible ligand docking using a genetic
algorithm.,” Journal of computer-aided molecular design, vol. 9, pp. 113–130, April 1995.

[109] C. D. Rosin, R. S. Halliday, W. E. Hart, and R. K. Belew, “A Comparison of Global and
Local Search Methods in Drug Docking,” in In Proceedings of the Seventh International
Conference on Genetic Algorithms, pp. 221–228, 1997.

[110] D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. B. Fogel, L. J. Fogel,
and S. T. Freer, “Molecular recognition of the inhibitor AG-1343 by HIV-1 protease:
conformationally flexible docking by evolutionary programming.,” Chemistry & biology,
vol. 2, pp. 317–324, May 1995.

[111] P. Khodade, R. Prabhu, N. Chandra, S. Raha, and R. Govindarajan, “Parallel imple-
mentation of AutoDock,” Journal of Applied Crystallography, vol. 40, pp. 598–599, Jun
2007.

References 198

[112] V. E. Lamberti, L. D. Fosdick, E. R. Jessup, and C. J. C. Schauble, “A Hands-On In-
troduction to Molecular Dynamics,” Journal of Chemical Education, vol. 79, p. 601, May
2002.

[113] C. Sagui and T. A. Darden, “Molecular dynamics simulations of biomolecules: long-range
electrostatic effects.,” Annual review of biophysics and biomolecular structure, vol. 28,
no. 1, pp. 155–179, 1999.

[114] K. Wiehe, M. W. Peterson, B. Pierce, J. Mintseris, and Z. Weng, “Protein-protein docking:
overview and performance analysis.,” Methods in Molecular Biology, vol. 413, pp. 283–314,
2008.

[115] J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics of folded proteins.,” Nature,
vol. 267, pp. 585–590, June 1977.

[116] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten, “Molecular
Dynamics Simulations of the Complete Satellite Tobacco Mosaic Virus,” Structure, vol. 14,
pp. 437–449, March 2006.

[117] D. L. Ensign, P. M. Kasson, and V. S. Pande, “Heterogeneity Even at the Speed Limit
of Folding: Large-scale Molecular Dynamics Study of a Fast-folding Variant of the Villin
Headpiece,” Journal of Molecular Biology, vol. 374, pp. 806–816, November 2007.

[118] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D.
Skeel, L. Kalé, and K. Schulten, “Scalable molecular dynamics with NAMD,” Journal of
Computational Chemistry, vol. 26, pp. 1781–1802, December 2005.

[119] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev,
C. Simmerling, B. Wang, and R. J. Woods, “The AMBER biomolecular simulation pro-
grams,” Journal of Computatioanl Chemistry, vol. 26, pp. 1668–1688, December 2005.

[120] E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a package for molecular
simulation and trajectory analysis,” Journal of Molecular Modeling, vol. 7, pp. 306–317,
August 2001.

[121] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of
Computational Physics, vol. 117, pp. 1–19, March 1995.

[122] L. Kalé, R. Skeel, M. Bh, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki,
K. Varadarajan, and K. Schulten, “NAMD2: Greater scalability for parallel molecular
dynamics,” Journal of Computational Physics, vol. 151, pp. 283–312, 1999.

[123] “Amber (PMEMD) NVIDIA GPU Support Benchmarks.” http://ambermd.org/gpus/
benchmarks.htm Last Accessed: 2010-09-21.

[124] Z. Yao, “Improved neighbor list algorithm in molecular simulations using cell decomposi-
tion and data sorting method,” Computer Physics Communications, vol. 161, pp. 27–35,
August 2004.

http://ambermd.org/gpus/benchmarks.htm
http://ambermd.org/gpus/benchmarks.htm

References 199

[125] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation
of State Calculations by Fast Computing Machines,” The Journal of Chemical Physics,
vol. 21, no. 6, pp. 1087–1092, 1953.

[126] W. K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their Appli-
cations,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[127] B. Widom, Statistical Mechanics: A Concise Introduction for Chemists. Cambridge Uni-
versity Press, 1 ed., May 2002.

[128] P. Hellekalek, “Don’t trust parallel Monte Carlo!,” SIGSIM Simul. Dig., vol. 28, pp. 82–89,
July 1998.

[129] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 8, pp. 3–30, January 1998.

[130] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and new perspec-
tives,” Physical Chemistry Chemical Physics, vol. 7, no. 23, pp. 3910–3916, 2005.

[131] Y. Li, M. Mascagni, and A. Gorin, “A decentralized parallel implementation for parallel
tempering algorithm,” Parallel Computing, vol. 35, pp. 269–283, December 2008.

[132] M. Eleftheriou, A. Rayshubski, J. W. Pitera, B. G. Fitch, R. Zhou, and R. S. Germain,
“Parallel implementation of the replica exchange molecular dynamics algorithm on Blue
Gene/L,” International Parallel and Distributed Processing Symposium, vol. 0, p. 281,
2006.

[133] H. Kokubo and Y. Okamoto, “Prediction of membrane protein structures by replica-
exchange Monte Carlo simulations: Case of two helices,” Journal of Chemical Physics,
vol. 120, pp. 10837–10847, June 2004.

[134] M.W. Maddox and M. L. Longo, “AMonte Carlo study of peptide insertion into lipid bilay-
ers: equilibrium conformations and insertion mechanisms.,” Biophysical Journal, vol. 82,
pp. 244–263, January 2002.

[135] W. Im and C. L. Brooks, “Interfacial folding and membrane insertion of designed peptides
studied by molecular dynamics simulations.,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 102, pp. 6771–6776, May 2005.

[136] W. Y. Y. Yang, J. W. Pitera, W. C. Swope, and M. Gruebele, “Heterogeneous folding of
the trpzip hairpin: full atom simulation and experiment.,” Journal of Molecular Biology,
vol. 336, pp. 241–251, February 2004.

[137] D. Kihara, H. Lu, A. Kolinski, and J. Skolnick, “TOUCHSTONE: An ab initio protein
structure prediction method that uses threading-based tertiary restraints,” Proceedings of
the National Academy of Sciences of the United States of America, vol. 98, pp. 10125–
10130, August 2001.

References 200

[138] A. E. García and K. Y. Sanbonmatsu, “Exploring the energy landscape of a β hairpin in
explicit solvent,” Proteins, vol. 42, no. 3, pp. 345–354, 2001.

[139] J. Nilmeier and M. P. Jacobson, “Monte Carlo Sampling with Hierarchical Move Sets:
POSH Monte Carlo,” Journal of Chemical Theory and Computation, vol. 5, pp. 1968–
1984, August 2009.

[140] A. E. Roitberg, A. Okur, and C. Simmerling, “Coupling of Replica Exchange Simulations
to a Non-Boltzmann Structure Reservoir,” The Journal of Physical Chemistry B, vol. 111,
pp. 2415–2418, March 2007.

[141] M.-H. Hao and H. A. Scheraga, “Monte Carlo Simulation of a First-Order Transition for
Protein Folding,” The Journal of Physical Chemistry, vol. 98, pp. 4940–4948, May 1994.

[142] J. W. Pitera and W. Swope, “Understanding folding and design: Replica-exchange simu-
lations of “Trp-cage” miniproteins,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 100, pp. 7587–7592, June 2003.

[143] N. Rathore and J. J. de Pablo, “Monte Carlo simulation of proteins through a random
walk in energy space,” The Journal of Chemical Physics, vol. 116, no. 16, pp. 7225–7230,
2002.

[144] E. Shakhnovich, “Monte-Carlo Methods in Studies of Protein Folding and Evolution,” in
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
Volume 2 (M. Ferrario, G. Ciccotti, and K. Binder, eds.), vol. 704 of Lecture Notes in
Physics, ch. 21, pp. 563–593–593, Springer Berlin / Heidelberg, 2006.

[145] S. Lorenzen and Y. Zhang, “Monte Carlo refinement of rigid-body protein docking struc-
tures with backbone displacement and side-chain optimization,” Protein Science, vol. 16,
pp. 2716–2725, December 2007.

[146] J. J. Gray, S. Moughon, C. Wang, O. Schueler-Furman, B. Kuhlman, C. A. Rohl, and
D. Baker, “Protein-protein docking with simultaneous optimization of rigid-body displace-
ment and side-chain conformations.,” Journal of Molecular Biology, vol. 331, pp. 281–299,
August 2003.

[147] K. Tai, “Conformational sampling for the impatient,” Biophysical Chemistry, vol. 107,
pp. 213–220, February 2004.

[148] S. Doniach and P. Eastman, “Protein dynamics simulations from nanoseconds to microsec-
onds,” Current Opinion in Structural Biology, vol. 9, pp. 157–163, April 1999.

[149] W. Shinoda and M. Mikami, “Self-guided molecular dynamics in the isothermal?isobaric
ensemble,” Chemical Physics Letters, vol. 335, pp. 265–272, February 2001.

[150] X. Wu and B. R. Brooks, “Self-guided Langevin Dynamics simulation method,” Chemical
Physics Letters, vol. 381, pp. 512–518, November 2003.

References 201

[151] S. C. Phillips, J. W. Essex, and C. M. Edge, “Digitally filtered molecular dynamics: The
frequency specific control of molecular dynamics simulations,” The Journal of Chemical
Physics, vol. 112, no. 6, pp. 2586–2597, 2000.

[152] A. Kolinski and J. Skolnick, “Monte Carlo simulations of protein folding. I. Lattice model
and interaction scheme.,” Proteins, vol. 18, pp. 338–352, April 1994.

[153] Z. N. Gerek and S. B. Ozkan, “A flexible docking scheme to explore the binding selectivity
of PDZ domains,” Protein Science, vol. 19, no. 5, pp. 914–928, 2010.

[154] A. May and M. Zacharias, “Protein-Ligand Docking Accounting for Receptor Side Chain
and Global Flexibility in Normal Modes: Evaluation on Kinase Inhibitor Cross Docking,”
Journal of Medicinal Chemistry, vol. 51, pp. 3499–3506, June 2008.

[155] F. Tama, O. Miyashita, and C. L. Brooks, “Normal mode based flexible fitting of high-
resolution structure into low-resolution experimental data from cryo-EM.,” J Struct Biol,
vol. 147, pp. 315–326, September 2004.

[156] Y. Levy, P. G. Wolynes, and J. N. Onuchic, “Protein topology determines binding mecha-
nism,” Proceedings of the National Academy of Sciences of the United States of America,
vol. 101, pp. 511–516, January 2004.

[157] J. Skolnick, L. Jaroszewski, A. Kolinski, and A. Godzik, “Derivation and testing of pair
potentials for protein folding. When is the quasichemical approximation correct?,” Protein
Science, vol. 6, pp. 676–688, March 1997.

[158] S. Miyazawa and R. Jernigan, “Residue-Residue Potentials with a Favorable Contact Pair
Term and an Unfavorable High Packing Density Term for Simulation and Threading,”
Journal of Molecular Biology, vol. 256, pp. 623–644, 1996.

[159] M. Zacharias, “Protein-protein docking with a reduced protein model accounting for side-
chain flexibility.,” Protein Science, vol. 12, pp. 1271–1282, June 2003.

[160] A. Liwo, S. Ołdziej, C. Czaplewski, D. S. Kleinerman, P. Blood, and H. A. Scheraga, “Im-
plementation of molecular dynamics and its extensions with the coarse-grained UNRES
force field on massively parallel systems; towards millisecond-scale simulations of protein
structure, dynamics, and thermodynamics.,” Journal of Chemical Theory and Computa-
tion, vol. 6, pp. 890–909, March 2010.

[161] A. Voegler Smith and C. K. Hall, “Alpha-helix formation: discontinuous molecular dynam-
ics on an intermediate-resolution protein model,” Proteins, vol. 44, pp. 344–360, August
2001.

[162] A. Irbäck, F. Sjunnesson, and S. Wallin, “Three-helix-bundle protein in a Ramachandran
model,” Proceedings of the National Academy of Sciences of the United States of America,
vol. 97, pp. 13614–13618, December 2000.

References 202

[163] G. Wei, N. Mousseau, and P. Derreumaux, “Complex folding pathways in a simple β-
hairpin,” Proteins, vol. 56, no. 3, pp. 464–474, 2004.

[164] C. Clementi, “Coarse-grained models of protein folding: toy models or predictive tools,”
Current Opinion in Structural Biology, December 2007.

[165] C. Chen, R. Saxena, and G.-W. W. Wei, “A multiscale model for virus capsid dynamics.,”
International Journal of Biomedical Imaging, vol. 2010, 2010.

[166] R. Das and D. Baker, “Macromolecular modeling with Rosetta.,” Annual Review of Bio-
chemistry, vol. 77, no. 1, pp. 363–382, 2008.

[167] Rosetta@home http://boinc.bakerlab.org/rosetta/ Last Accessed: 2010-09-30.

[168] A. Zhmurov, R. I. Dima, Y. Kholodov, and V. Barsegov, “Sop-GPU: Accelerating
biomolecular simulations in the centisecond timescale using graphics processors,” Proteins,
vol. 78, pp. 2984–2999, July 2010.

[169] S. Miyazawa and R. Jernigan, “Self-consistent Estimation of Inter-residue Protein Con-
tact Energies Based on an Equilibrium Mixture Approximation of Residues,” Proteins:
Structures, Function, and Genetics, vol. 34, pp. 49–68, 1999.

[170] M. R. Betancourt and D. Thirumalai, “Pair potentials for protein folding: choice of ref-
erence states and sensitivity of predicted native states to variations in the interaction
schemes,” Protein Sci, vol. 8, pp. 361–369, February 1999.

[171] C. Thachuk, A. Shmygelska, and H. H. Hoos, “A replica exchange Monte Carlo algorithm
for protein folding in the HP model.,” BMC bioinformatics, vol. 8, p. 342, September 2007.

[172] M. Saito and M. Matsumoto, “SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudo-
random Number Generator,” Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–
622, 2006.

[173] D. Goldberg, “What every computer scientist should know about floating-point arith-
metic,” ACM Comput. Surv., vol. 23, pp. 5–48, March 1991.

[174] N. J. Higham, “The accuracy of floating point summation,” SIAM J. Sci. Comput., vol. 14,
no. 4, pp. 783–799, 1993.

[175] M. Tasche and H. Zeuner, Handbook of Analytic Computational Methods in Applied Math-
ematics. Chapman and Hall/CRC, 1 ed., June 2000.

[176] K. G. Troitzsch, “Validating Simulation Models,” in Proceedings of 18th European Simula-
tion Multiconference on Networked Simulation and Simulation Networks, SCS Publishing
House, pp. 265–270, 2004.

[177] K. A. Swanson, R. S. Kang, S. D. Stamenova, L. Hicke, and I. Radhakrishnan, “Solution
structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor
downregulation,” The EMBO Journal, vol. 22, pp. 4597–4606, September 2003.

http://boinc.bakerlab.org/rosetta/

References 203

[178] J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles
and Practice. Addison-Wesley, 2nd ed., June 1990.

[179] J. E. Mebius, “Derivation of the Euler-Rodrigues formula for three-dimensional rotations
from the general formula for four-dimensional rotations,” arXiv General Mathematics,
arXiv:math/0701759v1, Jan 2007.

[180] R. B. Best, “Personal Communications,” 2008-2010.

[181] R. Ellis, “Macromolecular Crowding: Obvious But Underappreciated,” Trends in Bio-
chemical Sciences, vol. 26, pp. 597–604, October 2001.

[182] A. Minton, “Models for Excluded Volume Interaction between an Unfolded Protein and
Rigid Macromolecular Cosolutes: Macromolecular Crowding and Protein Stability Revis-
ited,” Biophysical Journal, vol. 88, pp. 971–985, February 2005.

[183] H. X. Zhou, G. Rivas, and A. P. Minton, “Macromolecular Crowding and Confinement:
Biochemical, Biophysical, and Potential Physiological Consequences,” Annual Review of
Biophysics, vol. 37, pp. 375–397, June 2008.

[184] J. Batra, K. Xu, and H.-X. Zhou, “Nonadditive effects of mixed crowding on protein sta-
bility,” Proteins: Structure, Function, and Bioinformatics, vol. 77, pp. 133–138, October
2009.

[185] Y. C. Kim, R. B. Best, and J. Mittal, “Macromolecular crowding effects on protein–
protein binding affinity and specificity,” The Journal of Chemical Physics, vol. 133, no. 20,
p. 205101, 2010.

[186] M. Hagan and D. Chandler, “Dynamic Pathways for Viral Capsid Assembly,” Biophysical
Journal, vol. 91, pp. 42–54, July 2006.

References 204

Appendix A

Supplementary Data

Table A.1: Amino Acid Parameters. The van der Waals radius and electrostatic charge characteris-
tics of each amino acid residue [12]. Electrostatic charge q refers to the elementary charge, approximately
1.6× 10−19 coulombs.

Amino Acid Abbreviation van der Waals (Å) Charge (q)
Alanine ALA 5.0 0
Argnine ARG 6.6 1
Asparagine ASN 5.7 -1
Aspartic acid ASP 5.6 -1
Cysteine CYS 5.5 0
Glutamic acid GLU 5.9 -1
Glutamine GLN 6.0 0
Glycine GLY 4.5 0
Histine HIS 6.1 0.5
Isoleucine ILE 6.2 0
Leucine LEU 6.2 0
Lysine LYS 6.4 1
Methionine MET 6.2 0
Phenylalanine PHE 6.4 0
Proline PRO 5.6 0
Serine SER 5.2 0
Threonine THR 5.6 0
Tryptophan TRP 6.8 0
Tyrosine TYR 6.5 0
Valine VAL 5.9 0

Chapter A. Supplementary Data 206
T
ab

le
A
.2
:
C
on

ta
ct

E
ne

rg
ie
s
in

R
T

un
it
s.

Va
lu
es

ar
e
at
ta
in
ed

fro
m

M
iy
az
aw

a
an

d
Je
rn
ig
an

[1
58
]

A
m

in
o

A
ci

d
C

ys
M

et
P

he
Il

e
L

eu
V

al
T

rp
T

yr
A

la
G

ly
T

hr
Se

r
A

sn
G

ln
A

sp
G

lu
H

is
A

rg
L

ys
P

ro
C

ys
-5

.4
4

-4
.9

9
-5

.8
0

-5
.5

0
-5

.8
3

-4
.9

6
-4

.9
5

-4
.1

6
-3

.5
7

-3
.1

6
-3

.1
1

-2
.8

6
-2

.5
9

-2
.8

5
-2

.4
1

-2
.2

7
-3

.6
0

-2
.5

7
-1

.9
5

-3
.0

7
M

et
-5

.4
6

-6
.5

6
-6

.0
2

-6
.4

1
-5

.3
2

-5
.5

5
-4

.9
1

-3
.9

4
-3

.3
9

-3
.5

1
-3

.0
3

-2
.9

5
-3

.3
0

-2
.5

7
-2

.8
9

-3
.9

8
-3

.1
2

-2
.4

8
-3

.4
5

P
he

-7
.2

6
-6

.8
4

-7
.2

8
-6

.2
9

-6
.1

6
-5

.6
6

-4
.8

1
-4

.1
3

-4
.2

8
-4

.0
2

-3
.7

5
-4

.1
0

-3
.4

8
-3

.5
6

-4
.7

7
-3

.9
8

-3
.3

6
-4

.2
5

Il
e

-6
.5

4
-7

.0
4

-6
.0

5
-5

.7
8

-5
.2

5
-4

.5
8

-3
.7

8
-4

.0
3

-3
.5

2
-3

.2
4

-3
.6

7
-3

.1
7

-3
.2

7
-4

.1
4

-3
.6

3
-3

.0
1

-3
.7

6
L

eu
-7

.3
7

-6
.4

8
-6

.1
4

-5
.6

7
-4

.9
1

-4
.1

6
-4

.3
4

-3
.9

2
-3

.7
4

-4
.0

4
-3

.4
0

-3
.5

9
-4

.5
4

-4
.0

3
-3

.3
7

-4
.2

0
V

al
-5

.5
2

-5
.1

8
-4

.6
2

-4
.0

4
-3

.3
8

-3
.4

6
-3

.0
5

-2
.8

3
-3

.0
7

-2
.4

8
-2

.6
7

-3
.5

8
-3

.0
7

-2
.4

9
-3

.3
2

T
rp

-5
.0

6
-4

.6
6

-3
.8

2
-3

.4
2

-3
.2

2
-2

.9
9

-3
.0

7
-3

.1
1

-2
.8

4
-2

.9
9

-3
.9

8
-3

.4
1

-2
.6

9
-3

.7
3

T
yr

-4
.1

7
-3

.3
6

-3
.0

1
-3

.0
1

-2
.7

8
-2

.7
6

-2
.9

7
-2

.7
6

-2
.7

9
-3

.5
2

-3
.1

6
-2

.6
0

-3
.1

9
A

la
-2

.7
2

-2
.3

1
-2

.3
2

-2
.0

1
-1

.8
4

-1
.8

9
-1

.7
0

-1
.5

1
-2

.4
1

-1
.8

3
-1

.3
1

-2
.0

3
G

ly
-2

.2
4

-2
.0

8
-1

.8
2

-1
.7

4
-1

.6
6

-1
.5

9
-1

.2
2

-2
.1

5
-1

.7
2

-1
.1

5
-1

.8
7

T
hr

-2
.1

2
-1

.9
6

-1
.8

8
-1

.9
0

-1
.8

0
-1

.7
4

-2
.4

2
-1

.9
0

-1
.3

1
-1

.9
0

Se
r

-1
.6

7
-1

.5
8

-1
.4

9
-1

.6
3

-1
.4

8
-2

.1
1

-1
.6

2
-1

.0
5

-1
.5

7
A

sn
-1

.6
8

-1
.7

1
-1

.6
8

-1
.5

1
-2

.0
8

-1
.6

4
-1

.2
1

-1
.5

3
G

ln
-1

.5
4

-1
.4

6
-1

.4
2

-1
.9

8
-1

.8
0

-1
.2

9
-1

.7
3

A
sp

-1
.2

1
-1

.0
2

-2
.3

2
-2

.2
9

-1
.6

8
-1

.3
3

G
lu

-0
.9

1
-2

.1
5

-2
.2

7
-1

.8
0

-1
.2

6
H

is
-3

.0
5

-2
.1

6
-1

.3
5

-2
.2

5
A

rg
-1

.5
5

-0
.5

9
-1

.7
0

L
ys

-0
.1

2
-0

.9
7

P
ro

-1
.7

5

Chapter A. Supplementary Data 207

Table A.3: List of Variables

Symbol Value Quantity/Units
Kb 1.380650424× 10−23 Boltzmann Constant (J/K)

Echarge 1.602176487× 10−19 Elementary Charge (Coulombs)
Å 10−10 Angstrom (Metres)
D 80 Dialectric constant of water
NA 6.02214179× 1023 Avogadro’s Constant
Rgas 8.314472 Gas Constant
λ 0.159 Scaling parameter
e0 −2.27 Offset parameter (KBT)
ξ 10 Debye screening length (Å)

(294×Rgas × 4184)−1 Conversion from KBT to kcal.mol−1

Appendix B

Benchmarking Configuration

Table B.1: System Configuration The hardware and software configuration is used for all benchmarks
in Chapters 7

CPU Intel Core2Duo 3 GHz (E8400)
Memory 4GB DDR 2 800, 2 channel configuration
Mainboard Asus P5N-T (nforce 780i chip set)
OS Ubuntu 9.10 64-bit
GPU NVIDIA GTX 280 (Asus, hardware rev a1)
NVIDIA Driver 185.18
CUDA 2.21
GSL 1.12

Table B.2: Simulation Molecular Data Benchmarking simulation data is attained from one of three
complexes.

UIM/Ub Vsp27/Ubiquitin (100 residues, 24 and 76 respectively)
Cc/Ccp Yeast cytochrome c/cytochrome c peroxidase (402 residues,

108 and 294 respectively)
2g33 Hepatitis B virus (284 residues per capsid piece)

Appendix C

Performance

Chapter C. Performance 210
T
ab

le
C
.1
:
C
P
U

Si
m
ul
at
io
n
B
en

ch
m
ar
k
Sc
al
ab

ili
ty

C
P
U

1
T
hr
ea
d

C
P
U

2
T
hr
ea
ds

C
P
U

4
T
hr
ea
ds

R
es
id
ue

s
T
im

e
(s
)

T
im

e
(s
)

Sp
ee
du

p
T
im

e
(s
)

Sp
ee
du

p
10

0
18

9
1.
98
×

9
1.
92
×

40
2

30
9

15
8

1.
95
×

15
6

1.
98
×

56
8

78
6

41
1

1.
91
×

40
0

1.
97
×

11
36

47
02

23
87

1.
97
×

23
74

1.
98
×

17
04

11
73

5
59

68
1.
97
×

59
43

1.
97
×

22
72

21
91

3
11

09
9

1.
97
×

11
07

0
1.
98
×

34
08

51
72

5
26

09
9

1.
98
×

26
07

7
1.
98
×

45
44

94
05

4
47

90
3

1.
96
×

47
75

0
1.
97
×

56
80

14
86

95
75

67
0

1.
97
×

75
46

6
1.
97
×

68
16

21
61

40
11

00
90

1.
96
×

10
96

43
1.
97
×

76
68

27
50

42
13

97
73

1.
97
×

13
89

66
1.
98
×

Chapter C. Performance 211
T
ab

le
C
.2
:
Sy

nc
hr
on

ou
s
G
P
U

Si
m
ul
at
io
n
B
en

ch
m
ar
k
P
er
fo
rm

an
ce

C
P
U

G
P
U

Sy
nc

.
1
T
hr
ea
d

G
P
U

Sy
nc

.
2
T
hr
ea
ds

G
P
U

Sy
nc

.
4
T
hr
ea
ds

R
es
id
ue

s
T
im

e
(s
)

T
im

e
(s
)

Sp
ee
du

p
T
im

e
(s
)

Sp
ee
du

p
T
im

e
(s
)

Sp
ee
du

p
10

0
18

2.
0

8.
9×

7.
7

2.
3×

3.
0

5.
9×

40
2

30
9

2.
8

10
9.
4×

17
.2

17
.9
×

4.
8

63
.8
×

56
8

78
6

3.
6

21
7.
4×

20
.2

38
.9
×

5.
1

15
3.
9×

11
36

47
02

11
.1

42
4.
7×

33
.8

13
9.
1×

16
.1

29
1.
8×

17
04

11
73

5
23

.7
49

5.
5×

41
.2

28
4.
8×

27
.0

43
4.
8×

22
72

21
91

3
42

.5
51

6.
0×

54
.3

40
3.
4×

45
.6

48
0.
1×

34
08

51
72

5
90

.9
56

9.
1×

84
.9

60
9.
4×

87
.4

59
1.
7×

45
44

94
05

4
15

8.
7

59
2.
6×

13
0.
0

72
3.
2×

13
0.
3

72
1.
9×

56
80

14
86

95
25

6.
2

58
0.
3×

20
0.
7

74
0.
8×

20
1.
0

73
9.
9×

68
16

21
61

40
35

5.
6

60
7.
8×

26
3.
0

82
2.
0×

26
5.
0

81
5.
6×

76
68

27
50

42
45

5.
6

60
3.
7×

33
2.
1

82
8.
1×

33
2.
5

82
7.
2×

Chapter C. Performance 212
T
ab

le
C
.3
:
A
sy
nc
hr
on

ou
s
G
P
U

Si
m
ul
at
io
n
B
en

ch
m
ar
k
P
er
fo
rm

an
ce

T
im

es
ar
e
qu

ot
ed

w
ith

st
an

da
rd

de
vi
at
io
ns

an
d
ar
e
av
er
ag
es

fo
r
al
ls

tr
ea
m
s
fo
r
a
pa

rt
ic
ul
ar

nu
m
be

r
of

pt
hr
ea
ds
.

C
P
U

G
P
U

A
sy
nc

.
1
T
hr
ea
d

G
P
U

A
sy
nc

.
2
T
hr
ea
ds

R
es
id
ue

s
T
im

e
(s
)

T
im

e
(s
)

Sp
ee
du

p
T
im

e
(s
)

Sp
ee
du

p
10

0
18

21
47

(±
33
)

8.
3×

12
02

4
(±

33
0)

1.
5×

40
2

30
9

22
60

(±
31
)

13
6.
6×

12
29

6
(±

58
)

25
.1
×

56
8

78
6

27
27

(±
31
)

28
8.
4×

12
50

4
(±

13
0)

62
.9
×

11
36

47
02

64
96

(±
20

9)
72

4.
5×

16
61

1
(±

82
)

28
3.
1×

17
04

11
73

5
10

53
7
(±

15
5)

11
13

.9
×

20
20

3
(±

11
0)

58
0.
9×

22
72

21
91

3
17

67
6
(±

76
)

12
39

.8
×

27
52

5
(±

29
4)

79
6.
1×

34
08

51
72

5
37

12
6
(±

12
0)

13
93

.2
×

46
75

4
(±

36
2)

11
06

.3
×

45
44

94
05

4
64

31
2
(±

18
4)

14
62

.5
×

73
65

7
(±

45
6)

12
76

.9
×

56
80

14
86

95
10

33
56

(±
43

6)
14

38
.7
×

11
27

28
(±

65
4)

13
19

.1
×

68
16

21
61

40
13

91
13

(±
45

5)
15

53
.7
×

14
78

72
(±

67
0)

14
61

.7
×

76
68

27
50

42
19

17
47

(±
54

4)
14

34
.4
×

20
03

76
(±

86
3)

13
72

.6
×

	Plagiarism Declaration
	Abstract
	Publications and Presentations
	Acknowledgements
	Introduction
	Macromolecular GPU Implementations
	The Kim and Hummer Coarse-Grained Method
	Aims
	Approach
	GPU Design and Implementation
	Macromolecular Crowding and Viral Capsid Applications

	Contributions
	Thesis Organisation

	Graphics Processing Units
	General Processing using Graphics Processing Units
	The CUDA Programming model
	The Compute Unified Device Architecture
	CUDA Kernels
	CUDA Memory
	Limitations of the CUDA Architecture
	Asynchronous Heterogeneous Computing

	Summary: Optimisations in GPU Computing
	Expected GPU Performance

	Protein-Protein Docking Simulations
	Introduction
	Scoring Functions and Energy Potentials
	Electrostatic Potentials
	Scoring Functions

	Systematic Searches
	Genetic Algorithms
	Molecular Dynamics and Monte-Carlo Simulation
	Molecular Dynamics
	Monte-Carlo Algorithms
	Methods for Enhanced Sampling

	Dealing with Computational Complexity: Methods to Improve Tractability
	Coarse-Graining

	Design
	Approach
	The Coarse-Grain Simulation Model
	Simulation Outputs

	Algorithm Design
	The Replica Exchange Algorithm
	Monte-Carlo Searches

	GPU Design
	Problem Mapping
	Multiple GPUs

	Design Summary

	Implementation
	Sequential CPU Implementation
	Data Structures
	Monte-Carlo and Random Numbers
	Evaluating Global Potential Energy
	Replica Exchange

	Multi-core CPU Implementation
	GPU Implementation
	Performance Optimisation Guidelines
	GPU Initialisation and Resources
	GPU Design and Data Structure
	GPU Kernels
	Algorithmic Restrictions
	Asynchronous GPU Computing
	Multiple GPUs
	Compensated Summation

	Sampling and Clustering
	Sampling
	Clustering

	Implementation Summary

	Verification and Validation
	Verification
	Interaction Potentials
	Monte-Carlo Mutations

	Simulation Validation
	Summary

	Interaction Potential Performance
	Interaction Potential Calculations
	Interaction Potentials on the GPU
	Shared vs. Texture Memory Caches
	Lookup Table Memory Performance
	Thread Blocks and Occupancy
	Data Transfer
	Performance Discussion

	Summary

	Simulation Benchmarking
	GPU Benchmarking
	Asynchronous Performance

	Simulation Speed-up
	Discussion

	Applications
	Ubiquitin C-Terminus Tail Truncation
	Cc/CcP Macromolecular Crowding
	Crowding Models
	Simulations
	Results

	Viral Capsid Construction

	Conclusions
	References
	Supplementary Data
	Benchmarking Configuration
	Performance

