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Abstract—The role of robots, automatically guided machines
able to perform tasks on their own cannot be over emphasized.
In particular, if robotic vehicles are to work effectively, the way
they are required to perform their jobs and their ability to reach
the desired destination where the job is to be performed are
of utmost importance. This necessitates the need to facilitate
proper navigational aid for robotic vehicles. Various navigational
approaches have been proposed in robotics literature, but this
work serves to provide an assistive pre-processing strategy for the
detection of drivable region through minimisation of salient pixels
in a colour feature extraction. Salient pixels are pixels occupying
the non-drivable region particularly those having same grayscale
value as road images. Salient pixels provide difficulties during
colour feature extraction on road images captured by a robot’s
camera (sensor). In our method, a stream of road images is
captured, pixels are extracted based on a RGB (red, green, blue)
colour space, edges of objects are detected using Sobel operator.
Salient pixels are minimised using some heuristic which is based
on a threshold parameter. In a series of experiments using our
method, a stream of real life road images is obtained and results
show that good drivable regions, which facilitate proper robotic
navigation, can be detected.

keywords: Robotics, Image Processing, Salient Pixels, and
Drivable Region Detection

I. INTRODUCTION

In today’s world, the role of robots in our everyday activities
cannot be over emphasized. Robots have been used in moti-
vating applications for new algorithms and formalism. This is
evident in the use of learning in high-profile competitions such
as RoboCup and the Defence Advanced Research Projects
Agency (DARPA) challenges [5]. The successful completion
of a task by a robot is highly dependent on its ability to
effectively navigate to the point where the operation or task is
to be performed. Consequently, it is important to ensure that
a robot, in particular an autonomous robot, with little or no
human support or intervention, gets to the desired destination.
This is an ongoing key challenge as depicted in Figure 1
and stressed by researchers [10]. An autonomous vehicle
intended for driving off-road (e.g., for military reconnaissance)
should still be able to identify roads and drive along them

when conditions allow, this ability will minimize terrain-based
dangers and maximize speed [3]. However, the challenges of
salient pixels remain a key issue in detecting drivable region.
Salient pixels are the pixels in the non-drivable region sharing
the same characteristics as road pixels. These pixels are salient
as they are very conspicuous. This provides difficulties in
detecting drivable region.

Recognising objects in a complex scene is the purpose of
a general image understanding system [2]. This process is
carried out effortlessly by the human visual system (HVS).
However, it becomes a challenging task when computer vision
algorithms are designed to imitate this action. Typically, one
of the first steps in such a system is edge detection. Edge
detection is the process of identifying and locating areas of
sharp transitions (intensity contrast) within an image. Once
the edges of an object are detected, other processing such as
region segmentation can easily be carried out. Various methods
of edge detection are available but the performance of edge
detectors depends on the application at hand. Minimisation of
salient pixels in a road frame is a sound basis for assisting
drivable region detection for autonomous robotic navigation.

(a) Robotic vehicle (b) A sample road frame for au-
tonomous navigation

Fig. 1. A sample road frame with salient pixels (e.g. houses and vegetation)
which provides difficulties in autonomous navigation

In the succeeding sections, we have the following: Section
II presents some related work. In section III, we present the
methodology used in achieving the main goal of this paper as
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well as the analytic and theory of the edge detection technique
adopted to achieve the desired result. Section IV illustrates ex-
perimental results and further evaluate the outcome measures
to assess the adequacy of the proposed method. Section V
concludes the paper and future work are also presented.

II. RELATED WORK

The need to improve drivable region detection for au-
tonomous navigation has led to the development and emer-
gence of different models, heuristics and methods by different
researchers and practitioners. Osunmakinde and Ndhlovu [6]
investigated the task of improving the vision of a robot for
autonomous navigation in complex environments inclined with
flexed far-field (or bent) terrains. They used the Emergent Situ-
ation Awareness (ESA) technology as a supportive strategy for
autonomous robotic navigation. Experiments were conducted
on five flexed terrains (tarred and coarse) including the Council
for Scientific and Industrial Research (CSIR) real life road
frames captured locally and public road frame collected by a
robotic vehicle.

Conner et al. [4] developed a method of composing simple
control policies, applicable over a limited region in a dynam-
ical system’s free space, such that the resulting composition
completely solves the navigational and control problem for the
given system operating in a constrained environment.

Hong et al. [3] investigated a synonymous problem by using
a sensor based system developed to identify roads and to
enable a mobile robot drive along them. A light detection and
radar (LIDAR) sensor, which produces range measurements,
and a colour camera are used in conjunction to locate the road
surface and its boundaries.

A. Contributions and Outline

In general, a drivable detection system intended for au-
tonomous robots should be capable of effectively integrating
data captured at the different navigational layers of the oper-
ational system. In a broader research perspective, challenges
of salient pixels removal still remain one of the key issues to
be addressed in computer vision.

In this paper, we obtain reduced salient pixels in road frames
in a series of experiments conducted, for different scenarios,
using an edge detection technique and salient pixels reduction
heuristic. In particular, the Sobel edge detection technique
which gives a good approximation of the image boundaries is
adopted in this work. Ultimately, these combined methods are
needed by the robot in making a crucial decision for detecting
drivable region. The major goals of this paper are as follows:

1) The identification, using Sobel filter, and reduction of
salient pixels on road frames in order to assist algorithms
for effective detection of drivable regions for mobile
robots.

2) Qualitative and quantitative evaluation of the combined
methods on a number of road frames in a series of
experiments conducted.

III. PROPOSED METHODOLOGY

A. Image Acquisition

A digital image consists of an array (N × M) of pixels.
For the image data in this work, a number of road frames (of
different scenarios, down-sampled to 300 × 227 resolution)
were captured and features were computed at each pixel
location, Pi. Figure 2 describes the interlinked streams of the
functional components of the methods adopted in this paper.
This work is a pre-processing strategy which serves as an
input to the machine learning algorithm layer in the drivable
detection system depicted in Figure 2.

Fig. 2. Overall process of drivable region detection

B. Colour Feature Extraction

Colour is an important component containing a great deal of
information. Consequently, it is a highly important property in
identifying certain objects in an image. This feature (colour)
was chosen, based on some prior knowledge of a road frame
as discussed in [3], on the assumption that roads (which
have a grey-like colour) would be more-or-less consistent in
their mixture of colours. In this work, we use gray level
images for further processing after submitting the coloured
road frame captured by a digital camera to our drivable region
detector software (Laptop Computer- AMD Turion(tm) 64
x2 Mobile Tech TL-50 1.60 GHz-1GB-Operational System:
Ubuntu 10.04).

C. Road Frame Edge Detection (Image segmentation)

Edge detection is a task of fundamental importance in image
processing. Edge detection serves to identify and locate areas
of sharp intensity contrast in an image[1] and contains three
steps namely, Filtering, Enhancement and Detection [7]. To
determine the edges in an image, one intuitive characteristic
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one might consider is that the respective brightness values of
two neighbouring pixels are significantly different[14].

Edge Detection Techniques: Various techniques for edge de-
tection have been proposed [12]. The majority of the different
edge detection methods may be grouped into two categories
which are, Gradient and Laplacian.

The Sobel operator is a gradient operator which consists
of a pair of 3 × 3 convolution kernels as shown in Table I.
The Sobel operator is applied by convolving the image with
a small, separable, and integer valued filter in horizontal and
vertical directions and is therefore relatively inexpensive in
terms of computations. One kernel is simply the other rotated
by 90◦ [9]. The kernels can be applied separately to the image
in order to obtain the gradient component in each orientation,
say, Gx and Gy.

The gradient magnitude is given as below:

|G| =
�
Gx2 + Gy2. (1)

Relative to the pixel grid, the angle of orientation (θ) of the
edge giving rise to the spatial gradient is given by:

θ = arctan

�
Gy

Gx

�

. (2)

TABLE I
SOBEL HORIZONTAL AND VERTICAL OPERATORS

Mx =
-1 0 +1
-2 0 +2
-1 0 +1

My =
+1 +2 +1
0 0 0
-1 -2 -1

Let ⊗ represent the convolution operation to be performed
on the image G(x, y) to obtain G�(x, y). The 2-D convolution
operation is described below,

G�(x, y) = G(x, y)⊗M(k, l) =

N�

k=−N

N�

l=−N

M(k, l)G(x−k, y−l)

(3)
where

• M(k, l) = convolution kernel (i.e. Sobel horizontal or
vertical operator)

• G(x, y) = original image
• G�(x, y) = filtered image .

The convolution operation, ⊗, as described above is adopted
in the Sobel filter method to convolve the image and it returns
uniform value of zero along the edges of the road frame
images. This is further exploited during the elimination of
salient pixels in the road frame. The Sobel operator is rel-
atively inexpensive in terms of computation and less sensitive
to isolated high intensity point variations [11] since the local
averaging over sets of three pixels tends to reduce this. Also, it
gives an estimate of edge direction as well as edge magnitude
at a point which is more informative, as evident in Figure 3,
and it has been successfully applied in all the three channels
in RGB space [8]. Each of the Sobel masks, Mx and My,
is slid over an area of the input image at each iteration. The
mask coefficients is used in a weighted sum of the value of
pixels (i, j) as depicted in Table II.

TABLE II
3 × 3 MASK WITH COORDINATES

(i-1,j-1) (i-1,j) (i-1,j+1)
(i,j-1) (i,j) (i,j+1)

(i+1, j-1) (i+1, j) (i+1, j+1)

Pseudo-code for Sobel Edge Detection:

INPUT: Sample road frame image, G.
OUTPUT: Road frame with detected edges, E(G).

Step 1: Read in and load image, G.
Step 2: Extract feature matrix, A(G).
Step 3: Convolution process: apply Sobel operators
Step 4: Compute |G| =

�
Gx2 + Gy2

D. Salient Pixels Removal

In this study, salient pixels are referred to as the non-
drivable (non-road) region in road frame images, which creates
dificulties in drivable region detection. Having determined the
edges in the digital road image, we look for a way of removing
the salient pixels. The value of zero returned along the edge
region of road frames after segmentation is concentrated on in-
order to minimise salient pixels. That is, we need to replace the
values of the pixels representing the salient pixels with zeros
or a uniform value other than actual road pixel value for a clear
distinction between the road and non-road region. In this work,
various heuristics were employed in order to achieve our aim.
The feature matrix is iterated through, using a column-wise
bottom-up approach with respect to the neighbouring pixels of
each pixel’s location. At each iteration, salient pixels values
are replaced with some uniformly defined colour value. It is
worth mentioning that the method adopted in this work is not
to present algorithms with perfect results but to find larger
amount of white pixels (considered as drivable region in our
work) in a safe propotion. The salient pixels are minimised
using the following algorithm:

Pseudo-code for minimising salient pixels:

INPUT: Original feature matrix, E(G).
OUTPUT: Feature matrix without salient pixels, E(G�).

Step 1: Extract the edge-detected frame matrix, E(G).
Step 2: Scan each column in a bottom-up approach.
Step 3: Replace values above a pixel value by zero:
if pixel value at a location is zero (an edge pixel)
OR absolute difference in neighbouring pixels is greater than
some threshold.
Step 4: Repeat for all columns until all salient pixels are
minimised.

The basic idea illustrated in the above algorithm is
experimentally determined. Using the assumed notion
of the prior knowledge that road images have grey-like
colours, it is expected that cluster of grey colour values
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will be observed at a concentrated region of the road frame
while some grey colours around the bush appear as salient
pixels. The choice of the threshold centers around the fact
that road pixels are consistent in their mixture of colours.
We compare the absolute difference between current pixel
(i, j) and neighbouring pixels (i − 1, j) and (i − 2, j). If
the absolute difference is greater than or equal to threshold,
say t = 90, we replace pixel values above pixel (i, j) with
zeros. This is achievable due to the fact that road has certain
width and area and have consistent grayscale values. More
advanced methods can be used to make the choice of the
threshold for better results.

E. Scoring and Evaluation Mechanism

The notion of probability such as confusion matrix which
was used in [6] for performance evaluation is used to evaluate
how efficient our method is with respect to the experimental
results obtained. A confusion matrix is a validating tool which
contains information about actual and predicted classifications
done by a classification system. An example of a confusion
matrix is depicted in Table III.

TABLE III
SCHEMATIC OF A CONFUSION MATRIX

Actual
Parameter x Parameter y

Predicted
Parameter x A B
Parameter y C D

The performance accuracy (AC) of the minimised salient
pixels in a confusion matrix is the proportion of the total
number of predictions that were correct. This is generally
expressed as :

AC =

�
(left-diagonal-entries)
�

(All-entries)
× 100%. (4)

Thus, the performance accuracy (AC) of the confusion matrix
in Table III is given in Equation (5):

AC =
A+D

A+B + C +D
× 100%. (5)

The qualitative and quantitative evaluations of the experimen-
tal results are also put into account. Quantitative research
produces data in the form of numbers while qualitative re-
search tends to produce data that are stated in prose or textual
forms [17]. These two evaluation methods help yield insights
that neither approach would produce on its own [16]. A
proper integration of qualitative and quantitative methods can
therefore help provide a more comprehensive evaluation of an
intervention. In [15], qualitative and quantitative approaches
were used in poverty analysis.

IV. EXPERIMENTAL EVALUATIONS

This section evaluates the effectiveness of the earlier de-
scribed techniques in minimising salient pixels. In order to test
the flexibility of our method, experiments were conducted on
different scenarios of such road frames. Part of the scenarios

involve obstacles (occlusion), which appear as salient pixels
on the road feature matrix extracted. In one, there is a physical
obstacle (a pedestrian) along the surface of the road as depicted
in Figure 3(c) and another involves an optical obstacle (shadow
of an object off the road) as depicted in Figure 3(e).

A. Experiment 1: Qualitative Evaluation of Road Frame
Edges Detected

The computed edge magnitude produced the results shown
in Figures 3(b), 3(d) and 3(f). This clearly outline the bound-
aries of the objects in the images. By visual inspection, one can
see that the edges on Figures 3(b), 3(d) and 3(f) are detected
adequately when compared with the original frames in Figures
3(a), 3(c) and 3(e) respectively.

(a) Test case 1 road frame (b) Edges detected for test
case 1

(c) Test case 2 road frame (d) Edges detected for test
case 2

(e) Test case 3 road frame (f) Edges detected for test
case 3

Fig. 3. Test Cases: Road frames and the corresponding image edges detected

B. Experiment 2: Road Frames with Minimised salient Pixels

The algorithm in this work is tested on a stream of road
frames but this paper presents, in Figure 4 and Figure 5,
the results (minimised salient pixels on the road frames) of
some of the different scenarios experimented. The algorithm
presented in the pseudo-code for minimising salient pixels
is implemented here. It takes the edge feature matrix from
the road frames edges detected as its input, operates on the
edge lines as marked out in the matrix by replacing salient
pixels with a uniform value, say zero (black) in our case.
The value used for the replacement differs from the road
colour intensity value, and consequently produces the road
frames with minimised salient pixels as depicted in Figure
4 and Figure 5, respectively. Ultimately, all salient pixels
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should be replaced with zeros (black). These results show
that complete drivable region for safe autonomous robotic
navigation has been detected. It is worth mentioning that the
result produced in this work is thought to serve as an input
to the next (machine learning algorithm) layer in the drivable
region detection system.

(a) Edges detected for test
case 1

(b) Minimised salient pixels
for test case 1

(c) Edges detected for test
case 2

(d) Minimised salient pixels
for test case 2

(e) Edges detected for test
case 3

(f) Minimised salient pixels
for test case 3

Fig. 4. Test Cases: Pre-processing results - minimised salient pixels for a
complete drivable region detection

C. Experiment 3: Performance Accuracy of Salient Pixels
Minimisation

In the experiment conducted, two matrices were used as
points of reference : the originally extracted road frame edge
matrix, say M1, whose values are depicted as Actual (pixel)
value, and the minimised salient pixels matrix, say M2, whose
values are depicted as Final value in Table IV. Pixel points,
Pi’s (road pixels and salient pixels), are selected at random
from M1 with the aid of an automated code. The experiment
is repeated in three(3) folds. A pixel location in the matrix
is represented by a string of alpha-numeric characters, where
the first set of integers denote the pixel row and the immediate
character(s) after it denote the pixel column. The two variables
rp and sp denote road and salient pixels, respectively. Thus,
in Table IV, 204V − rp represents a road pixel (rp) on
row 204, column V of the matrix. The chosen pixel value
from M1 is marked as either a road pixel or salient pixel
accordingly. The marked pixel value, Pi in M1, is then cross-
checked in matrix M2 to ascertain its value. Road pixels
are expected to remain unchanged even after carrying out
the operation of salient pixels minimisation, while salient

(a) Test case 4 road frame (b) Minimised salient pixels
for test case 4

(c) Test case 5 road frame (d) Minimised salient pixels
for test case 5

(e) Test case 6 road frame (f) Minimised salient pixels
for test case 6

Fig. 5. Test Cases: Pre-processing results - minimised salient pixels for a
complete drivable region detection

pixels are expected to have been replaced with zeros. This
is viewed in the confusion matrix, which gives the summary
of the classification system and is important, as it validates the
accuracy of our implemented algorithm and heuristic. Thus, it
is expected that salient pixels would be minimised (replaced
with zeros) while road pixels remain as they were. Table IV
shows the result of the experiment for one of the test cases.
Tables V, VI and VII with accuracies of 93%, 90% and 86%
respectively, shows the confusion matrices for the first three
test cases. The confusion matrix shows a cross-validation of
the experiment performed for each of the test cases and reveals
the amount of white pixels (naviagble region) acquired in a
safe proportion. Further experiments from Figure 5 produce
accuracies of 85 %, 80 % and 90 % respectively.

V. SUMMARY AND CONCLUSION

Machine vision as a research field remains a challeng-
ing area. Ability to construct robust algorithms for safe
autonomous drivable region detection in real time is still
an on-going process. This is significant from a number of
publications in the area of machine vision which, in most
cases, only addresses specific problems.

In this work, we have presented a simple solution directed
towards addressing a specific machine vision problem, au-
tonomous drivable region detection. Salient pixels in the non-
drivable region appear as drivable because of the similarity
they share with actual road pixels (drivable-region). In this
domain of interest, heuristics were developed to minimise
salient pixels in the non-drivable regions of road frames. The
results of this work will be incorporated into a complete
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TABLE IV
PERFORMANCE ACCURACY OF SALIENT PIXELS MINIMISATION FOR TEST

CASE 1

Pixel-location Actual-value Expected Final value

72FD − sp 195 0 0

23CC − sp 252 0 0

204V − rp 241 241 241

22CH − sp 250 0 0

28FB − sp 241 0 0

6AB − sp 0 0 0

110CW − sp 0 0 0

149KG − sp 196 0 0

98EX − sp 252 0 0

77Q − sp 239 0 0

Accuracy: 100 %

102FR − sp 216 0 0

214IP − rp 243 243 243

170AX − rp 251 251 251

19IW − sp 242 0 0

181GS − rp 247 247 0

188F − rp 245 245 245

17FD − sp 242 0 0

11CU − sp 243 0 0

102AQ − sp 235 0 0

74HO − sp 170 0 0

Accuracy: 90 %

167IO − rp 239 239 239

133GA − rp 253 253 253

190JM − rp 242 242 242

127EA − rp 248 248 248

147AL − rp 220 220 220

156GP − rp 240 240 0

130AD − sp 233 0 0

97FS − sp 215 0 0

29CY − sp 247 0 0

210IN − rp 242 242 242

Accuracy: 90 %

Average Total Accuracy: 93.33 %

TABLE V
TEST CASE 1: CONFUSION MATRIX WITH MINIMISED SALIENT PIXEL

ACCURACY

Actual
Road pixels salient pixels

Predicted
Road pixels 10 0

salient pixels 2 18

TABLE VI
TEST CASE 2: CONFUSION MATRIX WITH MINIMISED SALIENT PIXEL

ACCURACY

Actual
Road pixels salient pixels

Predicted
Road pixels 17 2

salient pixels 1 10

TABLE VII
TEST CASE 3: CONFUSION MATRIX WITH MINIMISED SALIENT PIXELS

ACCURACY

Actual
Road pixels salient pixels

Predicted
Road pixels 16 1

salient pixels 3 10

drivable region detection module as shown in Figure 2. This
consequently improves autonomous robot navigation.

The images experimented with in this work are real life
images of different scenarios where some of the scenarios
involve obstacles (a physical obstacle and an optical obstacle)
and some without obstacles. This demonstrates the level of
reliability of this work as applied to the practical real world
problem. For instance, qualitative edges are detected in Figures
3(b), 3(d) and 3(f), salient pixels are minimised adequately in
Figures 4(b), 4(d) and 4(f) and validation on the performance
accuracy of salient pixels minimisation gives a good approxi-

mation.
At the moment, the proposed heuristic for salient pixels

removal has not been tested on coarse road frames. We are
working on making our idea more universal and robust such
that it becomes applicable to any kind of road frames. This
work offers a pre-processing strategy for the detection of
drivable regions for robotic vehicles and only tarred road
images were used as sample frames. Special cases such as the
influence of environmental factors (i.e. rain) on road frames
can further be investigated and we intend to improve on the
evaluation schemes.
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