
DAS Writeback: A Collaborative Annotation

System for Proteins

Gustavo A. Salazar O.

· May 2010 ·

Department of Computer Science
University of Cape Town

Submitted in partial ful�lment of the requirements
for the degree of Master of Science

Supervised by
Prof. Edwin Blake

Co-supervised by
Dr. Nicola Mulder

This work was supported by the National Bioinformatics Network of South Africa

�A hundred times every day I remind myself that my inner and
outer life depend on the labors of other men, living and dead, and
that I must exert myself in order to give in the same measure as
I have received and am still receiving.� � Albert Einstein

A

Abstract

We designed and developed a Collaborative Annotation System for Proteins called DAS
Writeback, which extends the Distributed Annotation System (DAS) to provide the func-
tionalities of adding, editing and deleting annotations.
A great deal of e�ort has gone into gathering information about proteins over the last
few years. By June 2009, UniProtKB/Swiss-Prot, a curated database, contained over four
hundred thousand sequence entries and UniProtKB/TrEMBL, a database with automated
annotation, contained over eight million sequence entries. Every protein is annotated with
relevant information, which needs to be e�ciently captured and made available to other
research groups. These include annotations about the structure, the function or the bio-
chemical residues.
Several research groups have taken on the task of making this information accessible to the
community, however, information �ow in the opposite direction has not been extensively
explored. Users are currently passive actors that behave as consumers of one or several
sources of protein annotations and they have no immediate way to provide feedback to
the source if, for example, a mistake is detected or they want to add information. Any
change has to be done by the owner of the database. The current lack of being able to feed
information back to a database is tackled in this project.
The solution consists of an extension of the DAS protocol that de�nes the communication
rules between the client and the writeback server following the Uniform Interface of the
RESTful architecture. A protocol extension was proposed to the DAS community and
implementations of both server and client were created in order to have a fully functional
system. For the development of the server, writing functionalities were added to MyDAS,
which is a widely used DAS server. The writeback client is an extended version of the
web-based protein client Dasty2.
The involvement of the DAS community and other potential users was a fundamental
component of this project. The architecture was designed with the insight of the DAS
specialized forum, a prototype was then created and subsequently presented in the DAS
workshop 2009. The feedback from the forum and workshop was used to rede�ne the archi-
tecture and implement the system. A usability experiment was performed using potential
users of the system emulating a real annotation task. It demonstrated that DAS writeback
is e�ective, usable and will provide the appropriate environment for the creation and evo-
lution of a protein annotation community.
Although the scope of this research is limited to protein annotations, the speci�cation was
de�ned in a general way. It can, therefore, be used for other types of information supported
by DAS, implying that the server is versatile enough to be used in other scenarios without
major modi�cations.

Contents

List of Figures v

List of Tables vii

Acknowledgements viii

Glosary, Abbreviations and Acronyms ix

1 Introduction 1

1.1 Research Question . 3

1.2 Approach . 4

1.3 Road map . 5

2 Background 7

2.1 Introduction . 7

2.2 Annotation . 8

2.2.1 Annotations in Digital Libraries . 9

2.2.2 Annotations in Bioinformatics . 10

2.3 The Distributed Annotation System (DAS) 11

2.3.1 Behavioral description of the architecture 12

i

2.3.2 DAS Protocol . 13

2.3.3 DAS Servers . 15

2.3.4 DAS Clients . 18

2.3.5 Previous Writeback Implementation 25

2.4 RESTful web services . 26

2.5 User Centred Design . 27

2.6 Key points . 28

3 Writeback Protocol and Architecture 30

3.1 Introduction . 30

3.2 Problem De�nition . 31

3.3 Principles and Strategies . 31

3.4 Proposed architecture . 32

3.5 Writeback Protocol . 34

3.5.1 Writeback based on DAS 2.0 . 34

3.5.2 Writeback based in DAS 1.53 . 36

3.6 Conclusions and Lessons . 37

4 DAS writeback server 38

4.1 Introduction . 38

4.2 Problem De�nition . 39

4.3 Analysis of DAS Servers . 39

4.4 Implementation Details . 40

4.4.1 Writeback for DAS 2.0 . 40

4.4.2 Writeback for DAS 1.53 . 44

ii

4.4.3 Discussion . 47

4.5 Conclusions and Lessons . 49

5 DAS writeback client 51

5.1 Introduction . 51

5.2 Problem de�nition . 52

5.3 DAS clients Analysis . 52

5.4 Solution Proposed . 54

5.5 Design and Implementation Details . 55

5.5.1 Authentication . 59

5.5.2 Reading from the writeback . 60

5.5.3 Writing in the Writeback . 61

5.5.4 User Interface Aids . 63

5.5.5 User Stories . 64

5.6 Discussion and Conclusions . 65

6 Usability Experiment 67

6.1 Introduction . 67

6.2 Choosing an Experiment . 67

6.3 Experimental Design . 69

6.3.1 Test Object . 69

6.3.2 Subjects . 69

6.3.3 Tasks . 70

6.3.4 Questionnaire . 72

6.3.5 Experimental Procedure . 72

iii

6.3.6 Processing the data . 73

6.4 Results . 75

6.4.1 Dasty2 issues . 76

6.4.2 Dasty2+Writeback issues . 78

6.4.3 Corrective Measures . 79

6.5 Discussion . 82

7 Concluding Remarks 84

Bibliography 89

A Questionary of the Usability Experiment 93

B Experiment Reports By Group 94

B.1 Group 1 . 94

B.1.1 Subjects . 94

B.1.2 Tasks . 94

B.2 Group 2 . 96

B.2.1 Subjects . 96

B.2.2 Tasks . 96

B.3 Group 3 . 97

B.3.1 Subjects . 97

B.3.2 Tasks . 97

B.4 Group 4 . 98

B.4.1 Subjects . 98

B.4.2 Tasks . 99

iv

List of Figures

1.1 Research Question . 4

2.1 DAS architecture . 12

2.2 Spice Snapshot . 20

2.3 PFAM Snapshot . 22

2.4 DASher Snapshot . 23

2.5 Dasty2 Snapshot . 24

3.1 Writeback in the DAS Architecture . 33

4.1 Writeback Class Diagram for the model . 41

4.2 Writeback Database Diagram (First implementation) 42

4.3 Writeback Database Diagram (Second implementation) 46

5.1 Communication between Dasty2 and the WriteBack 55

5.2 Architecture Diagram for the writeback extension in Dasty2 57

5.3 Class Diagram of the writeback extension for Dasty2 58

5.4 Writeback Panel in Dasty2 . 59

5.5 Tabs for writeback functions in Dasty2 . 62

v

6.1 Dasty2 Minor Problems . 77

6.2 Dasty2+writeback Corrections . 80

vi

List of Tables

4.1 Comparison of DAS servers . 40

5.1 Comparison of protein DAS clients . 53

6.1 Reported alpha helices . 72

6.2 Demographic Information of the experiment users 74

6.3 User considerations about the experiment 75

B.1 Information of the individuals - Group 1 94

B.2 Information of the individuals - Group 2 96

B.3 Information of the individuals - Group 3 97

B.4 Information of the individuals - Group 4 98

vii

Acknowledgements

I want to use this space to recognize all the people who have contributed in so many
di�erent ways to this project. Let me start with my supervisors; Edwin and Nicky have
shared their knowledge during the last two years. I really appreciate your guidance and
the valuable insight you put in this project.

Rafael was the Spanish guy married to a Chinese girl living in South Africa who helped this
Colombian guy to survive his �rst days in a new country. His advice and ideas were a very
important part of this project. Another big contribution of ideas and recommendations
were from Alex who, although I found his character undecipherable, seemed almost always
willing to help me. Elizabeth was the reason why this document was written in pretty
decent English. Without her, the spanglish on it would it have made it unreadable.

To all my friends, both the new and old ones, to those who motived me from Colombia,
to those that adopted me as the new friend in South Africa, to those who played Capoeira
with me, to those with whom I worked with in the same Lab, to those with whom I shared
so many good times, to all you guys, Many Many Thanks!

Last but not least, to my family; their unconditional support can be felt even with the
Atlantic between us. Mamá, Papá y Juancho you are the most important people to me
and it's your love that gives me energy to work harder every time.

Muchas Gracias!!!

Cape Town, January 2010

viii

List of Abbreviations and Acronyms

BO Biosapiens Ontology

CSHL Cold Spring Harbor Laboratory

CRUD Create, Read, Update and Delete

DAS Distributed Annotation System

DiLAS Digital Library Annotation Service

DL Digital Libraries

DNA Deoxyribonucleic Acid

DOI Document Object Identi�er

DOM Document Object Model

ECO Evidence Code Ontology

EMBL European Molecular Biology Laboratory

FAST Flexible Annotation Service Tool

GFF General Feature Format

HTTP HyperText Transfer Protocol

JSP Java Server Pages

JWS Java Web Start

LDAS Lightweight Distributed Annotation Server

MADCOW Multimedia Annotation of Digital Content Over the Web

MIME Multipurpose Internet Mail Extensions

ix

MVC Model View Control pattern

NCBI National Center for Biotechnology Information

REST REpresentational State Transfer

RNA Ribonucleic Acid

SW Semantic Web

PDB Protein Data Bank

PFAM Protein Family Database

RSS Really Simple Syndication

SOAP Simple Object Access Protocol

SQL Standard Query Language

SVN Subversion

UCD User Cetered Design

UniProtKB UniProt Knowledgebase

URI Universal Resource Identi�er

URL Universal Resource Locator

XML eXtended Markup Language

WWW World Wide Web

x

Chapter 1

Introduction

The annotation of biological data is a common task in di�erent �elds of the life sciences.

For example, a taxonomist can annotate that one of the di�erences between two species of

insects is how far evolved their eyes and antennae are, and an ecologist may be interested

in annotations about the population of a certain ecosystem. For bioinformaticians, the raw

materials are the digital representations of di�erent genes and their products (DNA, RNA,

proteins, etc.) and, therefore, any information about the sequence, experiment, genetic

material, etc., becomes an annotation.

In the central dogma of biology, DNA (deoxyribonucleic acid) encodes genes, which get

translated in RNA (ribonucleic acid), which in turn, gets translated into proteins. Each

of these is represented by a sequence of either nucleotides (DNA, RNA) or amino acids

(Proteins).

The annotation methods for genetic material can be classi�ed into manual and automatic

[11].

Manual annotation refers to the actions of an individual, usually an expert in the �eld,

annotating the evidence extracted during a review of published scienti�c literature. It is a

valuable e�ort that produces important outcomes like UniProtKB/Swiss-Prot, a manually

annotated database of high quality protein information.

Automatic annotation works under a similarity hypothesis, for instance when two very

similar sequences (homologues) have a common ancestor, then their functions and features

1

CHAPTER 1. INTRODUCTION 2

should be the same. Therefore, any annotation in one of the sequences can be extrapolated

to the other. Automatic annotation is required because of the �ood of data; genome

projects, among others, are able to generate terabytes of information on a daily basis and

it is therefore impossible to have enough experts to process this amount of data. However,

automatic annotation is dangerous [7], because it can infer erroneous features and these

can be propagated.

A balance between the two types of annotation is required in order to deal simultaneously

with the massive sets of biological data and with the details where the similarity approach

can generate errors. Manual annotation then becomes a way to polish the information

obtained by automatic methods.

Stein identi�ed four organizational models to describe the way that genomic annotation

is done [46]. The Factory model is highly automated; it is applied in the �rst stages of

the annotation looking for the location of genes and/or protein domains. In contrast, the

Museum model is widely used in the latter stages and is mainly manual. It is done by

experts and is focused on the function of regions that have already been detected. An

alternative model is the Cottage, where experts dedicate time out of their regular activities

to a speci�c project. And �nally, the Party model, as an extension of the Cottage model,

puts all that extra time of the experts together in an intensive period where all of them

are in the same place with a speci�c annotation task.

None of these models consider the option of obtaining information from the �nal users of

the system. The Web, as an example, has grown exponentially during the last years, in

part thanks to this principle. Authors and readers have started to mix their roles in what

is now known as Web 2.0. Following the analogy of organizational models, we propose the

Tourism model; here the tourist can enjoy the features of a site, but sporadically can also

add new features to the site or modify the existing ones.

Tourists can be experts or not, and their contribution to the annotations is completely

voluntary. It is then possible to �nd tourists that are purely consumers, which request

information but do not add or modify anything in the knowledge base. In contrast, other

kinds of tourist are also expected, including those that are more proactive and willing

to share their knowledge on a particular protein. They give new annotations or correct

existing ones, enriching the information for themselves but also for the purely consumer

tourists.

CHAPTER 1. INTRODUCTION 3

A collaborative model such as the one described here can bring together the critical mass

of experts needed to improve the quality of the automatic annotations. It will, however,

also generate an issue of con�dence in the annotators on the part of the users.

Having annotations captured using di�erent models, with di�erent techniques and by dif-

ferent laboratories, creates the problem of how to integrate all the information. The Dis-

tributed Annotation System, DAS [12], proposed a standard to publish and query annota-

tions of several types of genetic material/product, like DNA and proteins. It works under

the idea of federated databases where the information is distributed in several places and

each of those is specialized in a particular subtopic. In that way, for example, a labora-

tory specialized in the 3D con�guration of a protein can provide annotation about protein

structures, and other institutions focused on the function of proteins can provide functional

information. A DAS client can then read the features from both places for the same protein

and put them in the same context.

DAS o�ers a practical solution for compiling information from di�erent sources in a single

client; however the current state of the protocol and therefore the implementations of the

servers, do not provide a method to send the information in the opposite direction� i.e.

the user generating information about current or new annotations for a particular protein.

We believe that this bidirectional communication will enrich the knowledge database that

DAS has conglomerated with its federated approach. On one hand, there is a clear advan-

tage in providing tools to �nal users in order to get feedback and to enrich the source with

the knowledge of the user contributions. On the other hand, the owners of the information

invest a great deal of energy in creating and consolidating the information and therefore are

not willing to allow careless users or users with bad intentions to jeopardize their e�orts.

1.1 Research Question

To be concise, this project aims to answer the following question; �How can the current DAS

infrastructure be extended in order to capture and use information provided by the users?�.

This problem is represented graphically in the �gure 1.1 where the green arrow represents

the current direction of the communications in DAS, and the red arrow represents the one

proposed by this project.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Research Question: How can the current DAS infrastructure be extended in order
to capture and use information provided by the users?

1.2 Approach

The solution to this problem involves an extension of the architectural model of DAS to

support the necessary writing features for a Collaborative Annotation System, with the

de�nition of the speci�cations for the writeback capabilities following the same logic and

style of the DAS protocol. Implementations of client and server were also created as proof

of concept of the proposed architecture. The main method of experimental Computer

Science is to build artefacts and then evaluate them experimentally [47]. This document

describes all the details and required steps for the creation of a complete solution to the

given research problem. An experiment to test the usability of the client, and indirectly

the e�ectiveness of the whole system, was also executed.

We proposed the addition of a new server into the DAS system, called writeback. This

server should be responsible for the management of the information that users want to

introduce into the system. The writeback server should be independent of any other DAS

server and it should reference the sources without modifying the original data.

The communication methods of the new server with other components of DAS can be

de�ned using several strategies� in this project we used two of these. The �rst one was

based on the writeback document included in the DAS2.0 speci�cation. DAS2.0 was not

widely adopted and the idea of replacing DAS with it was abandoned (Section 2.3.2). It

pushed us to create our own strategy and a protocol extension was proposed to be included

in the future o�cial version of DAS.

The proposed protocol consists of incorporating the Uniform Interface feature of RESTful

CHAPTER 1. INTRODUCTION 5

services into DAS, using the HTTP1 methods to indicate the desired operation, and the

same XML2 format de�ned in the DAS speci�cation to envelope the information to send

from the client to the server.

Implementations of both strategies were developed and a discussion about the pros and

cons of each is included in Chapter 4.

We consider that a collaborative system requires easy-to-use tools that users can intuitively

manipulate, and for this reason, we looked for a widely adopted DAS client, conserving its

user interface methods and extending it to support the communication with the writeback

server. Between several clients we chose to extend Dasty2, a web based protein DAS client,

which, given its features of extensibility and usability, was adequate for the requirement of

a writeback client (Details in Chapter 5)

To ensure the compatibility with all the components of DAS, getting feedback about the

advances, and ideas to solve arising issues during the process, a continuous communication

with the DAS community was held through email lists and also by presenting the progress

of the project at the DAS workshop that is held once a year.

When we reached the point of having a functional prototype, we proceeded to execute a

formative evaluation, in order to detect usability issues, but more importantly, to verify

that the whole system was doing what users are expecting.

The involvement of experts during the de�nition of the protocol and architecture, plus their

feedback to overcome issues arising during the project, and the execution of evaluations

with untrained users, are consequence of our user-centred design approach.

The organization of the content of this document can be found in the following road map.

1.3 Road map

Chapter 2 covers the general background of the project, highlighting the topics of special

relevance for the development of the project.

1HTTP : The Hypertext Transfer Protocol is the set of rules for exchanging �les (text, graphic images,
sound, video, and other multimedia �les) on the World Wide Web.

2XML Extensible Markup Language; a �exible text format for creating structured computer documents

CHAPTER 1. INTRODUCTION 6

Chapter 3 includes the de�nition of the architectural extension proposed for DAS and the

discussion about two alternatives for the writeback communication protocol.

Chapter 4 covers the implementation of two DAS writeback servers, dscussing which of

those should be included in the Collaborative Annotation System.

Chapter 5 covers the design and implementation of the DAS writeback client, including

snapshots of the �nal implementation.

Chapter 6 covers the design, execution and analysis of the usability experiment, indicat-

ing the errors and suggestions captured by the experiment and the changes made to the

software.

In Chapter 7 we draw conclusions from the whole project.

Chapter 2

Background

2.1 Introduction

In order to clearly understand the details of this project, it is necessary to have background

knowledge on some general topics: Annotations, the Distributed Annotation System and

User Centred Design.

Annotation is a tool that has been used for a long time in very di�erent �elds, and in recent

years its use has exploded due to the increase in web sites where most of the content is

created by users.

A particular �eld that has used annotations is Digital Libraries; the more relevant consid-

erations in the �eld for this project are included here.

Bioinformatics should not be excluded from the use of annotations, projects such as wiki-

proteins and gene-wiki are also described here.

The Distributed Annotation System provides an environment for taking advantage of the

distributed nature of biological information. The details of this protocol, including its

architectural behavior, are described in the second part of this chapter.

The importance of clients and servers in the DAS architecture is then described. It lays

out the main implementation of both server and client, highlighting the features that can

7

CHAPTER 2. BACKGROUND 8

have an impact on the Collaborative Protein Annotation System.

Afterwards, a brief introduction on User Centred Design and some of the usability evalu-

ation techniques is presented in order to de�ne some important concepts of our approach.

2.2 Annotation

The task of annotating is not new at all; terms like gloss, scholium and postil have been used

for centuries to refer to di�erent types of annotation. As reported in [2] these words have

their origin in ancient Greek or Latin, indicating that the process of annotating documents

or artifacts is as old as the antique cultures themselves.

In current times annotations are linked to advances in the �eld of information technology,

and we are now increasingly more likely to �nd spaces to comment on a particular resource

on the Web. That is the case with two of the most successful web sites, www.youtube.com

and www.�ickr.com, where you can rate, comment or answer a video or image respectively.

In other words, you have many di�erent methods to annotate a web resource.

In an e�ort to standardize the annotation of web resources, the Annotea project [27] creates

some metaphors to improve collaborative environments in the Web using Semantic Web1

(SW) technologies as its basis. As more users utilize these tools, more metadata will be

created for the SW and vice versa. There are two client implementations of this idea: one

is a Firefox plug-in called Ubimarks and the other is called Amaya for Mozilla.

It is not surprising that the web is becoming a platform for annotation, especially since

earlier documents about the web include the annotation of resources as one of the goals.

For example [6] describes the now historical browser Mosaic. An extract from this docu-

ment said about Mosaic: �Asynchronous collaboration capabilities, including text and voice

annotations for documents located anywhere on the Internet. These annotations can exist

at either the private or workgroup level.� The big di�erence is that the scale, amount of

data, number of people and computational power involved are just so much larger now.

Annotations have also been a focus of research in the �eld of Digital Libraries (DL). Here,

1Semantic Web: Is the evolving project of the WWW where the meaning of the information is de�ned,
making it possible for machines to process it.

file:www.youtube.com
file:www.flickr.com

CHAPTER 2. BACKGROUND 9

the annotations have become a very important way to share knowledge between the users

of the DL. A current project called DiLAS [4] is looking for a standardized way to share

annotations between di�erent Digital Library Management Systems.

A key feature of all these brie�y described annotation systems is their collaborative char-

acter. An individual annotation is important for just one person, but when the annotation

is shared in a public environment, such as a digital library or the web, this annotation

can be complemented, corrected or discussed by other users and, therefore, over time the

annotations become a source of information as important as the annotated resource itself.

Probably the most important collaborative environment developed during the last few

years is www.wikipedia.org. Wikipedia is a multilingual, web-based, encyclopedia project;

it has an open philosophy, allowing anyone to edit content. Currently, it has more than

2,000,000 articles entirely added by its users, demonstrating how powerful a collaborative

approach can become. This open strategy raises the issue of how trustworthy the source of

the information is, and several studies have been done on this topic, for instance, in [1] a

system is proposed where the authors of the content have a reputation, and this reputation

depends on the number of consistent edits by that author.

Collaborative trustworthy systems are very important in scienti�c environments because

scientists require the most recent and trustworthy information in order to get good re-

sults in their research. For the purposes of this project we will focus on annotations in

bioinformatics, and more speci�cally on proteins.

2.2.1 Annotations in Digital Libraries

Digital Libraries DL have been using annotations over the last few years. As is reported

in [4], di�erent systems have been developed to organize this information in a way that

allows users to create new information in the context of a resource of the DL. Therefore,

the concept of annotation has been widely studied in this context. For example a formal

model for annotation is de�ned in [3]. The model was created using set theory and de�nes

an annotation in terms of the annotated document, the user or group that is doing the

annotating, the type, part and the meaning of the annotation. It also involves the concepts

of time, permissions and scope.

file:www.wikipedia.org

CHAPTER 2. BACKGROUND 10

A study examining the habit of annotating textbooks in a public university library and its

implications for the adoption of annotation systems on DL is included in [32]. From there,

the next group of suggestions about annotations in DL was selected given its relevance

for this project: In situ annotation, distinguishable from the source, Smooth transitions

between public and private annotations and the Integration with reading as an activity.

Other suggestions included in the study were not relevant to this project because they

were more book-oriented.

A Web 2.0 oriented set of decision points for annotations in DL can be found in [16].

Besides the items that are similar to those already selected from [32], the following are the

most relevant decision points for our project: Ease of annotation, Control of content, Ease

of retrieval and Noti�cation and sharing

A clear example of the use of annotations in DL is the Digital Library Annotation Service

DiLAS [4]; a user interface to create and visualize annotations in DL. The idea was to

re-use two technologies: The Flexible Annotation Service Tool FAST and the Multimedia

Annotation of Digital Content Over the Web MADCOW.

The classic three-layer architecture is the base of FAST and it is reused in DiLAS. The

novel idea of FAST is to be independent of any DLMS, each resource has a universal

identi�er as a URI or a DOI. In this way the annotation could be shared, even between

di�erent Digital Library Management System DLMS.

MADCOW is a client-server system, not related to DL, but that allows creating annotations

over web documents. DiLAS allows for annotations coming from a MADCOW system,

related to the resources of a FAST system.

2.2.2 Annotations in Bioinformatics

Stein de�nes genome annotation as �The process of taking the raw DNA sequence produced

by the genome-sequencing projects and adding the layers of analysis and interpretation nec-

essary to extract its biological signi�cance and place into the context of our understanding

of biological processes�. He classi�es the annotations into three levels: Nucleotide, Protein

and Process. In the nucleotide level, the focus is where the information is, for example

where a gene is located in the genome, or where a non-coding region is. Annotating pro-

CHAPTER 2. BACKGROUND 11

teins is about the what, as in, what is the result of the transcription of a gene, or what

kind of protein is the one to annotate. Annotation of the process is also called Functional

annotation. It had its breakthrough point with the release of Gene Ontology, because it

became the standard between projects for integrating this kind of information. [46].

In general, the search for integration platforms has been a big challenge in the di�erent ar-

eas of bioinformatics. Consortiums such as the International Nucleotide Sequence Database

Collaboration INSDC (DDBJ, EMBL, and GenBank)[9] are a perfect example of the big

e�ort that has been made to integrate and share biological information. In the case of bio-

logical annotations, the Distributed Annotation System has established a set of standards

to make the annotations from di�erent servers available in the same context. However

additional data that adds value to these resources needs a simple and rapid route to public

access. A collaborative approach similar to www.wikipedia.org can be an alternative to

reach this goal.

The idea of using wiki-based techniques in scienti�c �elds is not new, for instance wikipro-

teins [36] is a project that enables community annotation of biological concepts. The

goal of the wikiproteins project is to collect facts from the literature in order to enable

collaborative knowledge discovery.

Gene Wiki is a similar project to wikiproteins was developed for genes in San Diego,

California [49]. They built a system that loads data from Entrez Gene database to build

wiki pages with the most relevant information in this database, and creating hyperlinks

to other sources of information such as the Protein Data Bank or Ensembl. As with any

other wiki-page, any user of the system can update these, and in that way the creators of

Gene Wiki expect that its users would add more information about the genes.

2.3 The Distributed Annotation System (DAS)

The Distributed Annotation System (DAS) [12] makes use of a widely-adopted standard

communication protocol. It is motivated by the idea of maintaining a federated system; a

logical association of independent sources distributed over multiple sites, which provides a

single, integrated, coherent view of all resources in the federation. This architecture makes

several distinct physical data sources appear as one logical data source to end-users. The

file:www.wikipedia.org

CHAPTER 2. BACKGROUND 12

next section provides an overview of a regular DAS transaction, from when a user sends a

query to when a result is returned to the user.

Figure 2.1: DAS architecture: The graphic represents the communication and its order in time
of the most important entities that participate in a regular DAS query. There is a clock in the
background implying the chronological order of the calls. The client is the responsible for the
orchestration, calling and processing the information of the Registry, Reference and Annotation
servers.

2.3.1 Behavioral description of the architecture

Figure 2.1 represents a high level view of the architecture of DAS. The red arrows represent

the requests and the green arrows the responses. The width of the arrows indicates how

much information is being transferred. The transaction starts when a user makes a query

CHAPTER 2. BACKGROUND 13

using an accession number2. The client queries the DAS registry to �nd out which servers

are available for proteins. With this information, it is possible to get the reference sequence3

and basic information about the protein target from the reference server. Finally, a request

is sent to all the annotation servers for features of the reference. The big challenge for the

client is to merge all this information in a comprehendible and meaningful way.

2.3.2 DAS Protocol

The DAS speci�cation consists of a set of rules which de�ne a standard communication

method between the di�erent components of the system. DAS is Web-based and makes

extensive use of three widely-adopted standards: the Uni�ed Resource Locator URL, the

HyperText Transfer Protocol HTTP and the eXtended Markup Language XML. All com-

munication occurs through HTTP; the requests are URLs that specify the resource that

the client is interested in, and the responses are both HTTP codes and XML documents.

The details of what constitutes a valid URL, and the XML structure, are contained in the

DAS speci�cation.

By the time the �rst paper about DAS was published [12], the DAS protocol was version

1.01, and the main characteristics, such as the features and dna commands of DAS, were

present in that version. From that point, several versions were released with minimal

changes. These subsequent versions mostly just polished details to make the protocol

stable and useful. The last o�cial release of DAS was Version 1.53 in March 21 of 2002.

This was the o�cial version for several years, but in 2006 a new version appeared (version

1.53E) incorporating several new developments. These included an extension to serve new

data types and an ontology for protein features [23]. The E in the version number is for

Extended, which essentially describes the purpose of this version, because it keeps most of

the features presented in 1.53 but extends these to some new capabilities.

In November 2007, a project that aimed to de�ne a completely new speci�cation for the

DAS protocol was concluded. The new speci�cation was called DAS 2.04 and it contained

a rede�nition of the protocol for the capabilities that DAS had in its previous versions

2Unique identi�er to access its information in a biological Database. For example a UniProt ID for
proteins

3Reference Sequence: The concensus sequence to refer for all the annotation sources in DAS
4 http://biodas.org/documents/das2/das2_protocol.html 2006

http://biodas.org/documents/das2/das2_protocol.html

CHAPTER 2. BACKGROUND 14

(1.0, 1.53). It also de�ned new features which allowed for the use of the protocol in a more

extensive way. A controversial topic in the DAS community was whether or not the DAS2.0

protocol should be adopted. This speci�cation contains several improvements to the DAS

protocol, but given the drastic changes in the format, amongst other reasons, most of the

sources decided to continue using DAS1.53 or 1.53E. After the 2009 DAS workshop, it was

generally agreed that most of the useful additional features that 2.0 provides would shortly

be implemented in DAS 1.6E and its subsequent incarnations. As a result, DAS2.0 is now

considered by many to be redundant.

As explained in [41], DAS follows the paradigm of the REpresentational State Transfer

(REST). However, DAS has not adopted all the RESTful features. In version 1.53 and

even in the draft of the 1.6 version, DAS only made use of the GET method in order to

recover the information from the di�erent servers; the other 3 methods are simply ignored

in those speci�cations. The explanation lies in the fact that DAS sources are the owners

of the information and it is not usually convenient that external users are able to modify

or delete anything in its databases. As explained before, one of the strategies to solve this

issue is to have the writeback server as an independent server that manages the changes,

additions and deletions as meta-annotations. It is, therefore, useful if the interface for a

server with these features keeps the same principles of DAS (or REST to a bigger extent).

A Protein Annotation in DAS

Version 1.53 of DAS de�nes the element FEATURE as the annotation itself, and it is

contained in the element SEGMENT indicating that a feature annotates a speci�c segment,

where a segment is a biological residue (or part of it), such as, proteins, genes, chromosomes,

etc.

In the scope of proteins, annotations can indicate information about the structure (Known

formations of amino acids as helices or sheets), interaction zones (with other proteins or

regions of the same protein), phenotype (for example a known relation of part of the protein

with a disease), etc.

An e�ort to group and organize all the types of annotations has been made, the Biosapiens

Ontology contains, in a hierarchical way, the types of annotations that can be used� as

any ontology, the information is not complete and periodic releases are made trying to

CHAPTER 2. BACKGROUND 15

establish a set of types as e�ciently as possible.

TYPE is probably the most important element included into a FEATURE. The use of

the Ontology is highly recommended but is not mandatory, in order to comply with older

releases.

The use of a second ontology (Evidence Code) is also recommended in the attribute category

to express the method through which such an annotation was acquired, for instance by

experiment, by in-silico analysis, etc.

Relevant information for proteins included in the element FEATURE is registered in:

• id: A source can not have two features with the same id.

• label: A human readable label for the feature

• START and STOP : Indicating the speci�c position to be annotated. If both are

equal to zero, it means that the annotation applies to the whole segment (i.e. Non-

positional feature)

• LINK : To indicate a URL where more information about this annotation can be

found.

• NOTE : Space where the annotator can put any extra comment about the annotation.

Other elements and attributes are more oriented to other kinds of biological data, for

instance the ORIENTATION element is useful for genes, to indicate if the annotation

follows the direction 3' or 5', however proteins do not have an orientation.

2.3.3 DAS Servers

There are several kinds of server in DAS; some serving the reference sequence, others

providing information about the style of a feature, others mapping information between

di�erent coordinate systems5. The most common kind of DAS server, however, is the one

that provides the features for a given reference, which is called an Annotation Server.

5A Coordinate System. Now it is a unique 4-tuple (Authority, Version, Type, Organism), where Au-
thority refers to the name of the institution that de�nes the identi�ers of the system, Version is an optional

CHAPTER 2. BACKGROUND 16

An annotation server in DAS has the responsibility of providing the information from a

data source following the DAS speci�cation. This implies that the original data source can

be in any format, from plain �les to elaborated databases. To do this, the owners of the

information can develop a script from scratch that takes the information from the source

to put it into the DASGFF format and publish it in the Web.

This approach has the result that any new data source has to replicate development e�orts,

such as the parsing or the http interface that DAS speci�es. For that reason, several

projects have proposed alternatives to DAS servers that incorporate the common tasks,

and for the implementation of the speci�c details of a particular source.

Next are descriptions of the most representative DAS server implementations.

LDAS

The Lightweight Distributed Annotation Server (LDAS) is a minimalist DAS server devel-

oped at the Cold Spring Harbor Laboratory. LDAS provides the basic framework to serve

the annotations following the DAS 1.53 speci�cation. It is Perl software designed to run

in Apache as a web server using a prede�ned MySQL database that can be loaded from

tab-delimited �les [29].

Having a predesigned database has the advantage of ensuring that all the annotations are

in the same format; however it restricts the sources to the ones that follow the format of

the �les or requires extra development to convert the information to such a format.

LDAS can serve annotations, reference sequences and style-sheets, and allows the use of

the DAS commands for entry points, dsn and types.

�eld to identify di�erent assemblies of the same coordinate system, Type identi�es the di�erent kinds of
data, like chromosome, protein sequence, etc. and �nally the Organism �eld allows for the association of
a coordinate system with a speci�c organism. As there are types that are shared in di�erent organisms,
this last �eld is also optional. [44]

CHAPTER 2. BACKGROUND 17

Pro-server

Pro-server is a simple, lightweight, Perl-based DAS server that does not depend on a

separate HTTP server. It is a project held by the Welcome Trust Sanger Institute since

2003 and it has been updated with the di�erent versions of DAS. The current version of

Pro-server is the only server that implements the new features of the DAS speci�cation

1.60. [13].

Pro-server has been used to serve the genomic annotations of ENSEMBL, Gene3D and

CBS, among others, which is a practical proof of its good performance.

The way that this server deals with the di�erent data sources is through the de�nition

of transport adaptors. There are several SourceAdaptor implementations provided with

Pro-server.

Dazzle

Under the umbrella of the BioJava project the DAS server called Dazzle [20] was created.

This Open-source project was developed at the Welcome Trust Sanger Institute.

Dazzle implements the version 1.53E of the DAS protocol in an architecture based on Java

Servlets. In order to deal with the heterogeneity of the potential sources, Dazzle follows

the plugins paradigm: a speci�c source should use the appropriate plugin depending on

its characteristics or, in the case that there is not a plugin that suits the particular data

source, this can be developed and added to Dazzle.

The available plugins for Dazzle include reading annotations from �les in EMBL, UniProt

and GFF formats plus a connection with databases that follow the format de�ned by

LDAS.

In order to implement a new plugin in Dazzle, it is necessary to create a class that imple-

ments a number of interfaces depending on which DAS commands needs to be available.

CHAPTER 2. BACKGROUND 18

MyDas

MyDas [26] is a project created and developed for EBI researchers. A stable version of

MyDas is used to provide annotations in the DAS format to the UniProt database, which is

one of the most important protein databases. This demonstrates the robustness of MyDas.

Its architecture is inspired by the Model-View-Control (MVC) pattern [25], MyDas has

implemented a set of classes that provide the data model to build the necessary information

to serve the DAS1.53 commands.

The view component of the MVC pattern is as simple as providing the results in the

DAS XML format and answering the requests using the HTTP codes de�ned in DAS 1.5

(200:OK,400: Bad command, etc.).

The control part is more interesting; a Java servlet receives the HTTP request, identi�es

the command and the data source, and it is the data source which should process the

command. This is because data sources in MyDas are classes that implement one of the

provided interfaces and are registered in the MyDas con�guration �le.

With this strategy, MyDas achieves the goal of providing a standard way to process requests

and responses in a DAS server, but leaves the task of dealing with the actual database to

whoever implements the interface. The �nal storage system is, therefore, not the concern

of the MyDas server.

2.3.4 DAS Clients

Dowels [12] said that a DAS client (or Annotation viewer) �is a lightweight application

whose behavior is analogous to a web browser. The viewer communicates with the genome

and annotation servers using a well de�ned language speci�cation�. This de�nition has

been evolving since 2001; at its creation, DAS was conceived only for genome annotation

but now several Coordinate Systems have been created for other kinds of data including

proteins, 3D structures, microarrays6, etc. Moreover, a client can now interact with the

registry to discover the di�erent sources for a coordinate system. It also gets information

6Microarray : Chip that contains thousands of microscopic spots of DNA, used for di�erent experiments,
for example to measure changes in expression levels

CHAPTER 2. BACKGROUND 19

on the look and feel of the annotations using the stylesheet command or makes use of the

DAS ontologies for �ltering purposes� just to name some of the features that the current

version(1.53E) of the protocol provides [23].

Although there are a variety of functions that a DAS client could execute, the following is

a list of the core tasks:

1. To query the DAS registry in order to �nd available sources for the speci�c kind of

data (Coordinate System) that the client is interested in (proteins, genes, structure,

etc.).

2. To query the reference server to get the consensus entity (sequence, structure, ar-

ray, etc.) that has been requested by the user, plus some meta-information of that

reference (length, version, etc.).

3. To query all the annotation sources that provide annotation for the particular coor-

dinate system, extracting information such as the position, type, category, etc.

4. To render all this information in a single meaningful view.

There are currently implementations of DAS clients that execute those tasks in a suc-

cessful way, with di�erent �avours for di�erent tastes. There are some Web-based clients

like ENSEMBL, Dasty2 or PFAM; there are also other stand-alone applications such as

Spice, Strap or DASher. The �rst group has the advantage of being available wherever an

Internet connection is available and, given the potential familiarity that users have with

the web, the learning process for those applications can be quick and almost intuitive. On

the other hand, the stand-alone applications are known for having better tools for visual-

ization purposes, making it possible to use local sources in the same context as the DAS

sources. However, these implicit bene�ts of stand-alone applications are now less percepti-

ble thanks to the recent development of Ajax frameworks and modern web browsers with

better processing capabilities [15].

A more biologically oriented classi�cation of the clients can be achieved using their Co-

ordinate Systems. A group of clients that were developed to query annotations of the

Coordinate Systems with Protein Sequence as a Type include: Spice, Dasty2, PFAM and

DASher. ENSEMBL allows users to visualize annotations of coordinate systems with Type

CHAPTER 2. BACKGROUND 20

equal to Chromosome, Gene_ID and Contigs. There are other DAS clients with speci�c

purposes, such as Protein Integration (DASmi) and protein alignment (STRAP), amongst

others.

The scope of this project is limited to the annotation of proteins, therefore the extension

of the DAS client to include writeback capabilities should be part the �rst group of clients.

Next is a brief description of the clients in this group.

Spice

Figure 2.2: Spice: Java based DAS client, the interface allows for the visualization of both
protein and structure annotations.

Spice is a DAS client for the visualization of protein features and structure annotations.

CHAPTER 2. BACKGROUND 21

It is a Java stand-alone application that can run from the Internet using Java Web Start.

A search in Spice can either start from the structure with a Protein Data Bank (PDB)

accession number to �nd its annotations and the related protein sequences or the other

way around, requesting protein information with a UniProt id to get its annotations and

the related protein structures. In order to get this dual functionality, Spice makes use of

a capability included in the 1.53E version of the protocol called alignment. An alignment

server can be queried using one coordinate system and it returns a mapping between the

query and its corresponding part (if it exists) in a di�erent coordinate system [42].

Figure 2.2 is a screenshot of Spice. This interface has a set of panels for di�erent purposes.

On the left side it is possible to visualize the selected 3D structure, and the panels on

the right side are, from top to bottom: the structure sequence from the PDB and its DAS

annotations, the alignment with the UniProt protein sequence and its DAS annotations and

�nally the alignment with chromosome information from ENSEMBL, and its annotations.

Although it is only possible to visualize one entity per coordinate system at a time, the

user has the control to choose between the alternative alignments.

PFAM DAS client

The Protein Family Database (PFAM) project has as a main goal to provide information for

protein families and domains. The database is divided in two subsets: PFAM-A contains

curated information and PFAM-B is an automatically generated database.

PFAM is not exclusively based on DAS technology, however, their aim to provide infor-

mation in an easy and accessible way made this group interested in the use of the DAS

protocol. For this reason, they created three data sources using Pro-server; one for domain

annotations, another for sequence features as active sites and transmembrane regions, and

�nally one for seed and full alignments [14].

The PFAM group have also worked on a DAS visualizer especially for their annotations

that allows users to get information from other sources and to put it in the same context.

This client is web based and is available in the PFAM web page [21]. Figure 2.3 shows

the result of a query in the PFAM DAS client. The �rst track contains all the annotations

about families and domains that the PFAM database has; the next set of tracks are the

rest of the annotation sources that PFAM provides; and �nally all the features of external

CHAPTER 2. BACKGROUND 22

Figure 2.3: PFAM: Web based DAS client, which places special emphasis on the visualization
of the annotations of protein domains

data sources that the user has selected for that query.

DASher

DASher is an open source protein DAS client developed in Java. It is a stand-alone

application that can be run through a Java Web Start link. This project has been run by

the Stockholm Bioinformatics Centre of the University of Stockholm, Sweden [33].

Figure 2.4 is a snapshot of DASher. As with other clients, detailed information of an

annotation can be obtained by putting the mouse cursor over the target feature. One of

the features that makes DASher di�erent to other clients is the level of zoom, which allows

the user to visualize an amino-acid detail or see the whole protein. Another advantage of

DASher is that it recognizes when a source is providing continuous data and then visualizes

CHAPTER 2. BACKGROUND 23

Figure 2.4: DASher : Java based DAS client, allows to visualize continuos annotation as a line
plot

this information as a line plot� as can be seen at the bottom of the �gure 2.4. The colour

of the features can also be changed by the user. Finally, given the stand-alone nature of

this client, it allows the user to save preferences locally as the order of the tracks. It is also

possible to export graphics to the clipboard.

Dasty2

Dasty2 is a web-based protein DAS client, which makes extensive use of Ajax in order to

make the user's experience as close as possible to using a stand-alone client.

Technology that allows for the use of Ajax has been on the main browsers (Internet explorer,

Firefox, Safari, etc.) since 2002; however it was only when Google started using it in 2005 in

its applications� initially it was Google Suggest7 and then Gmail8 and Google Maps9� that

it became popular and started changing the look. Now almost all of the Google applications

are Ajax based. Dasty2 is the DAS client that uses Ajax the most, to the point that it

only requires a server proxy to walk around the Ajax constraint of just querying the same

7http://www.google.com/webhp?complete=1&hl=en 2005
8http://gmail.com 2009
9http://maps.google.com 2009

http://www.google.com/webhp?complete=1&hl=en
http://gmail.com
http://maps.google.com

CHAPTER 2. BACKGROUND 24

Figure 2.5: Dasty2 : Web based DAS client, its modular interface allows the user to select
between di�erent manipulation options.

server where the Javascript is located. Obviously a DAS client requires that other servers

are queried, therefore a server component is required to behave as a proxy that calls all

DAS servers on request of the client. Besides that, all the functionalities run on the client,

which creates the potential to have a more interactive relationship with the user, because

every change that the user makes in the visualization of the graphic happens in the browser

and doesn't require that the whole page is refreshed.

Figure 2.5 is a snapshot of Dasty2, in which it is possible to see some of the panels that

are part of the Dasty2 interface. The division of panels is the strategy this client uses to

organize all the information that is accessible from Dasty. Each panel is a module with a

di�erent function, making it easier to extend Dasty2.

The main panels of Dasty2 are as follows: Search is where the user introduces the protein

to query, here is also possible to choose the Registry Label10 associated with the search

10Registry Label : The DAS Registry groups annotation sources that are somehow related, could be from

CHAPTER 2. BACKGROUND 25

in order to �lter the servers to query; the Status panel contains the status of current

processes and a list of the server requested an its response; the Sequence panel is where

the amino acid sequence is displayed; the Positional features panel is the graphic where

the annotations are drawn in context with the protein length; in the Con�guration panel

the user has control of the graphic characteristics such as the zoom or which columns are

displayed; the Non-positional features panel has a list of annotations of the whole protein

and not to a speci�c region of it such as publications; and the �ltering panel makes use

of the DAS ontologies to create hierarchical �lters(displayed as trees, and referred to as

Filtering Trees in the rest of the document) for the annotations through their category,

type or server [24].

In contrast to Spice, Dasty2 does not allow the user to query from both protein sequence

and structure; its starting point is always a protein sequence accession number. It is

possible, however, to see the related structures of the target protein and, in the case of

having more than one structure, the user can choose one to visualize (see the Protein

structure panel in Figure2.5).

According to Jimenez, et al [24], Dasty2 �facilitates the interaction between the user and

the information stored in DAS servers� and for that it uses the tools that the Web 2.0

provides.

I am listed as one of the authors in this publication because I contributed to the develop-

ment of some of the panels of Dasty2.

2.3.5 Previous Writeback Implementation

Previous work on this topic has implemented a DAS writeback server as a proof of concept

[19] in a Masters thesis at the Chalmers University of Technology. The graphical user

interface was built using JSP (Java Server Pages) and the servers are Java servlets, however,

there is currently no DAS client able to use this technology. The initial idea was to use this

software as a starting point to implement the writeback server with the required capabilities

for a Collaborative Annotation System, however, the actual implementation used to store

the new annotations was incompatible with the concept of meta-annotation, which is one

the same project or the same kind of content. These groups are called Registry label

CHAPTER 2. BACKGROUND 26

of the fundamental ideas of this project. Nonetheless, the experiences and results of that

project were very useful and enabled us to avoid several potential issues.

2.4 RESTful web services

RESTful web services implement remote procedure calls across the Web as an alternative

solution to SOAP11 web services. The major strength of the RESTful strategy is probably

that it is based on such widely adopted standards as HTTP, XML, URI and MIME12 , that

makes REST and therefore DAS technologies easy to implement and attractive to both

developers and �nal users. This is mainly because, in all likelihood, they already know

how to use those technologies. A comparison between SOAP and REST web services can

be found in [40].

One of the main features of the REST architecture is to have a Uniform Interface which

means that all the resources should be manipulated using a prede�ned set of operations. In

the case of the Web, those operations are the 4 basic reading/writing operations: Create,

Read, Update and Delete that correspond to the HTTP methods PUT, GET, POST and

DELETE. Those operations �are broadly applicable but they also help uphold speci�c Web

architectural properties� [48].

The idea of specifying operations for publishing and editing resources using HTTP is not

novel; AtomPub is a proposed protocol for publishing and editing Web Resources using

HTTP [18]. Google also has de�ned a protocol based on Atom, AtomPub and RSS2.0 [17].

To a large extent, the writeback speci�cation used for this implementation is a combination

of features of those protocols, plus the inherent requirements of the DAS technology.

11SOAP : Simple Object Access Protocol, is a protocol speci�cation for exchanging structured informa-
tion in the implementation of Web Services in computer networks.

12MIME : Multipurpose Internet Mail Extensions is an Internet standard that extends the format of
e-mail

CHAPTER 2. BACKGROUND 27

2.5 User Centred Design

The main goal of the User Centred Design is to involve the user as the focus for develop-

ment. It looks to create applications closer to the needs of the �nal operator of the system,

aiming to make the processes easier and more understandable.

Usability testing is an important aspect of any methodology that puts the user, rather

than the application at the center of the development process. The concept of usability

was speci�ed in the norm ISO 9241 part 11 and is described as the �Extent to which a

product can be used by speci�ed users to achieve speci�ed goals with e�ectiveness, e�ciency

and satisfaction in a speci�ed context of use� [22].

A usability test might be executed as a Formative Evaluation of the user Interface. This

means that its goal is to help improve the interfaces; thinking aloud protocols, constructive

interaction and heuristic evaluation are some examples of methods that aim to reach this

goal [37]. There are other methods that assist in the process of designing the interface,

for instance, the use of paper prototyping involves the user in early stages of the design,

where the interface can be as simple as hand-sketched drafts of the windows, menus, dialog

boxes, pages, popup messages, etc. and therefore changes are as easy as redrawing some

of the sketches.

Several kinds of tests can be implemented which aim to identify usability issues, critical

errors or suggestions for improvement from users. All these methods are dependent on the

skills, number and interest of the participant users.

A Heuristic Evaluation is a method created to use the skills of a small set of usability

experts. The method consists of group and analise each of the users' opinions about how

good or bad the interface is with respect to a set of criteria: heuristics13. The heuristics

include aspects like the simplicity of the language, the consistency and clarity of the ele-

ments, user control, the error handling and the e�ciency of use [38]. As Nielson describes

in [37], the level of expertise of the subjects in�uences the results of the experiment, and

therefore the selection of the test subjects plays a determining part in the success of it.

Think-Aloud protocols have been used to test user-computer interaction since the early

1980s. The authors of [10] made a distinction between concurrent and retrospective think-

13The number of criteria to use has been de�ned between 9 and 14 depending on the author

CHAPTER 2. BACKGROUND 28

aloud methods. In the �rst one, the subject of the test has to accomplish a set of tasks

using the software whilst describing what he is doing, what he is expecting, problems

found or suggestions. The retrospective Think-Aloud method consists of recording the

user executing a set of tasks in silence, and afterwards showing the video to the user while

he describes what he was doing at every moment.

An alternative derived from Think-Aloud protocols called Constructive Interaction was

originally developed by Miyake [34], looking to create a framework to study the iterative na-

ture of understanding, and it was tested in the process of understanding a sewing machine.

This method was applied for the �rst time in a user-computer interaction environment

for O'Malley et al. [39]. In such a case the study was about the Unix C-shell(Command

interpreter) and the rules of the pass of variable values to subordinated processes.

Basically, Constructive Interaction consists of executing the tasks in dyads, one of the

users is the actor (who has the control of the computer) and the other is the co-actor. The

instructions for the test subjects indicate that they consult each other before any action

and avoid contact with the facilitator. In this way the ideas are expressed in a more natural

way, as a normal communication between the parts of the dyad. Some authors claim that

this method required half of the number of experiments to detect the same number of

problems, which is a clear advantage in terms of time to acquire that knowledge. This is

the case in a comparison of methods using children as users to test a new model of mobile

phone [5], however, the comparison in [10] using a University Library System contradicts

that statement.

2.6 Key points

The content of this chapter was fundamental for the proper execution of the whole project.

It cements the basis for each part of the development process of the Collaborative An-

notation System. Here is a list of key points extracted from this chapter that played an

important role in di�erent stages of the project.

1. The formal model for annotations introduced by Agosti [3] was the inspiration to

de�ne some of the characteristics of our system, for instance, to keep the historical

CHAPTER 2. BACKGROUND 29

changes of an annotation (Section 3.2.2) and to display a view of the versions of the

annotation (Figure 5.5(d)).

2. Projects like Annotea [27] that take advantage of the correlation between web tech-

nologies and annotations, plus all the Web 2.0 sites that use comments, tags and

other types of annotations, in�uenced the decision to use a web-based DAS client

over the stand alone options (Section 5.3).

3. The decision points and suggestions about annotations de�ned by Gazan [16] and

Marshal [32] were considered at the moment of de�ning the principles and strategies

of the Collaborative Annotation System (Section 3.3).

4. The experiences of projects like wiki-proteins [36] and gene-wiki [49] teach us the

importance of the trust that the biological community should have in the system

to make it really valuable. Another important outcome from those projects is the

strategy of starting the community from a well recognized knowledge base: UMLS,

UniProtKB, IntAct and Gene Ontology14 in the case of wikiproteins; Entrez, Gene

Ontology and the PDB for Gene Wiki; and all the data sources of the Distributed

Annotation System for our Collaborative Annotation System.

5. A full understanding of the architectural behavior of the Distributed Annotation

System was crucial to be able to propose the extension described in the Section 3.4.

6. The proposed extension(Section 4.4.2) to the DAS protocol is mainly inspired in the

concepts of RESTful discussed here.

7. The analysis of the servers done in the Section 4.3 was only possible because of the

study of the server's implementation in this chapter (Section 2.3.3).

8. The report on DAS clients in Section 2.3.4 was the raw material for the analysis in

Section 5.3.

9. User Centred Design was the main component of the approach followed during the

whole project. The concepts in Section 2.5 were relevant in all the stages, but have

special importance in Chapter Chapter 6.

14Gene Ontology : The Gene Ontology project is a major bioinformatics initiative with the aim of
standardizing the representation of gene and gene product attributes across species and databases.

Chapter 3

Writeback Protocol and Architecture

3.1 Introduction

The current DAS architecture (Section 2.3.1) does not include any component responsible

for dealing with feedback from the user.

This Chapter presents a proposal de�ning �where� the feedback information is going to

be managed (Architecture) and �how� this new component is going to communicate with

other DAS components (Protocol).

We propose the DAS writeback server as a third-party component in the DAS architecture

to store and manage the information that comes from the users.

There was a set of communication rules between a DAS client and a writeback server

following the DAS 2.0 speci�cation, this protocol was declared deprecated during the de-

velopment of this project, therefore another speci�cation was necessary. We have proposed

an extension for the DAS protocol that includes the writeback capabilities following version

1.53 of the speci�cation.

This chapter is organized in the following way: the de�nition of the problem; a list of

the principles and strategies followed during the execution of this project; the proposed

architectural extensions to DAS to support a writeback capability; a description of both

protocols; and �nally some conclusions and lessons learnt at this stage.

30

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 31

3.2 Problem De�nition

The Distributed Annotation Systems have delivered an integration and interoperability

layer over heterogeneous sources of information. However, so far no protocol has been

adopted so that user-based contributions can augment the stored information.

An extension of the protocol is required for any writeback activity, such a speci�cation has

to consider the architectural behaviour of DAS to add a server that stores the information

and interacts with the user requests establishing the communication rules.

3.3 Principles and Strategies

A DAS writeback server should have, at the very least, the methods for basic reading/writ-

ing operations. In database theory, this is known as CRUD (Create, Read, Update and

Delete). The implementation of the writing operations in the DAS sources creates a con-

�ict of interest because the owners of the information are willing to share it through DAS,

but do not want regular users to change their data without any kind of curational process.

The approach of this project is to deal with this issue, and it consists of the following

principles and the application of strategies to achieve them:

1. The information of the DAS sources should be protected : The fact that some insti-

tutions give free access to query their annotations does not imply that they want

external manipulation of their data. Most of them have strong policies about how to,

and who can, upload new information into their databases. The next set of strategies

tries to provide such protection to the sources:

• The original data will never be changed by a user of this system.

• The information in the writeback server should be about additions, modi�ca-

tions or deletions of features in current data sources.

• The writeback information is optional for DAS; it is the client (as a prede�ned

behaviour), or in the best-case scenario, the user (during runtime) who chooses

whether or not to use the collaborative information that is created through the

writeback server.

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 32

2. The system should be trusted by the user : The success of a collaborative environment

is strongly correlated with the level of trust its users have in it. It is consequently

important to provide the user with information about the source of data and tools

to make use of it. These are the strategies to follow in order to reach this objective.

• The writeback server should store (and provide by request) the historical changes

that any annotation has experienced.

• The writeback server should have a method to identify the users.

• The writeback server should be able to provide meta-information about the

annotation, such as the author, date, etc.

3. The system should promote interaction between the server and users : The use of

writeback capabilities should be intuitive; the user should feel that retrieving, adding,

editing or deleting annotations are natural tasks of the system. Bearing these prin-

ciples in mind, the following strategies have been de�ned:

• The writeback information should be accessed in the same way as any other

DAS server.

• The writeback client should be as similar to a current client as possible, or

preferably even extend current clients and implement the writeback functions

following the design patterns of the client that is being extended.

• The protocol details and technology issues should be hidden from the user.

3.4 Proposed architecture

In order to put in place the �rst principle, a simple idea is to take into account the following:

�The writeback server should be a third party server that stores the changes to the data set�.

In addition, since it is saving changes to annotations, and those changes can be seen as

annotations themselves, the server will provide methods to annotate1 annotations, or meta-

annotations as they will be referred to in the rest of this document.

Figure 3.1 shows where in time the writeback server is in the DAS architecture. Firstly,

it is necessary to highlight that, for reading purposes, the writeback server behaves as

1Three kind of annotations: Create, Update and Delete

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 33

Figure 3.1: Writeback in the DAS Architecture: Extension of the DAS architecture in the
Figure 2.1. A third-party writeback server is the last step that the client queries, and its
response is used to update the information of the annotation servers. The communication with
the writeback server has the peculiarity that the amount of information sent by the client is
considerably bigger than for any other server

another annotation server; it is just the last one in the queue and the way this information

is rendered is the responsibility of the client.

The most interesting things from the server's point of view are the requests related to

feedback. For those cases, the main di�erence is the amount of information in the request

(shown in Figure 3.1 as the width of the red arrow). The reason for this is that the client

is now required to send the information to add or update a speci�c feature, including

its type, category, position and other characteristics prede�ned in DAS. Therefore, the

communication with the writeback server is extended beyond the display of the graphic

that compiles the information of all the servers. This is when the user starts to interact with

the information, transforming the client from a pure visualization tool to an interactive

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 34

interface between the user and the DAS data knowledge.

Another important thing to remark on is the time; in both Figures 2.1 and 3.1, there is

a clock in the background, which represents the chronological order of how the actions

happen. From this, it can be inferred that the interaction between client and writeback

happens after the client has conglomerated or even displayed all the information for the

target protein. This is because it is only then that the user has a complete landscape view

to take the decision to add, update or delete a feature.

3.5 Writeback Protocol

The writeback was mentioned for the �rst time in a speci�cation in the DAS2.0 document.

DAS1.53 does not include this feature. Initially, our idea was to use the DAS2.0 speci-

�cation, but given the low adoption of it, an opportunity arose to de�ne a speci�cation

that was closer to DAS1.53. However, the release of a beta version of DAS 1.6 was in

March 2009, and by that time the progress of an implementation for the DAS2.0 writeback

protocol was advanced. Here we presente the two protocols used.

3.5.1 Writeback based on DAS 2.0

Although DAS2.0 followed the same goals of DAS1.53 about the sharing of information

through a federated system, the documents de�ned and method proposed had dramatic

changes in comparison with the current DAS version 1.53.

DAS 2.0 was an ambitious project that makes extensive use of Web technologies such as

URIs, HTTP, XML, and REST among others. The DAS2.0 speci�cation is not back-

ward compatible with the DAS1.x versions, and therefore all the documents de�ned in the

protocol are di�erent to any previous version.

Those di�erences are considerably important for this project because none of the studied

DAS servers in Section 4.3 uses DAS2.0 as its protocol. Nonetheless, DAS2.0 was the �rst

document that includes a writeback speci�cation and because of that, an e�ort to conciliate

the protocols was planned:

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 35

• The output format will be based on DAS1.53 as most of the clients support this

version.

• The logic model of the server for DAS1.53 will be reused, especially for output pur-

poses.

• The input format for the writeback functionality will follow the DAS2.0 speci�cation.

• The new commands of the writeback server will be writeback (for create, update and

delete a feature) and historical.

• A logic model for the entities of DAS2.0 will be required.

• The database will be designed according to the DAS2.0 speci�cation.

• A translator will be required between the logic models.

The writeback speci�cation included in DAS 2.0 is published in biodas.org2.

Basically, this document de�nes a writeback document, which includes the information that

the user wants to submit to the server, including the operation to execute with it(Create,

Update or Delete). It also de�nes some strategies about how to manage the feature IDs as

URIs, how the server should respond, and how to deal with errors. Below is an example

of a feature document in DAS2.0.

1 <?xml version="1.0" standalone=’no’?>

2 <FEATURES xmlns="http://biodas.org/documents/das2"

3 xml:base="http://www.example.org/volvox/1/">

4 <FEATURE uri="feature/hit12"

5 type="type/est-alignment"

6 created="2001-12-15T22:43:36"

7 modified="2004-09-26T21:10:15" >

8 <LOC segment="segment/Chr3" range="1201:1400:1" />

9 <PART uri="feature/hit12.hsp1" />

10 <PART uri="feature/hit12.hsp2" />

11 <PROP key="est2genomescore" value="180" />

12 </FEATURE>

13 </FEATURES>

2 http://biodas.org/documents/das2/das2_writeback.html 2006

http://biodas.org/documents/das2/das2_writeback.html

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 36

3.5.2 Writeback based in DAS 1.53

The DAS community decided to declare DAS 1.53E as the current speci�cation and DAS

1.6 as the next one, in an e�ort to implement some of the features of DAS 2.0, but keeping

the format and methods as compatible to previous versions as possible.

We consider that if that is the policy to follow for the DAS community, we should propose

a writeback speci�cation along the same line of ideas.

The proposed speci�cation can be found on the DAS1.6E web page3. This page is the

result of an agreement in the 2009 DAS workshop to have a common place for extensions

to the current versions.

Basically, the speci�cation proposes that both input and output documents for the write-

back should follow the DASGFF format (See the next code example); the HTTP method

indicates what to do with the received document (create, update or delete a feature) and

the HTTP codes used for DAS are still valid here and will indicate success or failure of the

requested command.

The command to execute with that information should be speci�ed in the HTTP method

itself, following the principle of Uniform Interface of RESTful web services (Section 2.4).

1 <?xml version="1.0" standalone=’no’?>

2 <!DOCTYPE DASGFF SYSTEM "http://www.biodas.org/dtd/dasgff.dtd">

3 <DASGFF>

4 <GFF version="1.0" href="http://www.ebi.ac.uk/das-srv/uniprot/das/uniprot/

features?segment=P05067">

5 <SEGMENT id="P05067" start="1" stop="770" version="7

dd43312cd29a262acdc0517230bc5ca">

6 <FEATURE id="UNIPROTKB_P05067_KEYWORD_Disease" label="Disease

mutation">

7 <TYPE id="BS:01019" category="inferred by curator (ECO:0000001)">

disease</TYPE>

8 <METHOD id="UniProt">UniProt</METHOD>

9 <START>10</START>

10 <END>40</END>

11 <SCORE>0.0</SCORE>

12 <ORIENTATION>0</ORIENTATION>

3http://www.biodas.org/wiki/DAS1.6E#DAS_writeback 2009

http://www.biodas.org/wiki/DAS1.6E#DAS_writeback

CHAPTER 3. WRITEBACK PROTOCOL AND ARCHITECTURE 37

13 <PHASE>-</PHASE>

14 <LINK href="http://www.uniprot.org/uniprot/P05067">http://www.

uniprot.org/uniprot/P05067</LINK>

15 <NOTE>Adding a new feature!</NOTE>

16 <NOTE>USER=userlogin</NOTE>

17 </FEATURE>

18 </SEGMENT>

19 </GFF>

20 </DASGFF>

3.6 Conclusions and Lessons

An architecture that extends the current DAS system has been proposed in order to give

the users the opportunity to provide information for current or new annotations.

Two alternatives for the writeback speci�cation were presented: One was adopted from the

DAS2.0 protocol and a second one was created inspired by the current DAS versions.

Although we consider DAS2.0 a valuable e�ort with great improvements for DAS, its lack

of compatibility with previous versions, did not allow it to become the standard protocol,

we consider this a valuable lesson for any project: �The support of previous versions should

be mandatory for any new release of any technology�.

The decision of de�ning a new protocol was in�uenced by the DAS community because of

the feedback received during the DAS workshop 2009, and through the DAS mail list where

the people involved in the new version of the protocol and the creation of applications for

DAS show their interest in this project.

The reuse of the DASGFF language plus the HTTP method in the proposed protocol,

brings the advantage of being extensible to next version of the DAS speci�cation, because

the method will be the same, and the format should be upgraded to the new version.

Chapter 4

DAS writeback server

4.1 Introduction

We present a writeback server for DAS. This server allows the DAS ecosystem to capture

annotations provided by users, and retrieve this information in a DAS oriented way. In

order to do this, it was necessary to extend the architecture of DAS (Section 2.3.1) to

include a writeback server as described in Section 3.4.

This chapter describes two implementations(following the two speci�cations) of a server

that supports a series of operations allowing for the capture of user feedback and the

immediate availability of that feedback to the public. It seeks to create the conditions

necessary for a collaborative annotation environment.

Several DAS servers were considered to be extended with the writeback functionalities, a

comparative analysis was done and MyDas was selected, therefore both implementations

of the protocols are extensions of MyDas.

This chapter is organized in the following way: The de�nition of the problem; A report

of the most important DAS servers with special focus on MyDAS, the chosen system to

implement the writeback capabilities; The design and implementation details, including

reasons why two di�erent implementations were created; and �nally, a brief discussion of

the results and a comparison of the implementations.

38

CHAPTER 4. DAS WRITEBACK SERVER 39

4.2 Problem De�nition

Chapter 3 presents two di�erent speci�cations of the writeback for DAS: One is introduced

as a part of the DAS 2.0 project, and the other one is our proposal based on the current

DAS protocol 1.53.

In order to establish the viability of a speci�cation, an implementation of the writeback

server has to be done� it helps to capture technical errors of the protocol, but more impor-

tantly, it creates a real basis to start building a community for the Collaborative Annotation

System.

In summary the problem to solve in this Chapter is to demonstrate that the speci�cations

are implementable, what advantages/disadvantages have one agains the other one, and

which one should be chosen to work with for the Collaborative Annotation System.

4.3 Analysis of DAS Servers

There was an initial decision taked whether it is convenient to extend an existing server or to

create a new one that supports the writing/reading operations. The reading component is

already solved for the DAS protocol and all the current implementations of this speci�cation

have those capabilities. This is the reason for the extension option having been chosen.

However, it raises another question about which of the current servers should be extended.

Several DAS servers were studied: Dazzle, LDAS, MyDas and Pro-server. A description

of these clients can be found in the Section 2.3.3.

Table 4.1 summarizes the main features of these servers.

Several criteria were taken into account in the choice of which server to extend. Initially,

LDAS was discarded because it seemed that there has been little development activity on

it for more than 5 years. In addition, LDAS aims to serve to prede�ned environments,

such as a MySQL database or a plain GFF �le and it does not have the required �exibility.

Pro-server has been written in Perl and has probably been the most active project for the

last year. The advantages of Pro-server are similar to those of MyDas. I have more experi-

CHAPTER 4. DAS WRITEBACK SERVER 40

Table 4.1: Comparison of DAS servers

Feature Dazzle LDAS MyDas Pro-server
Language Java Perl Java Perl
Last Release 2008 2002 2007 2009
DAS version 1.53E 1.53 1.53 1.60
Physical storage User def. MySQL User def. User def.
Some Protein Sources - UniProt,Pride Encode,Pfam
Responsible Sanger Inst. CSHL EMBL-EBI Sanger Inst.
Open Source YES YES YES YES
Documentation (how to) Good Good Good Good
Documentation (software) Good Poor Good Good

ence in Java than in Perl projects, therefore the decision was between Dazzle and MyDAS,

and, although the software architectural patterns are similar in both projects, the package

organization and the way the Model-View-Control (MVC) pattern was implemented in�u-

enced the decision to use MyDas. This concept is useful for the purposes of this project

because it allows for the extension of MyDas to support the writeback capabilities whilst

at the same time, it allows for the independent implementation of the data source with the

necessary features for the Collaborative Annotation System.

4.4 Implementation Details

We implemented two di�erent servers; the �rst one follows the DAS2.0 speci�cation(Section

3.5.1) and the second one is based on a proposed extension of the protocol(Section 3.5.2).

Both implementations are extensions of MyDas. Below are the details of both implemen-

tations, followed by a discussion of the pros and cons of each one.

4.4.1 Writeback for DAS 2.0

The release of the DAS2.0 protocol preceded the start of our project by almost one year.

Nevertheless, even then there was no stable implementation of this protocol. Therefore,

as a �rst attempt to create a DAS server with read/writing capabilities, the writeback

CHAPTER 4. DAS WRITEBACK SERVER 41

speci�cation in DAS2.01 was followed as described below.

The controller of MyDas, which is a Java servlet, was extended to process the commands

writeback and historical, moreover, it now has the capability to capture the writeback

document from the POST message. This document is parsed into a new set of classes

that expand the MyDas model in order to deal with the syntax of DAS2.0 for writeback

documents. Figure 4.1 represents the class diagram of the classes that extend the MyDas

model.

Figure 4.1: Writeback Class Diagram for the model

Additionally, a new Data Source Interface was created in order to de�ne the methods that

should be implemented to provide writeback functionalities.

1 http://biodas.org/documents/das2/das2_writeback.html 2006

http://biodas.org/documents/das2/das2_writeback.html

CHAPTER 4. DAS WRITEBACK SERVER 42

The logic used to process the con�guration �le was also extended in order to accommodate

the new interface. A class that implements this Interface should de�ne these methods:

1 public void addFeatures (DasWritebackDocument doc)

2 public void deleteFeatures (DasWritebackDocument doc)

3 public Collection<DasAnnotatedSegment> getHistorical(String fetureId)

The method addFeatures() should receive an instance of the writeback document that

contains a set of features to be included in the database. This method is also used for

updates, so the logic of this method should check if the feature already exists in order to

decide whether to update or add a new annotation.

The method deleteFeatures() should receive an instance of the writeback document that

contains a set of features that will be deleted in the database.

The method getHistorical() receives the ID of a feature and should return all the di�erent

versions of that feature in the server.

The basis on which this component was built is the documentation of the DAS2.0 writeback,

in particular the formal XML schema for the writeback document2. Another important

source of information was the result of discussions about the implementation of this protocol

via the mailing list of the DAS community, including people who work on the creation of

the protocol, as well as current developers of di�erent DAS based components.

Figure 4.2: Writeback Database Diagram (First implementation)

2 http://biodas.org/documents/das2/writeback.rnc 2007

http://biodas.org/documents/das2/writeback.rnc

CHAPTER 4. DAS WRITEBACK SERVER 43

Once the framework was ready, the second step was to implement the interface. The

new data source should implement the writeback interface, but also one of the MyDas

interfaces that was previously de�ned. This is because the data source should not just

have edition/creation functionalities but also behave as a normal DAS source providing

the features on the demand of the users.

This speci�c source stores the information in a PostgresSQL database. Figure 4.2 displays

the database diagram.

This database stores a single instance in the table feature for each unique feature that is

created/uploaded/inserted. The table metaannotation has as many entries as user requests

received by the writeback server. Additions, updates and deletions are just new entries in

the table metaannotation, therefore the database will accumulate all the historic changes

for each feature and it will be feasible to roll back to a previous state of the annotation.

The feature is stored in a di�erent table because it is possible to have the same feature in

more than one location, this is a DAS2.0 addition.

Most of the information in the DAS writeback document is in the PROP tags that provide

a generic way to link information with a feature. All this information is saved in the table

property.

Finally, the users table contains the record of who has created or edited an annotation.

Users are identi�ed through an OpenId3 login. The server should verify this ID against an

OpenId server before storing any of the commands from its request.

The source code of this implementation is available through an SVN server in sourceforge4.

The main di�culty in the implementation of this server was how to reconcile the di�erence

between versions. MyDas is a server for version 1.53 of the protocol and the writeback

is a part of the DAS 2.0 speci�cation which requires some kind of translation between

the input data (writeback document DAS2.0) and the output data (DASGFF format DAS

1.53). Although this implementation deals with such translations, the mix of versions could

potentially create confusion in users.

3 http://www.openid.org 2009
4 https://mydaswb.svn.sourceforge.net/svnroot/mydaswb/MyDas_�rst_WB_version/ 2009

http://www.openid.org
https://mydaswb.svn.sourceforge.net/svnroot/mydaswb/MyDas_first_WB_version/

CHAPTER 4. DAS WRITEBACK SERVER 44

4.4.2 Writeback for DAS 1.53

This implementation of the writeback is an extension of MyDas and is, therefore, based

on DAS1.53. It is possible to have implementations for 1.53E or even 1.60 with further

revision.

This speci�cation is inspired in the Uniform Interface method of RESTful web services, and

as a web application the best way to implemented is using the di�erent HTTP methods.

Given that MyDas is a Java program and its controller is a Java servlet, the implemen-

tation of the HTTP listener for the methods POST, PUT and DELETE, corresponds to

the methods doPost(), doPut() and doDelete(). In an e�ort to invade the MyDas code as

little as possible, the only function of the override methods is to redirect to the correspon-

dent method in a new class called MyDasWriteback that behaves as the controller for the

writeback functionalities. This class uses the DasParser to create a WritebackDocument

instance that contains all the information of the request in an object oriented structure.

As in the previous implementation, a new data source interface was created but in this

case, the methods to implement should be:

1 public DasAnnotatedSegment create (WritebackDocument document)

2 public DasAnnotatedSegment update (WritebackDocument document, String id)

3 public DasAnnotatedSegment delete (String featureId, String userId, String

segmentId)

4 public Collection<DasAnnotatedSegment> getHistorical (String featureId)

After the user is authenticated, the controller looks for the writeback data source imple-

mentation in the con�guration �le. For the Collaborative Annotation System, the data

source was created to store the information in a PostgreSQL database that follows the

relationship diagram shown in Figure 4.3. This design tries to bring an approximation

of the structure of the DASGFF format5 that follows the basic rules of normalization for

database design, incurring as little redundancy as possible. For example, many features

can be related with the type X, but X will only occur once in the table type. The basic

idea of the design was that for each element in the speci�cation, there is a table in this

database, and for any parameter there is a �eld. New features are stored using the ta-

ble metaannotation and the link tables. If the feature contains a type that is not in the

5As its de�ned in the DAS1.53 speci�cation

CHAPTER 4. DAS WRITEBACK SERVER 45

database, this will be added. This idea of incremental updates for types applies to the rest

of the tables as well.

The table metaannotation stores all the actions that have been applied to a speci�c feature.

It also contains meta-information such as the version, the date and a ranking, which has

not been used in this version, but it will be important to de�ne a ranking system that

allows users to choose the most trusted features.

Both methods create(...) and update(...) behave in a very similar way, adding information

to the table metaannotation as explained before. Their only di�erence is the assignment

of the ID, because if it is an addition then a new ID is created, but if is an update then

the ID is the URI formed by the concatenation of the server URL and the feature ID in

the XML. It also veri�es whether an ID has been used before, in which case it will keep

the same ID. The version of this feature, therefore, is incremental.

When a feature is created or edited for the �rst time, the parent segment is also added to

the database, or recovery from it if is already there. One of the attributes of segment is

the version, in the case that a sequence changes, the version of the segment is di�erent,

this helps to identify to which version a feature is annotating.

The method delete(...) does not require a writeback document; the IDs of feature, segment

and user is enough to create a meta-annotation that informs a client that a speci�c feature

has been tagged as deleted.

The method getHistorical() displays all the versions of the meta-annotations for a speci�c

feature ID.

The writeback data source also implements the AnnotationDataSource Interface in order

to provide the responses for the regular DAS commands (feature, types, etc.).

The fact that the design is so close to the DASGFF implies that the database is sensitive to

the version of the protocol. For instance, some �elds that are part of the 1.53E version do

not appear in this database, therefore, in most of the cases, a new version of the protocol

will imply a new version of the database and consequently a new version of the Data

Source. However, the extensions to the controller of MyDas won't require any updates.

In summary this extension can be divided in four components: (1) The modi�cations inside

CHAPTER 4. DAS WRITEBACK SERVER 46

F
ig
u
re

4.
3:

W
ri
te
b
ac
k
D
at
ab
as
e
D
ia
gr
am

(S
ec
on

d
im

p
le
m
en
ta
ti
on

)

CHAPTER 4. DAS WRITEBACK SERVER 47

the MyDas code to recognize the new commands, and the de�nition of an interface for a

writeback data source, (2) The model extension to allow the access to parameters that

were private and a class WritebackDocument to encapsulate instances of the model, (3)

The writeback controller, which receive the request from the core, parse the message into

the new Model and invoke the right Data Source that implements the Writeback Interface,

and �nally, (4) An implementation of the writeback interface, with a Database Manager

using JDBC for the PostgreSQL RDBMS.

All this development was made in Java SE 66 using Eclipse Europa7 as IDE and Apache

Tomcat Version 6.0.188 as a servlet Server

4.4.3 Discussion

As seen previously, two di�erent implementations were created, one is based on the DAS2.0

protocol and the other one provides a new speci�cation based on version 1.53 of DAS. Both

approaches have pros and cons, and here we present some di�erences:

New Format (DAS2.0) vs. reuse of DASGFF (DAS1.53) The �rst implementation

uses a new communication format de�ned in the DAS2.0 speci�cation (See the code

example in Section 4.4.1); the second implementation reuses the DASGFF format

(See the code example in Section 4.4.2). The creation of a new format has the ad-

vantage of being more expressive by providing the exact element that represents the

piece of information that the message requires. For example, the possibility of using

the element LOC more than once in DAS2.0 provides the opportunity to use the

same annotation in more than one segment. However, the bene�t of expressiveness

has been sacri�ced in DAS2.0 in order to get more generalization. This is evident

given that a large part of the information about a feature is contained in the PROP

element, which is a general use tag for any property of the feature. On the other

hand, the reuse of DASGFF format ensures that all the information provided by a

DAS server is included in the message, and any other feature inherent in the write-

back can be included using the element NOTE in a similar way to PROP. The fact

6http://java.sun.com/javase/ 2009
7http://www.eclipse.org/europa/ 2007
8http://tomcat.apache.org/ 2010

http://java.sun.com/javase/
http://www.eclipse.org/europa/
http://tomcat.apache.org/

CHAPTER 4. DAS WRITEBACK SERVER 48

that DAS developers are already familiar with the DASGFF format is an advantage,

as they won't require much e�ort to understand the few new features and, therefore,

to understand the whole protocol.

New model for writeback vs. Reuse of MyDas model This is an implementation

di�erence because the class model is the representation of the writeback document in

an object-oriented structure. In the �rst implementation, a whole model was de�ned

(Figure 4.1), for the second one, the model of the server implementation was reused,

but it was necessary to extend the current classes by adding writing methods to the

private parameters. The real di�culty in the �rst approach was the need for a trans-

lator between models, because the server is based on DAS1.53, the output requires

that the information is contained in that model. Even if most of the cases have the

same information, there are examples of incompatibilities, such as the LOC element

explained above. This issue would not exist if the server was based on DAS2.0; how-

ever, that protocol was not adopted, as explained above. This translation problem

is not exclusive to the writeback, the developers of DAS2.0 were trying to provide a

solution for it.9

Embedded functions vs. Uniform Interface In the �rst speci�cation the function re-

quested to the server should be indicated as part of the writeback document, while

in the proposed speci�cation the function corresponds to the HTTP methods used

to communicate with the server. This is a similar debate to the one in [40], in that

it refers to the Uniform Interface. In the case of DAS2.0, as in the case of `Big' web

services, the actions are embedded in the document. The main advantage of this

approach is that the format becomes generic for a virtually unlimited set of meth-

ods. However, Vinoski maintains in [48], that this feature is ironically inferring that

the services are not as reusable as they should be, because the freedom to create

any method arises with the creation of contracts and descriptions of the services;

those are becoming so speci�c that �the likelihood that an interface will �t what a

client application requires shrinks as the interface's speci�city increases�. RESTFul,

in contrast, proposes the use of a Uniform interface, which, in the web, is the use of

the methods GET, POST, PUT and DELETE. Within the scope of a writeback for

DAS, those methods are reasonable enough to reach the manipulation goals.

Small database size vs. Medium database size The Designed Database for the �rst

9 http://lists.open-bio.org/pipermail/das2/2008-October/001055.html 2008

https://http://lists.open-bio.org/pipermail/das2/2008-October/001055.html

CHAPTER 4. DAS WRITEBACK SERVER 49

implementation (Figure 4.2) has 5 tables, which, when compared with the 18 tables

of the second implementation (Figure 4.3), looks like a very small number. How-

ever,both of them are capable of storing the meta-annotation information. An ad-

vantage of the �rst model is that, given the generality of the table property, this

database will probably not change in the case of a new version of the protocol (The

changes will be in the model and the data source). The second version is more sus-

ceptible to changes in the protocol, however, its similarity to the model simpli�es all

the operations of the object-relational mapping.

4.5 Conclusions and Lessons

Several DAS server were considered as candidates to be extended with writeback capa-

bilities, and �nally MyDas was chosen, mainly for its architecture and its experimentally

proven robustness.

Two di�erent writeback servers were developed; one using the speci�cation of the DAS2.0

protocol, and for the second one a protocol speci�cation was proposed to the DAS com-

munity and the implementation was created to be compatible with the version 1.53 of the

protocol.

In general terms, the second implementation was easier and faster to develop because of

the simplicity of dealing with just one protocol, but also because of the experience and

clarity about the problem gained whilst implementing the �rst version.

The main bene�t of this is that although the scope of this project is limited to proteins as

a coordinate system, this writeback server is capable of managing other coordinate systems

such as the ones for genomic or structural information.

Another advantage of the second implementation is that, given that it reuses the DASGFF

format, it is potentially easier to extend DAS clients because they are already in that

format.

For these reasons, the implementation of the writeback using the proposed speci�cation

was the selected one in this project to reach the goal of providing a collaborative annotation

environment for the DAS system. Therefore, hereafter, every time the writeback server is

CHAPTER 4. DAS WRITEBACK SERVER 50

mentioned it will refer to the second implementation.

We propose to have one o�cial writeback server per coordinate system, this will facilitate

the implementation of the writeback clients, because usually a client does not query more

than one coordinate system at a time. The information of the o�cial writeback for a

coordinate system can be maintained in the DAS registry.

Uno�cial writeback installations can be useful for small groups in annotation projects,

however these won't be held in the registry, and therefore, public clients won't use this

information.

Chapter 5

DAS writeback client

5.1 Introduction

As a federated system, the Distributed Annotation System, DAS, delegates most of the

integration responsibilities to its clients, giving it the architecture of a �dumb server, clever

client� [23]. As a consequence, if the goal is to capture feedback from the users (Writeback),

the client should be able to execute several tasks related to both logic and user interaction.

One of the goals of this project is to create the perception for users that the writeback

functions in a client are native and can be used in a natural way on the current clients. For

this reason, the extension of a current client is preferable to implementing a new client from

cratch. The Writeback server behaves as any other DAS server for reading purposes, so

potentially, many software routines of an existing client could be reused for the writeback

visualization.

With the writeback server described previously as a starting point, this document describes

how a client has been extended in order to make the writeback functionalities available in

an intuitive and user friendly way.

It is desirable for most of the implemented DAS clients (if not all of them) to extend with

writeback capabilities to involve as many users as possible in the collaborative process. For

the purposes of this project, however, just one client has been extended: Dasty2. Despite

51

CHAPTER 5. DAS WRITEBACK CLIENT 52

this, the process followed in this project can be applied to other clients.

This chapter starts by de�ning the speci�c problem that it covers, followed by a description

of DAS clients, considering the most commonly used ones, and then provides a special focus

on Dasty2 given that it is the client chosen to be extented. It then gives the proposed

solution. The last section has the details of the design and implementation of the solution.

5.2 Problem de�nition

DAS clients only allow a read-only view of biological annotations. However, it would be

useful to enable researchers to create and optionally share new protein annotations as they

make new discoveries, both in their research and while viewing other annotations. DAS

clients currently do not provide a Graphical User Interface to add, edit, and store the

biological annotations. New data or modi�cations to the annotation in an existing DAS

source requires expert access to the original database or structured data. This hampers

the possibility of domain experts freely creating and manipulating annotations.

The distributed concept of DAS makes it an appropriate environment to support a Collab-

orative Annotation System, i.e., a system to enhance cooperation among domain experts

to enable work on annotation either simultaneously or asynchronously.

Chapter 4 presents a DAS server with writeback capabilities, which is an important step

in looking for a Collaborative Annotation System, however the real potential of the system

cannot be reached without a client that provides easy and understandable access to the

writeback features. Therefore, the problem to solve in this section can be summarized as

�How can the capabilities of a writeback server be implemented into a DAS client?�

5.3 DAS clients Analysis

Section 2.3.4 shows the importance of a client in the DAS architecture and describes the

main characteristics of the most representative protein DAS clients.

In Table 5.1 the main features of the protein DAS clients have been summarized. From

CHAPTER 5. DAS WRITEBACK CLIENT 53

there it is possible to see that the development of DAS clients is a very active �eld, three

of the compared clients have released versions in the current year (2009). It is also evident

that there is support for open software for the DAS community since all of the clients are

open source. This is also a tendency for clients for other coordinate systems, and even for

the DAS servers.

Table 5.1: Comparison of protein DAS clients

Feature Spice PFAM DASher Dasty2
Language Java Javascript Java Javascript
Proxy Language N/A Perl N/A Perl or Php
Last Release Jan 2008 Mar 2009 Feb 2009 Aug 2009
DAS Version 1.53E 1.53E 1.53E 1.53E
Type Stand-alone Web Stand-alone Web
Responsible Entity Sanger Inst. Sanger Inst. SBC EBI, NBN
Open Source YES YES YES YES
Documentation (how to) Good Good Good Good
Documentation (software) Acceptable Poor Poor Poor
3D Alignment Yes No No Yes
Protein Domain Render No Yes No No
Line Plots No No Yes No
Ontology Filter No No No Yes
Graphic Manipulation High Basic High High

In deciding which client to extend with the writeback capabilities, several factors were

taken into account. Firstly, a collaborative environment as proposed in this document

requires the participation of as many users as possible and the web has become the perfect

environment for such projects. Considering this, the web based DAS clients ful�ll more of

the hopes of creating a community for the annotation of proteins. It is proper to mention

the valuable e�ort that Stand-alone protein clients make to provide access to the tools from

the web through Java Web Start, however this method requires that Java is pre-installed

in the client and the scope of the application runs outside of the browser in an arguably

richer interface.

The criterion to select between the two web-based clients was the adaptability of the

application in other projects. PFAM o�ers very speci�c features that enrich the scope

of annotations about domain families, making it proper for the PFAM project purposes,

however it has not been used in a di�erent context. Dasty2, in contrast, is being used by

UniProt to display non-UniProt annotations. Biosapiens, a European network for genome

CHAPTER 5. DAS WRITEBACK CLIENT 54

annotation also uses Dasty2, as do Spice and ENSEMBL.

For those reasons Dasty2 is the chosen DAS client for the addition of writeback function-

ality. Moreover Dasty2 o�ers other features which makes it the perfect candidate for the

proposed extensions. As discussed in Section 2.3.4, Dasty2 has a modular structure based

on panels so it provides the opportunity to group the writeback features in a new panel,

thus isolating the writeback content for those who prefer not to use this information. This

isolation, however, is enough to maintain visual relations between those functionalities and

the ones belonging natively to Dasty2.

The fact that Dasty2 uses extensibly the technologies related to Web2.0 is very conve-

nient for the development of the writeback capabilities, because the user will interact with

the annotations in the same way that they would use a stand-alone application, allowing

for communication with the writeback server without loosing the context of the existing

annotations.

5.4 Solution Proposed

We consider that a writeback DAS client should implement the following set of character-

istics in order to provide an adequate environment for a Collaborative Annotation System:

1. The DAS client should be able to retrieve the information from the writeback server

after it has compiled the information from all the other servers.

2. The writeback information should be optional. The user should have a way of choos-

ing whether or not to visualize the writeback annotations.

3. The visualization of the writeback features can be done as a separate set of tracks1

or overwriting the original information of the sources.

4. Creation, edition and deletion of annotations should be done in the context of the

existing annotations.

1Track : In the context of a graphic of annotations a track is a row where a group of positional features
is drawn with the sequence as a reference, in some cases the sequence is the �rst track of the graphic.

CHAPTER 5. DAS WRITEBACK CLIENT 55

5. The DAS client should provide a method to authenticate the user with the writeback

server.

6. The interface should allow for the visualization of the history of changes for a par-

ticular annotation in order to give the users an �undo� option.

7. The interface should provide a way to roll back to a previous version of an annotation.

8. Ontologies for the evidence code and the type of annotation should be used in order

to standardize the annotations.

9. Validation of the �elds of an annotation should be done before sending the message

to the server.

Having these requirements in mind, we have created an extended version of Dasty2, which

now permits the proposed interaction with the writeback server. The next section contains

the details of the design and implementation of this development.

5.5 Design and Implementation Details

Dasty2 is an Ajax application that requires the retrieval of information from external

servers, however, most of the browsers impose a restriction that does not allow XML-

HttpRequests to be made to any server except the server where your web page came from

[30]. One of the strategies to avoid this issue is to have a server that behaves as a proxy

between the client running in the browser and any server in the Internet.

Figure 5.1: Communication between Dasty2 and the WriteBack

Figure 5.1 illustrates the component's interaction in a communication between the write-

back client and server. When the client requires some information from a remote server, a

CHAPTER 5. DAS WRITEBACK CLIENT 56

request is sent to the proxy. Subsequently, the proxy requests the resource from the server.

When the proxy receives a response, it is replicated to the client. The clouds in the graphic

representing the Internet indicate that there is not a direct connection between the enti-

ties, but they communicate with each other through the Internet. In the case of Dasty2,

all response processing is the responsibility of the client and other proxy implementations

pre-process the response, so minimizing the client's number of tasks.

This description applies to the communication between Dasty2 and any DAS server (reg-

istry, reference or sources); however, for the writeback case there are a couple of di�erences.

Firstly, in the proposed speci�cation of the writeback2 it is explained that the communica-

tion with the server should be using the di�erent HTTP methods (GET, POST, PUT and

DELETE) according to its function (query, update, create and delete). For this reason,

the Dasty2 proxy was extended in order to use the correct method.

The second di�erence is the amount of information; before the writeback, all the requests in

Dasty2 were using the GET method and, therefore, the information sent from the client to

the proxy was as large as 256 characters maximum, which is the URL size limit for most web

browsers and servers. With the writeback functionalities, however, the client now requires

that an XML document is sent that will probably be bigger than the imposed limit of the

URL size, making the use of other methods mandatory and even more appropriate if those

new methods coincide with the recommendations of the RESTful standard.

The client side of Dasty2 has been written in JavaScript. Although this language is not

considered as robust as other languages like C++ or Java, it allows for the use of the basic

object oriented principles such as encapsulation or inheritance [8]. Unfortunately, Dasty2

is not object oriented, but it is organized as a set of function libraries where each library is

a �le that groups all the functions of a speci�c module. Despite this, an Object Oriented

approach was used for the extension. Figure 5.3 displays the class diagram of the writeback

extension for Dasty2.

Figure 5.2 summarizes the interaction between the submodules of the writeback client

implementation. The communication between writeback client and server is done using

the DAS GFF XML format, which is de�ned in the DAS speci�cation. The client has

to have a logical model (bottom-right, Figure 5.2) to map the DAS GFF format when

it is reading from the writeback and it must also start from that model to build the

2http://www.biodas.org/wiki/DAS1.6E#DAS_writeback 2009

http://www.biodas.org/wiki/DAS1.6E#DAS_writeback

CHAPTER 5. DAS WRITEBACK CLIENT 57

Figure 5.2: Architecture Diagram for the writeback extension in Dasty2

XML when some information is being sent to the server. The classes coloured in blue

in Figure 5.3 correspond to the de�ned logical model. Currently, these classes have been

used solely for writeback purposes, but they can be used to do a re-factoring of Dasty2.

Some of the functionalities of Dasty2, such as the drawing of features in the graphic have

been replicated in the corresponding class in order to gradually move Dasty2 to an object

oriented software. However, because we still use the core of Dasty2 some of the writeback

features were replicated inside the Dasty2 libraries (bottom-left, Figure 5.2).

The class DASParser is in charge of parsing the XML from the writeback server response

for both reading and writing purposes. All this logic uses the Document Object Model

DOM to read the �le and from there it creates an instance of the model. This class

corresponds to the module Parser in the Figure 5.2.

TheWritebackManager is probably the most important class; in Figure 5.2 it is appreciable

that this module is in charge of the orchestration of all the other modules. By the time

that Dasty2 has �nished loading the DAS servers, a global instance of this class is created,

CHAPTER 5. DAS WRITEBACK CLIENT 58

Figure 5.3: Class Diagram of the writeback extension for Dasty2

CHAPTER 5. DAS WRITEBACK CLIENT 59

and then it requests the features that the writeback server has for the protein target. From

that moment onwards, this object is the interface between any browser's event related to

the writeback and the logic to handle it.

Figure 5.4 is a snapshot of the panel added to Dasty2 for the writeback functions.

Figure 5.4: Writeback Panel in Dasty2

Next are some details of the functions that have been added to Dasty2 for reading and

writing purposes.

5.5.1 Authentication

A small module to allow for user authentication through a login and password was added

in the writeback panel (bottom-right corner of Figure 5.4). Any writing function is con-

ditional on a previous login and password validation. The reading functionality does not

require authentication.

The module was implemented as a component of the Data Source in MyDas, with a table

in the PostgreSQL database that contains the login of the user and the MD53 encoded

password.

The login and password have to be sent as a part of the message DASGFF through the

NOTE element, in the way [KEY]=[VALUE], for example:

1 <NOTE>USER=login</NOTE>

2 <NOTE>PASSWORD=keypass</NOTE>

3MD5 : Message-Digest algorithm 5

CHAPTER 5. DAS WRITEBACK CLIENT 60

In a preliminary version of the server the authentication was done using OpenID, a third

party authentication system. In the isolated tests of the server, that strategy worked well;

however when authentication tests were done using Dasty2 it was evident that such a

method created several complications in the system. The use of an OpenID server added

an extra communication layer in the system, i.e. another server would be required at

the very right of Figure 5.1. The authentication should be done for the writeback server

and the client should just be the interface for it. The problem is that OpenID works using

HTTP location headers with a callback URL; this URL should be pointing to the writeback

server in order to execute the action after the authentication is done, and that displays the

raw answer in the browser, discarding Dasty2 from the current scope. Alternatively, the

callback URL could point to the client, but in this case the client would need to resend

the request to the server and extra validations would be required in order to determine if

the request has already been authenticated or not. The biggest issue for this alternative is

that the server becomes client-dependent, and the goal of using the same writeback server

for di�erent kinds of clients becomes unreachable.

Moreover, even if those issues were solved, the fact that the communication for OpenId is

by redirecting to their validation web, it becomes an issue for stand-alone clients, forcing

them to implement a mini-browser or to look for alternatives to circumvent the issue. This

can drastically a�ect the adoption of the writeback server as the de facto standard for the

DAS community.

5.5.2 Reading from the writeback

The writeback server behaves like any other DAS source when a reading query is submitted,

therefore it is the client who decides when and what to do with this information. For the

Dasty2 writeback extension, the user has three di�erent modes to operate (Left side of

Figure 5.4):

Disable the writeback display The �rst mode essentially ignores the writeback infor-

mation and in this case Dasty2 just collects and displays the original information

from the sources. This is useful for the users who do not want the collaborative

information.

CHAPTER 5. DAS WRITEBACK CLIENT 61

Writeback as an extra source Dasty2 can display the information coming from the

writeback server as an extra data source. In such a case, all the writeback features

will be displayed as new tracks, allowing the users to compare the original annotation

with the last version of it in the writeback.

Merging the writeback with the sources In this mode, the writeback annotations

overwrite the original ones in the graphic. This generates a similar graphic for fea-

tures as was used in Dasty2, but with the modi�cations that the writeback server

contains. The features tagged as deleted will be hidden in the graphic.

In the last two cases a list of the features tagged as deleted is displayed under the writeback

panel in order to have an access point to edit those features.

An extra reading feature that has been added to Dasty2 is the option to recover the

historical information for any of the writeback features. Figure 5.5(d) shows the tab that

contains the list of all the versions that the selected feature has in the writeback server.

5.5.3 Writing in the Writeback

The writeback extension for Dasty2 allows the authenticated users to Create, Update and

Delete features. The strategy is to reuse the internal pop-up windows of Dasty2 to display

the information of a particular feature in order to provide the necessary tools to execute

those functions in the same context as the selected feature. With this goal in mind, a set

of tabs was added to those windows. Figure 5.5 shows the contents of the four di�erent

tabs that the user can choose after clicking on a particular feature. The �rst tab (a) is the

detailed information that Dasty2 provided to the users for the chosen feature, the other

three tabs give access to the writeback capabilities.

Below is a description of how the writeback capabilities are available in Dasty2:

Update Figure 5.5(b) is a screenshot of the edit tab; in it the user has the same detailed

information, but in a form that allows the user to change the values of any �eld.

When the information is sent to the server, it is stored as the current version of the

feature and it will be the one to which the server returns for future requests.

CHAPTER 5. DAS WRITEBACK CLIENT 62

Figure 5.5: Tabs for writeback functions in Dasty2. (a) Detailed information of the feature.
(b) Form to edit any detail of the feature. (c) Con�rmation for deletion. (d) Writeback history
of the feature

CHAPTER 5. DAS WRITEBACK CLIENT 63

Another way to edit a feature is through the history tab (5.5(c)). In this case, the

user can choose to roll back to a previous version. The �rollback� is not part of the

writeback speci�cation, what really happens is that the client requests an update with

all the details of the previous version. This strategy was preferred over a complete

rollback so that the previous versions do not get lost.

Create In the top-right corner of the writeback panel (Figure 5.4) there is a button to

add a new feature. It opens a window similar to the one in Figure 5.5(b) but without

any content in the �elds. Therefore the user can create all the details of the feature

in that window, send them to the writeback server and a new feature will be created.

Delete Figure 5.5(c) shows a con�rmation message for the deletion of the feature. Features

are not really deleted from the server, they are just tagged in such a way that this

information can be used to hide the features in the merge method.

5.5.4 User Interface Aids

Version 1.53E of the DAS speci�cation recommends the use of ontologies in order to stan-

dardize both annotation labels and evidence codes, and make the task of integrating an-

notation from several servers easier. The recommendation says that for the values of the

attribute ID and the content of the element TYPE, the Biosapiens Ontology4 ID and its

corresponding name, should be respectivelty used. In the case of the evidence code, the

ontology to use is the Evidence Code5 [43] [23].

Looking to promote the use of those ontologies, a list of suggested terms from the corre-

sponding ontology is displayed in the update form (Figure 5.5(c)) while the user is writing

in the �elds type and category; and then the user can choose from the list and the �elds

type, type ID and category are auto-completed in the right format.

The same form has a set of logic validations to ensure that the coordinates of the annotation

are not out of the limit imposed for the size of the protein, and that the start amino acid

is before the end amino acid. Finally, the orientation and phase are drop down lists to

reduce the options to the permitted ones.

4 http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=BS 2009
5 http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=ECO 2009

http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=BS
http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=ECO

CHAPTER 5. DAS WRITEBACK CLIENT 64

5.5.5 User Stories

In order to elucidate the main features of the Dasty2+writeback application the following

set of user stories have been de�ned. An explanation of how to do the user story in the

application has been added.

1. As an anonymous user I want to change the visualization mode for writeback infor-

mation: After all the sources (including the writeback) have been loaded the user

can go to the Writeback panel (Figure 5.4) and choose between 3 di�erent modes.

The �rst option is to use the information of the writeback to modify the graphic

and overwrite the original annotations for those in the writeback server. The second

option is to consider the writeback as another source and display its features as in

new tracks. The last one is to ignore the writeback information and only visualize

the information coming from the original sources.

2. As an anonymous user I want to create a user so that I can use the writeback writing

function: In the writeback panel (Figure 5.4) the user can click on the link "New

User", A window requesting username, password and con�rmation of the password

is displayed. After submitting those �elds, a user is created in the writeback server,

and a session is started in the client.

3. As an authenticated user I want to add a feature of the current protein: In the

Writeback panel (Figure 5.4) there is a button to create a new feature, after clicking

this it will open a popup window similar to Figure 5.5(b) with all the �elds empty.

The user should �ll in the information and after submitting it, the feature is created

in the writeback server, and the graphic is repainted in order to include the new

feature.

4. As an authenticated user I want to edit a feature of the current protein: When Dasty2

is displaying the graphic of positional features (Figure 2.5) the user can click on any

of the features and a popup window will be displayed. This window contains the four

tabs of Figure 5.5. Selecting Edit (b) a form where the information of the feature can

be modify is shown. After submitting this information, the writeback server creates

a new version of the annotation and the graphic is repainted to include the changes.

5. As an authenticated user I want to delete a feature of the current protein: Following

the same procedure as the previous case the deletion tab can be displayed (Figure

CHAPTER 5. DAS WRITEBACK CLIENT 65

5.5(c)). When the user con�rms the deletion, a message is sent to the server and the

feature is tagged as deleted, and can be visualized in the list of deleted features in

the writeback panel (bottom of Figure 5.4).

6. As an authenticated user I want to interact with the history of a feature of the current

protein: When a feature has been modi�ed more than once, the user can see the

di�erent versions through the History Tab (Figure5.5(d)). Each version has a Rollback

link, that can be used to put the information of that version as the current one for

that feature.

5.6 Discussion and Conclusions

The developed software as a proof of concept has demonstrated that it is possible to add

feedback functionalities to an existing DAS client, reusing its design paradigms and making

the new options look like native operations of the software.

Dasty2 was extended not just to visualize information coming from a writeback server, but

also to interact with this server creating and/or modifying annotations. The use of Ajax

and Object Oriented JavaScript allowed us to develop a set of interfaces as close as possible

to the one that can be created for a stand-alone application. Therefore, the same process

can be applied to any other DAS protein client. In the case of other coordinate systems,

extra considerations should be taken into account, especially in the case of hierarchical

features, for example the Gene-Exon relationship, where for example, a chromosome can

have annotated a gene X that is annotated to be composed of the exons A, B and C and

another gene Y annotated to be composed of B and C.

The writeback client development process made some issues in the writeback server evident

that were not detected during the design and implementation of its �rst version. For

example, the strategy to authenticate a user was modi�ed as described in 5.5.1 in order to

simplify the process that the clients require to implement.

A feature that was added to the DAS server because of the development of the client was

the possibility of removing the DELETE meta-annotations. It was necessary for the cases

where the deletion was tagged directly from the original feature because in such cases there

is no way to go back to previous states and the deletion is therefore permanent.

CHAPTER 5. DAS WRITEBACK CLIENT 66

Although several improvements can be made to the Dasty2+writeback application in order

to create policies of trustworthiness, like the ranking of features and users; we consider that

the use of a third party server that required authentication plus the possibility to rollback

to previous versions, are characteristics of the system that generate a good starting point

for a community interaction.s

Chapter 6

Usability Experiment

6.1 Introduction

Our experiment is based on a working prototype of the DAS writeback client and we used

a method of Formative Evaluation, looking to improve the usability of our System and

verify that feedback operations can be excuted for users without specialized training.

A Constructive Interaction Experiment was designed, executed and analysed with the

objective of improving the usability of the Collaborative Annotation System Interface. A

description of the experiment, the method used and the results obtained are reported here.

This chapter is organized as follows: �rst a description of Constructive Interaction� the

method chosen for the test, second the de�ned conditions and rules for the experiment, third

the results obtained from the experiments; and �nally a discussion with the conclusions of

the process.

6.2 Choosing an Experiment

Our working prototype consists of two components: a server and client, both of which are

extensions of widely used pieces of software. The server extends the MyDas application,

67

CHAPTER 6. USABILITY EXPERIMENT 68

which is used to provide DAS features for important projects, such as UniProt1. For the

client, we extended Dasty2, an application for which the main installation is at the EBI-

EMBL site2, and which have also been included as an extra component in other projects

such as UniProt3. Considering , their wide use, the robustness of the extended applications

(MyDas and Dasty2), and in the base performance has already been proven, so we do not

need to test these here.

The server stores all the information using the PostgreSQL RDBMS, delegating all the

persistent storage low-level tasks to that Management System. The reason for this, is

that we believe with an appropriate installation of the server it will be able to handle the

required information load and resulting tra�c. This means we can focus exclusively on

the testing of the new capabilities related with the writeback, especially since a writeback

server is not expected to hold as much information as a centralized source.

As described in 6.3.2, the available sample of users for the experiment does not have any

previous experience in usability tests. This inspired us to consider alternative methods to

the Heuristic Evaluation.

Think-Aloud protocols provide the opportunity to view a working prototype in action, cap-

turing some of the potential issues that an interface experiences, using di�erent methods,

such as, videotaping the sections for its posterior analysis, related to what the user wished

or expected the system to do in comparison to the real actions executed by the system and

the respective responses.

However, some of the criticisms of traditional Think-Aloud protocols suggest an unnatural

behaviour of having to consciously express their actions, their motivation and the expected

outcome. An alternative which tries to address this criticism is Constructive Interaction.

In this cases two users utilising a single machine, would have to talk to each other in order

to de�ne the strategies necessary to solve the tasks.

The obvious advantage to using the constructive Interaction method would be the un-

derstanding of the collaboration between partners, which is very relevant in cooperative

environments [28]. This project proposes the case of the Collaborative Annotation System

and that is the main reason for choosing a Constructive Interaction method as the software

1http://www.ebi.ac.uk/uniprot-das/ 2009
2http://www.ebi.ac.uk/dasty/ 2010
3http://services.uniprot.org/uniprot-dasty/client/uniprot.php 2009

http://www.ebi.ac.uk/uniprot-das/
http://www.ebi.ac.uk/dasty/
http://services.uniprot.org/uniprot-dasty/client/uniprot.php

CHAPTER 6. USABILITY EXPERIMENT 69

evaluation technique.

6.3 Experimental Design

6.3.1 Test Object

The Collaborative Annotation System proposed in this project is the focus of this test,

although it is obvious that the client of the system receives more attention in the test

given that it interacts directly with the user. The server is also an important part of

the test because the interfaces in the client are the contact point between the user and

strategies de�ned for the system and implemented in a third party server.

The client is a web application called Dasty2+Writeback, which makes extensive use of

Web 2.0 technologies. The client is an extension of an existing application, therefore the

experiment will test the new features as well as validate the previous characteristics of the

system which have not been modi�ed.

6.3.2 Subjects

The group of users selected for the test consisted of eight postgraduate students from the

Computational Biology group at the University of Cape Town. This ensured that the users

had both good skills in the use of web applications and biological knowledge to make use of

the application; however none of them have participated in a usability experiment before,

and therefore their expertise in usability testing is limited. The age of the youngest test

user was 27 years old and the oldest is 32 years old with an average of 29.6 and a standard

deviation of 2.0. Five of them were MSc and three were PhD students of bioinformatics.

Seven males and one female took part in the experiment. Although they have been exposed

through presentations to what the system is, and the technology behind it, none of them

had used the system before. They knew each other and the dyads were selected randomly.

Even though we recognize that 4 experiments is a small number of tests, the group is

very representative of the �nal users of the system and we are therefore con�dent that the

results of the tests should be conclusive.

CHAPTER 6. USABILITY EXPERIMENT 70

6.3.3 Tasks

In order to de�ne the tasks that the user has to accomplish during the experiment, a real

publication that reports positional annotations was used [31]. The reported annotations

are out of date in comparison with the ones on the DAS servers; however it makes this

information appropriate for the test because it ensures that the information recovered by

the client will be di�erent to the one in the paper and therefore modi�cations will be

necessary.

The use of a published paper that contains features of an existing protein generates the

necessary con�dence about how representative the test is of the scienti�c environment

where the application is expected to be used. Other test environments could have been

chosen, such as, a �jamboree� project, where a particular biological sequence is the focus

of all the annotators. However, in this scenario the creation of features would be the most

often used writeback capability (if not the only one), and then the experiment could be

unbalanced in just a few of the features being tested� This is the reason why we decide to

use the published paper.

From the publication, a group of annotations were selected for the test and speci�c tasks

that involve those features were de�ned in order to enforce the use of the di�erent writeback

capabilities (Add, update, create and delete). The test tasks looked to be representative

of the use of the Dasty2+writeback capabilities. This is not a test that evaluates all the

functionalities, however it tries to be representative of the most important ones.

A help page that contained the explanations of the di�erent modules of the Dasty2 +write-

back application was provided to the users in order to ensure the availability of information

that allows them to solve the proposed tasks.

The �rst two tasks were designed to familiarize the user with the information contained in

Dasty2 as well as how to manipulate those results to �lter and visualize only the desired

information. The third task involved a requirement of authentication for the use of the

writeback, which correspond to the User Story 2 (Section 5.5.5). Tasks 4 and 5 were

created to use the writeback features, The forth one looks for the user to go throug the

User Story 3 and the �th task is related with emphUser Story 4 (Section 5.5.5).

Below is the set of tasks that the users had to perform during the experiment:

CHAPTER 6. USABILITY EXPERIMENT 71

1. In the web browser go to the Dasty2 URL4 and query the information in all the

available sources for the protein with the accession number O14737.

When all the servers have provided the information, please �ll in the following �elds.

(All this information is contained in the response page):

• Sequence length:

• First 10 amino acids:

• A server that has provided annotations:

• A server that does not have feature annotations available for this protein:

• A server with errors or warnings (if any):

• Any name of the protein:

• A publication citation about this protein:

2. Manipulation and �ltering options:

• Make sure that the positional features graphic is displaying the columns type,

server and category.

• Filter the graphic in order to display all the poly peptide secondary structure

related features, coming from any server but uniprot_aristoteles, with evidence

code inferred by curator or inferred from in-silico analysis.

3. Create a writeback user log in.

4. The following extract of the paper [31] contains information about the structure of

the protein O14737 that is not in your current graphic. Add those features to the

graphic.

�In this study, the heteronuclear NMR method was adopted for understanding the so-

lution conformation of human PDCD5 protein. The 3D solution structure of PDCD5

protein is supposed to be divided into three structural regions, a rigid core region and

two dissociated terminal regions. The core region (N41�Q101) consists mainly of

a triple-helix bundle. The N-terminal region (D3�R40) is an ordered, but not a

rigid, structural region which contains abundant secondary structures, and packs very

4http://oware.cbio.uct.ac.za/�gustavo/client

http://oware.cbio.uct.ac.za/~gustavo/client

CHAPTER 6. USABILITY EXPERIMENT 72

loosely against the core. The C-terminal extension represents a mobile and unstruc-

tured region (Q102�D118) with a dynamically frayed tail (S119�Y125) in the protein

that may be capable of interactions with nucleic acid."

5. The alpha helices reported in [31] are summarized in the following table. Create,

Update and/or Delete features in order to adjust the DAS information in the graphic

with the one in the table.

Table 6.1: Reported alpha helices

Alpha helix Start End
α 1 3 19
α 2 26 33
α 3 41 46
α 4 50 61
α 5 63 79
α 6 89 100

Note 1: It is preferable to update a feature than delete one and then create a new

one.

Note 2: After �nishing this point, delete any extra helices in the graphic that con-

tradict or replicate your annotations.

6.3.4 Questionnaire

After the usability sessions, the users completed a form about demographic details such

as age, gender and education. It also contained questions about the experiment itself, the

method used, etc. Finally, it provided an extra chance to add any comment or suggestion

about the system. The full questionnaire can be found in appendix A.

6.3.5 Experimental Procedure

Every user was introduced to the experiment and had the procedure explained to them,

with the following facts emphasized:

• This is an evaluation of the software and not of the user.

CHAPTER 6. USABILITY EXPERIMENT 73

• Errors, problems or di�culties are expected in the application, so, please indicate

any of those.

• The test results will a�ect the �nal version of the application.

• Please avoid talking about the system outside of the experiment to prevent any biased

behaviour of potential participants of the experiment.

• The test is voluntary and can be stopped at any time for the participant.

• Any record of the test is con�dential and will be used only for the purposes of the

experiment.

The experimental procedure was the following: The participants were seated randomly at

the computer, one of them sitting in front of it (Actor), the other next to it (Co-actor).

Subsequently they received the instruction :

• Working together, which in this case means that any executed action should �rst be

consulted between them.

• Try to make the ideas to solve the problem explicit.

• Please do not interact with the facilitator.

On �nishing the task, they were required to �ll in the questionnaire.

6.3.6 Processing the data

All the sessions were recorded in two di�erent ways: with a video camera and by using

Screen Record 2 5, a software tool that records all the actions that happen on the screen as

a Quicktime movie.

The video camera enabled us to capture any expression or body gesture that indicates

the approval or disapproval of components of the software at the moment of executing the

tasks. The screen video allowed us to have a detailed record of all the mouse movements

5http://www.miensoftware.com/screenrecord.html 2009

http://www.miensoftware.com/screenrecord.html

CHAPTER 6. USABILITY EXPERIMENT 74

and any introduction of text in certain areas of the screen, which in our case was the

browser window. Both methods recorded the audio of the session.

After all the sessions were executed, the records were studied by synchronizing both videos

and analysing them to detect when the user was having problems in solving any of the

tasks or when they expected the functionalities to work in a di�erent way.

The �rst part of the questionnaire contains demographic information and their opinion

about the test itself. The demographic information was discussed in Section 6.3.2 and is

summarized in Table 6.2.

Table 6.2: Demographic Information of the experiment users

User # Age Gender Completed Degree Current degree Role
1 27 M BSc MSc Actor
2 28 M MSc Co-actor
3 27 F MSc Co-actor
4 30 M MSc PhD Actor
5 31 M MSc PhD Actor
6 31 M Postgraduate MSc Co-actor
7 32 M BSc MSc Actor
8 31 M Postgraduate PhD Co-actor

Table 6.3 condenses the information about the experiment perception of the test subjects.It

is interesting that 75% of the users considered that the level of di�culty of the experiment

was Medium and 25% even considered the test easy, however only two of them a�rmed to

answer all the questions correctly. Constructive Interaction, as the chosen technique for the

experiment, did generate a good impression in the participants. All of them considered that

the team work helped to solve the tasks, mainly because of the complement of knowledge

that the partners can bring, especially biological knowledge. Their opinion about how the

speed of the work is a�ected by working in a team was divided: 50% considered it faster,

25% about the same and the other 25% considered it to be slower to work as dyads. Despite

this, the comments about this topic reinforced the good perception of the experiment, for

example one of the users said �Slower but probably more correct� and another one wrote

�two people trying to use one computer = slower... but more ideas = faster�.

CHAPTER 6. USABILITY EXPERIMENT 75

Table 6.3: User considerations about the experiment

User # Di�culty Correct Team work help Team work speed
1 Medium Most Yes Faster
2 Medium No Yes About the same
3 Medium No Yes Slower
4 Medium No Yes Faster
5 Medium Most Yes About the same
6 Medium Yes Faster
7 Easy Yes Yes Slower
8 Easy Yes Yes Faster

6.4 Results

A summary of the analysis of the session by task can be found in the appendix B. From

there, a set of usability issues were compiled. As Rolf Molich suggested in [35], the com-

ments and issues of the usability test were classi�ed as disasters, serious problems, minor

problems, positive �ndings, bugs, and suggestions.

An issue was considered a Disaster if it breaks the execution of the program or causes an

abrupt interruption of the server. A Serious Problem is when one of the main features of the

application generates completely di�erent results to those planned. When the application

generates the correct results, but the procedure to get the result is di�erent to what the

user tries, or the messages confuse the user, the issue is catalogued as a Minor Problem.

A Positive Finding is annotated when all the groups have used a new feature without

any inconvenience, or when a user explicitly shows his appreciation for a feature. If a

functionality works well most of the time, but there is a sequence of events that evidence

an error, it is considered to be a Bug. Finally, a Suggestion can be made by a verbal or a

written comment.

As explained previously, the �rst two tasks of the experiment were about pre-existing

functionalities of Dasty2, and they aimed to familiarize the user with the interface and

detect any usability issue with the current interface. The other three tasks were related

to the writeback functionalities; the actual focus of this project. Due to this, the set of

errors, usability issues and/or suggestion were divided into Dasty2 and Dasty2+writeback

related issues. The terminology about the Dasty2 Panels and components is explained in

Section 2.3.4.

CHAPTER 6. USABILITY EXPERIMENT 76

6.4.1 Dasty2 issues

Disasters : None

Serious Problems : None

Minor Problems :

1. The Registry label (Figure 6.1(A)) was not taken into consideration at the time

of submiting a query (3 Group).

2. Users do not know what kind of information can be found in the Non-positional

feature panel (1 Group).

3. The �ltering trees (Figure 6.1(B)) are so big that the user can not see the

graphic, and therefore the updating �on the �y� behaviour is not noticed (3

Groups).

4. The user does not realize that the Annotation server link (Figure 6.1(C)) at the

top of the progress bar is a link to show the log of the loaded servers (2 Groups).

Positive Findings :

1. The manipulation options are easy to �nd and use (4 Groups).

2. Sorting the list of non positional features was useful to solve task number 1 (1

Group).

Bugs :

1. The �ltering trees (Figure 6.1 (B)) do not work properly when more than one

is a�ecting the graphic. The �lters are working in an isolated way overwriting

a preselected �lter instead of adding a restriction to the �lter (3 Groups).

2. Some features do not show the popup window when the mouse is over it. (1

Groups).

Suggestions :

1. Messages informing users that the graphic has been updated after changing the

�ltering options.

CHAPTER 6. USABILITY EXPERIMENT 77

F
ig
u
re

6.
1:

D
a
st
y2

M
in
or

P
ro
b
le
m
s:

A
re
as

w
it
h
a
m
in
or

pr
ob

le
m

d
et
ec
te
d
.
(A

)
R
eg
is
tr
y
L
ab

el
C
h
o
os
er
.
In

th
e
ex
p
er
im

en
t
it

w
as

ex
p
ec
te
d
th
at

th
e
u
se
rs

ch
o
os
e
th
e
op

ti
on

�A
n
y�

to
en
su
re

al
l
th
e
se
rv
er
s
w
er
e
q
u
er
ie
d
.
(B

)
A
n
n
ot
at
io
n
S
er
ve
r
L
in
k.

W
h
en

C
lic
ke
t
a
lo
g
of

th
e
st
at
u
s
of

th
e
re
q
u
es
te
d
se
rv
er
s
is
lis
te
d
.
(C

)
F
ilt
er
in
g
T
re
es
.
A
s
a
re
su
lt
of

th
e
ex
p
er
im

en
t
it
w
as

d
et
ec
te
d

th
at

th
e
�
lt
er
in
g
op

ti
on

d
o
es

n
ot

w
or
k
pr
op

er
ly

w
h
en

u
si
n
g
m
or
e
th
an

on
e
tr
ee
.

CHAPTER 6. USABILITY EXPERIMENT 78

2. The volatile popup window that is displayed when the mouse is over a feature

should disappear when the permanent popup is requested.

3. Manipulation options should be closer to the graphic, it could even be put inside

the same panel.

4. Make the �ltering trees (Figure 6.1 (B)) as popup windows to allow the user to

see the graphic while the tree is being manipulated.

6.4.2 Dasty2+Writeback issues

Disasters : None

Serious Problems :

1. The graphic does not draw the �rst annotation created for a protein. The query

had to be submitted again and it worked well from then onwards (4 Groups).

Minor Problems :

1. The popup window to create a user (Figure 6.2(A)) should disappear automat-

ically after a user is created. When it is still open, it creates the sensation that

the user is not created (4 Groups).

2. The meaning of the feature �elds (Figure 5.5(b)) is not clear (4 Groups).

3. The �rst try to get the writeback options of a feature was using right click

instead the left click, that is the way it currently works (4 Groups).

4. The message to inform you that a user was created is in the form of a warning,

generating the impression that an error has ocurred (4 Groups).

5. Type ID (Figure 5.5(b)) causes problems to the users when the type is out of

the ontology because they do not have an ontology Id to �llin the �eld, but the

�eld is still mandatory (3 Groups).

Positive Findings :

1. All the groups �gured out how to add, create and delete features.

2. The distinction between the original feature and the new version in the Render

as new tracks visualization mode was intuitive for all the users.

CHAPTER 6. USABILITY EXPERIMENT 79

Bugs :

1. The automatic login after user creation was not working. The login panel be-

haved as if the user was logged in, but all the writeback functionalities were still

locked (4 Groups).

2. In the history of a feature, the current one should not be displayed (Figure

5.5(d)).

Suggestions :

1. Add tool tips for the �elds in the forms to create and edit a feature (Figure

5.5(b).

2. Add a function to copy or duplicate an existing annotation in order to re-use

most of the values of the �elds and just edit the ones that change.

3. Change the name of the link to remove a deletion to Restore

4. Allow the use of the Enter button to submit the data for a created/edited

feature.

5. Allow the use of the keyboard to navigate the component to display suggestions

based on the ontology terms.

6.4.3 Corrective Measures

The correction of issues strictly related to Dasty2 was out of the scope of this project,

nonetheless, thanks to the close collaboration between the current Dasty2 development

group and ourselves, a report of issues and comments was submitted to them and the

solution of the issues and implementation of the suggestions will be considered as part of

the 2010 Dasty2 maintenance plan.

The writeback related issues were solved in the same order that they appear in the list to

give a higher priority to the serious problems, then the minor problems, bugs and �nally

the suggestions. The items related to a keyboard friendly navigation were cataloged as low

priority because they are a desirable feature but the user still has the option to use the

mouse for those actions. Below is the report of the changes during this development cycle,

following the same numeration of that in section 6.4.2.

CHAPTER 6. USABILITY EXPERIMENT 80

F
ig
u
re

6.
2:

D
a
st
y2
+
w
ri
te
b
a
ck

C
or
re
ct
io
n
s:

A
re
as

w
it
h
a
co
rr
ec
te
d
is
su
es
.
(A

)
C
re
at
e
U
se
r
F
or
m
.
(B

)
T
o
ol

ti
p
an
d
ic
on

h
el
p

fo
r
�
el
d
s
in

th
e
F
ea
tu
re
s
E
d
it
T
ab
.
(C

)
R
es
to
re

L
in
k
fo
r
d
el
et
ed

fe
at
u
re
s.

(D
)
D
u
p
lic
at
e
T
ab

to
co
py

al
l
th
e
�
el
d
s
of

a
fe
at
u
re

to
a
n
ew

on
e.

CHAPTER 6. USABILITY EXPERIMENT 81

Serious Problems :

1. When a protein does not have features in the writeback server, this will return

an Unknown segment in the document. The problem was that at the time of

creating or editing a feature for the �rst time in a protein, the client tried to

add that feature to the Unknown segment. The correction was done and now

the document is replaced completely, not just the feature, to include a recently

created segment.

Minor Problems :

1. Now the �Creat User� popup window (Figure 6.2(A)) closes automatically after

the user is created.

2. An icon for information (Figure 6.2(B)) is now displayed at the side of the �elds,

and if the mouse is over it, a help message with details about the �eld will be

displayed.

3. Now both buttons are displaying the writeback tabs.

4. Dasty2 displays the messages in the System information panel, so now the �user

created� message is displayed there.

5. Some servers that were providing information before the implementation of the

ontologies in DAS solved this issue by using the same Type term as Type Id, so

we decided to follow the same strategy for the types out of the ontology.

Bugs :

1. The cause of this bug was that given that the Create User popup window (Figure

6.2(A)) did not disappear after creating the user (Minor Problem #1). The

participants of the experiment pressed the submit button again and the second

request was a failure because the user already existed, causing the logout. By

hiding that window at the time of the creation, this bug was solved.

2. Now the History panel only displays previous versions.

Suggestions :

1. Same as Minor Problem #2 (Figure 6.2(B)).

CHAPTER 6. USABILITY EXPERIMENT 82

2. A new tab was added to the writeback options called Duplicate. It looks the

same as Figure 5.5 but instead of triggering the Update of a feature, it sends a

Create request, and then the desired functionality is reached.

3. The link to undo a deleted feature was renamed to Restore (Figure 6.2(C)) .

4. Postponed for a second maintenance cycle.

5. Postponed for a second maintenance cycle.

6.5 Discussion

The major outcome of the experiment is that the users were able to use the writeback func-

tionalities without extensive training. This raises two important points worth highlighting:

Firstly, both server and client are doing what the user expects of them, and secondly, the

functionalities are intuitive enough to allow untrained users to solve protein annotation

tasks. We believe these features are the main requirements for a system which provides

support to a collaborative annotation community.

The duration of the sessions varied from forty �ve minutes for the second group to one and

a half hours for the �rst group. The observations yielded from the sessions were such that

the group containing subjects from di�erent backgrounds had a better performance. For

example, one subject possessing a greater biological knowledge base and the other subject

having a background rooted in computer science. Having a basic knowledge of DAS also

proved to be useful, for instance, one of the groups knew that information such as the

name or publications related to the protein are presented as Non positional features in

DAS, useful information for the �rst task.

A constant obstacle the groups faced, was they did not understand the meaning of the �elds

to create/update a feature, the strategy for most of them was to have a look at existing

annotations to check what kind of information corresponds to each �eld� even then, some

of them are clearly di�erent to the expectations of the user, for example one user comment

was �Method is UniProt?? That's weird�.

An interesting discussion was held by the users in group 4. One of them was interested

in testing the software provoking errors, for instance placing characters in numeric �elds;

CHAPTER 6. USABILITY EXPERIMENT 83

whilst the other user focussed on addressing the tasks in the best way possible. We consider

both positions to be valuable in testing a procedure. It should also be noted that the

facilitator did not interfere with the users performance. They �nally behaved in a hybrid

way, looking to solve all the tasks, but sporadically, they committed errors on purpose to

test the robustness of the software.

As expected, an analysis of the sessions indicated several usability issues that were un-

detected during the design and implementation process. On the one hand, solving the

detected problems ensures a functional and usable system. On the other hand, ideas and

suggestions can improve the speed of manual annotations, and help inexperienced users.

For these reasons we consider the experiment to be a success as it reinforces our hypothesis

which stated that the developed system will provide an adequate environment to cooperate

during the annotation process.

Chapter 7

Concluding Remarks

The objective of this research was to create a method to annotate proteins in a collaborative

environment where the consumers of the information have the option to become authors of

new annotations or edit the existing ones. Such an ecosystem can contribute to part of the

curation of automatic annotation as a community process and simultaneously as a quick

way to publish manual annotations while these are in the queue of a curated database

awaiting annotation. This is currently not possible.

The Distributed Annotation System, DAS, was chosen as the starting point to reach this

goal. It provides an existing distributed platform with more than 600 registered sources

by the end of 2009 (110 for protein annotations), and consequently a large number of users

that are potential members of the annotation community; moreover, the active development

community of DAS were always willing to aid the project by providing valuable advices

and suggestions.

DAS writeback is the name of our proposed system, which is capable of handling reading,

writing, editing and deleting requests from the users of DAS. In order to design and develop

such a system it was necessary to �rst design the supporting architecture for the new

features, and then, to de�ne an extension of the DAS speci�cation, and implement server

and client components. All of these milestones were completed while trying to maintain

the existing style contained in DAS technology, looking for an easy adoption of the system.

This summarizes our methodology which is best described as: Experimental Computer

84

CHAPTER 7. CONCLUDING REMARKS 85

Science. This method requires the building of computational artefacts which are then

evaluated empirically.

The designed architecture proposed the addition of an extra server in DAS with writeback

capabilities for each coordinate system. Con�dence in the information provided for an

annotation system is a crucial objective. DAS deals with this by allowing the users choose

the source of the information. Ultimately it is the user who decides which group of DAS

servers to query, by choosing DAS Registry Labels. This strategy, allows the users to

choose what was adopted in this project. Therefore the information emerging from the

collaborative annotation server is optional, it never overwrites an existing annotation, it

is an extra layer that can visually change the annotation graphic but the original source

is never modi�ed. For this reason we proposed an independent server to manage the

community annotations.

We proposed an extension of the DAS protocol inspired by the RESTful architecture princi-

ple called Uniform Interface; the created speci�cation indicates use of the HTTP methods

GET, POST, PUT and DELETE as the interface for the main commands of a writeback

DAS server for reading, creating, editing and deleting, respectively. The format of the

message of all the commands is the DASGFF, which is the standard language for DAS in

order to retrieve annotations.

The solution is the product of a User Centred Design process. The de�ned architecture

and protocol extension were extensively discussed through the worldwide specialized online

forums of DAS123, getting important feedback from experts. In addition, a presentation

about a writeback prototype was made at the DAS workshop in 2009 [45], creating enough

interest to open a discussion group on the last day of the workshop4.

The knowledge gained there was particularly relevant and focused and ultimately allowed

for the modi�cation of our architecture and provoked the creation of an entirely new

protocol extension. Our speci�cation was published on the o�cial website of DAS 5 to be

considered as an addition in future releases of the DAS protocol. Our resulting solution is

original, it is also compatible with the current DAS protocol, and moreover, it is extensible

1 http://lists.open-bio.org/pipermail/das/2008-October/thread.html 2008
2 http://lists.open-bio.org/pipermail/das/2008-November/thread.html 2008
3 http://lists.open-bio.org/pipermail/das/2009-June/thread.html 2009
4 http://www.biodas.org/wiki/DASworkshop200903Day3 2009
5 http://www.biodas.org/wiki/DAS1.6E#DAS_writeback 2009

http://lists.open-bio.org/pipermail/das/2008-October/thread.html
http://lists.open-bio.org/pipermail/das/2008-November/thread.html
http://lists.open-bio.org/pipermail/das/2009-June/thread.html
http://www.biodas.org/wiki/DASworkshop200903Day3
http://www.biodas.org/wiki/DAS1.6E#DAS_writeback

CHAPTER 7. CONCLUDING REMARKS 86

to future versions.

An extension of a DAS server was implemented in order to support our writeback extension

of the protocol. Several DAS servers were studied and MyDas was chosen to be extended.

A writeback data source was implemented that stores the annotation in a database that

has annotations as its main entity, and any edition or deletion of a feature becomes a new

version of it.

Dasty2 was extended with the functionalities to interact with the writeback server under the

rules of our proposed speci�cation. The Dasty2+writeback client visualizes the community

annotations as separate tracks or replaces the original annotation. The user can also

choose just to ignore any writeback information. The writeback capabilities (new, edit or

delete) can be accessed via the current Graphical User Interface, allowing the user to create

information in the context of the existing annotations.

At the conclusion of two cycles of design, implementation and feedback from the global

community, we subjected the system to a �nal formative evaluation. The experimental

system was installed on an Internet server at the University of Cape Town. This instal-

lation was used to execute a usability experiment, which demonstrated its potential for

real biological applications, because all the tasks of the experiment were extracted from a

published paper. The technique used to design such an experiment was Constructive Inter-

action and it was executed with the participation of eight postgraduate students organized

in dyads. All the sessions were recorded and analyzed.

The experiment revealed �fteen usability issues, of which only one was a Major Problem.

The remaining �ve constituted Minor Problems. The experiment revealed two Positive

Findings, two Bugs and �ve Suggestions. All problems and bugs were consequently solved

prior to the completion of the �nal version of the application. Three suggestions were im-

plemented; however two suggestions have been postponed with the intention of integrating

them during a maintenance cycle in the future.

The experimental system is now available in a live web server 6 and the source code is

freely available through SVN for both server7 and client8.

6 http://oware.cbio.uct.ac.za/�gustavo/client/biosapiens.html
7 https://mydaswb.svn.sourceforge.net/svnroot/mydaswb/MyDAS_WB
8 https://dasty.svn.sourceforge.net/svnroot/dasty/branches/dasty_wb

http://oware.cbio.uct.ac.za/~gustavo/client/biosapiens.html
https://mydaswb.svn.sourceforge.net/svnroot/mydaswb/MyDAS_WB
https://dasty.svn.sourceforge.net/svnroot/dasty/branches/dasty_wb

CHAPTER 7. CONCLUDING REMARKS 87

The experiment vindicated our User Centered Approach. The one major issue has been

corrected. In general we demonstrated the usefulness of our concept. All the groups

that participated in the experiment were able to Create/Update DAS annotations from a

published paper, we consider this fact to demonstrate that our system is e�ective, usable

and will provide the appropriate environment for the creation and evolution of a protein

annotation community.

The system also possesses the potential to be installed in Intranet environments which have

a restricted community of users; cooperatively working on draft versions of the annotations.

It is possible to only release those annotations to the general community when the team

considers they have reached the desired quality level.

Server and client implementations were created following version 1.53 of the DAS protocol�

an update of those components is suggested as future work in order to be compatible with

DAS in its recently released version 1.60.

Other DAS servers and clients can be extended following the writeback speci�cation, the

implementations presented in this project can be seen as proofs of concept of the whole

system and several improvements can be made in order to have a more usable and e�ec-

tive tool. We propose future developments could include the implementation of �lters by

dynamic trust rankings based on both features and users, this will achieve a higher level

of con�dence in the information of the writeback system.

We consider that our approach for this project was correct, highlighting the involvement

of the DAS community from the very beginning of the project, which kept us on the right

track to reach our objectives. Another key point during the project was to reuse existing

technologies (DAS, Dasty, MyDas, etc.) that have been proven to be robust and useful. It

was also remarkable that all the feedback obtained from the usability experiment put the

whole project into context, allowing us to detect the strong and weak points of the system.

An important milestone in the future is to provide the same technology for other types

of genetic material, for example, a writeback for DNA information or for experimental

information like microarrays.

Finally, the success or failure of any collaborative system is recognized through the inter-

action of real users with the system, and to be able to observe that, additional time is

CHAPTER 7. CONCLUDING REMARKS 88

required. We hope this system contributes to creation of a more public, easily updatable,

and reliable protein knowledge base.

Bibliography

[1] B. Thomas Adler and Luca de Alfaro. A content-driven reputation system for the
wikipedia. In WWW '07: Proceedings of the 16th international conference on World
Wide Web, pages 261�270, New York, NY, USA, 2007. ACM. 9

[2] Maristella Agosti, Giorgetta Bon�glio-Dosio, and Nicola Ferro. A historical and con-
temporary study on annotations to derive key features for systems design. Int. J. on
Digital Libraries, 8(1):1�19, 2007. 8

[3] Maristella Agosti and Nicola Ferro. A formal model of annotations of digital content.
ACM Trans. Inf. Syst., 26(1):3, 2007. 9, 28

[4] Maristella Agosti, Nicola Ferro, Emanuele Panizzi, and Rosa Trinchese. Annotation as
a support to user interaction for content enhancement in digital libraries. In AVI '06:
Proceedings of the working conference on Advanced visual interfaces, pages 151�154,
New York, NY, USA, 2006. ACM. 9, 10

[5] Benedikte S. Als, Janne J. Jensen, and Mikael B. Skov. Comparison of think-aloud
and constructive interaction in usability testing with children. In IDC '05: Proceedings
of the 2005 conference on Interaction design and children, pages 9�16, New York, NY,
USA, 2005. ACM. 28

[6] Marc Andreessen and Eric Bina. NCSA Mosaic: A global hypermedia system. Internet
Research, 4(1):7�17, 1994. 8

[7] Umesh Bhatia, Keith Robison, Walter Gilbert;, Hans-Peter Klenk, Owen White, and
J. Craig Venter. Dealing with Database Explosion: A Cautionary Note. Science,
276(5319):1724�1725, 1997. 2

[8] Greg Brown. Object oriented javascript, Jun 2006. 56

[9] Soren Brunak, Antoine Danchin, Masahira Hattori, Haruki Nakamura, Kazuo Shi-
nozaki, Tara Matise, and Daphne Preuss. Nucleotide sequence database policies.
Science, 298 (5597)(1333), November 2002. 11

89

BIBLIOGRAPHY 90

[10] Maaike J. Van den Haak, Menno D. T. de Jong, and Peter Jan Schellens. Employing
think-aloud protocols and constructive interaction to test the usability of online library
catalogues: a methodological comparison. Interacting with Computers, 16(6):1153�
1170, 2004. 27, 28

[11] Tobias Doerks, Amos Bairoch, and Peer Bork. Protein annotation: detective work for
function prediction. Trends in Genetics, 14(6):248�250, 1998. 1

[12] Robin Dowell, Rodney Jokerst, Allen Day, Sean Eddy, and Lincoln Stein. The dis-
tributed annotation system. BMC Bioinformatics, 2(1):7, 2001. 3, 11, 13, 18

[13] Robert D. Finn, James W. Stalker, David K. Jackson, Eugene Kulesha, Jody
Clements, and Roger Pettett. ProServer: a simple, extensible Perl DAS server. Bioin-
formatics, 23(12):1568�1570, 2007. 17

[14] Robert D. Finn, John Tate, Jaina Mistry, Penny C. Coggill, Stephen John Sam-
mut, Hans-Rudolf Hotz, Goran Ceric, Kristo�er Forslund, Sean R. Eddy, Erik L. L.
Sonnhammer, and Alex Bateman. The Pfam protein families database. Nucl. Acids
Res., 36(suppl_1):D281�288, 2008. 21

[15] Jesse James Garrett. Ajax: A new approach to web applications, 2005. 19

[16] Rich Gazan. Social annotations in digital library collections. D-Lib Magazine,
14(11/12), November/December 2008. 10, 29

[17] Google. Google data api protocol. Technical report, Google, 2009. 26

[18] J.C. Gregorio and B. de Hora. The atom publishing protocol. Technical report,
NewBay Software, 2007. 26

[19] Asia Grzibovska and Andreas Prlic. DAS2 writeback server implementation. Master's
thesis, Chalmers University of Technology, 2008. 25

[20] Wellcome Trust Sanger Institute. Dazzle, 2009. 17

[21] Wellcome Trust Sanger Institute. The pfam database, 2009. 21

[22] ISO. 9241: Ergonomic requirements for o�ce work with visual display terminals part
11: Guidance on usability. Technical report, ISO, Geneva, Switzerland, 1998. 27

[23] Andrew Jenkinson, Mario Albrecht, Ewan Birney, Hagen Blankenburg, Thomas Down,
Robert Finn, Henning Hermjakob, Tim Hubbard, Rafael Jimenez, Philip Jones, An-
dreas Kahari, Eugene Kulesha, Jose Macias, Gabrielle Reeves, and Andreas Prlic.
Integrating biological data - the distributed annotation system. BMC Bioinformatics,
9(Suppl 8):S3, 2008. 13, 19, 51, 63

BIBLIOGRAPHY 91

[24] Rafael C. Jimenez, Antony F. Quinn, Alexander Garcia, Alberto Labarga, Kieran
O'Neill, Fernando Martinez, Gustavo A. Salazar, and Henning Hermjakob. Dasty2,
an Ajax protein DAS client. Bioinformatics, 24(18):2119�2121, 2008. 25

[25] Ralph E. Johnson. Components, frameworks, patterns. In SSR, pages 10�17, 1997.
18

[26] Philip Jones and Antony F. Quinn. Mydas, 2008. 18

[27] José Kahan and Marja-Ritta Koivunen. Annotea: an open rdf infrastructure for shared
web annotations. In WWW '01: Proceedings of the 10th international conference on
World Wide Web, pages 623�632, New York, NY, USA, 2001. ACM. 8, 29

[28] Helge Kahler, Finn Kensing, and Michael Muller. Methods & tools: constructive
interaction and collaborative work: introducing a method for testing collaborative
systems. interactions, 7(3):27�34, 2000. 68

[29] Cold Spring Harbor Laboratory. The lightweight distributed annotation server (ldas),
2001. 16

[30] Jason Levitt. Fixing ajax: Xmlhttprequest considered harmful, November 2005. 55

[31] Dongsheng Liu, Yingang Feng, Yuan Cheng, and Jinfeng Wang. Human programmed
cell death 5 protein has a helical-core and two dissociated structural regions. Bio-
chemical and Biophysical Research Communications, 318(2):391�396, 2004. 70, 71,
72

[32] Catherine C. Marshall. Annotation: from paper books to the digital library. In
DL '97: Proceedings of the second ACM international conference on Digital libraries,
pages 131�140, New York, NY, USA, 1997. ACM. 10, 29

[33] David N. Messina and Erik L. L. Sonnhammer. DASher: a stand-alone pro-
tein sequence client for DAS, the Distributed Annotation System. Bioinformatics,
25(10):1333�1334, 2009. 22

[34] Naomi Miyake. Constructive interaction and the iterative process of understanding.
Cognitive Science, 10(2):151�177, 1986. 28

[35] Rolf Molich and Christine Perfetti. Usability testing best practices: An interview with
rolf molich, July 2003. 75

[36] Barend Mons, Michael Ashburner, Christine Chichester, Erik van Mulligen, Marc
Weeber, Johan den Dunnen, Gert-Jan van Ommen, Mark Musen, Matthew Cockerill,
Henning Hermjakob, Albert Mons, Abel Packer, Roberto Pacheco, Suzanna Lewis,
Alfred Berkeley, William Melton, Nickolas Barris, Jimmy Wales, Gerard Meijssen,
Erik Moeller, Peter Roes, Katy Borner, and Amos Bairoch. Calling on a million
minds for community annotation in wikiproteins. Genome Biology, 9(5):R89, 2008.
11, 29

BIBLIOGRAPHY 92

[37] Jakob Nielsen. Usability Engineering (Interactive Technologies). Morgan Kaufmann,
1st edition, September 1993. 27

[38] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In CHI '90:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
249�256, New York, NY, USA, 1990. ACM. 27

[39] Mary Riley Claire O'Malley and Stephen Draper. Constructive interaction: A method
for studying user-computer-user interaction. In Proceeding of IFIP Interact, pages
269�274. ACM Press� 1984. 28

[40] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.
"big"' web services: making the right architectural decision. InWWW '08: Proceeding
of the 17th international conference on World Wide Web, pages 805�814, New York,
NY, USA, 2008. ACM. 26, 48

[41] Andreas Prlic, Thomas Down, Eugene Kulesha, Robert Finn, Andreas Kahari, and
Tim Hubbard. Integrating sequence and structural biology with DAS. BMC Bioin-
formatics, 8(1):333, 2007. 14

[42] Andreas Prlic, Thomas A. Down, and Tim J. P. Hubbard. Adding Some SPICE to
DAS. Bioinformatics, 21(suppl_2):ii40�41, 2005. 21

[43] DAS Registry. DAS Ontology Extension, 2008. 63

[44] DAS Registry. Help on coordinate systems, 2009. 16

[45] Gustavo A. Salazar. DAS Writeback. DAS Workshop 2009, March 2009. 85

[46] Lincoln Stein. Genome annotation: from sequence to biology. Nat Rev Genet,
2(7):493�503, 2001. 10.1038/35080529. 2, 11

[47] Walter F. Tichy. Should computer scientists experiment more? Computer, 31:32�40,
1998. 4

[48] Steve Vinoski. Serendipitous reuse. IEEE Internet Computing, 12(1):84�87, 2008. 26,
48

[49] III Jon W, Orozco Camilo, Goodale James, Wu Chunlei, Batalov Serge, Vickers Tim
J, Valafar Faramarz, and Su Andrew I Huss. A gene wiki for community annotation
of gene function. PLoS Biol, 6(7):e175, 07 2008. 11, 29

Appendix A

Questionary of the Usability

Experiment

1. Demographic Information:

• Name:

• Age:

• Genre:

• Education (Finished degree):

• Education (Current degree):

2. Experiment experience:

• Actor / Co-actor:

• Level of di�culty(Easy, Medium, Hard):

• Do you think you answer all the questions correctly?

• Do you think the team work helped to solve the tasks? why?

• Any comments about the method of the experiment:

• Working together makes to solve the tasks slower, faster or about the same?

• Did you �nd any critical error in the application:

3. Comments or suggestions:

93

Appendix B

Experiment Reports By Group

B.1 Group 1

B.1.1 Subjects

Table B.1: Information of the individuals - Group 1

Age Gender Finished Degree Current degree Role Di�culty
27 M BSc MSc Actor Medium
28 M MSc Co-actor Medium

B.1.2 Tasks

Task 1

The �rst 5 �elds of this questionnaire were �lled without any inconvenience, however they
took around 8 min to decide on the name of the protein because they had never explored
the non positional features panel. They decided to use the name of the �rst feature, but
clearly they were not convinced that this information was correct. For the same reason
they didn't �nd a publication related with the protein, and therefore they left this �eld
empty.

94

APPENDIX B. EXPERIMENT REPORTS BY GROUP 95

Task 2

They selected the right columns to display without any issue.
About the �ltering options, they used the trees properly but they didn't notice that the
graphic was updating on the �y, so they refreshed the whole page. By the second time
they noticed the automatic update.

Task 3

Error: There was a problem after they created the user: In the writeback panel the user
appears as logged but the private functions are still disabled. After a log-out and log-in
again the problem was solved. The rest of the groups were alerted about this bug to avoid
any wasted time.
Usability Issue: The window to create a user was still open after creating a user, creating
confusion to the users.

Task 4

Usability Issue: The information about the meaning of each �eld of an annotation should
be at the side of the �eld to clarify how to �ll in this form.
They struggled to extract the required data from the paper and misinterpreted some of the
meaning of the paper, and therefore some �elds were �lled with the wrong information.
Error: After creating the �rst feature the graphic did not update this info automatically
as expected, it required that all the information was reloaded.

Task 5

It took some time for them to �gure out that clicking on a feature opens a popup window
with the writeback functionalities.
Suggestion: Create a copy of an existing feature to pre-�ll the �elds and the user just have
to edit to put in the new information.

APPENDIX B. EXPERIMENT REPORTS BY GROUP 96

B.2 Group 2

B.2.1 Subjects

Table B.2: Information of the individuals - Group 2

Age Gender Finished Degree Current degree Role Di�culty
27 F MSc Co-actor Medium
30 M MSc PhD Actor Medium

B.2.2 Tasks

Task 1

Usability Issue: After �lling the protein ID �eld they used the key enter to submit the
info. However, the system requires a click on the button go
They didn't �nd out that the text over the progress bar was a link to extend the logs of
the loaded server, and therefore the information about the server with warnings and the
server without features were wrong, however they deduced that the displayed features were
recovered from a server that answered.
Usability Issue: Some of the features didn't display the popup window when the mouse
was over it.1

Task 2

The manipulation tasks were completed with no problems.
Error: When more than one of the �ltering trees is used the graphic did not always update
coherently.

Task 3

Suggestion: Change the message of user created, because as a warning it makes the user
think it is an error.
The user tried to use the enter to submit the form and the application just works if the
submit button is pressed.
The user was created.

1See video at the time 10:20

APPENDIX B. EXPERIMENT REPORTS BY GROUP 97

Task 4

Usability Issue: When the suggestion list appeared with the ontology terms the user wanted
to used the keyboard to navigate through the suggestions. This component just works with
the mouse.
Error: After creating the �rst feature the graphic did not update this info automatically
as expected, it required a reload of all the information.

Task 5

They tried to use the right click to display the writeback options for a feature, however
they found out quickly that it was with a left click.

B.3 Group 3

B.3.1 Subjects

Table B.3: Information of the individuals - Group 3

Age Gender Finished Degree Current degree Role Di�culty
31 M MSc PhD Actor Medium
31 M Postgraduate MSc Co-actor Medium

B.3.2 Tasks

Task 1

The user tried to use the enter to submit the form and the application just works if the
go button is pressed.
The information about the queried servers were mistaken with other data, for example
they found a non positional feature called no output and they assumed that the owner of
that annotation didn't have annotation.

APPENDIX B. EXPERIMENT REPORTS BY GROUP 98

Task 2

The manipulation tasks were completed with no problems.
They used the trees properly, but they thought that it was necessary to submit the query
again. In the second try they realized that the graphic was been updated on the �y.

Task 3

User created succesfully.

Task 4

Trying to understand the information required to add a feature, they explored the existing
ones and found the kind of information of some of the �elds strange. For instance, one of
the users said �Method is Uniprot?�, that's weird! .
Usability Issue: The Type ID �eld is a problem, because it is required but when the type
is �lled with a term out of the ontology, the user does not have any coherent value for this
�eld.
Error: After creating the �rst feature the graphic did not update this info automatically
as expected, it required a reload of all the information.

Task 5

Because of the previous errors the user didn't notice that it was required to add more
features for this task, and they skipped directly to the next one.

B.4 Group 4

B.4.1 Subjects

Table B.4: Information of the individuals - Group 4

Age Gender Finished Degree Current degree Role Di�culty
32 M BSc MSc Actor Easy
31 M Postgraduate PhD Co-actor Easy

APPENDIX B. EXPERIMENT REPORTS BY GROUP 99

B.4.2 Tasks

Task 1

They easily found all the answers for this task.

Task 2

They took longer to �nd the manipulation options panel, but afterward they chose the
right columns without a problem.
They �ltered the features without any problem.

Task 3

User created succesfully.

Task 4

Error: After creating the �rst feature the graphic did not update this info automatically
as expected, it required a reload of all the information. They tried to put some incorrect
data to test the system, like the start amino acid after the �nal one and the application
captured the errors on time.

Task 5

They were looking for a way to add a feature from the same track.
Suggestion: Create a duplicate of an existing feature to pre-�ll the �elds and the user just
has to edit to put in the new information. They explored the history of a feature looking
to restore one of the features that they deleted.
Suggestion: In the list of deleted features, change the link of Remove to Restore
Usability Issue: Remove the rollback button in the history of a feature for the current
version.

	Title
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Glosary, Abbreviations and Acronyms
	Introduction
	Research Question
	Approach
	Road map

	Background
	Introduction
	Annotation
	Annotations in Digital Libraries
	Annotations in Bioinformatics

	The Distributed Annotation System (DAS)
	Behavioral description of the architecture
	DAS Protocol
	DAS Servers
	DAS Clients
	Previous Writeback Implementation

	RESTful web services
	User Centred Design
	Key points

	Writeback Protocol and Architecture
	Introduction
	Problem Definition
	Principles and Strategies
	Proposed architecture
	Writeback Protocol
	Writeback based on DAS 2.0
	Writeback based in DAS 1.53

	Conclusions and Lessons

	DAS writeback server
	Introduction
	Problem Definition
	Analysis of DAS Servers
	Implementation Details
	Writeback for DAS 2.0
	Writeback for DAS 1.53
	Discussion

	Conclusions and Lessons

	DAS writeback client
	Introduction
	Problem definition
	DAS clients Analysis
	Solution Proposed
	Design and Implementation Details
	Authentication
	Reading from the writeback
	Writing in the Writeback
	User Interface Aids
	User Stories

	Discussion and Conclusions

	Usability Experiment
	Introduction
	Choosing an Experiment
	Experimental Design
	Test Object
	Subjects
	Tasks
	Questionnaire
	Experimental Procedure
	Processing the data

	Results
	Dasty2 issues
	Dasty2+Writeback issues
	Corrective Measures

	Discussion

	Concluding Remarks
	Bibliography
	Questionary of the Usability Experiment
	Experiment Reports By Group
	Group 1
	Subjects
	Tasks

	Group 2
	Subjects
	Tasks

	Group 3
	Subjects
	Tasks

	Group 4
	Subjects
	Tasks

