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X-Switch: An Efficient, Multi-User, Multi-Language Web Ap-

plication Server

Mayumbo Nyirenda, Hussein Suleman, Andrew Maunder, Reinhardt van Rooyen

Department of Computer Science, University of Cape Town

ABSTRACT

Web applications are usually installed on and accessed through a Web server. For security reasons, these Web servers

generally provide very few privileges to Web applications, defaulting to executing them in the realm of a guest account.

In addition, performance often is a problem as Web applications may need to be reinitialised with each access. Various

solutions have been designed to address these security and performance issues, mostly independently of one another,

but most have been language or system-specific. The X-Switch system is proposed as an alternative Web application

execution environment, with more secure user-based resource management, persistent application interpreters and support

for arbitrary languages/interpreters. Thus it provides a general-purpose environment for developing and deploying Web

applications.

The X-Switch system’s experimental results demonstrated that it can achieve a high level of performance. Furthermore

it was shown that X-Switch can provide functionality matching that of existing Web application servers but with the

added benefit of multi-user support. Finally the X-Switch system showed that it is feasible to completely separate the

deployment platform from the application code, thus ensuring that the developer does not need to modify his/her code

to make it compatible with the deployment platform.
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1 INTRODUCTION

Web applications that once were fairly monolithic are
slowly making the transition to collections of cooper-
ating services. This trend is being spurred on by the
steady increase in availability of standard Web Ser-
vices interfaces to many popular services. As a step
further, Web Services also may be aggregated to cre-
ate new, possibly more useful, services. In this en-
vironment every service interface is mapped onto a
component but some larger components (e.g., learn-
ing management systems) can provide multiple Web-
based interfaces to downstream services (e.g., univer-
sity portals). In the limiting case, each component
provides at least one externally-accessible service (e.g.,
an API to a search engine component). Now, given
that each component has well-defined external inter-
faces that operate over the Web, there is no longer
any requirement for standardisation in the choice of
programming language or Web technology. As such,
different components could be developed in different
languages. Unfortunately most current Web servers
do not provide a mechanism to support Web compo-
nents/applications in multiple languages easily. For
example, if one component of a larger system is coded
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in Java, another in PHP and a third in Perl, it is
non-trivial (if at all possible) to have a single Web
server software system cater for all languages and, ad-
ditionally, keep all interpreters and virtual machines
in memory for faster execution.
To further complicate matters, there is frequently no
simple correspondence between Web applications and
physical machines. Given the complexity of managing
a Unix server, it is often the case that a more power-
ful machine is shared among many users, to amortise
the cost of server management. In this case, many
users may be using a single machine for Web applica-
tion/component development and deployment. These
Web applications are usually applications belonging to
a particular user account and they may need to read
from or write to files on the disk. Since the Web appli-
cations are executed by the Web server (rather than by
the user), the Web server would need access to write to
every user’s home directory but, for security reasons,
the Web server instance is run as an ‘unprivileged’ sys-
tem user, the user ‘nobody’. Thus, to allow access to
the users’ files, Web application directories and files
need to be world-readable or world-writable as neces-
sary. This is clearly undesirable as the Web applica-
tion of one user may write to the home directory of
another user and intentionally or inadvertently over-
write or delete data or applications. This solution is
untenable in many situations, including teaching and
learning environments in Web Programming. Ideally,
no Web application should need to be world-writable.
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Solutions currently exist that allow a Web server to
access files or directories that are not world readable
or world writable. They achieve this by switching user
context from ‘nobody’ to the user context of the owner
of the Web component. Examples include suExec [1]
and suPHP [2], where the ‘su’ prefix denotes ‘switch
user’. While these solutions are attractive they typ-
ically only support a single Web technology (imple-
mentation language or server) and cannot provide
the performance required by industrial Web applica-
tions. High levels of performance have been achieved
by Web applications implemented using technologies
like FastCGI [3] and SpeedyCGI [4] but SpeedyCGI in
particular only supports a single implementation lan-
guage, namely Perl.
This paper thus presents the X-Switch system as an
alternative - a framework that allows multiple users
the option of deploying Web components written in
one of a set of languages on a single Web server, while
maintaining a high level of security and scalability -
essentially a ‘universal’ Web application server.

2 BACKGROUND

The development of modern Web servers has always
been driven by the requirements of its primary users.
Initially these users included military scientists and
engineers as well as university scholars and academics.
The early requirements for a Web server hinged largely
around the displaying of simple static content, but
as the demand for commercial Web applications in-
creased so did the requirements for higher Web server
performance, scalability and dynamic content genera-
tion.
One of the first standards available that provided
a mechanism for server side applications to service
Web requests was the Common Gateway Interface
(CGI) [5]. CGI-driven applications initialise a new
application instance for each request received by the
server. The overhead of repetitive process initialisa-
tion severely hampered the performance of CGI so the
World Wide Web Consortium (W3C) proposed that a
more efficient technique be developed to overcome this
shortcoming.
Another shortcoming of the CGI based Web server
was the lack of Web component isolation when used
in a multi-user environment. Web servers using a stan-
dard implementation of CGI are typically unprivileged
for security reasons and are only allowed to access
world-readable Web components. This is most cer-
tainly undesirable for the client’s sake as their com-
ponents will be placed in a world-readable directory
(typically ‘cgi-bin’), accessible by all the system users
and open to unauthorised modification or even re-
moval. Such a scenario is a major security risk. As
an example, commercial Web application servers such
as Jakarta Tomcat [6] were not designed to support
secure, multi-user environments and the Web compo-
nents deployed on them can be exploited in exactly
the manner described above. Furthermore, if a Web
application component, deployed by a user, does not

validate its request data the component may possibly
lead to a hacker taking control of a component pro-
cess. This is commonly referred to as a buffer overflow
attack. The Open Web Application Security Project
[7] has listed a buffer overflow attack as one of the ten
most common Web application security problems.
The Apache Software Foundation produced suExec [1]
in a response to the security risks posed above. Web
components can be accessed via an Apache Web server
with an identical set of privileges as the owner of a
Web component. Essentially, a suExec-enabled Web
server has the ability to switch its user context from
‘nobody’ (an unprivileged user) to the user context of
the component, e.g., ‘Andrew’. The Web server pro-
cess running as Andrew can access any files or directo-
ries owned by the user Andrew and is prohibited from
accessing any other user’s files or directories. There-
fore even if a security breach, such as a buffer overflow
attack, did occur, the rogue process would only be able
to access a single user’s files and directories, effectively
protecting other system users as well as the rest of the
system files and resources.
CGIWrap [8] was developed to provide similar func-
tionality to suExec but aimed to provide context
switching abilities while being Web server indepen-
dent. SBox [9] is another script isolation technique
that executes CGI scripts (target scripts) on behalf of
the Web server process. Like suExec and CGIWrap,
the wrapper script is set up to be SUID ROOT, which
makes it possible for it to change its process ID to
match that of the target script, the context switch.
In addition to being able to perform a context switch,
the SBox wrapper script performs a series of checks
on the target script and prepares the script execution
environment. The pre-execution checks include ensur-
ing that the script is non-world-writable and that the
script is run as the user and not anybody else. In ad-
dition, Stein [9] felt it necessary to include component
isolation when preparing the component execution en-
vironment. This includes performing a ‘chroot’ to the
directory that contains the user’s scripts and thereby
effectively sealing the script off from the rest of the
server and limiting the memory, CPU time and disk
space available to the target script before the script
is finally invoked, similar to a sandboxing technique
used by Sun Microsystems.
Sun Microsystems [10] introduced a sandboxing tech-
nique as an integral part of their Java Applet secu-
rity framework. The Java SDK 1.0 used the sandbox
metaphor to explain the principle behind the security
features of the Java Virtual Machine (JVM). An un-
trusted Servlet is loaded into the JVM dynamically
and executed within a very restricted environment.
The restrictions apply to memory, file I/O privileges
and priority of the Servlet’s execution thread. An im-
portant point to note is that a single Servlet engine
(container) typically services many Servlets belonging
to various users. Untrusted Servlets must be acces-
sible by a container that typically runs as ‘nobody’
or a similarly unprivileged user. This implies that all
Servlets must be globally accessible to allow the con-
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Figure 1: The X-Switch universal Web-application server

system

tainer access to them. An untrusted Servlet is there-
fore severely restricted, firstly by the operating system
and secondly by the JVM, resulting in a Servlet that is
completely exposed with little or no file access rights.
Open Market Inc. developed FastCGI [3], a persis-
tent implementation of CGI, which provided a mecha-
nism for reusing existing application instances to ser-
vice future requests. FastCGI maintains all the ex-
isting benefits of CGI, such as process isolation and
language and architecture independence, while min-
imising the delay between request arrival and request
process initialisation. However, a Web component
must use FastCGI libraries in order to be compati-
ble with the FastCGI framework and take advantage
of its component use and reuse. The result is that
a Web component that was previously accessible via
CGI would have to be modified, albeit only slightly,
for it to run persistently on a FastCGI enabled Web
server. Consequently FastCGI architecture based Web
components cannot trivially be run by other Web ap-
plication servers. The X-Switch project aims to solve
a different fundamental problem from FastCGI, which
focuses on performance, but the system created is sim-
ilar. It may be argued then that X-Switch validates
the FastCGI approach while attempting to support
different Web application types natively.

3 DESIGN AND METHODOLOGY

The X-Switch system(see Figure 1) is designed to com-
bine the principles of process persistence and context
switching into a single solution while maintaining the
benefits of CGI (process isolation, language and ar-
chitecture independence) and process isolation via a
sandboxing technique. The X-Switch system also in-
troduces the concept of separate support for multiple
languages and development frameworks. Thus the X-
Switch system was designed to meet three primary
goals: efficiency, multiple user support and multiple
technology support, without modification to the Web
component code to ensure compatibility.

In brief, the major design objectives included the
following aspects:

• Modular design
• Support for multiple users
• Independence of different backend technologies
• Scalability
• Efficiency

Figure 2: Performance of the universal Web application

server with an increasing number of concurrent connec-

tions

• Security
The system is based on three sub tiers: the Web server
module that connects the Web server to X-Switch;
the X-Switch module that manages and processes re-
quests; and a set of Web application processing en-
gines for different languages and frameworks. These
are illustrated in Figure 2.

3.1 Web Server Module

The first sub-tier is the Web server module. This tier
is responsible for routing requests together with any
additional information from the Web Server to the
core X-Switch system(See Figure 3). The X-Switch
system takes a modular approach in order to make
it less dependent on the Web server implementation
approach. Therefore the Web server module imple-
ments less functionality and can be implemented us-
ing any Web server that has an external plugin API.
The Apache Web server was used to implement mod x
because of it’s wide spread use and popularity [11].
The X-Switch Apache module (mod x) routes requests
from the Apache Web server to the core X-Switch sys-
tem.

3.1.1 Web server module/X-Switch communication
protocol

To achieve the use of different kinds of Web server
modules developed using different kinds of Web server
APIs, the X-Switch system defines a simple protocol
for communication between the Web server module
and the X-Switch main module.
The X-Switch main module receives the

1. request method type and content length
2. filename and request arguments
3. request headers
4. default engine type required to process the re-

quest
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from mod x using this protocol. After the request has
been processed the X-Switch main module then sends
the

1. response headers

2. response body

to mod x using the Web server module/X-Switch com-
munication protocol.

3.1.2 Request processing

mod x performs the first and last tasks of the request
processing phases of the universal Web application
server. It participates in the content handling phase
of the Apache Web server’s request processing phases.
It is called when Apache encounters a per-directory
configuration directive that the mod x handler has
registered a configuration directive hook for. mod x
also defines an ENGINE TYPE custom configuration
directive that determines the default engine type for
that particular directory. Using the ENGINE TYPE
makes it possible to register one handler for mod x.
This is because the X-Switch processing engine that is
used to handle scripts in that directory is determined
using the defined ENGINE TYPE configuration di-
rective for that directory. The Web server adminis-
trator can define the directory patterns for which the
mod x handler is invoked using Apache’s ‘Directory’
configuration directive [12].
After being invoked, the mod x handler routine first
establishes a TCP socket connection with the X-
Switch main module. If successful mod x then pro-
ceeds to process the request otherwise it sends a ‘ser-
vice temporary not-available’ response to the client
that requested the resource. After establishing the
connection mod x then determines the request method
type. mod x currently only implements the HTTP
POST and GET methods. After computing the
method type mod x then reads in the rest of the
headers that came with the request and sends the re-
quest information to the X-Switch main module using
the communication protocol presented in section 3.1.1.
mod x receives the response from the X-Switch main
module on the already established TCP socket and
thereafter closes the connection.

3.2 X-Switch

The second sub-tier is the core X-Switch system. This
tier is responsible for managing the requests arriving
from the Web server module and routing responses
from the processing engines to the Web server(See
Figure 3). This tier reads the core X-Switch system
configuration file for supported processing engines
and the information needed to run the engines.
It is also responsible for creating, monitoring and
destroying heterogeneous processing engines for each
user, based on available system resources and the
current traffic load.

Figure 3: X-Switch request routing

3.2.1 X-Switch main module/processing engine com-
munication protocol

The X-Switch system is designed to interface with
multiple engines implemented using different pro-
gramming languages. After identifying the process-
ing engine that will process the particular request,
the X-Switch main module establishes communication
with a processing engine using two socket pairs. One
is for data sending while the other is for controlling
and monitoring the request processing phase. The X-
Switch main module sends the information required
to process the request to the processing engine as two
lines of text. The first line is the interpreted request
filename and any arguments that came with the re-
quest while the second line is the set of headers that
are required to process the request. This informa-
tion is sent to the processing engine using the control
socket. Only after reading in this information can the
processing engine read in the request body if present.
The request body is sent using the X-Switch main
module’s data input-output socket while the engine
reads it in using its ‘STDIN ’ input stream. After re-
quest processing has started the X-Switch main mod-
ule reads in the response from its data input-output
socket while the script being run by the processing en-
gine writes its output to its ‘STDOUT ’ output stream.
The X-Switch main module then relays this response
to the Web server module using that request’s con-
nection socket with the Web server module. The pro-
cessing engine then signals the end of the response by
sending a response end control character via the con-
trol socket to the X-Switch main module.
The X-Switch system uses a polling mechanism to
support multiple connections. Studies by Pariag et
al [13] revealed that an event-driven or hybrid server
achieved up to 18% higher throughput than the best
implementation of the thread based server. Therefore
the X-Switch system uses a single thread to listen to
and poll all its connections.
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3.2.2 X-Switch system wrapper script (suexecme)

X-Switch uses a lightweight application, suexecme,
to perform the context switching of the engines.
Suexecme runs as a root process and thus has its
‘suid’ bit set by the root user to allow any person
to execute the application. Suexecme is run each
time an engine is being created and sets the engine
to belong to the user whose script is being executed.
Thus all scripts run using a processing engine are
run with the privileges of the owner of the processing
engine.

3.2.3 Request processing

A central requirement of the X-Switch system is the
ability to support multiple users on a single Web
server implementation. To achieve this X-Switch
evaluates an incoming request to determine the user
and checks if the user owns any existing engines that
are available to process the request for that particular
type/language of component. If an appropriate
engine is identified the request is forwarded to the
existing engine, otherwise the X-Switch main module
spawns off a child process via suexecme.
The X-Switch system is independent of the back-end
processing technology. Any processing language that
can read from standard input and write to standard
output can be used as a processing engine. Such an
engine should be added to the X-Switch configuration
file together with the path of execution and X-Switch
restarted for the processing engine to be included in
the list of processing engines supported by X-Switch.
There are only two requirements that a processing
engine has to adhere to: the processing engine
must remain persistent and it must use the defined
X-Switch/Processing engine communication protocol
to correctly interact with the X-Switch module. This
leaves great scope for the processing engine to be
as complex as it needs to be, without adding much
overhead when creating a processing engine.
A successful Web server system should be able to
handle a heavy request load and be able to allocate
resources to users who require them, while still al-
lowing all users to gain access to a processing engine.
As more requests enter the X-Switch system, more
processing engines are created on a per-user basis.
This ensures that the X-Switch system provides
sufficient processing power for the users who have a
greater request load. Should the system resources
become scarce, the X-Switch system will destroy un-
used engine processes in order to provide users with
pending requests an available engine for processing.
This mechanism ensures that the X-Switch system
remains efficient and degrades gracefully even under
extreme volumes of requests.
Security and process isolation was an integral part
of the X-Switch system design. The lack of per-user
file and process isolation in conventional Web server
systems formed one of the primary motivating factors
for the development of the X-Switch system. By

isolating each process engine on a per-user basis,
each process is thereby granted a user equivalent set
of permissions, thus creating a separate and secure
user environment. Finally the X-Switch modular
architecture utilises TCP/IP socket communication
for IPC (interprocess communication). This means
that the X-Switch system can easily be extended
to run on a distributed system where the Web
server, X-Switch module and the user environments
are all running on separate machines as part of a LAN.

3.3 Web Application Processing Engines

The third sub-tier is the processing engines. The key
feature of such engines is that they are persistent im-
plementations, thus avoiding the overhead associated
with repeated process initialisation. The processing
engines are responsible for processing requests for
particular users(See Figure 3). The X-Switch main
module (tier 2) initialises separate processing engines
for each user and for each type of back-end technology
as they are required.
All issues regarding process persistence are handled
by the processing engines and not the Web compo-
nents, thus any existing Web components can be
used unlike existing solutions which require that the
code be compatible with the technology. The Web
component code should be written using the standard
libraries and APIs that would be used in a regular
Web server environment. Ultimately Web developers
are not required to undergo any additional training
in order to utilise X-Switch.
Processing engines read the request body using the
standard input and write the response to a request to
standard output (see Figure 3). Request processing
information and the request processing phase are
controlled using the communication control socket.
Perl, servlet (Java), Python and Php engines have
been implemented.
The Java servlet engine provides only part of the
functionality provided by industrial Java Web appli-
cation servers. X-Switch starts a processing engine
on arrival of the first request. Unlike most industrial
solutions the X-Switch servlet engine does not preload
the deployed servlets and thus allows for run time
deployment and management of the servlets.
The Php engine provides an environment for running
Php scripts in X-Switch persistently by providing a
wrapper to the command line interface version of
Php. The wrapper sets up an execution environment
and variables needed for the scripts to execute
successfully. The scripts write the output to the
standard output.
The Perl and Python processing engines are simple
and lightweight implementations of persistent in-
terpreters that read input from the communication
control socket. The parsed information is then used
to retrieve the filename that is used to execute the
appropriate script. The script is then run using this
processing engine. The processing engine sends a
signal to X-Switch to signify the end of the response
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after the script finishes generating the response.

4 EXPERIMENTS AND RESULTS

For the X-Switch system to be accepted as a feasible
solution it would not only have to meet the require-
ments outlined earlier in this paper but must do so
efficiently. The experimental section of this paper will
examine the efficiency of the X-Switch system in ser-
vicing requests for simple Web components written in
PHP, Perl, Python and Java. The results will then be
compared with the results obtained from existing so-
lutions. Further, the performance implications of the
modular architecture will be investigated.
Two machines were used to create a simple network
using a crossover cable. The client was run on a Pen-
tium IV 3.2 Ghz desktop with 512 Mb RAM while the
server was installed on a Pentium M 1.73 Ghz laptop
with 512 Mb RAM. The software used to simulate user
transactions and connections was Siege 2.65 [14] and
Jakarta-jmeter-2.2 [15].
Jmeter was used in most of the experiments as it logs
the results better than Siege. In addition JMeter has
the capability of configuring each simulated connec-
tion with different properties. Thus with JMeter it
is easy and possible to simulate different popularity
for applications. In Jmeter terminology, a ramp-up
defines the amount of time between thread startup.
A constant throughput timer controls the amount of
time between requests issued by the thread. JMeter
also has a Gaussian timer that issues requests ran-
domly, simulating typical user patterns. Siege on the
other hand tries to start as many connections as pos-
sible per client until the server goes down. For this
reason Siege was used in experiments that focussed
on stress-testing the universal Web application server.
The experiments focus on the performance of the uni-
versal Web application server under varying condi-
tions.

4.1 Number of Concurrent users

4.1.1 Aim

A desirable solution for a universal Web server needs
to use resources efficiently. The number of concurrent
users that a Web application server can handle also
helps in determining the return on the investment in
hardware. The higher the number of concurrent users,
the higher the return on the hardware and also the
more efficient the use of the hardware is. This test
measured the number of concurrent clients that the
Web application server can support.

4.1.2 Methodology

The experiment was carried out by conducting a se-
ries of trials and varying the number of concurrent
clients with each subsequent run. Siege2.65 was used
to manage the client connections. A simple Perl Web
application was used in this experiment. The applica-
tion produced a 43Kb response of randomly generated

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50  100  150  200  250  300  350
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

A
ve

ra
ge

 r
es

po
ns

e 
tim

e(
s)

T
hr

ou
gh

pu
t(

M
b/

s)

Number of concurrent clients

X-Switch performance with an increasing number of concurrent clients

Average response time
Throughput(Mb/s)

Figure 4: Performance of the universal Web application

server with an increasing number of concurrent connec-

tions

characters. The first run had 25 concurrent clients.
The number of concurrent connections was increased
by 25 with each subsequent run until Siege could not
allocate memory to run the test. The maximum num-
ber of concurrent clients that was used was 375, which
was the maximum that Siege could allocate memory
for.
Metric 1 : Average response time.
Metric 2 : Throughput of the Web application server.

4.1.3 Results

The results of this experiment are show in Figure 4

4.1.4 Discussion

The server throughput was more or less constant,
which means that there was a more or less consis-
tent network transfer with the increase in the number
of concurrent clients. In addition, the increase in the
response time as the number of concurrent clients was
increased was as expected - a linear degradation in the
response time was observed and is arguably ideal.

4.2 Impact of processing layers on Response
time

4.2.1 Aim

The design of the universal Web application server in-
troduces several layers of processing which can poten-
tially degrade the performance of the Web application
server. The purpose of this experiment was to mea-
sure the percentage that each of the layers contributes
to the total response time.

4.2.2 Methodology

This experiment was conducted by issuing 100,000
requests to each layer of processing and the time
required to service the requests was measured and
recorded. The script used in this experiment had a
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Table 1: The percentage of time that each processing layer

contributes to the total processing time

Processing layer Time (%) Time (s)
Web application 24.52 14.957005

Apache 40.13 24.479877
Mod x 14.40 8.781802

Processing engine 11.06 6.033242
X-Switch 9.89 6.748551

simple 52 byte response. The experiment was con-
ducted in the following stages.

1. A simple application for issuing requests directly
to the Web server was implemented in C. It
recorded the total time it took to service the re-
quests through all the layers of processing.

2. In the second run, Mod x was replaced with a
module that did not connect to the X-Switch
system. The module did not do any processing
apart from returning the Http status OK (200)
response. It recorded an approximation of the
time spent in the Apache and Mod x processing
layers.

3. In the third run of the experiment, a simple script
was written that replaced the Apache Web server
and Mod x and directly issued requests to X-
Switch. It recorded the time taken to process the
requests through X-Switch and its lower layers.

4. In the fourth run, a script that spawned a pro-
cessing engine and issued requests directly to the
engine was written and used. It recorded the time
taken to process the requests through the engine
processing layer and its lower layers.

5. Lastly, the time taken to run the script was
measured by running a ‘Hello World’ perl script
100,000 times in a persistent interpreter and
recording the time taken.

The recorded times were then used to compute the
time taken to process requests through each of the
request processing layers.

4.2.3 Results

The results of this experiment are tabulated in Table
1

4.2.4 Discussion

The results show that most of the processing time is
spent in the Apache and Web application processing
layers. Thus the modular design of X-Switch does not
substantially degrade the performance of the Web ap-
plication server. Moreover, the X-Switch processing
layer contributes the least percentage of time to the
total processing time of the requests. The response
time for the Web application used in this experiment
was small because a trivial response was used. There-
fore as the response size increases the amount of time
that the generation of the response takes would also
increase and the Web application would contribute
the bigger proportion of time.Therefore the request
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the Java processing engine

response time is mostly affected by the time it takes
to run the Web application and not the routing of the
request and the response.

4.3 Average response time

4.3.1 Aim

The aim of this experiment was to measure the re-
sponse time of the universal Web application server
using a synthetic work load and compare it to other
Web application servers. The synthetic workload was
used in order to ensure repeatability and and a con-
trolled environment.

4.3.2 Methodology

In this experiment Jakarta-jmeter was used to issue
requests with ten concurrent connections (threads).
Each of the threads issued 1,000 requests. The threads
each had a constant timer of 0 seconds and the ramp-
up period for the threads also was 0 seconds. Thus
all the threads started issuing requests at the same
time while each thread had a 0 lapse between con-
secutive requests. Simple ‘Hello World’ applications
were used in this experiment. The setup was repeated
with each of the four processing engines, that is, the
Perl, PHP, Python and Java processing engines. The
same setup also was repeated with Apache Tomcat,
mod php, mod python, FastCGI and SpeedyCGI.
Metric: Average response time

4.3.3 Results

The results are graphed in groups of programming lan-
guages. Figures 5,6,7 and 8 are graphs of the results
from the experiment.

4.3.4 Discussion

The response time of the universal Web application
server’s Java engine averages to a slightly higher value
than that of Apache Tomcat ( See Table 2). The
Java processing engine had an initial startup time of
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Figure 6: Average response time for mod php and the
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Table 2: The initial (IRT) and average (ART) response

times of X-Switch and other Web application technologies

Technology IRT (ms) ART (ms)
X-Switch Java 450 54

Apache Tomcat 180 48
X-Switch PHP 234 36

Apache mod php 20 35
X-Switch Perl 243 39
FastCGI Perl 238 43
Speedy Perl 236 38

X-Switch Python 180 42
Apache mod python 88 52

about 450ms and a final average response time of 54ms
whereas Apache Tomcat had a final average response
time of 48ms. The Python engine for the universal
Web application server had a lower response time as
compared to mod python. The Python processing
engine had an initial response time of about 180ms
and a final average response time of 42ms whereas
mod python had a final average response time of 52ms.
The performance of the universal Web application
server Perl engine was similar to that of FastCGI and
SpeedyCGI. The Perl processing engine had an ini-
tial startup time of about 243ms and final average
response time of 39ms. FastCGI had a final average
response time of 43ms and SpeedyCGI had a final av-
erage response time of 38ms. The PHP processing
engine had a startup time of 234ms and a final av-
erage response time of 36ms whereas mod php had a
final average response time of 35ms. On average, the
universal Web application server can perform compa-
rably with other Web application servers. The high
values for the initial response times are the result of
the preparation and engine setup costs. The persis-
tence of the processing engines however leverages this.
It was anticipated that the extra layers of processing
and the generality would reduce the performance but
not to a great extent and thus the results confirm what
was anticipated.

5 CONCLUSIONS

The X-Switch system has confirmed that it is indeed
feasible to create a multi-user and multi-language Web
server extension mechanism without sacrificing perfor-
mance or the security framework that is an implicit
feature of less capable systems. Techniques such as
process persistence (reuse) and component caching en-
hanced the overall performance of the X-Switch sys-
tem. The servlet engine test results showed that in
the simplest case (‘Hello World’ Web component) the
X-Switch system produced performance results that
were comparable with commercial grade Java Web ap-
plication servers. In addition, the X-Switch system
maintained multi-user support as well as run-time de-
ployment - these features were not supported by any
other Java Web application servers.
The modular design of the X-Switch system allows for
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the Web server module to be replaced by an updated
or alternative solution and similarly for processing en-
gines, provided that the updates adhere to the X-
Switch interface definitions. This design feature makes
it feasible to allow third party developers to imple-
ment and maintain X-Switch engines. The inclusion
of TCP/IP pipes as part of the X-Switch communica-
tions protocol makes it possible for the system to be
hosted on a distributed system where the Web server
module, processing engines and the X-Switch module
may be located on separate machines, thus providing
an effective mechanism to achieve system scalability.
With more testing and further implementations of ad-
ditional processing engines, the X-Switch system can
possibly fill a niche left out by conventional commer-
cial Web Servers. While other systems have provided
subsets of these features, X-Switch attempts to unify
Web server requirements into a single universal sys-
tem and provide further evidence that this is indeed
possible.

6 FUTURE WORK

Since the aim of this project was largely to develop
a proof-of-concept prototype, there are various op-
timisations that can be incorporated into the code
base. At a micro-level, the individual processing en-
gines could use a common pool of shared libraries so
that memory efficiency is not sacrificed for processing
time efficiency. At a macro-level, the existing process
pool can be interrogated to optimise the management
of processing engines e.g., the system can maintain a
dynamic profile of combined historical and past use to
prime engines to match an expected request pattern.
These are both examples of internal improvements -
the impact of the system is greater when it is consid-
ered for its relationship to other projects.
In an almost trivial example, X-Switch can be used
as part of a Web server installation to teach students
how to develop Web applications. The architecture of
X-Switch is fundamentally one where multiple users
can share a single Web server such that each user has
a privileged, i.e., with full access to that user’s re-
sources, and distinct sandbox. This is ideal where
students need to be experimental but do not have
access to dedicated computing, a scenario especially
suited to large classes of undergraduate students and
students in developing countries, where it cannot be
assumed that every student has a computer at home!
This use of X-Switch will further vindicate its design
philosophy as well as bring to the fore possible exten-
sions such as individual user resource allocation and
administrative control systems to monitor large instal-
lations.
Primarily, however, the X-Switch system was de-
signed to serve as a platform for future generations of
adaptive Web applications and Web services/Services.
New generations of digital library systems (aka Web-
based information management systems) have to deal
with both flexibility of systems and the need for ar-
bitrary scalability - users of such Web-based systems

have been known to ask for additional pluggable ser-
vices post-deployment and data sets can easily range
from 5 items to 5 million items. Hence the need for
a flexible Web-based deployment container was iden-
tified and X-Switch was designed. There is still much
work to be done on how generic Web application com-
ponents can be deployed on demand, replicated and
migrated in both cluster and grid computing configu-
rations. X-Switch can provide the language-agnostic
platform as one starting point for this research, but
additional work is required to incorporate support for
service deployment mechanisms, security models for
controlled access to individual suites of components,
labelling and management of service endpoints, com-
ponent configuration and local resource allocation in
distributed environments. The anticipated end-result
is a system that allows a non-privileged user com-
munity to easily install and make accessible software
components that are in essence Web Services, without
having to deal with a myriad of different technologies
and without having to hardwire hooks into the Web
server and similar system-level resources, while gain-
ing flexibility, security and scalability.
X-Switch can serve as a useful common base envi-
ronment into which Web applications or components
can be installed and executed without complex user-
specific configuration. This could make it simpler to
install Web applications and Web application com-
ponents in general. Current open source packaging
systems (such as Portage) make it feasible to define
X-Switch and mod x as dependencies of a processing
engine, which is in turn a dependency of a Web com-
ponent that executes in that environment. Thus, the
installation and use of X-Switch may be completely
transparent to an end-user.
Ongoing work on the X-Switch system is focussed on
attempts to define the structure of a Web application
or component, independently of language or environ-
ment, as a redeployable package. This package would
then be supported directly by X-Switch as a language-
independent application format, with drop-in deploy-
ment, supporting not only rapid installation for single
machine systems but simple relocation and replication
in a high performance multi-user compute cluster.
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