

 1

Design Notations for Creating Virtual Environments
Charlene Elliott, Gary Marsden, Marion Walton & Edwin Blake

Department of Computer Science
University of Cape Town

gaz@cs.uct.ac.za

ABSTRACT
In this paper we propose a new design notation to improve
communication in teams creating virtual environments
(VEs). Our experience in creating VEs is that the
programmers and designers have no common formalisms
which results in ambiguity and misunderstanding in
creating the final VE. After teaching a selection of
specification techniques to design students, we realized that
we needed to create our own formalism. This we used with
designers who found the notation useful and intuitive. More
importantly, the programmers were able to interpret the
formalism more accurately and reduce the time required to
create virtual environments.

Author Keywords
Virtual Reality, Visual Formalism, Design Notation.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Within the Computer Science Department at the University
of Cape Town, we were engaged in a effort to produce a
low-cost virtual reality platform. The broad goal was to
make the medium more accessible by lowering the costs
involved (both hardware and software) and designing a
methodology and associated tools to streamline the creation
of virtual environments. It is the design of that methodology
with which this paper is concerned.

To test the system from end to end, we selected three
application scenarios which required a virtual reality
solution; to be deemed satisfactory, the methodology and
software was required to support all the requirements
demanded by those scenarios.

The first scenario was related to culture preservation and a
virtual environment was created in which school children
could explore oral histories. A second scenario was created
to educate HIV positive mothers about the impact and

importance of diet [Error! Reference source not found.].
Allocated to both these scenarios was a dedicated team of
systems programmers who created the digital resources
required by the researchers. This involved not just the
creation of the virtual environment, but supporting and
extending the underlying authoring tool to make sure that it
was as complete as possible. By the end of the second
scenario, we had an authoring tool that provided a rich set
of facilities for creating almost any virtual environment.

The third scenario, however, was not designed to test the
functionality of the tool, but, rather, the process by which a
user could create their own virtual environment (VE). The
goal was not to create an end-user tool such as an earlier
version of Alice [1], whereby a domain expert could create
their own virtual environment. This was because we
observed that the domain experts we worked with from the
previous applications (e.g. HIV/AIDS councilors) were
unlikely to have the time required to learn an authoring
tool. Instead, we wanted to design a system that would
allow these domain experts to create a specification that
would then allow a programmer to create the desired
environment without having to improvise details or
becoming a content expert in their own right. The challenge
of the third scenario can be stated as creating a
specification process that was suitably intuitive for a
domain expert to use whilst being sufficiently unambiguous
for a programmer to implement. At the outset of the process
it was not clear to us if the result of the third scenario would
be a ‘How To’ book; a piece of software that guided the
process, or some combination of the two.

It is the meeting of this challenge of communication
between domain experts and VE implementers that is the
subject of this paper.

SPECIFYING VIRTUAL ENVIRONMENTS
VE design and creation is a relatively new field and as such
there is not yet much depth to the theoretical and empirical
research in the literature. Fewer still have studied
supporting the communication between designer and
programmer. The design and creation of VEs is a complex
process resulting in a small number of proposed
methodologies to simplify the process ([4,5,6,7,8]).
Schwartz et al [5] describe their experiences in creating a
shared distributed VE application called “The Virtual
Playground – Netgate Mall” in which designers made use
of many specification techniques. They used written
narratives, concept sketches, storyboards, pattern languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 3–9, 2009, Boston, MA, USA.
Copyright 2009 ACM 978-1-60558-246-7/08/04…$5.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and UML case-based diagrams to document a design for a
Virtual Playground. The introduction of pattern languages,
taken from architectural spatial planning design was a novel
contribution to help plan the spatial organization of the VE
and specifically to promote social space between the
multiple users of the VE. While it might be true that team
members were happy to use the techniques they chose, the
authors did not discuss how this influenced the
understanding of the design between team members. We
believe that VE creation in which the designers and
programmers could choose artifacts already familiar to one
of the groups would lean towards unnecessary
communication discrepancies. This is because each
technique has its own set of rules and terminology that is
not shared. This will require both designers and
programmers to learn the rules and terms of any particular
artifact chosen, to the same level, before effective
communication can take place.

Fencott [6], Tanriverdi and Jacob [8], and Kaur [4] outline a
more structured approach to VE creation. In their research
they attempt to suggest step-by-step phases in which the
design evolves from one state to the next before it is finally
implemented. By defining a methodology, they hope to
make VE creation easily grasped and understood by
designers and programmers.

Based on Kaur’s [4] VE creation methodology, Fencott [6]
proposes a VE creation methodology with an emphasis on
modeling the intended user experiences. Designers can
benefit from his model in that it attempts to structure the
design and provide a mechanism to account for the user’s
experiences.

He suggests different methods for specifying the plans of
the VE before the implementation takes place. Again,
designers and programmers are encouraged to use many
specification artifacts including perceptual maps, use-case
diagrams and scene graphs, of which he invented perceptual
maps. Perceptual maps are diagrams used to show the
relationship between the objects and interactions in the VE
and how they support the intended user experience.
Designers could easily construct these maps as they simply
provide categories to describe VE content in English
sentences. His suggestions of use-case and scene graphs,
however, would still be foreign to designers with no
programming experience. While Tanriverdi and Jacob [8]
focus almost exclusively on interface components Fencott
[7] also suggests how the designer would account for the
narrative components in the VE by means of the potential
for narrative embodied in the various possible paths through
the environment.

Tanriverdi and Jacob [8] suggest a design model and
methodology for designers of VR interfaces. Their goal is
to guide the designer in the conceptual model of the design
by breaking up the task into components that can be worked
on separately (such as graphics, objects and interactions).
Designers are constrained to start off with a textual

description of each of the components which is called the
high-level phase and then iteratively produce a formal
specification of the high-level descriptions. The interaction
documentation consists of the use of data-flow diagrams
and state chart diagrams. The formal specification of these
interactions is supported with a tool called PWIMP [9],
which is designed to specify non-WIMP (Windows, Icon,
Menu, Pointer) interfaces, such as VE interfaces. While
their methodology attempts to break the design task into
different categories, their use of data-flow diagrams and
state-chart diagrams is very much software engineering
specific, requiring the designer to learn computer science
terms and logic.

Kaur et al [4] created a hypertext tool to assist designers in
specifying usability requirements for their design. The tool
essentially documents usability guidelines, examples and a
check list for designers to follow which is then presented in
hypertext format. The designers used the tool to guide the
development of storyboards for given VE scenarios.
Through the use of the tool, the designers were able to
document interaction support into their storyboard designs.
The guidelines were based on a theoretical understanding of
human-computer interaction in VEs, interaction behaviour
and design requirements. Empirical testing of the tool was
conducted and the results showed that the tool helped
designers to uncover and improve the usability of the
design and identify issues which designers may not have
considered otherwise. It would be interesting to see how
programmers might respond to the storyboards produced
and whether the designs could easily be understood by
programmers. While Kaur’s tool support for VE creation
positively aided the designers, the focus of the tool was to
promote usability awareness and not necessarily on
documenting the VE application requirements to be used in
the creation phase.

The last approach we look at in VE design and creation
involves the testing of both a designer and programmer
creating a VE application. Cho et al [10] portray their case
study involving the design of a scientific learning VE
between a science teacher and programmer using an
authoring tool called CLOVES. CLOVES (Construction of
Layer Oriented Virtual Environments for Science Inquiry
Learning) is a virtual world builder that supports the
development of information-rich environments using rule-
based scripting. The purpose of the case study was to
establish whether the programmer and teacher could come
to a shared representation of the design given that they were
experts in different domains and to improve upon
CLOVES. In this study the designer and programmer
designed the application requirements together, making the
programmer a co-designer.

The case study involved two design phases: a synopsis
phase and a high-level design phase. The synopsis design
required the subjects to learn how CLOVES works, to
investigate the models which were available to them and to
brainstorm their VE. This means that the teacher learnt

 3

computer graphics programming terminology before
designing the application and thus had a steep learning
curve. After learning CLOVES the subjects mostly worked
with paper, pencil and a whiteboard medium to define and
document their design. The high-level design phase
consisted of the programmer writing the rules for the world
and then along with the designer, placing the objects and
the rules into CLOVES.

This study was observed by a researcher, who was also the
developer of the CLOVES authoring system. By observing
the teacher-programmer team during design and
implementation, he was able to identify extensions and
improvements to the rule-based scripting language. These
extensions were not intended to allow the designer to use
the authoring tool herself, but rather to extend the tool to
enable the application requirements to be implemented in
the tool. The output of their study showed that the teacher
could learn and understand the concepts, terms and
vocabulary in order for her to understand and use the
CLOVES system in a limited way. By the end of the
session she had learnt new words such as “pixel”, “object”
and “properties” and therefore they believe it showed that a
common ground could be established with the teacher and
programmer. Even though the designer and programmer
came up with a working scenario together, the designer was
not given the tools to create the design herself. Independent
design work is not supported. This case study also places a
heavy burden on the programmer to become a content
expert in a potentially new domain in order to fulfill the
role of co-designer.

The case studies into VE design and creation shows that
designers are attempting to engage in VE design. Even so, it
shows that designers are limited in how they engage in VE
design and creation. The current methodologies use
formalisms that have been borrowed from the design
processes of other media and still force the design to
eventually be documented in a software engineering-
specific technique. This would require both designer and
programmer to learn new terminology. These short-
comings need to be addressed to truly allow designers and
programmers to come to a shared understanding of the
design.

MAKING FRIENDS WITH FUNNY PEOPLE
The first step in our research, therefore, was to find if there
were any design formalisms or artifacts that were used
consistently between designers and programmers. To do
this, we wanted to create project groups comprising of
designers and programmers. We therefore partnered with an
Interactive Media course in the Department of Film and
Media. These students were familiar with more traditional
forms of media (print and film) but had no experience of
communication using virtual environments. These were
exactly the type of people our tool was aimed at; someone
who was experienced in communication, but not using this
new form of media.

Methodology
The first phase of our work was to discover the ways in
which the students would choose to specify the virtual
environment. The students were therefore taught standard
techniques, such as design documents and storyboards. We
also added techniques discussed by Fencott [6,7],
Tanriverdi [8], Kaur [4] and Schwartz [5], such as flow
charting, use-case diagrams and pseudo-code, to see if the
students would appropriate these as more fitting ways to
describe interactive media. Students were also given
tutorials on using Alice [1] as a way of exposing them to
scripting and virtual environment authoring tools.

(It must be remembered that we are not building a tool for
those who are already experts in creating design documents
etc. We wanted to find the techniques that worked, so that
we could embed these in software or in the ‘How to’ guide
that would ultimately lead to the unambiguous specification
of the environment.)

The students were split into groups and asked to submit
documents describing how their environment should be
implemented. The students were free to choose whichever
techniques they felt best described the environment they
wished to create, but a template design document was given
to them to illustrate the types of information they should be
providing. Each group was allocated a member of our
research team who had the role of programmer and who
took part in all meetings and discussions in order to observe
how the students were rationalizing the design process. This
allowed us to make ethnographic observations of the group
but the programmer also acted as a consultant, helping the
group understand what is possible within a virtual
environment.

Observations on the Design Document
Having received the specifications from the students, as
programmers, the first thing we needed to begin
implementation were the models and objects required for
the environment. Details of models tended to be spread
throughout the length of the document: description of a
texture in one place; spawning point in another place etc.
Often this distribution would result in key attributes of
models not being defined (spawn points were rarely
mentioned). Our observers commented that in the
discussions between designers floor-plans were used to
overcome these problems, yet none of the groups included
floor-plans in their final document submission. So when
positions were described they tended to be relative; e.g. “far
corner of the club”. A further problem in inferring the
objects is that most groups made no distinction between
objects in the back-story (which did not need to be
rendered) and objects to populate the environment.

Interactions between objects were also poorly specified.
Again, much of the terminology was ambiguous: e.g. one
character needed “enough” money to purchase equipment.
Whilst key interactions were specified, often the design
would leave out what the characters would be doing outside
of the documented interaction or what would happen should

the interaction not follow an anticipated path: e.g. what
happens when the character does not have enough money?
In other words they fell into the trap of thinking linearly
instead of in terms of the many branching possibilities
available to the user in the VE. The interactions that were
specified did indeed make some use of pseudo-code (if-then
types of interaction being popular) and flowcharts, but
again, these representations did not indicate what would
happen should the conditions for interaction not be met.
Some interactions were specified in terms of camera
movements, which were unfamiliar to the programmers
and, in some instances, were not possible within the
confines of the environment.

Finally, to implement the designs, the shortcomings in the
design document led the programmers to create their own
tables to aggregate information from the document.
Creating these tables was a slow process, that required
much interaction with the designers when gaps in the
specification were spotted.

In short, there did not seem to be an existing design
notation which allowed designers to specify an environment
in a way that could be interpreted by a programmer.

ENVISIONING A BETTER DESIGN DOCUMENT
With the analysis of the design document we were able to
identify short-comings of the design document as a
specification method. What was interesting, however, was
they way in which the designers had used floor-plans in
their discussions. The programming team had also used
floor plans, but annotated in a different way. By forcing the
designers to use floor-plans, they would implicitly be
providing information about where objects are; what the
objects would interact with and which objects are only part
of the back-story (such objects would not appear on a floor-
plan). But the question remained of whether designers
would use floor-plans and if they could be used to capture
any information the designer was interested in.

Upgrading Floor-plans
We were inspired by Fencott’s theory of “perceptual
opportunities” which he uses to construct VEs [6],
Perceptual Opportunities model the content of a VE by
describing the content in terms of psychological qualities
which attempt to manipulate the player’s attention through
the player’s perceptual system. In this way designers can
construct a VE by considering how the player can be guided
in a VE by the objects and properties of the VE. There are
three types of perceptual opportunities: sureties, shocks and
surprises. Objects which exhibit predictable behavior in a
VE are called sureties and attempt to make the world
believable to the user. An example of a surety is ambient
sound – sound which, if correctly chosen could
communicate the nature of the environment. Shocks are
objects or properties of the world which are perceived by
the user as unbelievable and are by-products of the
construction of a VE. An example of a shock might be
ambient sounds that suddenly stops or texture maps that do
not tile correctly on a building. The perceptual opportunity

which we are particularly interested in is surprises.
‘Attractors’, ‘connectors’ and ‘rewards’ make up the three
basic types of surprises. Attractors are ascribed to content
which draw the user around the VE. Through the use of
animation, color, sound and mysterious content, the
designer can attract the attention of the user and thereby
draw him to move around the VE space. Connectors are
surprises which encourage the user to take a particular route
of action in the VE. An example of a connector might be a
bridge connecting the user to an attractor. Rewards are the
content which make the user feel satisfied for their effort to
follow the attractors and connectors. A reward might be
something the user can “pick- up”.

Fencott used perceptual maps to diagram the perceptual
content of the VE. These maps consisted of tables showing
the relationship between attractors, connectors and rewards.
In like manner we desired to show interaction content
(which implicitly implies perceptual content) but using a
floor-plan map instead of a table in order to gain the
benefits of using a floor-plan listed at the start of this
section.

Refining the Diagrams
Essentially our research was now about creating a new
visual formalism based on augmenting floor plans with
Fencott’s ideas. In order to create this formalism, we
employed an iterative process and created a series of low
fidelity prototypes which we would test by creating
descriptions of existing environments and then passing
them on to programmers (who were not directly involved
with our team) to see how easily the diagrams could be
converted into functioning environments. An early version
can be seen in Figure 1. Over time, as our design began to
stabilize, we worked inside PowerPoint, creating a custom
palette of the symbols we needed.

Artifacts
These objects in Figure 1 included three characters (the
barman, Natasha and Stopsign the bouncer) and props such
as the jacket and sunglasses. By placing the objects
spatially, one could see the competing attractors which
would draw the player to various locations in the world.
This would allow the designer to plan the attractors by
deciding where the objects would go in the environment.
By allowing the designer to place an object this way, it
would also provide the programmer with authoring
information, indicating the placement of objects inside the
VE.

Interactions
Besides showing props and character objects, the designer
would also need to document the actions which occur when
the player attempts to interact with a character or object in
the world. We created symbols for each of the actions that
the authoring tools supported. For example, in Figure 2, the

 symbol is used to denote that an audio file is played

 5

when the avatar enters the area (denoted by the circle)
around Natasha.

Figure 1 - objects placed in the world and attractor lines
showing the competing attractors which the avatar must

decide to follow

Figure 2 – Refined notation

Following the placement of characters and props, we
considered what the designer might like to document in
terms of narrative. Drawing on the design document’s
emphasis of the back-story, we needed some way to
document how the designer would progress the story and
thereby reveal it to the player. By using an icon to show
where part of the plot is revealed to the player, the designer
would have some way to document the story on the floor-
plan. From an analysis of the design documents we created
three types of narrative icons:

• Plot-points: used to show that part of the back-story is
now revealed to the player.

• Plot-reversals: used to show if the player is distracted
in some way from having the back-story revealed.

• Instructions: used to shows where instructions are
provided to the player which help the player to
progress to the next plot-point or accomplish some
task.

We also characterized the characters and props. The
characters can either be good (help the player to progress in
the story), neutral (characters that merely bring believability
and context to the game) and bad characters (which try to
prevent the player from accomplishing his mission). A look
at Figure 2 shows the narrative icons, props and characters.
The player interacting with Natasha in this floor-plan shows

that Natasha, , a good-guy, is providing the player

with an instruction, , “you need to pick up jacket and
glasses” and does this through an audio file.

Programming
It must be stated that the design language and tool is for the
designer to specify interaction information and not the
programmer. The programmer must be able to “read” the
language and glean the information needed once the
designer has finished planning. In our discussions with the
programmers, they required information about the various
types of ‘triggers’ that would invoke actions (object
methods) within the environment. Our programmers
identified the following: proximity triggers, tripwire
triggers, user-selection events (mouse input and keyboard
input), timer triggers and collision detection. We provided
an icon for each of these triggers but drew the proximity
trigger as a circle and the tripwire trigger as a line on the
surface of the floor-plan. Figure 2 shows the player
interacting with Natasha. The condition that calls the action
is a proximity trigger drawn around Natasha with the circle.
Once this condition is called, the audio file is played. The
proximity sphere annotation (the event or condition type)
together with the audio icon (the action) make up the
interaction: “if user walks through proximity sphere, play
audio file”.

Rules for the placement of Icons and Annotations
We were not strict with defining rules for the icons and
annotations as we wanted to see how the designers would
use them and if their use would automatically create rules.
We see this as a strength of the method as we aimed to
facilitate a shared understanding within a group (we did not
want to have them slavishly follow our rules) and create a
shared meaning from the base we provide. With our use of
the icons and annotations we found that the actions which
belong to an object (like animation or spatial audio), must
be located close to the object to show ownership. The
proximity trigger must belong to some object and therefore
is always around it. We provided the designers two types of
text labels. The first is a text label which the designer can
use to annotate something with text. The next type of label
is the scene label. This label is intended to allow the
designer to write a short sentence describing the interaction
occurring on the current floor-plan.

By considering the designers and programmers needs, we
were iteratively able to come up with a visual language with

which to describe interaction information. Thus we were
ready to consider designing a software tool that would
manifest our icons and annotations to the designer and
allow the designer to easily create interactions in a visual
way. A sample of icons is provided in Figure 3.

Figure 3 – Sample of some Design Notation Icons

EVALUATING THE DESIGN NOTATION
In order to evaluate the design notation we again used
media students. Fortunately a full year had passed since our
first intervention and we were able to evaluate the notation
with a similar body of students to that which took part in
the original study. The key difference in the course this
time was that the students did not have free reign in the use
of design notations, but had to use our new notation. So,
instead of teaching the students pseudo-code, use-case
diagrams etc., they were given three lectures on our design
notation and given the PowerPoint symbol palette to aid in
constructing their final designs. As we realized it would not
be possible to capture all the designers’ ideas using our
notation, they were required to submit a free-text ‘screen
play’ document to augment the floor-plans.

Just as before, programmers from our research team were
attached to each group of students to observe the
discussions within the team and also provide technical input
on the designs. In an effort to triangulate the ethnographic
discussions within a group, we also had the students

conduct an artifact walkthrough [11] of the final diagram to
ensure that our interpretation of the diagrams matched the
ideas the designers were wanting to express. We used this
technique by conducting unstructured interviews where
each designer was asked to explain their design and to
describe the use of the icons and annotations they
employed. These interviews were individual, as apposed to
focus group discussions, ensuring that the designer’s
responses were not influenced or overpowered by the other
designers.

Results
As we had hoped, the designers could indeed use the floor-
plans intuitively. Designers also seemed happy to
incorporate non-spatial information (such as plot points)
onto the floor-plans. By explicitly placing characters and
props on the floor-plan, many of the ambiguities
experienced by the programmers disappeared. When
implementing the environments described by this notation,
it was also much easier to understand interactions as the
trigger points were all clearly marked. For example, in one
environment we implemented only one of the nine triggers
used was not properly specified. In terms of specifying code
that goes with the game logic, there were still a few
problems in understanding the designer’s intent. However,
the programmer did not have to aggregate information
about the interaction as with the previous notation, and
ambiguities could be rapidly cleared-up by consulting the
designer. However, we did discover some problems and
shortcomings in the notation.

Interactions
We found that the designers made use of the screenplay
document and the floor-plans to record different types of
information. While the floor-plans showed the game design
in an abstract way, along with the required interactions, the
screenplay documented the story. The screenplay was not a
document intended to be used by the programmer.
However, we found that the screenplay not only
documented the story, it also revealed rules of the game that
were not explicit in the floor-plans. In one example, the
designer had drawn a trigger circle around a character, but
specified the interaction in the screenplay. Without reading
the screenplay, the programmer would not know have
known what was to happen. We had meant for the designers
to use the label function to record rules in the floor-plan.
These labels were not often used and when they were used
there was not enough specified to identify the global rules
of the game. Thus the floor-plan language labeling did not
encourage the designers to record game rules while
designing.

We found that during the artifact walkthroughs, the students
explained more of the storyline verbally than was recorded
in both the screenplay and the floor-plans. While explaining
their game during the artifact walkthroughs, they often
pointed at each icon and annotation to explain the scene.
The icons served as pointers to remind the designers what
they needed to share about their game. It is interesting to

 7

note that this information was also not specified in the
screenplay document and so the plot point icon was useful
for the designers to deliberately show in which scenes the
players should discover the plot. Thus the plot points
became useful placeholders in communicating verbally
about the story of the game.

Icon Design
In our design of the visual language, we hoped to provide
the designers with a complete set of icons and annotations
and a standard way for expressing those icons and
annotations for a VE design. The experiment helped us to
reveal the language discrepancies and identify areas where
improvements can be made.

There were two problems with the use of the prop icons.
One of which was that the prop icons were not re-sizeable.
The size of the icon represented a physical model and
therefore the designers needed some way of showing the
scale of an icon in relation to other icons. The other
problem was to do with the static prop icon only. The
designers were not sure how many static prop models they
should represent on the floor-plan. We found that some
static prop icons were drawn using the marker tool and even
some of the significant static props were left out.

Waypoints
The designers creatively used icons and pencil line
drawings to show waypoint information. In one case the
waypoint was drawn with a pencil tool showing the path
and an arrow at the end of the line to show the direction. To
mark the start position of the waypoint a flag was used.
Another diagram showed the waypoints path using flags to
mark the path and then used attractor arrows to show the
direction of movement. Although both examples managed
to show all the waypoint information necessary, the
language which we provided the designers for waypoints
was not standardized. We intended that the waypoint flags
would be enough to show the waypoint path. We had not
standardized the starting position, the direction of the prop
which moves along the waypoint, the animation which the
prop does along the waypoint, nor did we specify that a
prop was attached to a waypoint.

Attributes
We also did not explicitly provide a way for the designer to
document the avatar or character attributes. This is usually
called the character’s inventory, a concept borrowed from
gaming. Having an inventory translates to having a set of
variables describing the items that are placed in the
inventory and rules which can be applied to those variables.
Every team made use of an inventory. There was no official
way that the designers could specify the variables and rules
they required. Some of the inventory variables were implied
by the use of the interactive props which the player at times
could collect. However, the items which did not have a
physical counterpart in the environment, for example
“health”, were not diagrammed on the floor-plan. Further,
the rules regarding the inventory items were not
diagrammed on the floor-plan. Even with those inventory

items shown on the floor-plan as interactive props, it was
difficult to know whether the item was in the inventory (and
therefore not seen in the environment) or out of the
inventory (and therefore seen in the environment). One
designer suggested in the interview that in order to show
that a player had collected an item already, one should be
able to attach the interactive inventory icons to the avatar
icon. Our floor-plan language needs to be improved with
regards to recording a very clear specification of variable
items and their rules.

FREND
In parallel with the efforts to create the design notation, a
systems programmer was creating a software tool to
embody the final notation that resulted from the design
process. Two weeks after submitting their final PowerPoint
design, we recalled the designers to evaluate our new VE
design tool called FREND – see Figure 4.

Figure 4 – The FREND interface

FREND was designed to follow the look of the PowerPoint
interface that we had been prototyping. At the level of the
floor-plan it is almost identical to the PowerPoint interface.
However, it adds other features, to break complex VEs into
part-whole relations, to manage assets, link to design
documents and to link to an authoring tool and load virtual
environments that are beyond the scope of this study.

This evaluation of FREND required the subjects to re-create
their design using only the screenplay as reference.
Primarily we were interested to see how intuitive the
notation had been, so subjects were not re-taught the
meaning of any of the icons nor given any form of
reference sheet. Our evaluation lay in comparing the
original PowerPoint submission with the newly created
FREND design; our hypothesis being that consistency
would be a good measure of the appropriateness of the
design notation.

Procedure
Each group of four students was divided into pairs. Each
pair was then asked to recreate their design using FREND.
Pairs were chosen as we wished to exploit constructive
interaction in order to understand how the students were

rationalizing about the recreation of their designs. It was
felt that constructive interaction with both members being
subjects would give us the most un-biased insight – by
working in teams of two instead of individually, we hoped
to pin-point problems as the students discussed the interface
and floor-plan language verbally to each other. Such
information could be missed using an individual user-
testing as it is unlikely the designer would communicate
their software difficulties sitting alone.

Each computer was equipped with a video recording device
which recorded the visuals and the audio of the students
working with FREND. The screenplay document of each
group was given to the designers during the experiment as a
means of providing consistency between pairs of the same
group using FREND and to jog the memory of the
designers.

Results
Overall, we were surprised at the consistency between the
original submissions and those created in FREND. In a few
instances the placing of props was different and the choice
of trigger type had changed. However, these differences are
not due to whether or not the notation was learnable but
rather a choice by the designers.

Outcomes
Encouraged by the seeming robustness of our design
notation, we set about improving FREND to accommodate
the concerns that arose from analyzing the PowerPoint
design submissions.

Icons
Whilst it is possible to implement re-sizable icons to
represent props, there is little we could do about forcing the
designer to draw props with a “props” tool rather than using
the pencil tool. We would have had to remove the pencil
tool from the toolset in order to force the designer to use the
prop tool, but this would have compromised overall
flexibility too much. It could be that some day we figure out
every interaction and object possible and get rid of the
general-purpose pencil tool, but until then, it was felt best to
leave it intact.

Attributes
Firstly, we allowed the designers to assign attributes and
objects to an avatar. By double clicking on the avatar, a
form appeared which allowed designers to specify attributes
(by giving a name, default value and a text box allowing the
specification of rules relating to that attribute) and any
objects that character may have in their inventory. This
functionality would not have been possible in PowerPoint.

Waypoints
The original floor-plan language simply allowed for flags to
show waypoints and then designers joined the points to
show the completed path. Now waypoint flags are still
provided in an automated way but an additional bigger flag
marks the starting position of the waypoint. On defining a
path, the designer drags in the big waypoint flag, places it
on the floor-plan, after which a pop-up menu form allows

the designer to select the object to attach to the waypoint
and define what animation the object should play along the
waypoint. Each waypoint defined has a system generated
number so that one can identify the specific waypoint the
character is attached to. After placing the big waypoint flag
and attaching the waypoint to the character, a waypoint
drawing tool is then used to draw the path. Once the
designer is finished drawing the path, the system
automatically places the arrow in the direction the path was
drawn and places mini-waypoints flags along the path. This
new way of specifying waypoints, shows the waypoints
path, direction, the object which is attached to it and the
animation which the object must perform along the path.
The notion of time and synchronization is not inherent in
the waypoint notion – if users require time information,
then a ‘timer’ needs to be added to the path.

Final Outcome
All but one of the subjects who took part in the evaluation
of FREND preferred it over PowerPoint. Ultimately
FREND was able to manage large VE’s as systems of
episodes and scenes. The icons could link to asset libraries
where complete description of the objects could be built up.
FREND also generated code stubs which could be used by
the other VR authoring tools in the suite we created.
Overall the system provided a very direct way of moving
from the designer’s ideas to a working environment.

CONCLUSION
The wider goal of this research effort was to broaden the
applicability of virtual reality technology. In the work
reported here, we tackled the problem of communication
between the design teams that create virtual environments
and the programmers who implement them. From our
review of the literature in this field, this seemed to be a
common problem, but there did not seem to be any general
solution. Borrowing from a variety of disciplines, we taught
designers a broad range of notations in the hopes that some
of these could be easily translated by programmers. When
this approach failed, we created our own notation based on
Fencott’s work [6,7]. After developing this notation into a
set of symbols of for use in PowerPoint, we were able to
train designers to create documents that were meaningful to
them and which could be translated into code with much
less effort than was possible with existing techniques. The
notation was further refined and them embodied in a
software tool called FREND.

We believe that we have made significant progress in our
goal of creating a design notation for virtual environments
that is intuitive to designers and provides useful information
to programmers. The amount of information required from
the designers by the programmers was greatly reduced
between the first group of students and the second group.
By forcing the placement of icons in physical space, and
providing a symbol set that mapped directly to the
authoring tool’s functionality, we were able to greatly
reduce the amount of time required to create an working
environment. Furthermore, the latest version of FREND can

 9

be used to automate some of the process and generate code
stubs that incorporate the designers’ ideas as comments
within the stubs.

From the designer’s perspective we were able to create a
tool that captured most of the concepts they were interested
in expressing about the layout and interaction with the
environment. They found the notation to be intuitive and
easily remembered.

Whilst we believe our floor-plan notation is a worthwhile
approach to this problem, there are some inherent
limitations. Primary among these is the fact that we are
representing a three-dimensional space in a two-
dimensional diagram. Whilst there are conventions to do
this (e.g. using plan and side views) most of the designers
we worked with tended to conceptualize their designs in
two dimensions, limiting the need to provide 3-dimensional
visualizations. Another weakness in our overall approach is
the involvement of programmers as intrinsic in the process.
Ideally we would like to create a tool for non-experts which
would let them create these environments on their own.
Whilst this is possible to some degree with existing tools,
we did not find them to be sufficiently general-purpose for
our requirements. Finally, we accept that the notation is
most appropriate for narrative-driven game environments
and would not be appropriate in the creation of every type
of virtual environment. It is our hope that by exploring new
notations, such as the one presented here, that we open up
new research areas to enable the next generation of VE
authoring tools.

ACKNOWLEDGMENTS
We would like to thank the Innovation Fund for supporting
and fully funding this research.

REFERENCES
1. Brown, S., Nunez, D. and Blake, E. Using virtual reality

to provide nutritional support to HIV+ women. In Slater,
Mel, Eds. Proceedings: The 8th International Workshop
on Presence — Presence 2005, (2005) 319-326.

2. Pausch, R., Burnette, T., Capeheart, A., Conway, M.,
Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R.,
Koga, White, J. IEEE Computer Graphics and
Applications, May (1995), 8–11.

3. Conway M., Audia, S., Burnette, T., Cosgrove, D.,
Christiansen, K., Deline, R., Durbin, J., Gossweiler, R.,
Koga, S., Long, C., Mallory, B., Miale, S., Monkaitis,

K., Pattern, J., Pierce, J., Shochet, J., Staack, D.,
Stearns, B., Stoakley, R., Sturgill, C., Viega, J., White,
J., Williams, G. and Pausch, R. Alice: lessons learned
from building a 3D system for novice users.
Proceedings of the SIGCHI conference on human
factors in computing systems. The Hague, Netherlands,
ACM Press. (2000), 486-493.

4. Kaur, K., Sutcliffe, A. and Maiden, N. A design advice
tool presenting usability guidance for virtual
environments. Proceedings of Workshop on User-
Centered Design and Implementation of Virtual
Environments. (1999)

5. Schwartz, P., Bricker, L., Campbell, B., Furness, T.,
Inkpen, K., Matheson, L., Nakamura, N., Shen, L.-
S.,Tanney, S., and Yeh, S. Virtual Playground:
Architectures for a Shared Virtual World. Proceedings
of ACM Symposium on Virtual Reality Software and
Technology (1998) 43-50

6. Fencott, C. Towards a design methodology for virtual
environments. Proceedings of Workshop on User-
Centered Design and Implementation of Virtual
Environments. England, University of York. (1999) 91–
98.

7. Fencott, C. Virtual storytelling as narrative potential: to-
wards an ecology of narrative. ICVS 2001, LNCS 2197,
(2001) 90–99.

8. Tanriverdi, V and Jacob, R.J.K. VRID: A design model
and methodology for developing virtual reality
interfaces. VRST ’01: Proceedings of the ACM
symposium on Virtual Reality Software and Technology
held in Banff, Canada. ACM Press, (2001) 175-182.

9. Jacob, R.J.K., Deligiannidis, L. and Morrison, S. A
software model and specification language for Non-
Wimp user interfaces. ACM Transactions on Computer-
Human Interaction, 6, (1999) 1-46.

10. Cho, Y., Park, K.S., Moher, T. and Johnson, A.E.
Mediating collaborative design for constructing
educational virtual reality environments: a case study.
Lecture notes in computer science, 3190, (2004), 30 –
37.

11. Muller, M.J. Catalogue of Scenario-Based Methods and
Methodologies. Report 99-06. (1999) Massachusetts,
IBM Watson Research Center.

