
A lightweight interface to local Grid scheduling
systems

A dissertation submitted to the
Faculty of Science

at the University of Cape Town
in fulfilment of the requirements

for the degree of
Master of Science

By
Christopher Parker

Supervised by
Dr Hussein Suleman

· 26 May 2009 ·

Contents

Acknowledgments i

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.2.1 Determine if a Web interface to a local Grid computing system can be

both functional and usable . 3

1.2.2 Determine if computer-literate non-Grid experts are able to make use of

the interface . 3

1.2.3 Determine whether lightweight, Web 2.0 techniques live up to claims of

increased usability, speed and decreased response time 3

1.2.4 Ensure that the interface is extensible by allowing for inclusion of different

schedulers as “plug-ins” or components 3

1.3 Scope and Limitations . 4

1.4 Dissertation Outline . 4

1.4.1 Chapter 2 : Background . 4

1.4.2 Chapter 3 : Condor . 4

1.4.3 Chapter 4 : Prototype Evaluations . 6

1.4.4 Chapter 5 : Infrastructure & Design . 6

1.4.5 Chapter 6 : Case Studies . 6

1.4.6 Chapter 7 : Evaluation . 6

1.4.7 Chapter 8 : Conclusion . 6

2 Background 7

2.1 Introduction . 7

i

2.2 Distributed Computing Technologies . 7

2.2.1 Cluster Computing . 8

2.2.2 Volunteer Computing . 10

2.2.3 Cloud Computing . 11

2.2.4 Grid Computing . 11

2.2.5 Scheduling . 15

2.3 Distributed Computing Paradigm Comparison 17

2.4 Grid Usability and High Level Tools . 17

2.4.1 Introduction . 17

2.4.2 Grid Job Submission . 18

2.5 Web 2.0 . 21

2.6 Summary . 25

3 Condor 26

3.1 Introduction . 26

3.2 System Design . 26

3.2.1 Condor Architecture . 26

3.2.2 Heterogeneity . 28

3.2.3 Application Support . 28

3.3 Job scheduling . 29

3.3.1 Submit File . 29

3.3.2 Submission Process . 30

3.4 Flocking & Grid Computing . 31

3.5 Summary . 33

4 Prototype Development and Evaluation 34

4.1 Introduction . 34

4.2 Methodology . 35

4.2.1 Phase 1 : Requirements Gathering . 35

4.2.2 Phase 2 : Evaluation . 37

4.2.3 Prototype . 41

4.3 Summary . 42

ii

5 Infrastructure & Design 43

5.1 Introduction . 43

5.2 Infrastructure . 43

5.2.1 Test Grid . 43

5.2.2 Toolkit & Container . 44

5.2.3 Schedulers . 45

5.2.4 Database . 46

5.2.5 Directory Structure . 46

5.3 Design . 46

5.3.1 Design overview . 46

5.3.2 Design Considerations . 47

5.3.3 Interface Components . 48

5.3.4 Performance Enhancements . 61

5.4 Summary . 62

6 Case Studies 63

6.1 Introduction . 63

6.2 Assumptions . 63

6.3 Case Study I : Whetstone Benchmark - Single OS 63

6.3.1 Overview and Objectives . 63

6.3.2 Process . 64

6.3.3 Results . 64

6.3.4 Reflection . 65

6.4 Case Study II : Whetstone - Multi OS . 65

6.4.1 Overview and Objectives . 65

6.4.2 Process . 65

6.4.3 Results . 66

6.4.4 Reflection . 66

6.5 Case Study III : Text Indexer . 66

6.5.1 Overview and Objectives . 66

6.5.2 Process . 67

6.5.3 Results . 68

iii

6.5.4 Reflection . 68

6.6 Case Study IV : Audio Converter . 68

6.6.1 Overview and Objectives . 68

6.6.2 Process . 69

6.6.3 Results . 70

6.6.4 Reflection . 70

6.7 Case Study V : Distributed Rendering . 71

6.7.1 Overview and Objectives . 71

6.7.2 Process . 71

6.7.3 Results . 72

6.7.4 Reflection . 74

6.8 Scope and Limitations . 74

6.9 Summary . 75

7 Evaluation 76

7.1 Introduction . 76

7.2 User Evaluations . 76

7.2.1 Population and Evaluation Environment 76

7.2.2 Experimental Design . 77

7.2.3 Analysis Techniques . 80

7.2.4 Results . 81

7.3 Performance Evaluation . 93

7.3.1 Methodology . 93

7.3.2 Results . 95

7.4 Summary . 97

8 Conclusion 98

8.1 Realisation of Objectives . 98

8.1.1 Design and implement a Web interface to a local Grid computing system

with a high degree of usability . 98

8.1.2 Ensure that computer literate non-Grid experts are able to make use of

the interface . 99

iv

8.1.3 Implement the interface in such a way that it is lightweight and makes use

of Web 2.0 techniques . 99

8.1.4 Ensure that the interface is extensible by allowing for inclusion of different

schedulers as “plug-ins” by utilising a component-based approach 99

8.2 Reflection . 100

8.2.1 Is AJAX development really different? . 100

8.2.2 Will AJAX last? . 100

8.2.3 General Project Problems and Issues . 100

8.2.4 General Conclusions . 101

8.3 Future Work . 102

8.3.1 Interface improvements . 102

8.3.2 Interface additions . 102

8.3.3 Additional Research . 103

Appendices 104

A Paper Prototypes 104

B Interview Questionnaire 110

B.1 Knowledge assessment . 110

B.2 Current parallel applications, tools and hardware 110

B.2.1 Applications . 110

B.2.2 Tools . 110

B.2.3 Cluster architecture . 111

B.3 User Interfaces . 111

B.4 Importance of HPC Computing . 111

B.5 Clusters . 112

C User Evaluation Exercise 113

C.1 Introduction . 114

C.2 Background Information . 115

C.2.1 Qualifications . 115

C.2.2 Parallel Computing . 115

C.3 Overview of Grid computing . 117

v

C.3.1 Questionnaire : Presentation . 118

C.4 Grid Status Task . 119

C.4.1 Task . 119

C.4.2 Questionnaire : Status Task . 120

C.5 Job Submission Task . 121

C.5.1 Questionnaire : Job Submission Task . 121

C.6 Job Query Task . 124

C.7 General Feedback . 126

Bibliography 131

vi

List of Figures

1.1 Graphical view of chapter content as a flowchart of tasks 5

2.1 Message Passing Example . 9

2.2 Globus GRAM workflow . 13

2.3 Gridport layered architecture . 19

2.4 Conversion of custom front-end data into system neutral JSDL 20

2.5 Traditional Web Application . 23

2.6 AJAX Web Application . 24

2.7 AJAX Google Example I . 24

2.8 AJAX Google Example II . 25

3.1 Condor Communication Layer . 27

3.2 Condor ClassAd snippet . 28

3.3 Condor sample submit file . 29

3.4 Condor Flocking Architecture . 32

4.1 Interface Design Process . 36

4.2 Gridport Interface - Sample 1 . 39

4.3 ManageEngine(TM) OpUtils 4 Interface - Sample 2 39

5.1 High-level Grid architecture with the Condor flocking system 44

5.2 Grid interface layout . 47

5.3 Interface component flowchart . 49

5.4 High-level system architecture. Components coloured in yellow represent existing

systems, those coloured in purple represent custom-built components. 50

5.5 Grid status component . 51

5.6 Load or create new job window . 52

vii

5.7 Resource Filtering Wizard . 53

5.8 Executable Selection Wizard . 54

5.9 AJAX File Browser . 55

5.10 Input File Selection Wizard . 55

5.11 Argument Enumeration Wizard . 56

5.12 Number Type Specification Wizard . 56

5.13 Job Notification Pane . 58

5.14 Job Status Window . 59

5.15 Admin Component . 60

5.16 Statistics Component . 61

6.1 Output of distributed rendering case study with enlarged snapshot of a single frame 73

7.1 User evaluation tasks represented as a flowchart of sub-tasks 78

7.2 Box and Whisker plots of intuitiveness, response time and data presentation for

the entire Grid interface . 90

7.3 Firebug in action during interface loading . 94

7.4 Cumulative bandwidth usage of the AJAX interface vs. an identical hypothetical

non-dynamic HTML-only interface for the interface usage scenario 96

7.5 Cumulative bandwidth usage of the AJAX interface vs. an identical hypothetical

non-dynamic HTML-only interface for four consecutive repetitions of the interface

usage scenario . 96

7.6 Discrete bandwidth consumption of the AJAX interface vs. an identical hypo-

thetical non-dynamic interface for the interface usage scenario 97

A.1 Main Interface Layout . 105

A.2 Job Type Selection Menu . 106

A.3 Job Submission Wizard . 106

A.4 Filtering Wizard . 107

A.5 Argument Settings Popup . 107

A.6 Argument Enumeration Wizard . 108

A.7 Job Query Component . 108

A.8 File Manager . 109

viii

List of Tables

2.1 Grid vs. Cluster computing . 12

2.2 Perceived transition from Web 1.0 to Web 2.0 22

5.1 Grid server machine specifications . 44

6.1 Whetstone Single OS performance data (time reported in seconds) 65

6.2 Whetstone Multi OS performance data (time reported in seconds) 66

6.3 Text indexer performance data (time reported in seconds) 68

6.4 Audio conversion performance data (time reported in seconds) 70

6.5 Distributed rendering performance data (time reported in seconds) 74

6.6 Summary of case study performance data (time reported in seconds) 75

7.1 Test subject discipline and academic levels . 77

7.2 Test subject responses on familiarity with HPC and Grid technologies; n = 24 . . 81

7.3 Descriptive statistics of HPC and Grid knowledge; n = 24 81

7.4 Test subject understanding of concepts presented in an informative presentation;

n = 24 . 82

7.5 Grid Status Task 1 : Number of correct extractions per task; n = 24 83

7.6 Grid Status Task 2 : Number of correct icon interpretations; n = 24 83

7.7 Grid status component ratings; n = 24 . 84

7.8 Descriptive statistics of Grid status component ratings; n = 24 84

7.9 Job creation component ratings; n = 22 . 86

7.10 Descriptive statistics of job creation component ratings; n = 22 86

7.11 Job monitoring component ratings; n = 24 . 88

7.12 Descriptive statistics of Job monitoring component ratings; n = 24 88

7.13 Descriptive statistics for average over all tasks; n = 24 89

ix

7.14 Overall interface ratings; n = 22 . 90

7.15 Descriptive statistics overall interface ratings; n = 22 91

7.16 Performance data for the AJAX and traditional interfaces. 95

x

Abstract

Many complex research problems require an immense amount of computational power to solve.
In order to solve such problems, the concept of the computational Grid was conceived. Although
Grid technology is hailed as the next great enabling technology in Computer Science, the last
being the inception of the World Wide Web, some concerns have to be addressed if this tech-
nology is going to be successful.

The main difference between the Web and the Grid in terms of adoption is usability. The
Web was designed with both functionality and end-users in mind, whereas the Grid has been
designed solely with functionality in mind. Although large Grid installations are operational
around the globe, their use is restricted to those who have an in-depth knowledge of its complex
architecture and functionality. Such technology is therefore out of reach for the very scientists
who need these resources because of its sheer complexity. The Grid is likely to succeed as a
tool for some large-scale problem solving as there is no alternative on a similar scale. However,
in order to integrate such systems into our daily lives, just as the Web has been, such systems
need to be accessible to “novice” users. Without such accessibility, the use and growth of such
systems will remain constrained.

This dissertation details one possible way of making the Grid more accessible, by providing
high-level access to the scheduling systems on which Grids rely. Since “the Grid” is a mecha-
nism of transferring control of user submitted jobs to third-party scheduling systems, high-level
access to the schedulers themselves was deemed to be a natural place to begin usability enhanc-
ing efforts.

In order to design a highly usable and intuitive interface to a Grid scheduling system, a se-
ries of interviews with scientists were conducted in order to gain insight into the way in which
supercomputing systems are utilised. Once this data was gathered, a paper-based prototype sys-
tem was developed. This prototype was then evaluated by a group of test subjects who set out to
criticise the interface and make suggestions as to where it could be improved. Based on this new
data, the final prototype was developed firstly on paper and then implemented in software. The
implementation makes use of lightweight Web 2.0 technologies. Designing lightweight software
allows one to make use of the dynamic properties of Web technologies and thereby create more
usable interfaces that are also visually appealing. Finally, the system was once again evaluated
by another group of test subjects. In addition to user evaluations, performance experiments and
real-world case studies were carried out on the interface.

This research concluded that a dynamic Web 2.0-inspired interface appeals to a large group
of users and allows for greater flexibility in the way in which data, in this case technical data, is
presented. In terms of usability— the focal point of this research— it was found that it is possi-
ble to build an interface to a Grid scheduling system that can be used by users with no technical
Grid knowledge. This is a significant outcome, as users were able to submit jobs to a Grid
without fully comprehending the complexities involved with such actions, yet understanding the
task they were required to perform. Finally, it was found that the use of a lightweight approach
in terms of bandwidth usage and response time is superior to the traditional HTML-only ap-
proach. In this particular implementation of the interface, the benefits of using a lightweight
approach are realised approximately halfway through a typical Grid job submission cycle.

Acknowledgments

There are many people who affect our daily lives, and they all contribute in different ways to
keeping us happy (both emotionally and monetarily) and sane, giving us strength when we have
none and ideas when the thought process suffers from short periods of academic drought. It is
these people that I would to take the opportunity to thank here...

My family : I would like to thank my parents for putting up with me over the past two years.
There have been times where this project has provided much enjoyment, much headache and
much stress. They have been a constant source of encouragement and support over this time
and I thank them for that.

My friends : For keeping me entertained during this time, making me laugh when servers crash
and work is lost and making me forget about the impending repair period when such mishaps
occur.

My supervisor : Dr Hussein Suleman for always having so many ideas and opinions along
the way, for providing me with the tools I needed to complete this project, for always making
time to see me even during the busy periods and finally for always providing sound feedback on
the work I had been doing. Thank You!

To Francois Grey and Ben Segal : For providing me with the wonderful opportunity to host the
Africa@Home project at UCT and for assisting me during my time spent at CERN in Switzer-
land.

The National Research Foundation : For providing me with the funding so vital during any
degree. I would also like to once again thank Dr. Suleman for providing me with extra income
in the form of laboratory duties during this research period.

The experts and test subjects : Finally I would like to thank the scientists and test subjects
who graciously offered their time to assist with various facets of this research over the course of
the past two years.

i

List of Acronyms

AJAX
Asynchronous JavaScript and XML

API
Application Programmer’s Interface

BSD
Berkeley Software Distribution

CA
Certificate Authority

COTS
Commodity Off The Shelf

CPU
Central Processing Unit

CSS
Cascading Style Sheet

DHTML
Dynamic HyperText Markup Language

DOM
Document Object Model

DRS
Data Replication Service

FTP
File Transfer Protocol

GCB
Generic Connection Broker

GRAM
Globus Resource Allocation Manager

GridFTP
Grid File Transfer Protocol

ii

GSI
Globus Security Infrastructure

GSML
Grid Service Markup Language

GT4
Globus Toolkit 4

GUI
Graphical User Interface

HPC
High Performance Computing

HTC
High Throughput Computing

HTML
HyperText Markup Language

IBM
International Business Machines

IPC
Interprocess Communication

JSDL
Job Submission Description Language

KWIPS
Kilo-Whetstone Instructions Per Second

LSF
Load Sharing Facility

MCS
My-Condor Submit

MDS
Monitoring and Discovery Service

MIMD
Multiple Instruction Multiple Data

MPI
Message Passing Interface

MW
Master/Worker

iii

MWIPS
Millions of Whetstone Instructions Per Second

NFS
Network File System

OSCAR
Open Source Cluster Application Resources

PBS
Portable Batch System

PC
Personal Computer

PSDL
Parameter Sweep Description Language

PVM
Parallel Virtual Machine

RFT
Reliable File Transfer

RLS
Replica Location Service

SETI
Search For Extra-Terrestrial Intelligence

SGE
Sun Grid Engine

SIMD
Single Instruction Multiple Data

SOA
Service Oriented Architecture

SOAP
Simple Object Access Protocol

SRB
Storage Resource Broker

UNIX
UNiplexed Information and Computing System

URL
Uniform Resource Locator

iv

W3C
The World Wide Web Consortium

WCG
World Community Grid

WS
Web Services

WSRF
Web Services Resource Framework

XHR
XMLHttpRequest

XHTML
Extensible HyperText Markup Language

XML
Extensible Markup Language

v

Chapter 1

Introduction

”I think there’s a world market for about 5 computers.”
Thomas J. Watson, Chairman of the Board, IBM, circa 1948

The next great revolution in science is thought by many to be the concept of Grid computing.
Just as the Internet has revolutionised the way in which people communicate and exchange
information, the Grid promises to solve some of the greatest challenges known to mankind by
making available an immense amount of computational power to solve so-called grand challenge
problems. Although the initial vision for the Grid has not yet been fully realised, research in the
field has led to a number of advances that have changed the way in which scientists approach
problem solving. By combining the power of thousands of computing elements in a secure man-
ner, problem solving and data storage at a previously unimaginable and impossible scale has
been realised, an outcome far removed from the way in which people were thinking at the dawn
of the computing era.

In parallel to research in Grid computing technology, use of the World Wide Web has grown
significantly. The move from Web 1.0 to Web 2.0 has seen the advent of many new types of
Web applications, as well as an increase in the use of the browser as an engine for running
complex applications previously limited to the desktop. Furthermore, core Grid middleware
has transitioned from a monolithic architecture to a component-based Web-service model. This
approach has made the development of new Grid services simpler and allows for a more flex-
ible architecture capable of growth in a rapidly expanding field. This transition has made it
possible for the Grid to take advantage of browser improvements and Web 2.0 technology as a
medium for users to interact with the Grid. Unfortunately, the majority of research in the field
of Grid computing has focused on the development and improvement of core Grid middleware.
Although this research is vital, the Grid is not as accessible as it could be, thereby threatening
its future as potential users revert to traditional scientific computing platforms in an effort to
avoid the steep learning curve. In order to overcome the usability problem currently plaguing
Grid technology, this research has focused on the development of a Web-based, Web 2.0-inspired
system capable of abstracting away the complexity of Grid systems.

This chapter will motivate why this research is important as well as outline the objectives of the
research project. Furthermore, the scope and limitations to which the project is constrained are
also presented. Finally, an outline for the dissertation is provided.

1

1.1 Motivation

As already mentioned, Grid computing middleware is inherently complex due to the nature of
large-scale distributed systems. Furthermore, Grid middleware makes use of low-level command-
line utilities in order to create, launch and monitor jobs on the Grid. The use of such utilities,
however, requires extensive knowledge of low-level Grid operations in order to know when, and
in which context, certain utilities need to be used. An example of a simplified Grid creation,
submission and monitoring procedure is outlined below for a typical Grid job, assuming a local
scheduling system is used. A more detailed version of this procedure is presented in Chapter 3,
Section 3.3.2.

1. Using a shell, obtain information on the status of the Grid.

2. Obtain information on the available resources on the Grid in terms of operating systems
and architectures.

3. Write and compile, or use an existing, Grid application taking the above information into
account.

4. Use a reference manual to describe the job in terms of Grid resources by creating a sub-
mission file.

5. Transfer input files if needed.

6. Submit the job using the Grid job submission utility.

7. Obtain status information on the Grid job just submitted.

In this example, no security mechanisms in terms of authentication and authorization have
been taken into account. Typically, users would have to generate and supply their own cer-
tificates in a production Grid environment in addition to the procedure outlined above. The
generation and use of such certificates is not always fully understood by users, leading to the
blind use of such certificates [Foster et al., 2001]. This complexity is hampering the uptake of
Grid technology, since many scientists either do not have the necessary Grid-specific knowledge
needed to understand and execute all Grid processes or do so at the cost of a steep learning curve.

Throughout the course of this research, two main motivators for the enhancement of Grid
usability have been identified. These are listed below:

1. Computational problems are getting larger and are requiring the use of large utilities such
as Grids in order to solve them. An expanding need for such systems therefore highlights
the importance of usability research in this area.

2. Creation of improved interfaces should lead to a change in the way Grid software is written
which will make building future interfaces simpler. This is currently not the case.

The success of Grids relies on people using them to solve problems. If Grid infrastructures are
not being used effectively due to a lack of usability, it is possible that the future of Grids will be
short lived. It is therefore important that a suitable mechanism is found to make Grids more
accessible. This research project therefore looks at one way of solving the Grid usability problem
by designing and implementing a Web interface to such a system. Although Web interfaces to
Grid computing systems do exist, the approach taken in this research is believed to be novel due
to the lightweight, Web 2.0-inspired approach taken, along with its comprehensive multi-faceted
evaluation.

2

1.2 Objectives

This chapter has alluded to some of the ways in which the Grid usability problem has been
approached during this research project. However, in order to clearly outline the objectives
of this research, each objective will be presented in this section along with an accompanying
discussion on the way in which the particular objective has been met. The importance of each
objective with respect to the outcome of the research project at large is shown by ordering the
discussion of these objectives from the most to least significant.

1.2.1 Determine if a Web interface to a local Grid computing system can be
both functional and usable

When designing any piece of software that one expects people with differing skill levels from
multiple disciplines to use, usability is a key factor. Since the interface built as part of this
research was envisioned for use by scientists without Grid-specific knowledge, the way in which
the interface is displayed to users and the way in which tasks are represented was a key design
consideration. A variety of techniques were used to achieve this goal, however, one worthy of
mentioning at this point is the AJAX-based design approach. Over the past few years a steady
increase in the number of sites utilising techniques synonymous with Web 2.0, and in particular
AJAX, has been observed [Jazayeri, 2007]. A Web interface designed using this technique, when
used correctly, enhances usability by decreasing request turnaround time, creating a dynamic
workspace and also providing a structured, flow-oriented and uninterrupted user experience.
Another important mechanism to building an interface with a high degree of usability, is to
involve the end-user in its design. Therefore, throughout this research, the user forms a key part
of the design process.

1.2.2 Determine if computer-literate non-Grid experts are able to make use
of the interface

Without adequate evaluation, it is not possible to determine whether the system actually meets
the initial objectives. It was therefore decided that three different evaluations would be per-
formed at various stages of the research, namely validation of completeness, user evaluation and
finally performance evaluation. The results of each of these evaluations are then used to draw
conclusions as to the success of the research project and as to whether the research questions
have been answered satisfactorily.

1.2.3 Determine whether lightweight, Web 2.0 techniques live up to claims
of increased usability, speed and decreased response time

The term lightweight can have different meanings depending on the context in which it is used.
In this context, the term lightweight is used to refer to an interface that, once loaded into a Web
browser, responds quickly to user requests, is able to display large datasets in a scalable fashion
and is able to render a large amount of data in a short amount of time with little overhead
on the user’s system. Furthermore, a lightweight interface has economies of scale in terms of
bandwidth usage. Since user’s request for data result in a transfer of only the specific portion
of data requested for the particular operation, overall bandwidth consumption is reduced. The
interface built as part of this research was therefore designed to be lightweight.

1.2.4 Ensure that the interface is extensible by allowing for inclusion of dif-
ferent schedulers as “plug-ins” or components

A major downfall to many traditional software systems is caused by their tightly-coupled nature.
It is for this reason that a shift has been seen in a move to component-based, modular application

3

design methods. Such methods increase the maintainability of source code as well as promote
reuse of such software components. Another major reason for creating a modular system is to
allow for the easy addition of new components as they become available. It is for this reason
that the Web interface assumes a modular approach in its inclusion of scheduling systems. A
scheduling system is a system that schedules Grid jobs at the local or organisational level. Such
systems submit, monitor and control Grid jobs and therefore take the burden of managing large
tasks off the user. Such scheduling systems are discussed in more detail in Chapters 2 and 3
respectively; however, for now the details of such systems are not of great importance.

Since most scheduling systems use a similar structure, the components tend to look very sim-
ilar, thereby making the inclusion of a new scheduler a relatively simple task. Furthermore, a
modular approach allows the Web interface to support multiple concurrent scheduling systems,
thereby making it particularly suited for use in organisations where different departments make
use of different scheduling systems. By providing a standard interface to multiple scheduling
systems, that under normal circumstances would need to be individually mastered, users can
focus on the task at hand without having to deal with the specifics of the individual systems.

1.3 Scope and Limitations

Since the field of Grid computing is vast, this research has focused on local resource managers
(or schedulers) as an abstraction of a large Grid environment. In other words, the core of
the Grid or the Grid middleware has been excluded from the Web interface built during this
research. In practice, a user would create a Grid job and submit it to a scheduling system
via some sort of Grid middleware suite. Although this research has not focused on such Grid
middleware exclusively, the approach and results are applicable to large-scale Grids as well.
Since Grid middleware acts as a communication medium between virtual organisations, and
acts as a global resource monitoring system, one can think of schedulers as performing the same
operations as Grid middleware, but at the local level.

1.4 Dissertation Outline

Figure 1.1 provides a graphical representation of some of the chapters that make up this this
dissertation. The chapters in this dissertation appear in chronological order and outline the
research conducted during each iteration of this research project.

1.4.1 Chapter 2 : Background

This chapter provides an overview of the relevant literature on distributed computing technolo-
gies (including Grids), usability of Grids as well as Web technologies and provides a snapshot of
the state of the art in Grid computing and related technologies at the time that this disserta-
tion was written. All subsequent chapters draw upon the literature outlined in the background
chapter.

1.4.2 Chapter 3 : Condor

The Web interface built during this research makes extensive use of Condor as the primary
underlying scheduling system. During the initial stages of this project, the Condor scheduler
was used to build a test Grid and formed the basis for many decisions made in terms of the
design of the interface. This chapter discusses the fundamental underlying architecture of the
Condor system as well as its main features and benefits in the context of Grid computing.

4

Figure 1.1: Graphical view of chapter content as a flowchart of tasks

5

1.4.3 Chapter 4 : Prototype Evaluations

This chapter reports on the process followed to develop and to evaluate an initial system design.
The chapter discusses interview sessions held with scientists that helped construct a prototype
Web interface as well as the first round of user evaluations that were conducted to evaluate this
prototype.

1.4.4 Chapter 5 : Infrastructure & Design

The findings and conclusions drawn from the user evaluations discussed in Chapter 4 were used
to build the Web interface upon which the rest of this research is based. Chapter 5 discusses
the methodologies, tools and design approaches taken during the development of the interface
as well as provide an overview of a test Grid constructed with which to test the interface.
Furthermore, this chapter provides an in-depth discussion of each interface component as well
as the architecture of the underlying system.

1.4.5 Chapter 6 : Case Studies

After the initial design, evaluation and implementation phases of this research, the final system
was evaluated in terms of feature completeness. Chapter 6 outlines a set of case studies which
were conducted in order to demonstrate that the interface functionality is able to support in-
creasingly complex Grid jobs. Five case studies as well as the results from each of these studies
are presented in this chapter.

1.4.6 Chapter 7 : Evaluation

Once the implementation and completeness validation were finalised, the Web interface was
re-evaluated. Due to the importance of usability in this research, it was deemed necessary to
conduct a second round of user evaluations. The way in which these evaluations was conducted
along with a statistical analysis of the results of these evaluations are outlined in the first part
of this chapter. The second part outlines a set of performance evaluations specifically focusing
on the performance of the AJAX-based design approach as opposed to traditional development
techniques.

1.4.7 Chapter 8 : Conclusion

To conclude, a discussion of how each of the objectives set out in this chapter have been achieved,
is discussed. Furthermore, a brief reflection on the process of conducting this research is pre-
sented, followed by an overview of possible future work.

6

Chapter 2

Background

2.1 Introduction

Grid Computing is a relatively new area in High Performance Computing (HPC) and has been
around since the mid-90s. Although the concept of a Grid has been defined as such for much of
this time, only in the last couple of years has Grid computing software been getting some atten-
tion as a viable alternative to the traditional cluster computing paradigm of HPC. As the field
of Grid computing has matured, more research has been done in this area and has subsequently
resulted in a number of tools being made available. Furthermore, with the steady growth of
Grid computing infrastructures, many vendors have built front-ends to their software that allow
users to make use of Grid resources from a high-level, abstract interface that would make the
use of such resources far easier and more convenient.

This chapter begins by giving an overview of current distributed computing technologies,
and then discusses the differences between traditional parallel computing and Grid computing
paradigms. A discussion of scheduling software that lies at the core of many Grid installations
is followed by an overview of Grid job submission mechanisms and standards. This chapter
concludes with a short overview of existing Web technologies and how they can be used in order
to enhance usability of Grid computing systems.

2.2 Distributed Computing Technologies

The notion of parallelism, in some form or another, has existed since digital computers were
first conceived. Advancements in speed and efficiency of computing equipment over time can
be partially attributed to the incorporation of parallelism into the core architecture of both
hardware and software components. Over the last decade, however, it has become clear that
single system parallelism will not and cannot continue to improve at the same rate as has been
the case over the past 50 years, mainly due to the laws of physics [Moore, 1965]. Furthermore,
scientific problem sizes have expanded rapidly and have resulted in large quantities of data being
generated and therefore needing to be processed. Some hardware manufacturers have temporar-
ily overcome these limitations by, for example, simply adding additional cores to processors.
However, such approaches will soon suffer from practicalities involving power consumption and
heat emission. Agarwal [Agarwal & Levy, 2007] points out that current processors use tens of
watts of energy; however, even if this could be reduced to one watt per processor, the power
consumption of thousand core processors, which he predicts will be available by the start of the
next decade, will be unsustainable. The current trend to add more and more cores to processors
therefore does not seem to be scalable in the long-run.

The growing need for more computational power as well as the search for possible alterna-

7

tives to the physical limitations plaguing non-parallel systems, has led to the design of parallel
computing tools that can meet the demands of mostly large scientific computations as well as
large amounts of data that need processing. These tools include APIs that allow multiple com-
putational elements to communicate with one another and thereby led to the natural parallelism
obtained when harnessing the power of large numbers of such elements. The remainder of this
section will look at the difference between the more traditional cluster-based parallel computing
paradigm and the “newer” Grid computing paradigm, as well as look at some batch scheduling
software that is widely used in both Grid and cluster installations.

2.2.1 Cluster Computing

A cluster computer is a computer that is made up of many computational devices which work
together to solve problems in unison [Foster & Kesselman, 2004]. Most scientific problems that
require large amounts of processing to be done have relied on such clusters for many years in
order to reduce the time taken to obtain results. The computational devices which make up a
cluster can range from commodity off the shelf computers (COTS) to high-end server equipment.
Cluster nodes, the devices which make up a cluster, are usually located in close proximity to one
another as applications that run on clusters are often fine-grained and therefore require a lot
of intra-cluster communication. Cluster nodes are usually connected to each other by low-cost
interconnects such as Ethernet and are typically made up of between 16 and 64 nodes [Foster
& Kesselman, 2004]. Other important characteristics of cluster computers are that they are
always dedicated and are therefore not multi-purpose devices and that they are usually, but not
always, owned by one person, department or organisation. Single ownership is an important
characteristic since security considerations and authorization issues are less complicated and
therefore easier to deal with than Grids, for example.

Administration

In order to effectively make use of a cluster, one requires more than just the hardware. Good
clustering tools are important in order to efficiently manage the underlying hardware. There are
many tools available to manage clusters, two of the most popular being ROCKS [Papadopoulos
et al., 2003] and OSCAR [Scott, 2001]. These tools allow administrators of clusters to execute
functions across all cluster nodes. For example, these functions can include installation of new
software, updates to existing software, batch rebooting or shutting down of cluster nodes as well
as a wide variety of other functions. These tools also usually support many different operating
systems and are installed as an added layer on top of such operating systems to facilitate adminis-
tration from a higher level, in many cases making use of lower level operating system commands.

Clusters also can be setup manually, and therefore not rely on high level tools. However,
this is non-trivial and typically used for specialised installations. In addition to the cluster
management software, many clusters make use of some kind of scheduler. A scheduler is a soft-
ware system that ensures that jobs are matched to nodes in an efficient manner, and usually
serves as a load-balancing tool to ensure that under-utilised nodes are allocated new work and
overloaded nodes are not dealt more work [Litzkow et al., 1988]. Some schedulers can migrate
work from severely overloaded nodes to underutilised nodes, but this is a non-trivial task and
therefore many schedulers do not support such operations. Scheduling of jobs to cluster nodes
is discussed in Section 2.2.5.

Job management

Clusters are frequently used to run jobs which have high communication requirements. Such
jobs, when split up, require data to be passed from one machine to another. In order to create

8

Figure 2.1: Message Passing Example

such jobs, a parallel programming language or toolkit is required. There exist many such sys-
tems; two of the more popular are MPI (Message Passing Interface) [Message-Passing Interface
Forum, 1997] and PVM [Sunderam, 1990]. MPI consists of a set of routines that programmers
can call from within their programs. These calls essentially allow a programmer to break up
a program into independent parts or processes and specify which parts are to get run on slave
nodes and which part is the master process. Once MPI has distributed these processes to multi-
ple nodes, messages containing data structures are passed between processes using send(); and
recv(); calls (see Figure 2.1), hence the reference to message passing. The contents of these
messages could contain control signals or data needed by other processes and can be sent syn-
chronously or asynchronously. MPI is, unfortunately, notoriously complex to use and therefore
used only when much interprocess communication is required. PVM (Parallel Virtual Machine),
on the other hand, is different from MPI as it abstracts multiple separate computational devices
connected by a network into a single virtual machine. Once PVM is installed on a cluster,
the programmer makes use of the PVM library to call routines that facilitate the cooperation
between tasks.

Taking the PVM virtual machine approach further, the MOSIX [Bar, 2003] designers took a
“fork and forget” approach to cluster computing. Although MOSIX does not support explicit
interprocess communication, it does provide an API which can perform transparent load bal-
ancing over a set of machines. Communication between processes is made possible by System
V IPC as if such processes were running on a single machine.

In the context of cluster computing, a final concept that needs to be discussed is the Master-
Worker (MW) model [Linderoth et al., 2000] of parallel programming. This model is an abstract
model that can be implemented with many of the technologies mentioned so far. In this model,
the Master process is responsible for the algorithm control, whereas Worker processes run com-
putationally intensive jobs on remote machines. The Master process can decide to provide a
Worker with more work, or if there no work, generate one result from results each Worker has
returned. The MW approach adheres to the four main properties that parallel metacomputing
tools should have [Linderoth et al., 2000], namely:

• Programmability : Existing code should be be integrated with the system easily

• Adaptability : The system should adapt dynamically to the heterogeneous execution en-
vironment

• Reliability : The system should react correctly to execute elements failing

9

• Efficiency : The resources should do useful work over long periods of time

2.2.2 Volunteer Computing

Volunteer computing has been given many names over the years including cycle stealing, cycle
scavenging, CPU scavenging, Internet computing and now even Grid computing [Anderson &
Fedak, 2006]. All but the last, Grid computing, accurately summarise the processes involved in
volunteer computing. It is important to note that volunteer computing is not Grid computing,
although it is referred to this way by initiatives such as the World Community Grid. Section 2.2.4
gives an overview of Grid computing and, from this, the differences between Grid and volunteer
computing can be inferred. Volunteer computing is a way in which ordinary people can help
to solve grand challenge problems by enabling their computers to download small datasets and
executables from a secure server. The results of these computations are returned to the server
for verification and the user then obtains credit for his/her efforts. There are many volunteer
computing projects available today and some of these are mentioned in the sections to follow.

BOINC

In order to facilitate the need for volunteer computing over the public Internet, the Berkeley
Open Infrastructure for Network Computing [Anderson, 2004] (BOINC) was created. A BOINC
core-client makes it possible for an ordinary person at home to connect to a volunteer computing
project and then download the executable and input files needed to run the computation. The
first project to use BOINC was the SETI@Home project [Anderson et al., 2002]. This project
has one of the largest user bases of all volunteer computing projects and is dedicated to finding
signs of life in other parts of the universe.

In order to set up a BOINC project, one installs a BOINC-enabled server, ports a project
to the BOINC platform so that workunits can be distributed to clients and do some advertising
in order to recruit volunteers. Drawing in volunteers is the most challenging part of the pro-
cess as people need to believe that the computation they will be performing is for a worthy cause.

Another project that makes use of the BOINC platform is the World Community Grid (WCG)1.
Although the WCG is in fact not a Grid, it also has a large user base since it strives to solve
problems that are critical to the survival of the human race. Another strength of this project and
why it is so popular among volunteers, is the credit accumulated over time. With many volun-
teer computing projects, credit stops accumulating when a project shuts down. With the WCG,
however, credit continues to rise as new projects are added on a continual basis. This means
that volunteers are kept satisfied with a continual supply of credit and the WCG can benefit
from an ever expanding user base without having to search for more users with each new project.

Volunteer computing is an enabling technology to assist with solving problems that require
immense computational power. However, there are many considerations that must be addressed
before one embarks on such a project. Practical aspects such as bandwidth, computational
power and storage capacity of the server are important when planning to support a large num-
ber of volunteers, as quality of service is important. Furthermore, the type of application that
is going to be run needs to carefully be decided upon as volunteers tend to rank projects by
significance. In other words, projects dedicated to humanitarian problems are more likely to be
adopted by volunteers than problems that benefit commercial or government agencies.

1http://www.worldcommunitygrid.org

10

2.2.3 Cloud Computing

As computational problems become more complex, an increasing need for more processing power
has been observed. This chapter has so far discussed two distributed computing techniques
that enable such problems to be solved, namely cluster and volunteer computing. However, as
problem complexity increases, so too does the need for more computational power, often leading
to demand outweighing supply of the computational resources. In order to solve such problems
it is either necessary to invest in more cluster equipment— a costly option, or make use of
volunteer computing. The latter option is, however, a time consuming process as volunteers
need to be enticed to volunteer their CPU time. Furthermore, not all science problems can
be tailored to a volunteer computing platform due to problem constraints on IPC, for example.
Due to the aforementioned problems, the concept of cloud computing [Delic & Walker, 2008] has
been introduced. This “new” distributed computing paradigm allows users with computationally
intensive problems to rent CPU hours from a third party. Typically, the third party would have
thousands of machines in a datacenter and will assign them to a client based on the clients needs.
The client is then billed for the amount of CPU time consumed. Companies such as Amazon2

have implemented such systems in the form of their Elastic Compute Cloud (EC2)3 service.
This service makes available thousands of machines with different hardware configurations that
are linked up to a large storage system, the Amazon Simple Storage Service (S3)4. Users contact
Amazon, request a certain number of compute elements and are then able to perform processing
on what is effectively a huge cluster computer. Users have complete control of the machines
they are allocated and build an operating system image for use in the cloud environment. Such
third party services have many benefits in terms of investment into computing elements on the
part of users or institutions. It is no longer necessary for individuals or institutions to invest
in large cluster installations thereby decreasing the monthly expenditure in terms of electricity,
administration staff, etc.

2.2.4 Grid Computing

The concept of Grid computing, in theory, is not very different from that of cluster computing.
Both Grid and cluster computing paradigms consist of computational devices that collaborate
to solve a single problem. The major difference, however, becomes apparent when one compares
the characteristics of clusters to those of Grids. It was mentioned in the previous section that
some important characteristics of cluster computers are that they are dedicated and under single
ownership. With Grids, however, this is usually not the case. Grid resources are usually owned
by multiple parties and are therefore on loan for others to use— an important property of a
Grid. Since Grid resources are only on loan, a Grid operates differently to a dedicated cluster
as resources disappear and reappear frequently. That said, the practical challenges facing Grids
are far removed from the theoretical view where Grids merely seem to be another type of cluster
architecture. A Grid then can be defined as an interconnected system of heterogeneous compu-
tational devices under distributed ownership, usually spread over large geographical areas and
connected by public or private communication links [Foster & Kesselman, 2004]. This definition
is by no means complete, but attempts to emphasize the major differences between clusters and
Grids as they apply in this thesis. Some of the main differences between Grids and clusters are
summarised in Table 2.1.

Grid computing has come about out of the necessity to solve larger and larger computational
problems that clusters are simply not able to do in any reasonable time period. In order to
solve such complex real world problems, Grid computing was envisioned to be a possible solu-

2http://www.amazon.com/
3http://aws.amazon.com/ec2/
4http://aws.amazon.com/s3/

11

Grid Cluster
Distributed Ownership Single ownership
Widely distributed Close proximity
Low to high speed communication High speed communication
Non-dedicated Dedicated
Unreliable Reliable
Public communication links Private communication links
Coarse grained applications Fine grained applications

Table 2.1: Grid vs. Cluster computing

tion. The number of tools available to set up Grid computing environments or even volunteer
computing platforms have increased over the years— however, some are more prevalent than
others. The Globus Toolkit [Foster, 2006], discussed in the following subsection, which has been
under development for more than ten years, is considered to be the de facto standard for Grid
computing. Tools such as Globus allow local schedulers located at distributed locations to be
“connected” to one another and thereby allow jobs to be submitted to the clusters they control
from remote locations. These schedulers are an important component in Grid environments and
will be discussed further in Section 2.2.5.

Types of Grids

Grid computing has been incorporated into many different computational environments. This
section gives an overview of the various ways in which Grid computing is used today and looks
at some of the benefits of utilising Grids in these diverse environments.

The first type of Grid, collectively called an organisational Grid [Abbas, 2004], can be split
up into three sub-types, namely, departmental Grids, enterprise Grids and extraprise Grids.
The differences among these Grid sub-types, although they belong to one organisation, has to
do with the level at which they are used. Departmental Grids are used by a small group of
individuals usually working on a single project, whereas an enterprise Grid is used by all de-
partments within an organisation. Extraprise Grids, on the other hand, are utilised by a single
organisation or its partners. Organisational Grids are one of the most common types of Grids
present in large companies, as all computational resources belonging to such a Grid are deemed
to be secure as they are under control of the company itself.

The next type of Grid is known as a global Grid [Abbas, 2004]. The main distinction be-
tween a global Grid and an organisational Grid is that the resources present in a global Grid
are under distributed ownership. Organisations that make use of such Grids do so with the
knowledge that their information is being sent over the public Internet.

A desktop Grid [Abbas, 2004], the next type of Grid to be considered, is a computing infras-
tructure where a number of organisational computers are utilised in a volunteer computing-like
fashion in order to perform part of a larger calculation. The debate rages as to whether a desk-
top Grid is in fact a true Grid or simply a privately owned volunteer computing infrastructure.
Since any Grid can be deemed to be a volunteer computing infrastructure due to its architecture,
the converse not necessarily being true, the distinctions between a public Grid and private Grid
must be made clear. A production Grid connects resources securely and with appropriate cre-
dentials, whereas a desktop Grid can be considered to merely be a subset of a production Grid.
The reason for this distinction is due to the fact that privately owned “Grids” do generally not
need this secure communication and do not make use of production Grid middleware such as

12

Figure 2.2: Globus GRAM workflow

the Globus Toolkit [Foster, 2006]. For the sake of clarity, however, desktop and public volunteer
computing projects will be referred to as Grids.

The last two types of Grids are data and utility Grids [Abbas, 2004]. Data Grids are ordi-
nary Grids that need access to and process large quantities of data. Utility Grids are simply
compute resources that get “sold” to companies or individuals for a period of time. This type
of Grid is common for companies or individuals that do not have the resources to create their
own Grids or do not have the funding to purchase large clusters. The term “Utility Grid” has,
however, been overtaken by the term “Cloud Computing”, although both are valid.

The Globus Toolkit - theory and practice

The Globus Toolkit5 is a set of software components that have the ability to join multiple remote
computing facilities together across public as well as organisational networks and over large dis-
tances, securely [Foster, 2006]. This software allows people around the world to share both data
and computing power thereby benefitting all parties involved. Although the Globus Toolkit is
feature rich, the toolkit by itself is not a complete Grid solution. As its name implies, the Globus
Toolkit is merely a set of tools that allows a Grid to be constructed from multiple independent
clusters or existing Grids by making use of Globus services. The toolkit is therefore a glue tech-
nology that allows distributed resources to communicate with one another in a secure way. The
Globus Toolkit is geared towards security and therefore has functionality built in to ensure that
communications between entities connected by Globus is secure. In addition to security, Globus
consists of many other services that are vital to Grid functionality. These services include: a
Monitoring and Discovery Service (MDS) that keeps a record of the resources available to the

5http://www.globus.org/toolkit/

13

Grid; Grid Resource Allocation and Management (GRAM), which allocates resources to jobs
submitted; and Reliable File Transfer (RFT) and GridFTP, which transfer files from one system
to another quickly, efficiently and reliably [Foster, 2006].

Grid middleware, particularly in the case of the Globus Toolkit, is predominantly composed
of a large set of services. Foster [Foster, 2005] argues that since Grids are inherently distributed
systems that communicate by exchanging messages from heterogeneous hardware and software
platforms, a service oriented architecture (SOA) makes the most sense since this technology has
been designed to facilitate interoperability among such systems. Therefore, with the launch of
the Globus Toolkit Verson 4.0 (GT4), Globus incorporates the Web Services Resource Frame-
work (WSRF) [Sebu & Ciocarlie, 2006]. This framework describes a model by which so-called
next generation Grid services can be built. Traditional Web Services have been designed in such
a way as to be stateless which means that the Web server does not keep state related to any
service invocation. The Globus designers realised that this was not feasible for use in a Grid
environment, and hence WSRF, or stateful Web Services, was born. This model separates the
state of the service request into what is known as a WS-Resource. This resource can then be
accessed by making use of a WS-Resource-qualified endpoint reference. The move to incorporate
state into Web services has therefore resulted in a more powerful inter-component communica-
tion framework and has changed the level at which Grid components can interoperate. Since
the Globus toolkit is considered to be somewhat of the standard in Grid computing, the services
of which it is made up will now be presented in more detail.

Since the Globus Toolkit has been designed primarily to connect geographically separate Grids
together, it has no way of scheduling jobs. This task is left up to third-party tools such as
those that will be discussed in Section 2.2.5. Although Globus does not support job scheduling
itself, it does provide a way in which to submit jobs to a Grid by making use of the Globus
GRAM service— see Figure 2.2 [Czajkowski et al., 1998]. In order to submit a job to a Grid, a
GRAM client calls upon the MDS to find resources that are available to run the job and then
calls the gatekeeper in order to perform user authentication, determine a local user name for
the remote user and start a new job manager. If authentication is successful, the job manager
will try to allocate resources by negotiating with the underlying resource manager. The job
manager is also responsible for monitoring the state of the new process. Once a new job has
been created, the local resource manager takes over and completes its execution. By performing
the above operations, the Globus toolkit can be used to connect to local resource managers that
are distributed throughout the world.

Since the submission of jobs to Grids usually requires input and output files as well as exe-
cutables to be transferred from the submission host to a remote machine, Globus contains a
number of data-centric services that move and monitor data. In order to copy or move data
from one location to another using the Globus Toolkit, tools such as GridFTP or the Globus
Reliable File Transfer (RFT) service can be used [Foster, 2006]. Since GridFTP is simply a
software tool and not a service, it is not recommended for use with large file transfers as the
client must have an open connection to the server at all times6. RFT on the other hand, being
a service, has the ability to be called from within custom applications as it has an API which
exposes its functionality. So far, the ability to transfer data has been discussed. However, one of
the main problems faced by any distributed computing system is the availability of such data.
Since a number of users might need access to large datasets, it is in their best interest to make
copies of the data on their local systems in order to speed up computation. In order to facilitate
the data replication process, Globus incorporates a service called the Replica Location Service
(RLS). This service keeps record of where replicas are located and can, in the event of one data

6http://www.globus.org/toolkit/docs/4.0/data/key/

14

source becoming unavailable, point a user to an operational data provider. One can, however,
argue that file transfer and replication are similar operations, therefore Globus has in place a
service known as the Data Replication Service (DRS). This service combines the RFT service
with the RLS to provide a service that enables users to move data and add an entry to the
replication service in one operation.

So far, the concepts of job scheduling and data management have been discussed. However,
in order for any of these operations to take place, a mechanism is needed to determine where the
resources where such jobs are to be run are located, if they are operational and if they are willing
to receive jobs at the present time. To this end, the Globus Toolkit includes the Monitoring and
Discovery Service (MDS), already mentioned above [Foster & Kesselman, 2004]. This service
maintains a list of Grid resources, resource status and also monitors such resources. The MDS is
comprised of two sub-services which provide differing levels of functionality. The Index service
aggregates all resource information into a central repository and the Trigger service executes
actions if certain data harvested from Grid resources return true for a particular predefined
rule. Other Globus services make use of the MDS on a regular basis in order to obtain up to
date information on the status of the Grid.

Other than the services mentioned above, Globus has features built-in to ensure that com-
munication between Grid entities is secure. Since Grid resources are owned by multiple parties
as well as the fact that numerous people make use of these resources, the integrity of these sys-
tems must be ensured. Since these security mechanisms are out of scope for this thesis, only a
broad overview will be presented. In order for secure communication to take place between Grid
entities, Globus has a built-in security mechanism known as the GSI (Grid Security Infrastruc-
ture)7. The GSI makes use of public key cryptography for secure communication between Grid
entities. The use of a certificate authority (CA), that can be installed along with Globus, ensures
that certificates are authentic. An external CA may also be used if an organisation already has
one in place, but this is optional. Once a connection is established between two parties, GSI
falls away and unencrypted communication takes place. The reason for this is that the over-
head of encryption is too large for frequent communications— however, GSI does incorporate
a mechanism whereby integrity can be ensured. This system, referred to simply as communi-
cation integrity, does lead to some extra overhead, but not as much as is the case with encryption.

Grid middleware, such as Globus, is composed of a multitude of different services and tools
that facilitate remote execution, data management and security. Since these tools are heavily
interconnected, the complexity of the entire system is increased. A discussion as to why this is
the case and the implications thereof is presented in Section 2.4.

In order to complete the discussion on Grids, it is necessary to discuss the role that job schedul-
ing and schedulers play in Grid computing environments. These schedulers will be discussed in
the next section.

2.2.5 Scheduling

Scheduling ensures efficient, scalable and prioritised scheduling of processes to computational re-
sources in a way that is fair to all entities wanting to execute some process (human or otherwise).

This section will give an overview of some HPC-specific schedulers that have become popu-
lar in both cluster and Grid computing environments and that have been used or considered
during this research.

7http://www.globus.org/toolkit/docs/4.0/security/

15

Condor

The Condor Project8 [Butt et al., 2003] is a research project run by the University of Wisconsin
at Madison and aims to design a system that pools resources from a wide range of heteroge-
neous distributed computing resources under distributed ownership. The Condor system is a
job scheduler that can distribute submitted jobs to any available machine that meets a set of
job-specific requirements on the Condor network. The fact that Condor can utilise resources
that are under distributed ownership means that, unlike other parallel schedulers, it can operate
in a Grid environment. It does this by means of its flocking mechanism (see Chapter 3). If
Condor had only supported the scheduling of processes to dedicated resources or clusters, for
example, it would simply be another clustering tool.

The Condor scheduling system is discussed at length in Chapter 3.

IBM LoadLeveler

The IBM Tivoli Workload Scheduler LoadLeveler9 is a batch scheduling system that is similar
in functionality to Condor. This system, like Condor, is installed on multiple workstations or
cluster nodes in order to build a pool to which to submit jobs. This system, however, does
not have any notion of flocking like Condor, but is interoperable with the Globus Toolkit, thus
allowing one to build a Grid infrastructure by using these two tools together. Many of the
features of LoadLeveler are similar to those of Condor and will therefore not be elaborated
upon. However, a feature that Condor lacks, namely accounting, is built into LoadLeveler.
Although LoadLeveler is commercial software, an academic licence can be granted for research
purposes, as was the case for this research.

Other workload managers

Besides Condor and LoadLeveler, there are a number of other batch schedulers available. A more
well known one is Grid Engine from Sun Microsystems, which is freely available from their web-
site10. The Portable Batch System (PBS)11, is also available as a free download, although this
version is no longer supported— alternatively, a fee can be paid for the commercial version. An-
other well known but non-free scheduler is the Platform Computing LSF (Load Sharing Facility)
provided by Platform Computing12. Again, this system is very similar in functionality to sys-
tems such as Condor, but provides a level of technical support in the form of a licence agreement.

There are many batch schedulers available. However, many are commercial software that require
licences for the machines they will be installed on. For the purposes of this thesis, only Condor
and LoadLeveler will be investigated, although in theory any scheduler could be utilised.

Multi-Scheduler Environments

Many institutions are split up into departments where such departments are usually, but not
always, responsible for their own IT infrastructures and, in particular, cluster setup. This usually
means that within an organisation, many different schedulers might be present depending on the
needs of the particular department. Apart from heterogeneous hardware, an organisation may
also now be faced with a heterogeneous mix of schedulers as well, which makes the construction
of an organisational Grid complicated. The main reason for these complications lie with the

8http://www.cs.wisc.edu/condor/
9http://www.redbooks.ibm.com/abstracts/sg246038.html

10http://www.sun.com/software/Gridware/
11http://www.openpbs.org/
12http://www.platform.com/Products/Platform.LSF.Family/

16

schedulers themselves. Although many batch schedulers have similar functionality, the way in
which they are to be used can differ greatly. Most schedulers, for example, require a submission
script to be written detailing the way in which a job is to be submitted. The format of these
scripts differs radically from scheduler to scheduler and therefore complicates matters when
dealing with multiple schedulers all expecting different syntax. In order to circumvent these
issues, a standardised format for job submission is required in order to build tools that allow
for a single interface to many schedulers. In Section 2.4.2, an overview of the Job Submission
Description Language (JSDL) [Global Grid Forum, 2007] will be presented. This language
attempts to provide a standardised way in which to represent jobs on a Grid.

2.3 Distributed Computing Paradigm Comparison

Although Grid and cluster computing are similar in many ways, the problems that they are
geared to solve differ greatly. Clusters are good at solving many types of problems ranging from
very fine-grained, high intra-cluster communication problems to coarse-grained embarrassingly
parallel problems. However, since clusters are expensive to buy as well as expensive to run and
maintain in addition to other computational equipment that an organisation might have, cluster
sizes are generally small [Underwood et al., 2004]. Grids, on the other hand, are more suited
towards coarse-grained problems as Grid nodes can be located far apart and can be connected
by slow communication links. As mentioned, a reason that fine-gained applications tend not
to scale well on Grid infrastructures is that Grid nodes are not guaranteed to be operational
for the entire duration of the application execution. If such a fine-grained application were to
lose a critical process to a failed Grid node, the application could end up in an error state and
therefore have to be restarted. The success of coarse-grained applications by projects such as
SETI@Home and the World Community Grid provide compelling results for the potential use
of such application types. These projects have in recent years managed to yield hundreds of
thousands of hours of CPU time from volunteers, that would otherwise not have been possible,
by making use of a coarse-grained approach to problem dissection.

Another major difference between clusters and Grids is the way in which their performance
can be measured. Traditionally, clusters have been evaluated for their peak performance in
units such as gigaFlops or teraFlops. Clusters therefore are part of a High Performance Com-
puting (HPC) paradigm, since peak performance is the most important factor. Since the advent
of Grid computing, High Throughput Computing (HTC) has been considered as an alternative
to HPC [Condor, 2008]. Whereas the HPC paradigm looks at the performance of a cluster at
any point in time, the HTC paradigm looks at the performance over a longer period of time.
Phrased differently, HPC is geared towards solving fine grained problems where rapid synchro-
nisation between processes is necessary. High throughput applications on the other hand are
geared towards solving coarse grained problems where the focus is on maximising the output
per minute, hence the volume per unit of time. These two performance measurement metrics
are fundamentally different and serve to illustrate a difference between the Grid and cluster
computing paradigms.

2.4 Grid Usability and High Level Tools

2.4.1 Introduction

Grid computing middleware is inherently complicated to use, and there are many reasons for
this. One of the main reasons is the fact that most Grid middleware has been written over a long
period of time by many Grid specialists and therefore little attention has been given to designing
software that is usable by non-specialists. Since Grid computing software projects have in the

17

past been mainly research projects, most Grid tools are low-level command-line based systems
with no user interfaces or, at best, poor ones, where users are required to go to a lot of effort to
submit a job to the Grid. Even with current scheduling tools, discussed in Section 2.2.5, some
effort is required in order to prepare a job for the scheduling process. This section looks at some
attempts to make the use of a Grid easier for the typical user and how others have proposed to
go about such enhancements.

Bruce Beckles [Beckles, 2005] makes the statement that if a system is not usable by non-
specialists then its functionality is irrelevant. This is particularly true in the case of Grid
computing and the way in which non-specialists are expected to make use of such software.
Since existing Grid middleware has usability issues, Beckles provides two alternatives which
would make existing middleware more usable. The first of these options is to develop new
software that is not only more usable, but interacts with existing middleware. This approach,
although a viable option, is wasteful of resources and one would imagine rarely considered. The
second option that Beckles provides is to attempt to refactor existing middleware for usability.
Again, for large systems, this approach is not feasible and would be considered by some to be
somewhat of a “hack”. Much time and effort would be required to code usability into an existing
system and could lead to catastrophic bugs. Bruin et al [Bruin et al., 2006] came to the realisa-
tionf that the use of a Web portal to a Grid environment is instrumental in enhancing usability
and also note that tools built for use with such Grid environments should have usability built in
from the outset. Their tool, my condor submit (MCS) is a command-line based tool that allows
a user to submit a job to a Grid and provides a simple mechanism for dealing with Globus,
SRB [Baru et al., 1998] and a range of schedulers. From their research, they have noticed that it
is unrealistic to work with the raw Globus-like commands and that users prefer a higher level tool.

Distributed computing has always posed much more of a challenge than conventional computing
in terms of programmability. With the advent of Grid computing, programming has become
even more difficult as Grid resources are generally not homogeneous and are also not necessarily
always available on the Grid. Shu et al. [Shu et al., 2005] have also found this to be true and in
their paper give an overview of why dealing with excessively low-level APIs make Grid program-
ming difficult. In order to provide an easier approach to Grid programming, they make use of
a higher level application description language called Grid Service Markup Language (GSML)
where Grid application development is aided by visual tools in an event driven fashion.

Usability of Grid computing infrastructures is becoming more important as many people be-
gin to see the benefits that Grid computing has to offer. In order for people to adopt Grid
computing more easily, usability issues need to be considered in order to prevent potential users
from being frightened away by these complex systems.

The use of high-level tools for abstracting low-level commands is a common way in which us-
ability can be enhanced. The next section gives an overview of such high-level tools and the way
in which they manage to abstract the complexities inherent in Grid computing environments.

2.4.2 Grid Job Submission

In order to deploy a computational job to a Grid, a mechanism is needed to help end-users
complete this task in an easy way. Traditionally, desktop software has made use of graphical
user interfaces (GUIs) for this purpose, and more recently, Web interfaces have become popular.
Grid technology, however, has long suffered from the fact that there have only been low-level
command-line based tools for this purpose. Even today, many of the best Grid technologies have
very limited or no user interfaces to make the use of such systems easier. This has driven some
developers to produce Grid portal tools. This section gives an overview of some Grid frontends

18

Figure 2.3: Gridport layered architecture

as well as an associated specification that aids in the interoperability between Grid front-ends
and Grid middleware.

Grid and Scheduler Front-end’s

There are currently numerous Grid portals available that provide high-level access to Grid com-
puting environments. The architecture of such portals typically takes on a layered approach. The
Gridport toolkit [Dahan et al., 2004] (see Figure 2.3) the only such toolkit that will be discussed
in this thesis, consists of five such layers. The first layer represents the clients or Web browsers.
The second layer represents the portal front-end which displays information from lower levels
in an appropriate fashion. The third layer, portal services, handles the storage requirements of
each user and contains a file management system. This layer is directly responsible for convert-
ing the user’s request into a Grid specific function call, thereby abstracting the complexities of
dealing with low-level Grid commands. The fourth layer contains the actual Grid services to
which a user’s requests can be mapped by the portal service layer and the final layer represents
the resources on which the job will eventually be run. For most modern portals, the reliance on
Web services is large and used to provide interoperability between different systems. Most Grid
middleware and scheduling software provide SOAP APIs in order to make the development of
both low- and high-level tools easier.

In terms of functionality, Grid portals, in general, only offer a basic set of services to end-
users. The common features provided include job submission, monitoring and cancellation, as
well as file transfer and system status information. In the case of many Grid portals, only certain
schedulers are catered for, thus restricting the user-base to whom the portal will be useful. In
order to cater for all schedulers, specific modules need to be written for these toolkits, which
can be costly.

One final type of interface that deserves some mention is the Grid API. Many such API’s exist
in order to facilitate submission and monitoring of Grid jobs from within an application itself by
way of the API. One such example is the GridSAM API [OMII UK,]. The API allows jobs to be
submitted to a wide range of scheduling systems such as Condor, PBS, SGE and many others.
This is especially useful for developers not wanting to code their own API’s for integration with
such schedulers. The GridSAM API was not used in this research, which instead relies on the
API’s exposed by the various schedulers themselves.

Although the Web interface discussed throughout this dissertation provides many of the same
services as provided by existing portals, a number of fundamental differences should be pointed
out. One of the most important differences between this interface and existing ones is the type of

19

Figure 2.4: Conversion of custom front-end data into system neutral JSDL

application it has been designed for, namely— the parameter sweep application. The interface
automates many of the complexities involved in building the parameter runs associated with
such applications by use of a dynamic AJAX-based approach, discussed further in Chapter 4.
A discussion on parameter sweep applications can be found in Section 3.3.1.

JSDL

In Section 2.2.5, a number of different batch schedulers commonly used in both cluster com-
puting and Grid environments were discussed. It was noted that many of these schedulers had
similar features and all accomplished similar tasks, but in different ways. In particular, the way
in which jobs are represented in terms of submission scripts was discussed. Since many, if not
all, schedulers have such different submission scripts, jobs are submitted in the Job Submission
Description Language (JSDL) [Global Grid Forum, 2007], a format or language for describing
computational jobs in the form of an XML document.

In order to make use of the JSDL in high level Grid tools, an interface can be designed with
input fields such that the contents of those fields are parsed into the JSDL format. Once the
JSDL XML document has been constructed, a script can be run that translates the XML doc-
ument into a file that corresponds to the format of the particular scheduler for which the job is
intended (see Figure 2.4). This process not only standardises the high level tool, but also makes
management of the script formats easier when new versions of scheduling software become avail-
able.

20

In order to build high-level Grid tools, a discussion of Web technologies and their role in Grid
computing will be presented in the next section.

2.5 Web 2.0

Since the early beginnings of the Web, there have been many technologies that have each built
upon one another to create more usable interfaces. Since personalised websites were first de-
veloped, people have strived to make pages more interactive and intuitive for their visitors.
These advances came in the form of JavaScript, where pages then had animation and seem-
ingly dynamic properties embedded within them. Although JavaScript does not have dynamic
properties and is a client-side technology, the ability to manipulate objects and produce effects
still makes it popular. After JavaScript, developers looked at technologies such as Macrome-
dia Flash [Codling, 2003] in order to make pages not only look impressive, but also be highly
interactive, as communication could occur behind the scenes and have the page appear to be
dynamic. The latest such technology, dynamic HTML or DHTML, has become popular since
this technology does make pages dynamic and thereby enhances a user’s experience since only
portions of the page get updated at a time. This section aims to give an overview of a new
development paradigm that incorporates many of the afore-mentioned technologies and the way
in which it could enhance a user’s experience.

Web 1.0 to Web 2.0

When the Web first became popular, its main use was as a source of information. In other
words, users could enter a URL, visit a site and locate a piece of information they were looking
for. The Web, in the early days, was therefore seen as a collection of documents (Web pages)
that could be retrieved in order to gain knowledge on a particular topic [Berners-Lee et al.,
1994]. From these early beginnings, the Web evolved into an interactive resource where users
could sign up for services such as newsletters, create online email accounts and other such value-
added services. This period in the history of the Web is known as Web 1.0. Since Web 1.0 was
impersonal and merely a large pool of information, a way had to be found for users to create
their very own Web that would reflect their lifestyles, would allow them to connect with friends,
colleagues and family et cetera [O’Reilly Media, 2007]. In order to achieve this, new types of
Web applications, now referred to as Web 2.0, were born [Cormode & Krishnamurthy, 2008].
Web 2.0 is characterised by personalisable websites such as Facebook13, where users are able to
create profiles, change the way their pages appear to the outside world and interact with the
site in ways that were not possible with Web 1.0. Technologies such as AJAX, discussed in the
next section, as well as DHTML are synonymous with Web 2.0 and are used in many of the
wideley used Web applications today.

Since the differences between Web 1.0 and Web 2.0 are somewhat fuzzy, these differences can be
illustrated by the way in which people used and consumed Web 1.0 information and how similar
information is being used and consumed today. Table 2.2 shows some perceived transitions in
the use of Web technology that has taken place from Web 1.0 to Web 2.0 [O’Reilly Media, 2007].
The move from purely content-based systems such as personal websites, to a more collaborative
technology such as a blog is indicative of Web 2.0, as it encourages participation in the form of
comments that can be left to bloggers. Similarly the philosophy of online encyclopaedias has
died out somewhat as these online systems usually require a subscription fee. Since a wiki allows
ordinary people to add and update information in it, wikis have become popular as the content

13http://www.facebook.com

21

Web 1.0 Web 2.0
Reading Writing
Companies Communities
Client/Server Peer to Peer
HTML XML
Personal Websites Blogs
Online Encyclopaedias Wikis
Content Management Systems Content Management Systems
Publishing Participation

Table 2.2: Perceived transition from Web 1.0 to Web 2.0

is not only always kept up to date, but cover specific or specialist topics, which encyclopaedias
cannot.

AJAX

AJAX is short for Asynchronous JavaScript and XML and the term was first coined by Jesse-
James Garrett in 2005 [Garrett, 2005]. AJAX represents a new approach to Web development in
the sense that AJAX-based Web applications communicate with the Web server asynchronously,
thereby making a website dynamic. The main feature of an AJAX-based Web application is
its similarity to desktop software due to these dynamic properties. These features increase us-
ability and make such applications more interactive as users do not have to wait for a page to
refresh. The typical AJAX application makes use of a number of existing technologies includ-
ing: DHTML for event-driven components; HTML/XHTML, CSS, HTTP, server-side scripting,
JavaScript, XML/Document Object Model (DOM); and, most importantly, the XMLHttpRe-
quest object which allows for asynchronous communication [Mahemoff, 2006]. Although the
technologies of which AJAX is comprised have been available for many years, the use of them
together is what AJAX represents. The term AJAX is then used to represent an application
development paradigm and not a new technology. One of the main reasons that AJAX has
become so popular in such a short time is that it makes use of existing technologies already
present in many browsers. The ability of AJAX applications to work out of the box with no
browser plug-ins, as is not the case with technologies such as Macromedia Flash, make it an
attractive option for developers since the benefits to end-users are so great.

When the first Web applications and websites were deployed, the way in which users inter-
acted with these sites was simply by clicking on links and being redirected to another HTML
page. This approach worked well for many years, however, with the growing complexity of
desktop applications and amount of effort being devoted to usability of such interfaces, Web ap-
plications were compelled to move in the same direction. The click and link style of websites has
therefore slowly given way to more intuitive and user friendly desktop-application like interfaces
with technologies such as DHTML and AJAX. In Figure 2.5 [Crane et al., 2005], a traditional
Web application is illustrated. In the figure, a user makes a request for a Web application, the
server then completes the request by running back-end business logic, and returns the Web page
to the user’s browser. This process is repeated as the user requests new information from the
server, therefore resulting in a new page being served with each request. In the dynamic AJAX
model, this process is somewhat different, (see Figure 2.6). When a user makes a request to a
Web application, the server delivers the application to the client’s browser. This application is
not a static Web page as in the previous case, but a fully functional application that can make
asynchronous calls to the server when certain events are triggered. When a user executes a func-
tion on the Web page, a request is sent to the server. The server then handles the request and

22

Figure 2.5: Traditional Web Application

sends data back to the client application, usually in some platform neutral format such as XML
in the case of AJAX. Once the client application receives the XML document, the application
updates the DOM in the browser with the new information and the page is therefore changed
dynamically. Therefore, no Web pages are served with the AJAX model once the application
has been delivered to the client, only small snippets of data. In Figure 2.7, an example of such
AJAX functionality present in Google Suggest14is shown. In the figure, as a user starts entering
a query into the search bar, Google Suggest provides potential search queries that the user might
be interested in. So, for example, if the user starts to type the word “AJAX”, Google Suggest
starts off by suggesting “Amazon” as a possible search term for the first letter “A”. Similarly
as the user enters the “J”, in Figure 2.8, Google Suggest changes the possible query space and
displays it in the combo box below the search. The use of AJAX in Google Suggest is evident
from the fact that the content displayed in the search bar is updated dynamically as the user
types the search query.

Of significant importance to the underlying dynamic principles of AJAX is the way in which
the DOM in the browser is dynamically modified by means of asynchronous calls to the server.
This ability is what sets AJAX applications apart from traditional Web applications since the
manipulation of the DOM is directly responsible for the dynamic property of AJAX. The W3C15

defines the DOM as a platform- and language-neutral interface that allows the tree to be dy-
namically modified. Since the architecture of the DOM, like XML, takes the form of a tree,
manipulation of objects within the tree is as simple as specifying the path to a particular tree
node. This inherent feature of the DOM makes it easy to update only certain portions of the
tree, where each node in the tree could be a component of a Web page, thereby resulting in
the page being updated dynamically. By making pages dynamic with the use of AJAX, one
achieves a number of efficiencies and characteristics that websites have strived for over the years.
Since AJAX is dynamic and updates only a portion of a page on request, the end-user notices a
decreased latency, with the exception of the first page load. Since only certain parts of the page
get refreshed, the bandwidth requirements of the application are minimized since there is less

14http://www.google.com/webhp?complete=1&hl=en
15http://www.w3.org/TR/REC-DOM-Level-1/

23

Figure 2.6: AJAX Web Application

Figure 2.7: AJAX Google Example I

24

Figure 2.8: AJAX Google Example II

data to be transferred between updates. Furthermore, the fact that pages load more quickly
and that users do not spend time having to wait for entire page refreshes lead to an increased
overall user experience. In terms of development, AJAX provides a solid model for developing
Web applications since the componentized approach taken in the specification of an AJAX ap-
plication separates elements such as basic components from style. This property of AJAX leads
to a more structured design of the Web application and also increases the manageability of the
code.

2.6 Summary

This chapter has provided an overview of distributed computing technologies including cluster,
volunteer and Grid computing. The subtle differences between these various forms of comput-
ing were discussed in terms of both the problems these systems are geared to solve and the
environment in which they operate. Furthermore, an overview of the relationship between Grid
computing and scheduling was presented, as well as an overview of a number of popular sched-
ulers. One of the main issues addressed in this chapter was the issue of Grid usability and
the way in which low-level tools make use of such systems difficult for users with little HPC
knowledge. Ways in which usability can be enhanced were discussed in order to provide the
grounding for further discussion later on in this thesis. An important outcome of this chapter is
the recognition of the fact that Grid software needs to be more usable if users are to adopt it in
the long-run. If this obstacle is not overcome, Grid computing may not be adopted by enough
users to make it economically feasible.

25

Chapter 3

Condor

3.1 Introduction

Since the Condor system is one of the main components upon which this research is built, this
chapter will provide an in-depth overview of Condor.

As mentioned in Section 2.2.5, Condor is a batch scheduling system designed at the Univer-
sity of Wisconsin at Madison in the United States of America [Litzkow et al., 1988]. Condor
schedules jobs to any available machine that meets a set of job-specific requirements on the Con-
dor network. Since Grid middleware such as Globus, discussed in Section 2.2.4, cannot schedule
jobs at the machine level, such middleware relies on the presence of local resource managers such
as Condor to allocate jobs to machines. Condor has a variety of mechanisms in place that allow
it to make use of multi-purpose machines such as desktop workstations as well as dedicated
machines and clusters. This chapter will discuss how Condor achieves its goal of scheduling
resources, the different ways in which it does so and the way in which jobs are submitted by
users.

3.2 System Design

3.2.1 Condor Architecture

The Condor scheduling software is able to utilise a variety of resource types in order to cater
for a variety of applications. The first such resource type is the desktop workstation. Condor’s
role in CPU or cycle scavenging from desktop workstations is best described in the 1988 pa-
per [Litzkow et al., 1988] entitled “Condor — A Hunter of Idle Workstations”. Since the Condor
research group is based at a university, they saw the potential of idle laboratory workstations
on their campus and implemented a mechanism whereby this otherwise wasted compute power
could be utilised. Condor provides a variety of policies that can be configured on such desktop
workstations which give the user of the workstation control over when and for how long his/her
machine will be utilised on the Condor network. The next resource type catered for by Condor
is the cluster. Condor has support for both the dedicated cluster, a cluster dedicated to Condor
jobs only, and the non-dedicated cluster which is used on a scavenging basis when not being
utilised by its owner.

In order to schedule jobs to the resources just described, the Condor system communicates
with daemons on all Condor-enabled resources on a regular basis to gather information on the
status of the machines on the Condor network. To illustrate how Condor communicates with
resources on the Condor network, Figure 3.1 is a schematic representation of the Condor com-
munication layer. In the figure, dashed lines represent process spawning by the master process

26

and solid lines represent system status updates in the form of the Condor Classad language.
Classad is short for classified advertisement and such a Classad is periodically sent to the mas-
ter node. This advertisement contains information pertaining to the status of the node from
which it came. In other words, one can think of a Classad as an XML document where each tag
represents a particular attribute of a machine such as the machine name, amount of memory,
disk space, average load, et cetera. The information present in the Classad is used to build
a snapshot of the Grid at a particular point in time. This information can then be used to
schedule jobs. An XML snippet of a Classad is shown in Figure 3.2.

Figure 3.1: Condor Communication Layer

The Condor system is made up of many different daemons that exchange information using
the Classad mechanism described above. Figure 3.1 gives a graphical view of these daemons.
In the figure, the primary daemon is called the master daemon and spawns all other daemons
that Condor relies on. The master daemon also is responsible for keeping all the other daemons
up and running. The startd daemon represents a resource or machine in a Condor pool and
runs on all Condor-enabled resources. The schedd daemon allows jobs to be submitted from a
Condor-enabled machine. It is important to note in Figure 3.1 that cluster nodes do not have
the schedd daemon running as they will generally not be used to submit jobs. A desktop node
for example might have a schedd daemon running as the user owning the machine might want
to submit jobs from it. Therefore, only a central manager or a dedicated submit node will have
the schedd process running. The next daemon is called the collector daemon and is responsible
for collecting status information from all Condor pools. The negotiator daemon matches jobs
to machines given a set of requirements for each job. The negotiator uses information collected
by the collector daemon. The collector and negotiator daemons are only present on the central
manager as execute nodes are not concerned with collecting information from other nodes or
matchmaking respectively. The daemons just described collectively allow the Condor software
to form a global picture of the status of the resources on the Condor network.

27

<?xml version="1.0"?>
<!DOCTYPE classads SYSTEM "classads.dtd">
<classads>
<c>

<s>Machine</s>
<s>Job</s>
<s>vm1@ed.cs.uct.ac.za</s>
<s>ed.cs.uct.ac.za</s>
<r>0.000000000000000E+00</r>
<e>((LoadAvg - CondorLoadAvg) >= 0.500000)</e>
<s>ed.cs.uct.ac.za</s>
<s>$CondorVersion: 6.8.4 Feb 1 2007 $</s>
<s>$CondorPlatform: I386-LINUX_RHEL3 $</s>
<i>1</i>
<i>1184788</i>
<i>7002702</i>
<r>0.000000000000000E+00</r>
<r>0.000000000000000E+00</r>
<i>93447</i>
<i>358958</i>
<i>1000</i>
<i>1</i>

Figure 3.2: Condor ClassAd snippet

3.2.2 Heterogeneity

As mentioned already, Condor supports a variety of resources including desktop workstations,
servers and clusters (both dedicated and non-dedicated). What has not been mentioned, how-
ever, is the support Condor has built-in for heterogeneous computing. Since it is inevitable
that a variety of different hardware and software configurations exist in many organisations
and production environments, Condor has built-in support for differing hardware platforms and
operating systems such as Windows, Linux, UNIX/BSD and Macintosh.

3.2.3 Application Support

As discussed in Section 2.3, two main types of parallel applications exist, namely fine- and coarse-
grained applications. Condor has support for both these application types and can therefore
accept both MPI and parameter sweep type applications, for example. Condor has support for
many job types defined as “universes”. The “vanilla” universe refers to applications that have
not been linked against the Condor software and run as is over the Condor network. Applica-
tions falling into this category are typically coded in advance, are closed-source or downloaded
in binary form from the internet. The next universe type is the “standard” universe. This
universe covers applications where the source-code is available and where such applications have
been linked against the Condor software. Such applications have the benefit of the Condor
checkpointing mechanism whereby jobs can be checkpointed in the event that a remote execute
node becomes unavailable. The job can then be moved to another available machine that can
resume computation. Finally, Condor has support for both MPI and Java jobs in the “MPI”
and “Java” universes respectively. It should be noted, however, that MPI jobs require dedicated
resources as such jobs tend to be fine-grained and require a fixed resource set.

28

executable = /usr/local/indexer
universe = vanilla
requirements = Memory >= 32 && OpSys == "LINUX" && Arch =="INTEL"

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output = output.$$(Process).index
error = error.$$(Process).index
log = log.$$(Process).index

input = some_doc1.txt
arguments = some_page1.html 1
queue

input = some_doc2.txt
arguments = some_page2.html 2
queue

Figure 3.3: Condor sample submit file

3.3 Job scheduling

The purpose of all the Condor daemons is to gather data on the status of the resources present
in the Condor environment so that jobs can be executed upon such resources, as well as submit
and monitor jobs. However, in order to match a job to a specific resource, some work is involved
on the part of the user.

3.3.1 Submit File

Before a job can be launched on the Condor network, the user must first create a job submis-
sion file called a submit file. This file contains all the necessary elements that Condor needs
to match a job to the resources upon which the job must run. This file must therefore include
a universe identifier, the path to the executable to be run, a logical requirements statement
specifying which resources to utilise, the specification of input and output files as well as any
input arguments needed by the application. There are many more options, however, the ones
just mentioned are the most common. An example of such a submit file is shown in Figure 3.3.

The submit file starts off with the specification of the executable. In the case of Figure 3.3,
the executable is a custom written text indexer that can be run in either serial or parallel mode
by specifying a set of input arguments. Next, the universe is specified. Being the vanilla universe,
the user does not wish to make use of features such as checkpointing and effectively stipulates
that the binary should be run as is on remote nodes. The resource allocation directive, in the
sample submit file shown in the figure, is the “requirements” keyword. This keyword specifies
which machines on the Condor network should receive and attempt to execute a job. The user
specifies the memory, disk, CPU, operating system and platform requirements of the job by
using this directive. There are many ways to specify where a job is to run and only a subset
are shown in the figure. It is also possible to have Condor choose between different platforms
and operating systems by providing executables for each of these differing scenarios. In other
words, multiple executable directives can be used to specify a range of different platforms and
operating systems. For the sample job present in the figure, the requirements directive will

29

force Condor to choose machines with greater than 32MB of main memory, running the Linux
operating system and having an Intel 32-bit architecture.

Now that the executable and resources have been specified, a user would typically specify how the
output and file transfer mechanisms should operate. In the figure, the should transfer files
and when to transfer output directives are used to prompt the Condor system to copy any
files needed by the job to the remote execute nodes and on completion copy any data files back
to the submission host. These directives are needed in an environment that does not have a
network file system. The file transfer settings are followed by the output file settings. A user
can specify that a job is to output not only the result, but also files that can be used during
troubleshooting of failed jobs. These typically include both error logs and console output logs.
It also is possible to use macro directives such as those shown in Figure 3.3 to automatically
assign unique names to output files.

Parameter Sweep Applications

The final step in a Condor job submission is to specify the way in which the executable operates,
and since Condor is a batch scheduling system, the number of times the job is to be run. Figure
3.3 shows two runs of the indexer application, evident from the two queue commands present
in the file. The queue command prompts Condor to create a new sub-job under the umbrella
of one job cluster. In other words, if the user wishes to run the indexer application twice with
differing input files and input arguments for each individual run, such directives are specified
before a queue statement. Applications executed in this way are known as parameter sweep
applications— multiple executions of the same application using different sets of input data,
run one or more times. This dissertation focuses mainly on parameter sweep applications as a
means of job submission. Due to data gathered during interviews with scientists making use of
Grid technology as well as noticing shortcomings in existing Grid portals to support parameter
sweep applications, developing enabling tools to support this application type was found to be
useful. Chapter 4 will provide more insight into why the parameter sweep application type was
selected for use in this research.

Condor will utilise the global job specification directives described in the previous paragraphs
on each sub-job, but will augment each run with the corresponding input and arguments di-
rectives. If, for example, 1000 such jobs are to be run, Condor will match each sub-job to an
available resource on the Condor network and monitor each sub-job separately.

3.3.2 Submission Process

Once the submit file is complete, the job can be submitted to the Condor system by utilising
the condor submit command. During submission, Condor creates a spool directory for each
sub-job on the submit machine. This folder houses all the input files and executables that make
up the job. Depending on the size of the data files making up the job, submission can take a
long time. Once the job is submitted, however, the Condor system submits and monitors all
aspects of the job automatically. If a sub-job is terminated due to a machine going down, for
example, Condor will automatically restart the job. Such error recovery mechanisms ensure
that the job runs to completion, thereby removing the burden of administration from the user.
The user can view the status of his/her job(s) by using the low-level command-line condor q
command and also view the status of the Condor network at any time by making use of the
condor status [Condor, 2007b] command. These commands do not work for flocked pools
as they only show information pertaining to the central manager for which the command was
executed. A user wishing to obtain information on other pools on the Condor network must
specify the address of the remote central manager when using these commands to view the status

30

of such a pool.

Example

An example of a Grid creation, submission and monitoring procedure is outlined below for a
typical Grid job, assuming a local scheduling system is used. This example is by no means
exhaustive, but serves to illustrate the complex process required to submit a job manually to a
Condor-enabled Computational Grid. The example below elaborates on the example presented
in Chapter 1.

1. Using a shell, obtain information on the status of the Grid.

2. Obtain information on the available resources on the Grid in terms of operating
systems and architectures.

3. Write or use an existing Grid application and compile, taking the above information into
account.

4. Use a reference manual to describe the job in terms of Grid resources by
creating a submission file.

(a) Define the type of application.

(b) Define the resources required by the job in terms of the information supplied by the
Grid status commands.

(c) Define the input files and arguments for the job.

(d) Define the output settings of the job.

(e) Define file transfer settings (NFS / FTP).

5. Transfer input files if needed.

6. Submit the job using the Grid job submission utility.

7. Obtain status information on the Grid job just submitted.

(a) Check the status information for errors using the job queue utility.

i. If the job is running on a remote pool or cluster, supply the address of the remote
cluster.

(b) If errors are found, manually remove the job using the job removal utility.

As already stated, the above example deals with a manual Grid job submission. The interface
designed as part of this research, however, automates many of the steps outlined above. The
steps printed in bold type (as well as their non-bolded sub-steps) are all dynamically handled
by the interface, thus reducing the overall effort required on the part of the user in submitting
a Grid job.

3.4 Flocking & Grid Computing

There are two mechanisms that Condor has built-in to support being Grid-enabled. Flocking is
Condor’s attempt at Grid computing whereby pools of machines are connected to a “remote”
central manager [Butt et al., 2003]. The term “remote” in this context refers to a central man-
ager not belonging to the pool that has flocking enabled and might belong to another pool, or be

31

Figure 3.4: Condor Flocking Architecture

32

entirely on its own as a primary central manager. Flocking allows jobs to migrate from one pool
to another pool if such jobs are unable to run at the original pool to which they were submitted.
Flocking requires that Condor be installed on at least two separate pools— these could be clus-
ters or groups of standalone workstations— and subsequently configured to flock (receive) jobs
from a remote central manager. Flocking-enabled clusters or pools can be configured to flock
from multiple central managers, which in turn can flock from other central managers. Figure 3.4
shows how two central managers can benefit from the flocking mechanism. Since the standalone
central manager in the figure has only one machine connected to it, it would not be of much
use as a High Throughput Computing tool. However, with the addition of the cluster by means
of flocking, jobs submitted to this central manager can now be run remotely without the need
to have access directly to the remote nodes. This decreases cost of administration and also
increases security.

The process of flocking, however, leads to problems in practice. Condor requires the submit
host to have direct access to the nodes upon which jobs eventually might run. Since clusters
are often firewalled away from public access, the submission host has no way of directly ac-
cessing such nodes. For this reason, the Condor team developed Generic Connection Brokering
(GCB) [Condor, 2007a], where the central manager of a cluster hosts a relay server through
which the submission host can access the internal Condor nodes.

The second Grid-enabling mechanism that the Condor system has built into it is that it is able
to interoperate with the Globus Toolkit. This interoperability with Globus known as Condor-
G [Frey et al., 2002], as well as the scheduling mechanism and job monitoring capabilities of
Condor itself, can transform the basic Condor network into a capable Grid computing environ-
ment.

Above and beyond all the functionality mentioned so far, the main Condor Project includes
numerous other smaller research projects. These projects make software available that is crit-
ical for the successful operation of a Grid. For example, systems such as Condor BirdBath1

aim to move the Condor scheduler into the world of Web services [W3C, 2004]. These services
currently allow jobs to be submitted and monitored using a simple API. This is ideal for the
development of Web-applications, and was used during the development of parts of the Web
interface.

3.5 Summary

The Condor scheduling system was chosen for use as the primary scheduler in this research. Its
Grid-like features and popularity made it a suitable candidate for the experiments and software
which was developed as part of this research project. The features discussed in this chapter with
the exception of checkpointing and Condor-G have all been used in some way or another during
the development of the Web interface. For this reason, it was deemed necessary to elaborate
on the system itself as many design decisions were based somewhat on the Condor approach.
Although other schedulers do exist, Condor’s features, widespread use and Grid integration
components were instrumental in selecting it for use in this research. Due to time constraints,
only Condor was thoroughly researched in order to ensure that its features could be used to
prove the research objectives.

The rest of this thesis will discuss the approach taken in developing the Web interface built
on top of Condor and one other scheduling system, namely IBM LoadLeveler which is similar
to Condor in many ways.

1http://www.cs.wisc.edu/condor/birdbath/

33

Chapter 4

Prototype Development and
Evaluation

4.1 Introduction

Graphical user interfaces to complex software systems have been one of the most influential pro-
moters of software usability since the early beginnings of personal computers (PCs) [Wikipedia,
8 09]. With the advent of PCs, it was necessary to find a way in which ordinary people could
interact with their computer in an intuitive way in order to accomplish a simple task such as
typing a document. Previously, the use of computers was limited to people in the computing
profession as low-level and difficult-to-use interfaces were commonplace. However, the design
and implementation of an effective user interface has its challenges. In a 1988 paper by Mackin-
lay [Mackinlay, 1988], the research conducted into user interface design showed that it is not
only creativity that builds good interfaces but an understanding of the underlying theory as
well. The creativity referred to inspires a good design, whereas the theory refines, tests and
extends this design. Twenty years later, these principles are still used in modern interaction
design processes [Preece et al., 2002]

When attempting to build any system that is to be used by a large number of users, it is
important that the opinions of these users are considered early on in the design process. With
particular reference to the Mackinlay paper [Mackinlay, 1988], the user evaluations would rep-
resent the theoretic part of the design process. One of the main reasons to consider users is
that they are ultimately the people who will use the system once it is built. It is therefore
better to design a system that meets the ideals of users rather than the ideals of programmers.
Failure to consult users can result in a system that either does not provide features expected by
users or is not usable in the way in which users would expect and therefore not utilised in the
manner envisioned. Furthermore, consulting users during the design process can lead to early
user adoption of a system and even result in such users becoming alpha testers of the system.

One of the most important questions that this research investigates is whether or not it is
possible to create a high-level Grid interface that both specialists (people familiar with Grid
and HPC technology) and non-specialists (ordinary scientists) can utilise in order to submit an
application to a Grid. In order to help answer this question, it was deemed necessary to first
build a paper prototype of such a high-level Grid tool— in this case a Web application, capable
of at the very least submitting, monitoring and viewing the status of a computational job. The
next phase necessary to help answer this particular research question was to conduct user eval-
uations of this prototype. Only once these evaluations were conducted was an initial software
prototype of the system built. The evaluation techniques used, the methodology behind the
evaluations and the results obtained from these evaluations will be discussed in this chapter.

34

4.2 Methodology

Since a large portion of this research involved the implementation of a high-level Grid tool, the
success of the research is thus largely determined by the usability of the tool itself. The need
then to build prototypes and have these prototypes evaluated by potential end-users is therefore
important. Firstly it was necessary to find out how various departments on a University campus
utilise HPC resources before any prototype could be developed. The design phase was broken
up into two parts. An overview of these phases will now be presented.

4.2.1 Phase 1 : Requirements Gathering

The first phase towards the design of a prototype was aimed at gaining insight into the types
of applications being run on HPC equipment across the university. Several departments known
to make use of HPC equipment were contacted during this phase of the design process and
meetings were set up with researchers from these various departments. Five senior researchers
from Physics, Chemistry, Computer Science and Health Sciences were interviewed and data was
gathered in order to build a complete profile of the types of applications they run as well as
the resource requirements of these jobs. In order to gather the resource requirements, the size
of input datasets, output file sizes, types of machines being used, hardware requirements, job
length and many other such detailed specifications were researched during this phase. Other
than job related information, it was also important to determine what cluster software and
operating systems these departments made use of in order to determine if scheduling software,
important in Grid computing infrastructures and discussed in Section 2.2.5, was utilised. If
these departments all made use of the same scheduling software, for example, it would make
sense to incorporate this scheduler into the high-level interface.

Another important aspect of HPC jobs that was considered during this first phase was the
use of user interfaces for submitting jobs— a strong focal point of this research. Researchers
were asked what type of interfaces they preferred using, which type of interfaces they used
most often and what they liked about their preferred interface type. The results from all the
studies discussed in this section are reported at the end of this section. The full questionnaire
used during the interview sessions can be found in Appendix B. The questions present in the
questionnaire were not answered in written form directly by the researchers but took the form
of an interview or discussion. The questions were therefore used as a guide for the interviewer
and the inclusion of this questionnaire serves only to inform the reader of the type of informa-
tion gathered during Phase 1. In order to gain a better understanding of the interface design
process mentioned thus far, Figure 4.1 provides a graphical representation of the design phases
that made up the usability study. There was only one refinement cycle due to time constraints,
however, for a production system these cycles could be repeated many times until the interface
meets certain predetermined requirements where usability is concerned.

Once the requirements discussed so far were gathered, the next step was to build a paper-
based prototype Web interface based on this information. The design of the paper prototype
was based on basic Web interface layouts. Some functionality, such as the submit interface,
was constructed by making use of fields described in the JSDL (see Section 2.4.2). Although
the paper prototype interface was not constructed using any user feedback other than that of
the pilot interview sessions, the aim was to try to create an interface that a large number of
users would deem usable and also make use of features that such users are familar with from
exposure to existing Web applications. A description of the actual interface design is presented
in Chapter 5.

35

Figure 4.1: Interface Design Process

36

Results

The requirements gathered during initial interviews and meetings held with computational sci-
entists from various faculties were instrumental in developing the tools built as part of this
research. Without a clear understanding of the needs of such researchers and, more generally,
users of Grid systems, it would be futile to develop applications with the hope that all their needs
would be met. It was for this reason that informal discussions were held with these researchers,
based on a series of focused questions. After consolidation of all the data gathered from the
researchers it was found that they simply wanted a system that would make Grid computing
platforms, as well as other high performance computing platforms, more accessible. In order to
achieve this goal, a system that was capable of submission and monitoring of a Grid job was
emphasized by researchers to be the most important. Other features that such tools could possi-
bly support were well received, but the researchers made it clear that the main emphasis should
be placed on the submission and monitoring tools. Furthermore, after determining the types of
applications that such scientists generally made use of, and factoring in the constraints imposed
by a Grid-based job execution approach, the parameter sweep or coarse-grained approach was
chosen as the fundamental Grid job type to be supported by the tools that were to be developed.

The results from these interviews, although covering a broad spectrum of possible system de-
signs, provided a good starting point from which the paper prototypes took form.

4.2.2 Phase 2 : Evaluation

As mentioned above, the first system prototype was built using the paper prototyping method
of prototype design. Paper prototyping is a well known vehicle for prototype development, has
been in use since the mid-80s and is still widely used today. Paper prototyping is done by
designing a prototype of a system by making use of paper-based products such as folio and
post-it notes, presenting the prototype to a user and asking him or her to use it as if it was
a real system [Sefelin et al., 2003]. This approach to usability testing has several benefits, the
most prominent being that it is quick and cheap. Since time is often the most limited resource
in a project, the use of techniques such as paper prototypes as a vehicle for rapid evaluation are
common. Appendix A contains images of the original paper prototypes used during this part of
the design process. This section will present the way in which the user evaluation sessions were
conducted.

Prototype evaluations

For the results of a prototype evaluation to be credible, it is necessary to consider a wide variety
of potential end-users of the envisioned system to perform the prototype evaluation. In other
words, interviewing a relatively small group of users with differing skill sets who are able to give
different views on the prototype with respect to functionality, complexity and layout is more
useful than considering a large group of users from the same discipline. It was therefore decided
to conduct prototype evaluations by considering users from three distinct backgrounds. The
first group of evaluators selected had skills in Computer Science. The aim of choosing a group
consisting of purely Computer Science students was to gather feedback on the layout of the Web
interface as all these students had done a course in Human Computer Interaction. The second
group selected also had Computer Science background, but were knowledgeable in the field of
HPC. The intended goal with the choice of this group was to gather information pertaining to
the functionality of the high-level tool with respect to HPC resources as well as comments on
the layout of the interface. The third and final group was a group of evaluators who do not have
any Computer Science experience, but who use HPC resources as part of their research. Since
this research is concerned with building a user interface that is usable by non-Computer Science
researchers, the opinions of this group are of utmost importance. Four evaluators from each of

37

these groups were selected in order to perform the prototype evaluation.

The prototype evaluation session itself consisted of more than just the paper-based prototype
evaluation of the proposed high-level Grid tool. Each session started off with an overview of
Grid computing if evaluators were not familiar with the concept, as well as an overview of batch
schedulers and scheduling concepts. It was deemed important to provide evaluators with a ba-
sic knowledge of the underlying infrastructure which the proposed tool was meant to abstract
in order to gather more useful feedback. Once it was clear that the evaluators had a basic
understanding of the principles of Grid computing, sample interfaces to both an existing Grid
portal and a network management system were shown and briefly discussed. Evaluators were
then asked to comment on the layout as well as the effectiveness of the flow of these interfaces.
After comments were made, evaluators were asked which of the interfaces they preferred and
were also asked to give reasons for their choice. The two interfaces were specifically chosen for
their distinctive use of graphical components and their differing layouts. The first of the two
interfaces, namely the Gridport interface [Dahan et al., 2004] shown in Figure 4.2, is indicative
of the traditional style of Web application development. Functionality is separated into tabs
requiring users to change from one mode to another in order to accomplish a task. The lack
of graphical elements in this interface is also typical of this style of Web application develop-
ment. When comparing this interface to the more graphical and clearly more modern network
management interface (see Figure 4.3), the differences are clearly discernible. However, modern
interfaces with fancy graphics might not necessarily be welcomed by the research community
and therefore these evaluations were constructed in order to determine which type of interface is
preferred for a research tool. Once evaluators gave feedback on these two interfaces, they were
shown a paper prototype of the interface built from feedback gathered from the phase 1 inter-
view sessions. An overview of the functionality of the prototype was provided to the evaluators
who were then asked to comment on possible layout problems, feature suggestions, interface
flow irregularities and so on. Evaluators were also instructed to ask questions if a part of the
interface did not make sense, which would help in determining where more design emphasis
could be placed.

Results

As discussed above, evaluators were shown two separate interfaces, one relating to Grids and
one of a network management system. The evaluators were subsequently asked to comment on
these interfaces in terms of layout, intuitiveness and functionality. The two interfaces are shown
in Figure 4.2 and Figure 4.3 respectively.

Viewed from a high-level, evaluators seemed to prefer the network management interface simply
because of its modern appearance, although it was found to have many downfalls. The Gridport
interface, on the other hand, was not the preferred choice by the majority of evaluators, however
many positive comments were made in its favour. The same cannot be said for the management
interface. The fact that the evaluators, on the whole, preferred an interface for which they did
not have many positive comments was surprising. The appearance of a system therefore appears
to play a substantial role in its perceived usability. The rest of this section will present more
in-depth results gathered from evaluators pertaining to each interface.

Gridport Interface

The Gridport interface is indicative of the traditional style of Web application development.
The fact that evaluators deemed this interface to have a good layout, seems easy to use and has
a “good step-by-step flow” indicate that this classification falls in line with this development
style. The reason for this is that traditional Web applications tend to take a methodical, task-

38

Figure 4.2: Gridport Interface - Sample 1

Figure 4.3: ManageEngine(TM) OpUtils 4 Interface - Sample 2

39

orientated approach to their design and thereby allow a user to step through a process to achieve
some desired outcome. It was clear from many of the interview sessions that this approach is still
popular and many of the evaluators preferred this approach. However, many comments relating
to the usability of the actual functionality present in the interface were negative. Many of the
comments received had to do with the lack of dynamic information from the interface. The
fact that one has to, for example, click a refresh button to see task progress was a major draw-
back for many evaluators. Similarly, the lack of graphical elements makes the interface feel as
though “textboxes have been slapped onto a script” to quote directly from one of the evaluators.

Another major concern about the interface was the amount of detailed information displayed at
a time. Evaluators expressed doubts about displaying too much technical information as doing
so could confuse new users of the system. The solution provided was to hide advanced features
and information and allow for basic and advanced modes. These features allow new users to get
to grips with the basic interface functionality and allows them to change the appearance of the
interface as they gain more experience with the system. On the other hand, a small number of
evaluators did not mind large amounts of technical information being displayed from the start as
long as there was adequate help functionality. These results clearly indicate that there is a need
for information hiding, however, the level at which this is done must be carefully considered in
order to satisfy both experienced and novice users.

In terms of help functionality, a recurring theme with all sample interfaces shown was of there
being good help available at each step in an online transaction. Both the Gridport and network
management interfaces lacked adequate help functionality according to the evaluators. Although
both these interfaces had a help option, evaluators noted that they preferred help along the way
in addition to a complete help guide. Help text associated with textboxes, perhaps in the form
of tooltips would make the interface more usable.

Network Management Interface

The network management interface turned out to be the more popular of the two interfaces
shown to evaluators. However, as mentioned above, there were very few positive comments
about its layout. Many evaluators found the interface to be too cluttered. Words such as
“busy” and “feature rich” were used to describe the layout of this interface, the result of which
was deemed to be overwhelming to new users of the system. Although many evaluators agreed
that the interface was intuitive and that finding functionality would be simple considering the
amount of information being displayed when logging in, the number of icons being displayed was
considered to be far too many. Evaluators noted that trying to find a particular function among
all the functions presented when one logs in would require learning where certain functionality
is physically located, certainly not a desirable feature for any interface. Another concern that
was noted had to do with the mapping of menus at the top of the interface to the palettes in the
main interface. At least one evaluator mentioned that an interface should have only one way of
achieving some desired functionality. By having multiple ways of performing one operation, the
interface can become cluttered and could potentially confuse users who assume that different
menu options perform different operations.

The main strengths of the interface, according to the evaluators, were the static menu on the
left side of the screen, the tabs which allow one to change modes and the alert bar at the top
right of the screen. Evaluators liked the static menu as certain functionality is always available
and therefore does not require searching through menus for the required options.

40

Discussion

The Web interface presented in this dissertation aims to improve on many of the usability and
aesthetic problems from which the two interfaces discussed in this section suffer. A lot of the
problems identified with the Gridport interface have to do with the lack of dynamic properties.
The AJAX-based design approach which will be discussed in Chapter 5 aims to provide a solu-
tion to this problem by presenting the user with information in real-time. Another shortcoming
of both interfaces is that they bombard the user with information. Once again, by making use of
a dynamic AJAX-based approach, this problem will be alleviated by making use of information
hiding techniques to display only relevant information, with the option of exposing more as
needed.

4.2.3 Prototype

After the sample interfaces were shown to evaluators and comments on these interfaces were
received, the first paper prototype of the final Web interface was presented to the evaluators.
Comments on the layout and general functionality of the interface were generally positive and
only minor problems were reported. The most significant of these problems was the way in
which the resource-centric view was to be displayed. The aim of such a view is to allow the
status of the Grid to be visible at all times, except when a user changes the “mode” of the
interface from Grid view to Job view. A prototype resource-centric view is shown in Figure
A.1 (see Appendix A). Many of the evaluators noted that a logical grouping of Grid resources
would be more beneficial than a large scrollable list of machines with no logical structure. The
concept of the Grid view, however, was positively accepted. Another significant problem noted
was with the submission interface. This interface has many fields, which evaluators thought
should have values filled in by default. In other words, having the system automatically detect
the optimal set of values from the current state of the system would, according to the evaluators,
enhance usability and save time on the part of the end-users. Evaluators also felt that the visual
command line argument editor, see Figure A.6, should have drag functionality built in and not
rely on clicking in order to move arguments up and down in the list. This editor allows users
to specify an argument as a field, similar to a field in a database, by choosing a type and then
stipulating how to dynamically define values for that particular type. This editor is discussed
in more detail in Chapter 5.

Minor problems that were brought to light were related to ordering of items on the “Wel-
come” screen. According to the evaluators, job errors should be prominently displayed on the
screen above all other information with the exception of news. It was also noted that having too
many overlapping windows could result in a cluttered interface and lack of control or visibility
of underlying windows. In order to alleviate this problem, the number of windows per operation
can be reduced, thereby minimizing window overlap.

Apart from the problems mentioned above, a number of usability enhancing suggestions were
provided. Some evaluators noted that the use of mock diagrams for certain key tasks would help
provide a clearer understanding of what users are trying to achieve. This is especially the case
with new users that have not used HPC resources before. Similarly, the use of graphics in the
form of graphs in order to display certain key system statistics was suggested in order to help
users make informed decisions about when to run jobs. Users could look at trends in such graphs
in order to find times at which the system is relatively idle and then have their job launched at
that time. Evaluators also noted that the use of graphical elements that could approximate the
time to completion of a job would also be beneficial to users. In terms of submitted jobs, evalu-
ators felt that it was important for users to be able to view jobs that were being run by all users
on condition that the specifics of such jobs were not displayed. In order to achieve this, it was

41

suggested that the notion of groups be formed whereby users belonging to the same group were
able to see one another’s job details. In terms of the high-level interface itself, evaluators saw
the need to have the interface change its appearance depending on which scheduler a user chose
to submit jobs to. In order to achieve this, technologies such as CSS (Cascading Style Sheets)
can be employed in order to change the look and feel of a page depending on the scheduler chosen.

A recurring theme throughout the interviews conducted was that of information hiding. Most of
the evaluators were adamant that only commonly used options and functionality be displayed at
any given time. Suggestions for the implementation of such a feature came in the form of basic
and advanced modes, already discussed in Section 4.2.2, as well as the use of tree structures
where only certain nodes are visible at a time.

4.3 Summary

This chapter has presented the prototype evaluation sessions, the feedback obtained from these
sessions as well as user evaluation techniques employed during these sessions. Feedback concern-
ing preferred interface layouts, suggestions concerning possible functionality as well as problems
with the prototype that was built as part of phase 1 were presented. None of the problems
mentioned were deemed to be serious, however. The results from the interview sessions indi-
cate that the prototype built as part of phase 1 has a good, usable design. One of the more
significant results obtained from this part of the design process was the importance of dynamic
properties in Web applications. Many evaluators, when shown sample interfaces, noted that
dynamic properties such as automatic updating of certain screen elements would go a long way
to promote usability of such interfaces. Since this research has a strong focus on dynamic Web
applications, these results were well received.

42

Chapter 5

Infrastructure & Design

5.1 Introduction

Up until this point, this thesis has covered the background concepts relating to this research
and has provided an overview of the various techniques used to evaluate the design of the Grid
tools proposed. Furthermore, the results from these prototype evaluations have been reported.
The specifics of the Grid tools (referred to as the Web interface from this point forward) were
not decided upon until after these prototype evaluations were conducted since it was uncertain
if new features would be proposed by users.

This chapter will focus on the design of the Web interface, as well as a detailed overview of
the supporting infrastructure. This chapter concludes with a discussion of techniques that have
helped to improve the performance of the interface itself.

5.2 Infrastructure

A discussion of the Web interface has been split into two parts. This first part will outline the
underlying server-side infrastructure upon which the interface components rely. These software
tools and systems which make up the back-end of the Web interface have been split into a few
categories, namely: test Grid, container, schedulers, database and directory structure. Each of
these will now be discussed in turn.

5.2.1 Test Grid

Since this research assumes the presence of a Grid infrastructure, a test Grid was built at the
beginning of this research project (see Figure 5.1). As can be seen from the figure, the test Grid
consists of three clusters, one Grid server and a handful of Windows workstations. Furthermore,
one of the clusters is located on a separate subnet and is owned by a different department.

The test Grid consists of a wide range of operating systems and architectures. The first cluster,
“simba”, is an Intel X86-based cluster with both the FreeBSD and Linux operating systems.
The second cluster, “mkuttel”, is similar to “simba”, but consists of only Linux machines. Fi-
nally, the “lcc” cluster consists of both X86 32-bit and 64-bit machines, and runs the Linux
operating system. As mentioned, a handful of Windows workstations were connected into the
test Grid. These machines were added on a volunteer basis— in other words, they are only
utilised if they have been idle for a sufficient amount of time. All these machines were connected
using the Condor flocking mechanism thereby making the test Grid a Condor-based Grid. The
LoadLeveler scheduler was, however, installed on the “mkuttel” cluster as well.

43

Figure 5.1: High-level Grid architecture with the Condor flocking system

Component Value
CPU Intel Core 2 E6300 @ 1.86 GHz
Memory 2.0 GB
Disk 320 GB
Network Gigabit LAN
Operating System Ubuntu Server 7.10

Table 5.1: Grid server machine specifications

The test Grid also includes a Grid server, as can be seen in the figure. The main role of
the Grid server is to host the Web interface and provide a central point from where jobs are
submitted. Results of Grid jobs are also therefore returned to this server on completion. Since
all the software built during this project is installed on this server, the server specification can be
found in Table 5.1. To summarise, the test Grid consisted of approximately 25 machines (or 60
cores) spanning two administrative domains as well as two independently administered networks
(one managed by Computer Science and the other by the University networking department).

5.2.2 Toolkit & Container

Web browsers were initially designed to display static content and, by means of hyperlinks, link
to pages containing similar content. As desktop applications have matured and become more
usable over time, the Web too has moved to a more dynamic and interactive Web [Weinreich
et al., 2008]. That said, browsers today are performing tasks that they were never engineered to
perform. This makes developing for the Web particularly challenging, especially when one has
to deal with problems such as cross-browser incompatabilites and the sheer complexity of Web
APIs.

For the Web interface designed as part of this research, the ZeroKode (ZK) AJAX toolkit was
used [Zkoss.org, 2008]. One utilises the Java programming language as the primary development
language in order to write an application with the ZeroKode toolkit. A strength of this toolkit is
that it automatically renders the browser-based JavaScript, so the developer only needs to know
how to program in Java. This significantly decreases development time, however, the penalty
is a slightly bloated system due to standard JavaScript libraries, with superfluous elements,
being transmitted to the browser as part of the Web application. The benefits of using a toolkit
such as ZK may outweigh these penalties, however. The number of predefined widgets, access

44

to a public help forum and adequate documentation flatten the learning curve associated with
learning how to write an AJAX application somewhat, thereby abstracting the complexities of
developing for the Web, and enable a prototype system to be developed reasonably quickly. A
production system would usually make use of hand-coded AJAX calls so as to make the appli-
cation as efficient as possible, however ZK was used for the prototypes produced in this research.

The ZK toolkit requires the use of the Apache Tomcat1 servlet container. This container was
chosen since it is a reference implementation of the servlet standard. The Tomcat container
allows for the creation of WebDAV2 folders on the server. WebDAV utilises HTTP to transfer
data between a user’s desktop and the Web server, usually without the need for third-party soft-
ware since most modern operating systems have WebDAV capabilities built into the standard
network management software. This is used as the primary mechanism for transferring large
numbers of input files to the server. This will be discussed further in Section 5.3.3.

5.2.3 Schedulers

The primary function of the Web interface is to serve as a Grid front-end. Although good
usability and a lightweight design are important research outcomes, the scheduling capability
forms the foundation of the system. That said, the system makes use of two scheduling systems,
namely Condor and LoadLeveler (see Section 2.2.5). Instances of each of these schedulers are
installed on the Grid server from where jobs are propagated to the Grid by means of the Con-
dor flocking and LoadLeveler multi-cluster systems. These scheduler instances can be run on
a separate machine— however, for this research only one dedicated Grid server was available.
Having the schedulers installed on the same machine as the interface has the benefit of access to
the local database, thereby eliminating the need for remote database connections. Due to the
database-centric nature of this system, this is a significant advantage.

As mentioned in the previous paragraph, the test Grid had two scheduler implementations
installed, namely— Condor and LoadLeveler. Referring back to Section 1.2, one of the objec-
tives of the interface is to ensure that it is extensible. In order to achieve this objective, two
converters were written in order to translate the interface PSDL into a format understood by
each scheduling system. Furthermore, the convertors each implement a set of methods which the
various interface components call in order to populate the relevant on-screen panels. Figure 5.4
presents a graphical view of how each of the converters tie in with the system as a whole. The
figure shows how the various components (submit, query and status) interact with the different
converters based on the scheduler chosen by the user. The convertors not only enable different
scheduling systems to be added over time, but will also allow for more complex interface features
to be added in time. Load-balancing across different scheduling systems is one such example
and is discussed further in Section 8.3.

From the results of the initial interview sessions held with scientists, discussed in Section 4.2.1,
the need for a way of displaying the status of the Grid was deemed important. In order to
accomplish this, it was necessary to build scripts that would gather status information and store
it in a usable way. These scripts, custom-written for each scheduler, ensure that the multi-
scheduler design approach is realised by separating scheduler logic from interface logic. Use of
these scripts from the perspective of the Web interface will be discussed in Section 5.3.

1http://tomcat.apache.org/
2http://www.ietf.org/rfc/rfc4918.txt

45

5.2.4 Database

All Grid status information as well as information on jobs, machines and users are stored in the
database. Data is retrieved from the database on each rendering of the interface as well as each
time a user calls upon a data-bearing element to be refreshed. Furthermore, the WebDAV file
transfer component relies on the Tomcat database for user authentication to the WebDAV shares.

Due to the amount of data being generated in terms of Grid status information as well as
job information, the performance of the interface at the beginning of the development process
degraded as the database grew in size. For this reason, a number of table indices were created
in order to speed up these common operations. Other techniques such as periodic data exports
of data no longer needed by the interface were also considered, but not implemented.

5.2.5 Directory Structure

As already mentioned, WebDAV shares were created to allow users to bulk-upload files to the
Grid server. In order to accomplish this, a directory on the server is created for each user. Each
user directory contains three folders in which data from various steps in the Grid job submission
process are stored. The first such directory is the PROJECTS directory which contains data per-
taining to each “project” or job the user wishes to submit to the Grid. All input files, binaries
and any file needed by the job should be located in an aptly named project directory within the
PROJECTS folder.

The second folder is the JOB TEMPLATES folder. When a job is created using the Web inter-
face, an XML template file coded in Parameter Sweep Distribution Language (PSDL) is stored
in this directory. PSDL is a customized version of JSDL, discussed in Section 2.4.2, that over-
comes the shortcomings of JSDL when specifying parameter sweep applications. Since JSDL
does not have a mechanism for supporting multiple consecutive sets of arguments pertaining to
each run of a parameter sweep Grid application, the current version of JSDL was modified to
support such a mechanism— this is known as the PSDL. The PSDL-based template is created
so that a user can run a job multiple times without having to perform the job creation process
each time it is to be run on the Grid.

The third folder present in each user directory is the COMPLETED JOBS folder. As the name
suggests, all output generated by a Grid job is written to a subfolder within this directory on
completion of the job.

5.3 Design

After the initial interviews and paper prototype evaluations (see Chapter 4) were conducted,
the final Web interface design was finalised. This design incorporates many of the enhancements
and suggestions brought to light by the potential users of such a system as well as some of the
initial design features. This section will present an overview of the design of the Web interface
as well as a detailed discussion on each of the core components of which the system is comprised.
Furthermore, the way in which these components interact with the infrastructure outlined in
the previous section will be discussed where relevant.

5.3.1 Design overview

Before a discussion on the detailed design of the interface is entered into, an overview of the
layout of the Web interface will be presented (see Figure 5.2). As can be seen from the figure, the
interface consists of four main panes, namely the information header at the top of the screen, the

46

Figure 5.2: Grid interface layout

menu pane on the left-hand side, the status pane in the center and the notification pane on the
right-hand side of the screen. Other than the menu pane, which will be discussed in the section
to follow, the status pane is one of the most important parts of the interface. This tabbed pane
provides the user with access to Grid status information as well as job status information, and
depending on the operation the user is performing, one of the these two panes is always visible.

All other interface components, excluding the job and Grid status components visible in the
status pane, are activated using the menu pane on the left.

5.3.2 Design Considerations

Interface Visualisation

The most distinct design feature of the Grid interface is the resource-centric view of the system.
Traditional websites have assumed what can be best described as a task-centric approach to
interface design. Since AJAX is a relatively new design methodology, concepts such as a task-
oriented approach to design do not really exist since this development paradigm has always been
the norm. Popular websites such as Amazon.com and the South African variant, Kalahari.net,
make use of such an approach. This approach is characterised by the different “modes” in which
the site can find itself. In browsing “mode”, the user is able to browse though a set of products
and is able to add these products to his/her basket. In payment “mode”, the user is taken to
a different part of the system where product information is no longer displayed. In these cases,
however, the metaphor makes sense, since real world shopping consists of two “tasks”: browsing
and paying. This approach focuses the attention of the user on the task on which he/she is
currently busy.

In contrast to the task-centric view, what can best be described as a resource-centric view
keeps certain information visible at all times, even if a user is in another “mode”. The concept
of the Desktop on a PC, for example, is an example of such an approach. Even though a user is
busy writing an email message, for example, it is still possible to view the status of the processor
or see an incoming instant message. For the Grid interface, it was decided to make use of this
resource-centric design approach since a Grid environment is a dynamic system. The status of

47

the Grid is therefore visible at all times, except when a user changes from Grid status mode to
job status mode (see Figure 5.2). As can be seen from the figure, a tab box houses the Grid and
job status components. Since screen real-estate is limited, it was decided to make use of the full
display area for the job status window as it displays a large amount of data. Furthermore, since
a user is unlikely to be using the information within the status window in querying a job, the
Grid status information needs not be shown.

Menu Pane

Another prominent feature of the Web interface is the static menu pane situated on the left
of the interface (see Figure 5.2). From the sample interfaces shown to test subjects during the
inital prototype evaluations, many pointed out that the use of such a menu provided a consistent
way to present the options available in the interface. The idea for this menu was drawn from
the “Control Panel” present in operating systems, specifically Microsoft Windows. Such a menu
makes it clear what functionality is available to the system with a simple and intuitive layout,
and does so in a consistent manner. During the prototype evaluations, users felt that it was
better to have only one mechanism to perform a certain operation, a function which such a menu
fulfils. Furthermore, the use of overlapping windows and information display techniques inside
the browser (which will be discussed in the sections to follow) that mimic that of the Desktop,
were used to further promote a resource-centric view of the Grid.

The techniques provided here formed the basis of the design of the Web interface. However,
many other important design considerations that are best kept in context of their respective
components will be discussed in the sections to follow.

5.3.3 Interface Components

The functionality present in the Web interface has been split up into a few main components.
In order to better illustrate how each component ties into a Grid job submission and monitoring
workflow, each component has been mapped in the flowchart shown in Figure 5.3. As can be
seen from the figure, each component operates independently, except for the job submission
component. This component, which consists of a wizard, utilises functionality present in the file
browser for its operation.

An overview of each of the components in terms of design and functionality as well as the
way in which they communicate with the server will be presented in this section. Since the
Grid interface has been built to support parameter sweep applications, the ways in which the
interface has been built to suit such an application style will be highlighted. Furthermore,
Figure 5.4 shows the high-level system design and can be used as a reference as each component
is discussed throughout the course of this chapter.

Grid Status

As already mentioned, the Grid status component displays the current status of the Grid. When
the interface is first loaded, this status page is the first to be displayed. To generate this data,
Python scripts were written which wrap around low-level command line utilities bundled with
each scheduler. The Condor-specific script retrieves an XML document containing the sta-
tus information of each pool on which the script is run. The data in the XML document is
then parsed and used to populate a database with the relevant fields (see Figure 5.4). The
LoadLeveler script operates in a similar way but an unstructured flat file is generated instead of
XML as in the case of Condor. These scripts, known as the Status Daemons (SD) (see Figure
5.4), are executed every five minutes, thereby providing snapshots of the status of the Grid at
five minute intervals. Furthermore, since the way in which scheduling software is written differs

48

Figure 5.3: Interface component flowchart

greatly, scheduler-specific scripts for job management were created. These scripts handle the
way in which jobs are created and deleted and are loaded dynamically by the Web interface
when scheduler-specific methods are called.

Figure 5.5 shows a typical Grid status snapshot in both collapsed and expanded view. By
default, the detailed information will not be displayed — however, for purposes of illustration,
the status of some Grid pools are shown in their expanded view. For brevity, the LoadLeveler
pools have been left out of this discussion as their status information is displayed in a similar
fashion. From the figure, four pools are visible. The first, “Grid Server”, displays information
on the status of the Grid server itself. Since both the LoadLeveler and Condor scheduling sys-
tems were installed on the Grid server, the server is considered to be a separate pool. There
also are three further pools visible in the figure, representing the three Condor-enabled clusters
mentioned in Section 5.2.3. The figure also shows status information pertaining to each pool. As
mentioned already, this data is extracted by the Status Daemons and inserted into the database
from where it is read by the status component. In order to explain what all the values mean,
the information displayed for the second pool - the “HPC CS Cluster” - will be elaborated upon.

The first important value to note in Figure 5.5 is the number of cores available. This value
represents the number of virtual CPUs that are currently able to accept or process jobs. The
concept of a virtual CPU is used to represent a single core in a multi-core processor. In other
words, if a machine has a quad-core processor, the scheduling software will partition the CPU
into four virtual CPUs and schedule work to each core independently. This strategy works well
since non-threaded applications typically do not maximise use of a multi-core CPU. The next
set of values, along with their respective icons, give an averaged overview of the entire pool.
The values shown here (from left to right) represent average pool load, total pool memory, total
pool disk space and total pool processing capacity (measured in KFlops). Each pool also has a
coloured icon to the left of the set of average metrics. This icon is used to quickly identify the
state of machines within a pool. If a pool and all the execute nodes of which it is comprised are

49

Figure 5.4: High-level system architecture. Components coloured in yellow represent existing
systems, those coloured in purple represent custom-built components.

50

Figure 5.5: Grid status component

fully operational, this icon is coloured green. If some of the nodes are down or not running the
scheduling software, the icon is coloured orange. If all the nodes, including the head node of the
pool are down, this icon is coloured red. The information overview bar as well as the number of
cores available therefore make up the default view.

As already mentioned, the status is first displayed in the default view. This is a collapsed
view displaying minimal information on the status of a pool and includes the icons mentioned.
There is, however, an advanced view or expanded view which shows more detailed information
on the status of each pool’s nodes. This summary provides a breakdown of the architectures
and operating systems present within the pool as well an indication as to the number of ma-
chines that are up and running as well as the number that are down. The operating system and
architecture information is only applicable to the machines that are willing to accept jobs on
the Grid. Therefore nodes that are down or unwilling to accept jobs will not be included in this
summary. The final element to the status display is the “Pool Nodes” box. Each time a partic-
ular pool is expanded, this box is updated with the names of the machines in the particular pool.

The Grid status component is one of the most important parts of the Grid interface. Without
this information, users would simply be submitting jobs to the Grid without prior knowledge of
the resources available. Since executables are platform- and operating system-dependent, this
information is useful to users developing applications that are to be run on the Grid. Further-
more, since the interface can be configured to use many different schedulers, this information
becomes useful in determining which scheduler will be best suited for a particular application,
pgiven the current state of the Grid.

Job Specification

The second major interface component is the Job Specification component. The job submission
process is split into two steps, namely: job specification and job launching. This section will
cover the job specification process. This process takes the form of a wizard. The wizard (see

51

Figure 5.6: Load or create new job window

Figure 5.6), allows a user to choose whether to create a new job or load a PSDL template from
file, the origins of which will be discussed later. For now it will be assumed that the user chooses
to create a new job specification. The user is then shown a wizard which will guide him/her
through the rest of the process. The wizard consists of seven screens (see Figure 5.3) which
include the following steps:

1. Job specific information (job name, description, etc.)

2. Application specific information

3. Resource filtering (architectures, OSes, etc.)

4. Executable selection

5. Input file selection

6. Input argument enumeration

7. Output-specific settings

Steps 1 & 2 : Job and Application Specific Details

The first two screens, namely job- and application-specific information, prompt the user for
a name and description of a job as well as an application version number. These details distin-
guish one job from another and allow specific directories, which will house the relevant files, to
be created on the server.

Step 3 : Resource Filtering

The third screen, the resource filtering screen (see Figure 5.7), allows a user to choose the
systems his/her job is to be executed upon. Although scheduling systems have a record of the
resources available on the Grid, they have no way to match such resources to applications. To
use such scheduling systems, it has therefore traditionally been up to the user to manually spec-
ify which resources he/she would like to utilise. This process requires consulting a scheduler
reference manual in order to determine which resources need to be specified in a submit file
that is passed along with the application to the scheduler. Furthermore, low-level scheduler

52

Figure 5.7: Resource Filtering Wizard

utilities need to be consulted in order to determine which resources are available to the Grid.
This information is then manually specified in a submit file which outlines exactly how the
application will be submitted to the scheduler, what resources to use, what input files the ap-
plication takes, et cetera. The aim of this step in the wizard is therefore to automate this process.

The resource filtering screen provides the user with two ways in which to choose the resources
his/her job requires. A user can either directly choose the architectures and operating systems
from the “Hardware & OS” list, or choose the pool(s) that the job is to be run on from the
“Machine Clusters” list. Each of these selections is independent as the user may only select from
either of these two lists. For example, if a user chooses a pool on which to run Grid jobs, the
manual operating system and architecture selection option will be disabled. Another feature of
the wizard is the way in which erroneous filtering permutations are disallowed. As a user selects
certain options from either of these lists, invalid combinations are automatically removed. For
example, if a user chooses “WINNT51” from the “Hardware & OS” list, the “LCC” option on the
“Machine Clusters” list will be removed since this pool does not contain any Windows-enabled
machines. This mechanism prevents jobs that will never run from being submitted to the Grid.

Step 4 : Executable Selection

Once the user has selected the resources on which his/her Grid jobs will run, the next step
in the wizard prompts the user for the binaries or executables which form the basis of the job.
These binaries or executables can be C++ programs or simple bash scripts, for example. As can
be seen from Figure 5.8, based on the selection made on the filtering screen, the interface will
prompt the user to browse for executables located on the server. In order to do so, a custom-built
AJAX-based file browser is used (see Figure 5.9). Since there is no standard way of viewing files
residing on the server from within the browser, this component had to be written from scratch.
In order to navigate to the directory containing the executable, a user simply clicks on a folder
icon next to the respective folder that the executable resides in and the contents of the directory
will be dynamically listed. Once the executable has been found, a user can click on the name of
the file in order to select it.

53

Figure 5.8: Executable Selection Wizard

Step 5 : Input File Selection

Once the executables have been selected, the next step in the wizard prompts the user for
a set of input files. Since the majority of Grid jobs are data-based computationally intensive
jobs, the reliance on input data is a very important aspect of such jobs. In the context of a
parameter sweep application, it is most often the case that the same application will be executed
on all Grid nodes; however, the applications will operate on different input files, thus generating
different output. This is typical of the SIMD approach of many Grid applications.

The process of selecting sets of input files is similar to that of the executable selection, however,
the main difference is that instead of selecting a file, the user is expected to select a directory
of files (see Figure 5.10). Unlike the executable selection wizard, however, a user is able to
specify multiple independent sets of input files at this step. The reason for this has to do with
the adaptation of the interface to cater specifically for parameter sweep applications. For ex-
ample, if a job taking a single input file as an argument is to be run many times over, each
time with a different input file, one would specify a directory of such input files at this step.
The interface then maps an input file from this directory to an individual run for each file in
the directory. Furthermore, if this job were to take two different input files as arguments (as
opposed to one in the previous example), a user can simply click on the “plus” icon to add an-
other set of files. An input file from each directory will then be mapped to a single run and so on.

Step 6 : Argument Enumeration

Now that the user has given his/her job a name, defined the resources on which the job is
to be executed and selected the executables and input files, the definition of the application
parameters can proceed (see Figure 5.11).

In order to illustrate the process of adding arguments to an application, an example will be
used. For some application, assume that the application binary takes as input an integer value

54

Figure 5.9: AJAX File Browser

Figure 5.10: Input File Selection Wizard

55

Figure 5.11: Argument Enumeration Wizard

Figure 5.12: Number Type Specification Wizard

preceded by a flag (-i), an input file from a set of files as well as a static file (a simple text file)
containing some configuration data. A few runs of such an application would therefore look as
follows:

• executable -i 1 inputFile1 data.conf

• executable -i 2 inputFile2 data.conf

• executable -i 3 inputFile3 data.conf

In order to specify such a dynamic set of changing values, the wizard provides four argument
types. The first type is the number type— a value that is incremented for each run of the appli-
cation. The example above illustrates the use of the number type with an increment of one for
each run, however it is possible to change the starting value, the end value and the incremental
step value of the integer when setting up the argument (see Figure 5.12). The next type, the flag
type, is a static type. A flag is merely repeated verbatim for each run of the application, as can
be seen from the “-i” in the example above. There is one other static type, the single-file type,
which similarly specifies the same file for each run of the application. In the example above,

56

“data.conf” is of the type single-file. The final argument type is the multiple-file type. This
type, like the number type, allows a user to dynamically allocate a file from the directories of
input files selected in the previous step. In the above example, “inputFile1” would be the first
file in some directory chosen by the user and therefore would be allocated to the first run of the
application.

Another important feature of this wizard page is the sample command-line window. This win-
dow displays the result of the argument enumeration procedure. The content of this window
is updated dynamically as the user adds more arguments in order to display each run of a pa-
rameter sweep application similar to the example shown above. To add additional arguments,
a user selects the “plus” icon from the area to the right of the first component. Since the
ordering of arguments is important, the wizard also provides drag-and-drop functionality that
allows arguments to be re-arranged easily. In order to implement this functionality, this wizard
relies heavily on AJAX. Dynamic addition of arguments, removal of arguments, updating of the
sample command line as well as the drag and drop interface all rely on explicit AJAX calls in
order to manipulate the DOM in the browser.

Step 7 : Output Settings

The final step in the job specification process is the selection of output parameters. It is often
the case that Grid jobs fail on their first submission to the Grid. In such cases it is necessary
to determine exactly what caused the job to fail. Having a job output a log file can therefore
be a source of valuable information in such cases. The wizard therefore allows a user to choose
whether such log files are produced at run-time. Finally, depending on the type of job, the
naming of the output files can be important. The wizard therefore allows the user to select
whether the output file names are generated using the process ID of the Grid job or by taking
on the name of the input file.

Once all seven steps have been completed by the user, the job specification is complete. At
this point, the entire specification is converted to PSDL— as alluded to at the beginning of this
section. The PSDL XML document is then written to the user’s JOB TEMPLATES directory. The
presence of the PSDL file allows the user to load a pre-existing job into the browser using the
job submission wizard (see Figure 5.6).

Job Launching

As mentioned at the beginning of the previous section, the job submission process has been
split into two steps. The first step, job specification, was discussed in the previous section. Job
launching is the second step in the process. Once a user has completed the specification of a
new job or loaded in a job from file, the job is ready to be launched. As can be seen from Figure
5.13, a user is notified by a flashing green icon on the right-hand side of the interface. In this
case, a job called “indexer” is ready to be launched. When this icon is clicked, the process of
submitting the job to the Grid begins.

Once a user has launched a job, it may take a while for the job to be submitted. Since the
time taken to submit a job is dependent on the size of the job, the submission process can be
time consuming for jobs where large amounts of data in the form of input file and binaries must
be submitted. As a job is submitting, an AJAX-based progress indicator is shown at the top of
the screen. Since large jobs that take a long time to submit would make the interface seem as
though it is “hanging”, the progress bar is an important feature of the submission system.

57

Figure 5.13: Job Notification Pane

Job Querying

The third major interface component is the job querying component (see Figure 5.14). This
component allows a user to view the status of jobs submitted to the Grid. When a job is sub-
mitted, an entry for each run of the parameter sweep application is written to the database.
When the querying window is loaded, it is this data that is imported into the interface. Each
sub-job is then displayed along with the date and time the sub-job was submitted, the run time
(only filled in when the job completes), the sub-job size (only filled in when the job completes),
the status of the sub-job, the executable name and an option to remove the sub-job.

The query window gives the user a few options. Firstly, if a job has been “held” due to some
error, the user is able to delete the entire job by making use of the job deletion feature at the
top of the window. Furthermore, if only one of the sub-jobs is in error, the user is able to delete
such a sub-job by selecting the checkbox of the appropriate sub-job and clicking the “Apply
Changes / Refresh” button. The interface also provides a way for users to display only certain
jobs by allowing for the selection of either a date range or a list of unfinished jobs (or both) from
the sorting criteria area at the top of the window. Finally, when a job completes, the output
files can be retrieved and moved to a data directory on the server by clicking on the “Retrieve
Data” button.

File Transfer

Parameter sweep applications typically rely on input files as a means of work distribution. Such
applications also usually consist of many hundreds or thousands of runs. A typical Grid appli-
cation can therefore consist of many gigabytes of data files. The main reason for the reliance on
WebDAV, as opposed to a Web interface for uploading, is that use of a Web interface is not scal-
able. If one considers a trivial parameter sweep application consisting of only 50 sub-jobs, then
the process of manually uploading 50 files, excluding binaries and libraries, becomes a daunting
task. The interface could have been designed to accept zip files for example, however, this would
provide less flexibility and would make file management using the Web interface cumbersome.
Nevertheless, the core interface also has file upload capabilities built into an AJAX file browser

58

Figure 5.14: Job Status Window

59

Figure 5.15: Admin Component

for cases when users wish to upload or overwrite single files.

The WebDAV file transfer component is tied into the core of the interface and therefore uses the
same username and password as the main interface. Furthermore, the creation of a WebDAV
share is an automated process. When users are added to the system using the administration
system, discussed in the section to follow, the WebDAV share is automatically generated and is
symbolically linked to the main data partition on the server. A unique name for each share is
generated based on UNIX date functionality, thereby assuring that no two folders are assigned
the same value.

Miscellaneous Components

So far, only the major interface components have been mentioned. There are, however, two other
components that are worthy of mentioning— the admin interface and the statistics window. The
admin interface, as the name implies, provides an administrator with essential tools for ensuring
the correct operation of the interface as well as performing administrative tasks (see Figure
5.15). These tasks include the addition and removal of users, additon of user information as well
as user quota limits and removing jobs that have exited in error (via a job query window with
administrator permissions). The interface is accessed via a special system login which changes
the layout of the interface by adding an admin panel to the left menu pane.

One of the features of the admin interface is the ability to allocate Grid time to each user.
This prevents some users from “hogging” the Grid and therefore ensures a fair and equitable
distribution of resources. The full quota subsystem was not implemented due to time constraints
but the admin component that allows for the addition and resetting of a user’s quota was imple-
mented as part of the admin interface. Finally, the admin interface provides the administrator
with a means of naming newly found pools on the Grid. Since new pools need to be given a name
in order for the interface to function correctly, the admin interface allows the administrator to

60

Figure 5.16: Statistics Component

set the name of any new pool found on the Grid.

The second component is the statistics component. It is often the case that users wish to
submit jobs to the Grid in periods of low demand, for various reasons. Users could decide to
submit jobs in off-peak times if there is no hurry for the results, thereby allowing other users
the benefit of the Grid during peak times. Users can also submit in off-peak times to realise
the full potential of the Grid, thereby generating results quicker than if a queue exists. In order
to determine when off-peak periods are, the statistics component is made up of a graph which
displays the average system load of the entire Grid for a user specified date (see Figure 5.16).
Although the Grid status component shows similar data for each pool, this data is only available
for a five minute window period and is therefore inadequate for the purposes of job submission.

5.3.4 Performance Enhancements

During the development of the Web interface, certain components and features were found to
be too inefficient or too slow, necessitating alternative techniques. This section will present an
overview of some of the main performance enhancements that helped make the interface more
responsive.

When developing a system that consists of so many different components, one often blindly
and incrementally continues to add components until all the desired functionality is present.
This approach, while leading to the desired result, is often not efficient, as was the case with
this system. When loading the interface with all the components in place, it was found that
it took far too long to load into the browser. The reason for this was that each component
was making its own calls to the server, thus resulting in a flood of communication between the
browser and server. In order to solve this problem, certain components were not loaded in full
when the application was first loaded into the browser. Only important components such as
the main interface, Grid status and file transfer components are initially loaded. Only as a user
makes a request for certain functionality, such as a job submission for example, is the component
loaded into the browser. This approach has two benefits, the first being a reduction in overall
initial data transfer, thus reducing bandwidth, and the second being that unnecessary compo-
nents, that might not be needed for a particular session, are not loaded. By introducing this
technique, interface load times were reduced from approximately 28 seconds to approximately 3
seconds on a particular machine.

61

One final enhancement, briefly mentioned in Section 5.2.4, has to do with the importing of
data from the database. Since many of the interface components, particularly the job query
and Grid status components, have to retrieve data from the database each time they are loaded,
this common operation had to be improved. Since the job table, for example, can easily contain
millions of rows due to the status daemons adding data at five minute intervals, data extraction
from this table took a long time. In order to alleviate this problem, a number of database indices
were put in place on affected tables, resulting in improved performance.

5.4 Summary

This chapter has presented the infrastructure that was put in place in order to build a Grid Web
interface as well as the design details pertaining to the interface itself. Furthermore, a high-level
view of the complete system was provided. The techniques that were used to build the interface
as well as the methodologies that were used were discussed, paying particular attention to the
resource-centric view that the interface has assumed. The use of each of the interface components
was also discussed in detail with accompanying discussions on how relevant components serve to
abstract and simplify the Grid job submission process. Furthermore, an illustrated view of each
of these major components was provided. Finally, an overview of two important performance
enhancing techniques was discussed.

62

Chapter 6

Case Studies

6.1 Introduction

The aim of this research was to create a Web interface that abstracts and simplifies the use
of Grid computing tools. To meet this objective, a series of prototype evaluations were held
which, after analysis, led to the final design of the system. With the design finalised, the next
step after implementation was to test the system for completeness and real world applicability.
The definition of completeness in this case is a system that includes all the necessary parts
or elements needed to deploy a parameter-sweep Grid application. However, it is not possible
to directly prove that such a system is complete. For this reason, a number of case studies
representing a set of real world computational tasks were picked in order to provide evidence
that the system is useful for its intended task. This chapter will present an overview of each
of these case studies in a structured manner so as to highlight the reasoning, objectives and
results obtained from each case study in turn. Finally, an overview of the lessons learnt from
the construction of the case studies will be provided.

6.2 Assumptions

All the case studies discussed in this chapter assume that certain facets of the system are kept
constant. This ensures, firstly, that the results obtained can be compared against one another
and, secondly, that conditions that could potentially influence the accuracy of the results are
kept constant. For this reason, only the Condor scheduling system was used to run jobs, as
different scheduling systems take different amounts of time to complete different tasks such as
job creation and result generation. Furthermore, all case studies, with the exception of Case
Study II, make use of the Linux operating system and Intel X86 platform. Thus the filtering
by cluster option present in the filtering wizard (see Figure 5.7) was not used as the entire
Grid was utilised when running each case study. Finally, the last assumption is that all of the
approximately 60 cores were operational and that no other Grid jobs were executing or in the
job queue when each of these case studies was run.

6.3 Case Study I : Whetstone Benchmark - Single OS

6.3.1 Overview and Objectives

The whetstone benchmark, a classic computational performance benchmark, formed the first
case study. This synthetic benchmark was first described in the 1976 paper by Harold Curnow
and Brian Wichmann [Curnow & Wichmann, 1976], and describes one of the most well-known
measurements of floating-point computational performance. The speed of a computational de-
vice measured using the Whetstone benchmark was reported in Kilo Whetstone Instructions per

63

Second (KWIPS). As computers became more powerful, this metric progressed to Millions of
Whetstone Instructions Per Second (MWIPS). The whetstone benchmark today is measured in
more conventional Millions of Instructions per Second (MIPS)

This case study was chosen due to its simplicity as a parameter sweep application. This case
study did not serve to illustrate any specific feature of the interface, but was used to test basic
interface functionality. Therefore, the main objective was to test the interface submission pro-
cesses, database functionality and job query subsystem before more complex case studies were
attempted. This case study conforms to the set of assumptions as discussed in the previous
section and was therefore only run using one operating system.

6.3.2 Process

Executable

The Whetstone executable consists of one source file: whetstone.C. The executable does not
rely on any libraries, contributing to the trivial nature of this case study.

Data Staging

Since the Whetstone benchmark consists of only one file, the executable, no files other than
the executable needed to be staged. The executable was copied to the submission server us-
ing WebDAV, but this could just as easily have been done by using the interface file upload
functionality.

Parameter Definitions

The Whetstone benchmark takes only one input argument— the loop count. This value specifies
how many loops of the benchmark code to run in order to generate machine performance statis-
tics. The more loops run, the more accurate the result will be— however, this is at the expense
of compute time. Since the test-Grid consisted of approximately 50 Linux-based cores needing
benchmarking, 50 such jobs were submitted to the Grid. The benchmark code was therefore run
on every core present in the Grid. Since the benchmark code has no parallel implementation,
it was necessary to add an input argument at the argument enumeration step of the wizard in
order to generate 50 runs of the application. To do this, the number type with an increment
of one was used in conjunction with the the flag type (number of loops). The number type is
ignored by the Grid job at run-time as the Whetstone code considers only the final argument.
An example is shown below:

• whetstone 1 10000

• whetstone 2 10000

• whetstone 3 10000

6.3.3 Results

Table 6.1 provides an overview of the results obtained when submitting the Whetstone job to the
Grid. Since this job is trivially small, the 550 Kb of data represents 50 copies of the executable.
Due to this small amount of data, a short submission time of 1.487 seconds is also noted. Since
the Condor scheduler submits jobs by creating a spool directory for each job on the submit
machine, this value is representative of the time taken to create 50 folders and copy a version
of the executable into each of these folders. Again, since the job consists of only 50 runs, the
PSDL file generated at the job creation step is small and takes only 0.258 seconds to render.

64

Table 6.1 also shows an overview of the time taken to submit jobs both over the Grid and
on a single machine. Since scheduling systems have to match jobs to resources before jobs are
sent off on to the Grid, the process of match-making can take a large amount of time. This is
evident from the difference between real time and Grid time, where real time refers to the actual
wall clock time taken between submission and completion of a job and Grid time refers to the
time spent executing on remote Grid nodes. Finally, the effects of the Grid can be seen from
the difference in time between the serial and Grid instances. For all case studies presented in
this chapter, the serial time is calculated by adding together the individual real times for the
entire run of the case study. For example, if a case study consists of ten sub-jobs each running
for two seconds of wall clock time, the serial time would be approximately 20 seconds.

Event Time
PSDL Generation 0.3
Data Size 550 Kb
No. of runs 50
Submit Time 1.5
Grid Time ∼1867
Real Time ∼2248
Serial Total ∼45757

Table 6.1: Whetstone Single OS performance data (time reported in seconds)

6.3.4 Reflection

Submission of the Whetstone benchmark to the Grid using the Web interface was a trivial
exercise. With the exception of the extra argument that was added in order to generate 50
copies of the benchmark for Grid purposes, no further complications were encountered. The
interface could handle such situations more elegantly— however, since most parameter-sweep
applications take at least one input argument so as to augment each run of the application with
a different set of input data, encountering such situations would be rare.

6.4 Case Study II : Whetstone - Multi OS

6.4.1 Overview and Objectives

The Web interface was designed in such a way so as to allow Grid jobs to run on multiple available
operating systems at the same time, given that binaries or executables for each platform exist.
This case study, a duplicate of Case Study I, was chosen to highlight this feature of the system.
The same submission procedure was followed as for Case Study I.

6.4.2 Process

Executable

In order to run this Grid job on multiple operating systems, the Whetstone source code was
compiled for both the Windows and Linux platforms. Furthermore, job submission using the
interface requires the compiled binaries to be renamed so as to follow the naming convention:
executableName.$$(OpSys).$$(Arch). This convention requires the user to rename the bina-
ries by substituting the variable names OpSys and Arch with the actual operating system and
architecture names chosen in the filtering window. A user does not have to worry about any

65

other specifics of a heterogeneous job submission apart from manually renaming binaries. The
interface will change submission modes automatically depending on the number of operating
systems selected at the filtering step.

Data Staging

Since multiple operating systems are used in this case study, two files need to be uploaded to
the server, namely the two binaries. Once again, no input data was required.

Parameter Definitions

Job submission to multiple operating systems requires no change to the argument selection as
the executables accept the same input arguments irrespective of the operating system on which
they are run. The argument enumeration steps discussed for Case Study I therefore also apply
to this case study.

6.4.3 Results

Execution times are approximately equal for both Case Study I and Case Study II as only the
machines upon which jobs were executed were changed.

Event Time
PSDL Generation 0.3
Data Size 550 Kb
No. of runs 50
Submit Time 1.5
Grid Time ∼1925
Real Time ∼2279
Serial Total ∼46787

Table 6.2: Whetstone Multi OS performance data (time reported in seconds)

6.4.4 Reflection

Grid job submission to multiple operating systems provides flexibility in a Grid environment
consisting of inherently heterogeneous resources. This case study has shown the interface’s
capability of submitting jobs to multiple operating systems. However, an extension of the
interface to allow for job submission to different OSs could also be beneficial.

6.5 Case Study III : Text Indexer

6.5.1 Overview and Objectives

In order to effectively search through large quantities of data, techniques such as indexing are
used to speed up this process [Cacheda et al., 2005]. Search engines in particular have popu-
larised such techniques due to the sheer size of data collections that have to be searched through
and the time frame, in the order of a few hundred milliseconds, in which such results have to
be retrieved. Indexing works by creating an inverted file which contains a list of words (with no
duplicates) that appeared in the original file, as well as a numerical value next to each word rep-
resenting how many times that word appeared in the original file. Once inverted files have been
created, document ranking algorithms are applied and searches can be conducted. It should be
noted, however, that many important indexing steps have been left out of this discussion. The

66

job that was submitted for this case study was custom-written and did not contain any logic
that would make it more or less suited for use in the Web interface.

Current indexing techniques increasingly move towards distributed and clustered architectures
in order to cope with growing volumes of data. The Hadoop [Feldman et al., 2006] approach,
for example, makes use of many clustered execute nodes in order to process data in parallel by
making use of MapReduce [Dean & Ghemawat, 2008]. This approach works well but requires
much investment in the form of dedicated clusters. Since indexing is particularly suited to the
parameter sweep model, due to its SIMD nature, it therefore fits the Grid computing paradigm
as well. The indexing process can therefore make use of vast quantities of non-dedicated com-
pute resources in order to build the indices necessary for fast query response times.

The main objective in running this case study is to show that a non-trivial indexing job can be
formulated into a parameter sweep application and deployed to a Grid using the Web interface.
The Grid therefore provides the scalable infrastructure necessary to process vast quantities of
data in parallel at a fraction of the cost of a clustered approach. Furthermore, as with each case
study to come, the level of complexity of this job has increased from that of Case Studies I and
II, thus testing the ability of the interface to handle increasingly complex real-world problems.

6.5.2 Process

Executable

The text indexer case study consists of only one binary, named indexer. As with the previous
two case studies, this executable does not rely on any libraries.

Data Staging

Since the indexing application is a SIMD application, both the executable as well as input
files needed to be copied to the server. The input files used for this case study were text files
retrieved from Project Gutenberg [Gutenberg, 2008], including Shakespearean plays and other
textual data. The data as well as input files totalled approximately 90Mb, of which 74Mb can
be attributed to input files. All files were staged using the WebDAV interface. Although a
real-world Grid would typically use a much larger dataset than used for this case study, the aim
with the case studies was to test the interface’s ability to handle different types of parameter
sweep applications and not the ability of the underlying schedulers to manage vast quantities of
data.

Parameter Definitions

The text indexer takes two arguments— the first is the name of the inverted file to be created
and the second is an input file. For the first argument, an auto-incremented integer value was
used to name the inverted file. The input file name could not be used since it is possible that
another file in the future might have the same name. The number type was used to specify
an increasing integer value starting at one and having an increment of one. For the second
argument, the input file wizard was used to specify a directory of input files on the server. The
parameter sweep nature of the multiple-file type was utilised in order to assign one input file
to each run of the application. This application differed from the benchmark application since
the number of runs was not determined by the user but by the number of input files the user
specified. The job queue therefore contained more jobs than active Grid nodes. An example of
the sweep is shown below:

67

• indexer 1 input1.txt

• indexer 2 input2.txt

• indexer 3 input3.txt

6.5.3 Results

Table 6.3 provides an overview of the results obtained when submitting the indexing job to the
Grid. As can be seen from the table, 500 runs (i.e, 500 text files) were queued for indexing using
the Grid. Since the number of runs increased by a factor of 10 from Case Study I to this case
study, the PSDL generation time has increased accordingly. The increase in time, however, is
expected due to the generation procedure having O(MN) time complexity. Even with the in-
crease in time, however, 1.8 seconds is still acceptable for a job of this size. Table 6.3 also shows
the time recorded for the submission of this job to the Grid. This time increased substantially
from the previous case studies due to the overall footprint of the job having increased, both in
terms of argument complexity and size. Submit time contributed to the longest delay in the job
creation/launching process.

Event Time
PSDL Generation 1.9
Data Size 88 MB
No. of runs 500
Submit Time 25
Grid Time ∼1024
Real Time ∼1649
Serial Total ∼6832

Table 6.3: Text indexer performance data (time reported in seconds)

6.5.4 Reflection

Apart from the extra wizard step of having to add in an input file directory, the job creation
process is the same as for the previous case studies. Even though the complexity of the job was
increased, the interface did not require much additional effort from the user.

6.6 Case Study IV : Audio Converter

6.6.1 Overview and Objectives

Many applications, such as word processors, allow for the conversion of one document format to
another [Sommerer, 2004]. Similarly, Web applications often convert data into language neutral,
structured formats, such as XML in order to communicate with other services. Furthermore,
data conversions are typically done in bulk as part of some process. Since such conversions are
usually SIMD in nature as well as computationally intensive, it is possible to parallelize such a
bulk process and in so doing leverage the power of the Grid.

This case study was used to illustrate how the Web interface can be used to convert files.
A batch conversion from one proprietary audio format (.wma) to an open format (.mp3) was
performed using the interface. Furthermore, the level of complexity of this case study when
compared to the previous case studies increased substantially.

68

6.6.2 Process

Executable

Unlike the previous case studies, this case study makes use of a bash script as the “executable”,
called wmamp3.sh. Since the audio converter written for this case study makes use of existing
conversion software, it was necessary to find a way of running these pieces of software in sequence.
The bash script for this job is shown below:

#!/bin/bash

#extract supporting files and software
tar -xvf encoders.tar

#convert wma to a temporary wave with Mplayer
./mplayer -vo null -vc dummy -af resample=44100 -ao pcm:waveheader $1

#convert wave to mp3 using toolame
./toolame -m s audiodump.wav -o $1

#remove wma extension and replace with mp3
mv "$1" "‘basename "$1" .wma‘.mp3"

#remove temporary wave file
rm audiodump.wav

The bash script shows how two pieces of software (Mplayer and toolame) are used to convert
from one audio format to another by making use of an intermediate WAVE file. However, at the
executable selection step in the wizard, neither Mplayer nor toolame were specified, as only one
executable may be submitted per job. The bash script is therefore the only executable that
needed to be specified at the executable selection step in the wizard.

Data Staging

This case study in essence relied on the existence of three executables: the bash script, Mplayer
and toolame, as well as the supporting library files needed by these tools. Furthermore, since
the aim of the case study was to convert wma files to mp3 files, a set of 500 input files needed to be
transferred to the submission server. The entire job was therefore broken down into three sets
of files: the executable, the supporting software and the input files. The supporting software,
along with associated libraries was packaged into a tar archive. This archive is extracted as
soon as the script is run and therefore does not rely on the execute nodes having the software
pre-installed.

As can be seen from Table 6.4, the size of the job increased considerably from the previous
case studies, to an overall footprint of approximately 4.8GB. Of this 4.8GB, 2.8GB consisted
of wma audio files and 2.0GB can be attributed to 500 copies of the bash script and encoders
archive which is approximately 4MB in size. As with the first case study, the scheduler creates
a spool directory containing all files needed for each sub-job. Since there are 500 sub-jobs, a
spool directory is created for each before distributing the job to the remote Grid nodes. This
is only done in non-NFS environments such as the Grid installed for these case studies. Once
again, all files were staged using the WebDAV interface.

69

Parameter Definitions

The bash script was written to accept one argument, an input wma file, as is evident from the
$1 entries in the bash script above. In order to specify these input files, the directory of wma
files was selected at the input file specification step in the job creation wizard. At the input
argument enumeration step of the wizard, the files in this directory were split up among 500
runs of the audio converter using the multiple-file type. Once again, the number of runs was
calculated by counting the number of files present in the input directory. Although the script
only takes one input argument, the input file, the encoders archive needed to be sent along
with each job. To do this, a single-file argument was specified as the second argument to the
bash script. By doing this, the archive was assumed to be an input file by the interface and was
then bundled with each run of the Grid job. An example of a few runs is shown below:

• wmamp3.sh music file1.wma encoders.tar

• wmamp3.sh music file2.wma encoders.tar

• wmamp3.sh music file3.wma encoders.tar

6.6.3 Results

Table 6.4 provides an overview of the results obtained when submitting the audio conversion
job to the Grid. The PSDL generation time once again increased in direct proportion to the
increase in complexity of the arguments specified, as expected. The most noticeable decrease in
performance, however, is attributed to the submit time. Since the amount of data that needs
to be spooled for submission is 4.8GB, the submission process took approximately 17 minutes.
Although 17 minutes is considered to be a long time for any computational process to complete,
the long-term benefits of running this job on the Grid as opposed to a single machine is evident
from the wall clock speedup by a factor of 21, or 0.67 hours as opposed to 14.6 hours.

Event Time
PSDL Generation 3.0
Data Size 4750 MB
No. of runs 500
Submit Time 1036
Grid Time ∼1718
Real Time ∼2438
Serial Total ∼53166

Table 6.4: Audio conversion performance data (time reported in seconds)

6.6.4 Reflection

This case study has shown how common data processing problems can be “Gridified” with
relative ease and submitted using the Web interface developed as part of this research. The
case study has demonstrated how applications with non-trivial software dependencies can be
submitted using the interface with only a few minor changes to the way in which jobs are
specified. Apart from the notion of a bash script as an alternative executable, all interface
operations remained the same for this job as they did for the previous case studies.

70

6.7 Case Study V : Distributed Rendering

6.7.1 Overview and Objectives

Rendering of a scene in Computer Graphics refers to the conversion of a high-level scene de-
scription into a 2D image [Angel, 2001]. Such scene descriptions contain definitions of objects
in the scene as well as their locations, lighting effects, shadow effects, animation and other such
artefacts. Such scenes are typically complex in terms of their specification and interactions
among scene elements and therefore require much compute time to render. Scene rendering is,
however, just one facet of Computer Graphics. Animations, or consecutive sets of scenes, are
more widespread. In order to render an animation, it is possible to split up such an animation
into consecutive blocks and process each block individually. Once each block is processed, the
final rendered animations can be merged. Since rendering applications are generally SIMD, it is
possible to create a Grid job to render an animation.

This case study illustrates how a Grid job can be specified in order to render an animation.
The animation is split up into sets of frames, where each set is sent to a Grid node for process-
ing. This case study is the most complex in terms of its software dependencies and the way in
which jobs are specified.

6.7.2 Process

Executable

As with the audio conversion case study, this case study makes use of a bash script as the
executable, called blender.sh. The difference between this case study and the audio converter
is that only the blender [Blender, 2008] software is required for rendering the animation. The
blender executable was not used as the sole executable because libraries have to be passed along
with the application, and some files need to be removed before the rendered frame is copied
back. By removing these files, the size of the data that needs to be copied back is reduced,
which therefore shortens the retrieval time as well as the disk space requirements of the output.
These operations cannot be performed by the blender executable, and therefore a bash script
was created to achieve these goals. The bash script for this job is shown below:

#!/bin/bash
#

#unzip tar archive
gunzip files.tar

#extract tar archive
tar xvf files.tar

#set the library path to the local library files needed by blender
export LD_LIBRARY_PATH=.

#render the duck avi from frame $1 to frame $2
./blender -b duck11_peaking.blend -x 1 -o outputOfRender -F MOVIE \
-s $1 -e $2 -a

#remove all files no longer needed so avoid copying back to server
rm blender
rm lib*

71

rm files.tar
rm files.tar.gz
rm duck11_peaking.blend

The script is similar to that of the audio converter script, except for the exporting of the library
path. Blender requires that certain libraries exist on the target machine. Since the existence or
correct version of these libraries cannot be guaranteed in a Grid environment, the libraries were
bundled with the Grid job and were set in the local environment using the LD LIBRARY PATH
environment variable.

Data Staging

In terms of input files, this case study was slightly less complex than that of the audio converter
as only one animation from the open movie Elephants Dream [Elephant’s Dream, 2008] was
used during the rendering process. Since only one animation file was rendered by splitting it
into sets of frames, the source file was simply added into the tar archive. This eliminates the
need to specify a single-file type. In terms of data staging, only one copy of each of the bash
script and data archive was transferred to the server.

The total size of the job was approximately 790MB. This size is solely attributed to the size
of the bash script and supporting tar archive and therefore shows the importance of removing
extraneous data files once the job has completed. Once again, all data was staged using the
WebDAV interface.

Parameter Definitions

Since the input animation file was bundled with the application, only two parameters were
needed by the script, namely the starting frame and ending frame to render. To specify these
ranges, the number-type in the argument enumeration step of the wizard was used with the same
increment, but with differing starting and ending values. The job was split into 89 runs of five
frames each, giving a total animation frame count of 445 frames for the duck11 peaking.blend
animation. Figure 6.1 shows the final output of each of these runs as an illustration, as well as
an enlarged snapshot of one of these frames. Finally, as with the audio conversion case study,
the file archive was added as a single-file type. An example of a few runs is shown below:

• blender.sh 1 5 files.tar.gz

• blender.sh 6 10 files.tar.gz

• blender.sh 11 15 files.tar.gz

6.7.3 Results

Table 6.5 provides an overview of the results obtained when submitting the distributed rendering
job to the Grid. Since the arguments specified did not contain the multiple-file enumeration as
in the audio conversion case, the PSDL generation time was reduced substantially. The job took
106.736 seconds to submit to the Grid; a much more acceptable time than that of the audio
converter, attributed to the small overall job size. Once again, Grid time was substantially less
than the time for execution on a single machine, as expected.

72

Figure 6.1: Output of distributed rendering case study with enlarged snapshot of a single frame

73

Event Time
PSDL Generation 0.4
Data Size 783 MB
No. of runs 89
Submit Time 106
Grid Time ∼1320
Real Time ∼1680
Serial Total ∼13920

Table 6.5: Distributed rendering performance data (time reported in seconds)

6.7.4 Reflection

The specification of the distributed rendering Grid job was accomplished without any difficulties.
Even though this job was very different to the audio converter in terms of the way it accepted
arguments, the process of creating and submitting these jobs was similar. As with the audio
converter, the only possible complexity was the creation of a wrapper script that orchestrates
the running of the job on the Grid.

6.8 Scope and Limitations

The case studies discussed in this chapter were run under controlled conditions on a stable cam-
pus intranet. Although such an environment is necessary to provide consistent test results, the
reality is that Grid systems are volatile and can lead to unexpected delays or even application
errors due to timeouts, data corruption and network element failures. Since Grid jobs usually
take a long time to complete, turnaround time is generally assumed to be long. This is especially
true in the case of parameter-sweep applications. These applications typically consist of tens of
thousands of runs and can take a long time to return results from the various Grid nodes for
the various reasons described above.

Since the case studies in this chapter were relatively small and since Grid nodes were dedi-
cated solely to running these case studies, turnaround time was short. However, the turnaround
time of Grid jobs is independent of the performance of the Web interface. The interface is merely
a portal to the Grid job submission system and is therefore not affected by Grid jobs that take
a long time to complete.

Some of the case studies presented in this section make use of wrapper scripts. These scripts
are written in order to execute a sequence of operations that make up the Grid job itself. It can
be argued that these scripts require some level of sophistication. Although this is true, writing
a wrapper script to perform a complex task is akin to writing a C++ or Java application to do
perform the same task. The purpose of the script in the case studies presented in this chapter,
serves only to act as the executable for the Grid task.

One final aspect that deserves mentioning is that of data volumes. With all the case stud-
ies evaluated in this chapter, a measure of submission time was presented. The submit time was
dependent on the speed of the underlying scheduler’s ability to create new job images. In other
words, for Grid jobs containing little data, the scheduler would be able to create a new job image
in a few seconds. However, as the size of the Grid job increases, the interface tends to perform
poorly as it waits for the scheduler to complete its task. In production Grid environments, such
a latency could not be tolerated and this is a known limitation of the interface. The Future
Work section will elaborate on some of the ways in which these limitations could be overcome.

74

Case Study
PSDL
Gen.

Data
Size
(MB)

Runs Submit
Grid
Real

Grid
Total

Serial
Total

Whetstone Benchmarks 0.26 0.6 50 1.5 ∼1867 ∼2248 ∼45757
Whetstone Multi-OS 0.25 0.6 50 1.5 ∼1925 ∼2279 ∼45887
Text Indexer 1.9 90 500 25 ∼1024 ∼1649 ∼6832
Audio Converter 3.0 4750 500 1036 ∼1718 ∼2438 ∼53166
Distributed Rendering 0.7 783 89 107 ∼1320 ∼1680 ∼13920

Table 6.6: Summary of case study performance data (time reported in seconds)

6.9 Summary

This chapter has provided an overview of five case studies that were conducted by making use
of the Web interface. The aim of these studies was to provide evidence for the “completeness”
of the interface as a tool for the creation of real-world parameter sweep applications on a Grid.
Since it is not possible to prove that the interface is complete, nor possible to claim this without
supporting evidence, these case studies provide strong evidence in support of the interface’s
parameter sweep capabilities. The case studies have shown the flexibility of the interface in
terms of its capacity to handle varying job types. Although the ways in which each of the case
studies has been specified are similar, the software dependencies and arguments differed greatly.
Furthermore, the sizes of the jobs were varied in order to test various elements of the interface
for robustness. The ability of the interface to handle each of these varying requirements, with
very little change to the process of creating and submitting jobs, provides evidence as to its
capability of successfully handling different classes of parameter sweep applications. For com-
parison, Table 6.6 reports the timing results obtained from all case studies.

75

Chapter 7

Evaluation

7.1 Introduction

Chapter 6 gave an overview of 5 case studies that were used to evaluate the Web interface de-
signed as part of this research in terms of its ability to accommodate varying types of real-world
applications. By increasing the complexity of each case study in turn, the interface was evalu-
ated in terms of completeness. As mentioned in Section 6.1, completeness of the system in this
instance is defined as a system that includes all the necessary parts or elements needed to deploy
a typical parameter-sweep Grid application. For a system designed with human interaction in
mind, however, such a set of case studies, although important, is not sufficient by itself. It
was therefore necessary to perform a thorough set of user evaluations in order to determine if
the design was successful in terms of usability and intuitiveness. Furthermore, although such
an interface might be found to be usable, intuitive and support all the features of parameter
sweep applications expected by users, it might still perform poorly. Since one of the aims of this
research was to create a lightweight interface, it was deemed necessary to evaluate this aspect
of the system.

This chapter will present the evaluation of the Web interface from two perspectives, namely
user and performance evaluation. The results from both of these evaluations will be discussed
in isolation followed by a summary of the results in their entirety.

7.2 User Evaluations

One of the questions this research attempts to answer is if it is possible to create an interface
to a Grid scheduling system with a high degree of usability. In an attempt to answer this
question, various rounds of user consultations, prototyping and evaluations were conducted.
These processes were, however, conducted before the software implementation phase. In order
to verify that the implementation of the Web interface resulted in a system with a high level of
usability and intuitiveness, a final round of user evaluations was conducted. This section will
provide an overview of the test subject selection process, a detailed discussion of the experimental
design, statistical analysis techniques as well as the results obtained from these analyses.

7.2.1 Population and Evaluation Environment

Before any user evaluation strategy was contemplated, test subjects had to be chosen. Highly
computer literate students from the Science and Engineering domains were recruited. This study
has assumed that most research scientists have an average to above average degree of computer
literacy, therefore the sole use of Science subjects is unlikely to bias results significantly.

76

24 students were selected to participate in the user evaluations. According to Nielsen et
al. [Nielsen & Landauer, 1993], only 16 evaluations would be worth their cost in finding be-
tween 75% and 100% of the usability problems with an interface. The number of test subjects
selected for the experiment is therefore well above the recommended minimum. Furthermore,
Nielsen also states that more evaluations should be conducted depending on the level of usabil-
ity the system is aiming for. By selecting 24 subjects, 57% more than necessary according to
Nielsen, the number of potential usability problems that could be identified was maximised.

Of the 24 test subjects, 23 were Computer Scientists and one was an Electro-Mechanical-
Engineer. Selection was made in advance by considering Computer Science course results and
selecting only the top 25% of students. These students were contacted via email and self-selected
on a first-come-first-served basis. All subjects were at least in their second year of tertiary level
study. Furthermore, subjects who participated in pre-implementation prototype evaluations (see
Chapter 4) were excluded from this evaluation process. These qualifications and level of study
of test subjects are reported in Table 7.1

Discipline Computer Science 23
Electro-Mechanical-Engineering 1

Academic Level BSc. 2nd year 5
BSc. 3rd year 8
BSc. Hons 7
MSc. 3
MEng. 1

Table 7.1: Test subject discipline and academic levels

The environment in which the test subjects conducted the evaluations needed to be kept con-
stant in order to produce consistent results. Test subjects should never be distracted by other
people and should always be in a quiet environment in order to concentrate on the task at hand.
For this reason, an experiment room was used in order to keep sound levels to a minimum.
Furthermore, test subjects were placed with their backs to the rest of the objects in the room,
thereby eliminating any distractions.

7.2.2 Experimental Design

Section 4.2.1 provided an overview of the minimum requirements that research scientists con-
sulted at the beginning of this study believe an interface to a Grid should have. These include a
mechanism for being able to view the status of the Grid, submit a job to the Grid and monitor
the status of such jobs. The evaluation of the interface was therefore split up into an evaluation
of each of the components providing this functionality. To do so, three independent tasks were
designed, each focusing on one of these initial requirements. Figure 7.1 provides a high-level
view of these three main tasks, along with the sub-tasks that need to be performed for each
independent component evaluation (see Chapter 5 for information on each sub-task). Further-
more, each task was followed by a short questionnaire which enabled test subjects to assess
these components individually. The questions required both written answers as well as answers
to Likert-scale questions. Scaled questions allow subjects to rate levels of usability, intuitiveness
and response time, while questions requiring written answers allow subjects to report on aspects
of the system they liked and disliked as well as allowing for subjective comments on aspects such
as aesthetics and possible improvements.

Even though the three tasks mentioned above formed the basis of the user evaluations, other
important information needed to be gathered at various stages of the evaluation process. For

77

Figure 7.1: User evaluation tasks represented as a flowchart of sub-tasks

78

this reason, a 15 page questionnaire (see Appendix C) was devised, that allowed test subjects to
complete the evaluation in a structured manner. Each section of the experiment / questionnaire
is discussed in more detail in the sections to follow.

Background

The first part of the questionnaire gathered data on the qualifications, research interests and
background information of test subjects. Background on HPC as well as Grid knowledge of test
subjects was gathered in this section. Finally, data on how often test subjects make use of Web
applications such as Gmail, Flickr and Facebook was gathered.

Presentation

At the outset of the experimentation phase, it was expected that test subjects would not be
familiar with the concept of a computational Grid. For this reason an introductory slideshow
on Grids, scheduling systems and parameter sweep applications was presented prior to the eval-
uation. The presentation took the form of an automated, pre-recorded Powerpoint slideshow
of approximately 13 minutes in length. Although an objective of the Web interface is to show
that users without Grid-specific knowledge can make use of a Grid, all users need to understand
basic Grid concepts. The presentation was conceived in such a way that the results of the study
are not affected by the information provided in the presentation. This is due to the nature of
the content present in the presentation being informational and at a high-level.

On completion of the presentation, a questionnaire collected information from test subjects
that assessed their understanding of the information presented in the slideshow.

Grid Status Task

As already mentioned, the assessment of the Web interface was split up into three tasks, each
with its own questionnaire. The Grid status task is the first of these. For this task, test subjects
were instructed to find the Grid status component displaying information related to one of the
Grid pools. Once subjects had found the component, they were required to fill in a table by
extracting the relevant information from the values presented in the component. Finally, test
subjects were asked to provide their interpretation of the icons present in the summary view of
the status component. This task was then followed by a questionnaire.

It should be mentioned that a live Grid status window was not used— instead, only a snapshot
of the Grid at a previous point in time was provided. This approach provides all users with the
same experience and also removes the variable nature of a Grid environment from the study.

Job Submission Task

The second task required test subjects to create and submit a job to the Grid using the Web
interface. The task was outlined in the form of a real-world problem statement and no step-
by-step instructions for completing the task were given. This approach forces test subjects to
understand the task at hand and not simply test their ability to follow instructions.

The audio conversion job presented in Section 6.6 was modified slightly for use in this task
and all input files and binaries were pre-staged. As with the Grid Status task, no jobs were
actually submitted to the Grid, although it appeared this way to the test subjects. Once test
subjects completed the task they were asked to complete a questionnaire similar in structure to
that of the Grid Status task.

79

Job Query Task

The final task required test subjects to monitor the job they had just created and submitted to
the Grid. Even though the job was not actually run on a live Grid, the database entries were
still created at the time the job was launched. Since test subjects were expected to notice status
updates and record these on the questionnaire, it was necessary to update these database entries
while observing the subjects performing the evaluation. This technique is known as Wizard of Oz
testing [Maulsby et al., 1993]. To accomplish this, a script was written to update the database as
the user uncovered certain information, thereby creating the illusion of a fully functional system.

On completion of the task, test subjects were once again requried to complete a questionnaire
with questions similar to those found in the previous two tasks.

General Feedback

The final section of the questionnaire allowed test subjects to comment on the general appearance
of the interface, outline any possible improvements as well as give an indication of any aspects
they liked or disliked. Likert-scale questions that gauged overall responsiveness and similarity
of the interface to other Web applications such as Facebook and Gmail also formed part of this
section.

7.2.3 Analysis Techniques

The data collected during the user evaluation sessions is both quantitative and qualitative. The
quantitative data, as already mentioned, was collected by using Likert scales. Likert scale data,
however, is ordinal (categorical) data, which therefore means that the results from Likert-scale
evaluations need to be analysed by using non-parametric data analysis techniques. Such tech-
niques are generally used for studying data that can take on a ranked ordering. Furthermore,
non-parametric statistical techniques make fewer assumptions about normality of the data being
analysed, thereby providing more accurate results for this type of data [Thomas W. MacFarland,
].

The results section to follow will make use of two main statistical methods to analyse the data
gathered from the user evaluations. The first method, the Wilcoxon-Mann-Whitney U test, is
used for hypothesis testing. This test is a t-test for non-parametric data, used for comparing
two independent samples. The aim of the test is to determine whether a significant difference
exists between two groups. To accomplish this, a null hypothesis is formulated. This hypothesis,
denoted H0, is that two populations have no significant difference between their medians. In
addition to the null hypothesis, the alternative hypothesis is formalised, denoted H1. This hy-
pothesis is the converse of the null hypothesis and expresses the hypothesised result of the test.
In order to reject the null hypothesis, the significance level (p) generated by the Wilcoxon-Mann-
Whitney test is evaluated. This study will use the standard 95% significance level [Underhill
& Bradfield, 2001] as a measure of how well the two distributions converge. If the calculated
P-Value is less than the significance level of p=0.05, the null hypothesis is rejected in favour of
the alternative hypothesis.

The second method that will be used, to determine if correlations between variables exist,
is the Spearman Rank Order Correlation method, also known as Spearman’s Rho. Values of
such correlations range between —1 and 1 where the extremes represent very strong correlations
between the datasets. A correlation of 0 implies no relation between the datasets. The analysis
will assume that any correlation above 0.7 is significant at p<0.05.

80

7.2.4 Results

This section will provide an overview of the results of the user evaluations by providing discus-
sions of the results from each of the sections outlined in the experimental design. A discussion
of the results for the interface as a whole will be presented along with supporting evidence in
the form of statistical analyses.

Test Subject Background Analysis

The main goal of gathering background information on test subjects was to determine how much
knowledge they had of HPC and Grid technologies. To this end, questions specifically requiring
subjects to rate their knowledge of such systems were present in this section. Questions relating
specifically to Grid computing were used to gather data on whether test subjects had used such
environments before or not. The responses to these questions are summarised in Table 7.2.

Knowledge of
Responses

Excellent Very Good Neutral Poor Very Poor

HPC 0 3 13 7 1

Volunteer Computing 0 8 7 5 4

Grid Computing 0 5 12 4 3

Table 7.2: Test subject responses on familiarity with HPC and Grid technologies; n = 24

Statistical Analysis
Descriptive Statistics

Median Minimum Maximum Std dev

HPC 3 1 4 0.73

Volunteer Computing 3 1 4 1.10

Grid Computing 3 1 4 0.93

Table 7.3: Descriptive statistics of HPC and Grid knowledge; n = 24

A statistical analysis of the responses reported in Table 7.2 is presented in Table 7.3. The re-
sults indicate that a large number of test subjects had a below average understanding of Grid
computing concepts. Furthermore, 66% of subjects reported that they were familiar with some
Grid theory, while none had any practical experience with such systems. If it can be shown that
the interface is intuitive and easy to use by the test subjects with little Grid knowledge who
participated in this study, one of the main research questions will have been answered.

When comparing responses to the questions on volunteer computing and Grid computing knowl-
edge, a Spearman Rank Order Correlation test found a strong correlation between knowledge
on these two topics. In other words, given that a person has some level of knowledge on the
topic of Grid computing, it is likely that they have a similar level of knowledge on volunteer
computing. This analysis was then extended to include knowledge of HPC. The Spearmen test
showed that there is no correlation between HPC and volunteer computing / Grid knowledge.
This indicates that having some level of HPC knowledge does not necessarily imply a similar
level of Grid or volunteer computing knowledge. Since some of the test subjects participating in
this study had done a course in HPC, it is unlikely that such subjects would be able to perform

81

better than those that had no HPC knowledge since the results of the Spearman test show a
lack of correlation between HPC in general and Grid knowledge.

The final section of the background questionnaire required test subjects to indicate if they
had ever heard of AJAX, as well as indicate how often they use Web applications such as Gmail,
Facebook or Flickr. Since these applications are heavily AJAX-based, these questions set out
to determine whether test subjects would be able to recognise dynamic elements of an AJAX-
based interface, as well as how often they are subjected to such interfaces on the Web. Of the 24
subjects, 96% had heard of AJAX. This is not surprising, since test subjects were all Computer
Scientists. Finally, of the 24 test subjects, 92% indicated that they made use of Web applications
such as Gmail or Facebook daily, while the other 2 use such applications less frequently.

Presentation Analysis

In order to provide test subjects with some level of basic Grid knowledge necessary to understand
the tasks which they would subsequently be given, a presentation was shown to all test subjects.
Upon completion of the presentation, subjects were asked to answer four questions relating to
the presentation. The first two questions asked subjects to rate how well they understood the
content of the presentation in terms of Grid concepts and parameter sweep applications. The
second two questions, which can be found in Appendix C, required subjects to recall information
from the presentation. These questions consisted of statements to which test subjects were asked
to indicate a level of agreement. The results from these four questions are summarised in Table
7.4.

Understanding of
Responses

Excellent Very Good Neutral Poor Very Poor

Grid Computing Concepts 2 18 4 0 0

Parameter Sweeps 10 8 5 1 0

Statement 1 (positive) 5 11 3 5 0

Statement 2 (negative) 1 4 5 10 4

Table 7.4: Test subject understanding of concepts presented in an informative presentation; n
= 24

To determine whether the test subjects understood the information in the presentation, the
results from each question were summed and an overall average taken. The average across
all test subjects for all questions was 78%. This high overall average provides evidence to
suggest that test subjects understood the information they were presented with. The toughest
statement that subjects had to validate received an average score of 79%. Of 24 test subjects,
58% managed to infer the correct answer for the question, and 21% selected a neutral answer
which is technically incorrect (see the bold figures in Table 7.4). Even with this low value, the
overall results provide further evidence to suggest that test subjects understood the contents of
the presentation.

82

Task 1 : Grid Status

After completion of the presentation, test subjects were asked to perform three tasks in line with
the requirements set out initially by the scientists interviewed at the beginning of the study (see
Section 4.2.1). The Grid status task was the first of these tasks. This task consisted of two
sub-tasks, each of which will be discussed in turn.

Sub-task 1 - Information Extraction

The first task required test subjects to locate the Grid status component (see Figure 5.5). They
were then prompted to extract four pieces of information from the component, pertaining to the
status of one of the Grid pools. The first observation that was made during the evaluations was
that many test subjects did not see the component expansion icon (+), thereby getting stuck
at this point. This icon changes the view of a pool from its summary view to its expanded view.
After alerting test subjects to the function of the icon, they were all able to complete the task.
The second observation was that test subjects had difficulty finding the first piece of information
required by the task. They were asked to find the number of machines idle or awaiting jobs.
This refers to the number of machines that are “up” in a particular pool. Test subjects got
confused between this value and the number of cores available in the summary view (see Figure
5.5).

No. Machines
Idle

No. Machines
Down

No. Architec-
tures avail.

No. OSs avail.

13 24 18 18

Table 7.5: Grid Status Task 1 : Number of correct extractions per task; n = 24

The other information required in this task was easily found by most test subjects. 79% of
subjects managed to obtain three or more correct answers for this question. Table 7.5 shows
the number of correct overall data extractions for the first Grid status task.

Sub-task 2 - Icon Interpretation

The second task required test subjects to give their interpretation of the icons present in the
summary view(s) of Grid pools (see Figure 5.5). Five icons, each representing a different pool
statistic, are presented in each summary view. Table 7.6 shows how many test subjects correctly
identified each of the icons.

Pool Status Total Pool
Load

Total Pool
Memory

Total Pool
Storage

Total Pool
Speed

5 14 22 22 19

Table 7.6: Grid Status Task 2 : Number of correct icon interpretations; n = 24

As can be seen from the table, pool status and pool load have much lower values than the
other results. The reason for this can be seen in Figure 5.5. Since the first two icons are situated
close together, test subjects did not realise that they were separate. For this reason, many
overlooked the pool status icon and simply gave no interpretation for it. Since test subjects
assumed that the two icons were joined, they could not make sense of what the icon was repre-
senting. A further observation was that these two icons, unlike the rest, do not have any units
of measurement attached to them. Test subjects were able to infer what the other icons were

83

representing with more certainty due to these units being present.

Even with the poor results for the first two icons in this task, the median for number of correct
observations is four out of five. This is an 80% success rate for correctly identifying the status
icons. This provides evidence to suggest that test subjects found the icons intuitive.

Component Evaluation

After the test subjects performed the two tasks discussed above, they were asked to evaluate the
Grid status component in terms of intuitiveness, response time and sensible data presentation.
Tables 7.7 and 7.8 provide a summary and descriptive statistics of test subject ratings respec-
tively.

Rating of
Responses

Excellent Very Good Neutral Poor Very Poor

Intuitiveness 2 14 7 1 0

Response Time 3 13 5 3 0

Sensible Data Presentation 3 15 6 0 0

Table 7.7: Grid status component ratings; n = 24

Statistical Analysis
Descriptive Statistics

Median Minimum Maximum Std dev

Intuitiveness 4 2 5 0.69

Response Time 4 2 5 0.87

Sensible Data Presentation 4 2 5 0.61

Table 7.8: Descriptive statistics of Grid status component ratings; n = 24

As can be seen from the responses, the majority of the scores for all three ratings are in the
“Very Good” category. The standard deviations for each response are less than one, indicating
a high degree of consensus among the ratings of different test subjects. Since the results of the
three separate ratings were so similar, a Spearman correlation matrix was applied to the data
to see if a correlation existed between intuitiveness and sensible data presentation, for example.
The tests showed no correlation, leading to the conclusion that intuitiveness is not dependent on
either response time or sensible data presentation. One can only speculate why this is the case—
a possible explanation for this observation could be that test subjects evaluated intuitiveness by
comparing the Grid interface to other more familiar interfaces.

Discussion

The results for the Grid Status task indicate that test subjects not only found the Grid status
component intuitive to use, but that even with limited Grid knowledge, they were able to make
sense of the information presented in the component. As already mentioned, a few problems

84

were encountered during the evaluation sessions. These problems, however, did not lead to poor
ratings of the component, thereby indicating that these problems were minor. Furthermore,
test subjects were requested to provide feedback in the form of comments and suggestions for
improving the component. Approximately half of the test subjects indicated that tooltips at-
tached to icons on the Grid status page would help significantly in improving the readability of
the summary bar. Furthermore, subjects indicated that adding appropriate spacing between the
icons, as well as automatically scaling the units of measurement associated with each icon (i.e
KB to MB) would make the component more readable. Other suggestions included the provision
of a mechanism for making the expansion icon (+) appear clickable, providing a timestamp on
the last update of Grid status information as well as a loading “spinner” to alert users to the
fact that components are being updated or retrieved. Since the nature of these comments are
restricted to component improvements, there is further evidence to suggest that the design of
the Grid status component was well received by test subjects.

Task 2 : Job Submission

Sub-task 1 : Job Creation and Launching

The second step in the usage scenario, depicted in Figure 7.1, is the creation and submis-
sion of a Grid job. For this task, test subjects were provided with a short problem statement
which outlined the nature of a Grid job which they were to submit to the Grid. Furthermore,
no step-by-step instructions were provided, thereby making it possible to identify problem areas
in the design of the interface. No explicit results were expected from test subjects other than
completing the task. However, observational data was gathered.

All test subjects, apart from one, were able to complete the task. The reasons for this test
subject not being able to complete the task are unclear as the subject did not provide any in-
dication as to why she failed to complete it. The subject did indicate that she understood the
problem statement, so this can be ruled out as the cause. Due to the nature of the failure being
unclear, and taking the ambiguity of her responses into account, these responses were excluded
from the study.

During completion of the tasks, a few interface usability problems were observed. The first
problem was that many test subjects neglected to select an architecture from the filtering wiz-
ard (see Figure 5.7). Although all subjects quickly selected the “Linux” operating system as
per the problem statement, it seemed as though they did not spot the architecture list. A pos-
sible explanation for this is that the selection boxes are in close proximity to one another, thus
causing confusion as to where one set of functions ends and another starts. After informing
subjects that they were to select an architecture from the list, many noted that they simply
did not see the option. The second problem was noted with the file browsing window. Since
files in the window were not highlighted when selected, test subjects were unclear as to whether
the files were indeed selected or not. This problem, however, can be solved easily. The last
major problem occurred during the argument enumeration step (see Figure 5.11). Since the
argument fields make use of textboxes in “read-only” mode, test subjects assumed they had to
enter the argument information into these textboxes. On attempting to enter data into these
fields, nothing happened and test subjects became confused. By changing the appearance of the
fields, this problem can be overcome.

On completion of the task, test subjects were asked to indicate how well they understood the
problem statement. The majority of test subjects answered positively, with 92% of subjects
understanding the task with greater than an 80% level of confidence. One test subject, however,
rated his understanding of the task as “very poor”, but was able to complete it successfully.

85

The ambiguity present in his response, as well as the large deviation from the sample mean, led
to his results being excluded as an outlier.

Component Evaluation

As with the previous task, upon completion, test subjects rated the task according to the
categories presented in Table 7.9. In addition to the three ratings present in the previous task,
test subjects also were asked to rate the level of intuitiveness of the filtering and argument enu-
meration wizards. Since these wizards are the most complex in terms of the Grid job creation
process, their level of intuitiveness is important in relation to the entire wizard. Tables 7.9 and
7.10 provide a summary and descriptive statistics of test subject responses respectively.

Rating of
Responses

Excellent Very Good Neutral Poor Very Poor

Overall Intuitiveness 2 9 9 1 1

Response Time 6 8 8 0 0

Intuitiveness of Filtering Wiz-
ard

7 9 5 1 0

Intuitiveness of Argument
Enumeration Wizard

2 11 5 4 0

Sensible Data Presentation 4 9 8 1 0

Table 7.9: Job creation component ratings; n = 22

Statistical Analysis
Descriptive Statistics

Median Minimum Maximum Std dev

Overall Intuitiveness 3 1 5 0.91

Response Time 4 3 5 0.81

Intuitiveness of Filtering Wiz-
ard

4 2 5 0.87

Intuitiveness of Argument
Enumeration Wizard

4 3 5 0.91

Sensible Data Presentation 4 2 5 0.82

Table 7.10: Descriptive statistics of job creation component ratings; n = 22

Although test subjects rated the most complex components with a higher than average level
of intuitiveness, the results make it clear that something else in the interface caused them to
rate it lower overall. The cause for this low rating is most likely to be the problems already
mentioned. One test subject rated the interface as having a “Very Poor” overall level of intu-
itiveness. This test subject struggled with the argument enumeration step in the wizard, evident
from his “Poor” rating of the component. It is therefore likely that a bad experience with one
step in the wizard leads to lower overall ratings for the entire component. 17% of test subjects
rated the argument enumeration wizard as “Poor”. Since this wizard was designed specifically
with parameter sweep applications in mind and attempts to mimic a UNIX-like command line,
it is likely that test subjects were unable to identify with this metaphor. This is evident from the

86

large number of test subjects attempting to enter the arguments manually in the textboxes as
discussed at the beginning of this section. A lack of Linux or command line scripting knowldge
could also be the reason for the “Poor” rating.

Discussion

Even with the low component ratings mentioned so far, the statistical analysis presented in
Table 7.10 shows that an overall rating of “Very Good” was obtained. This suggests that the
Job Submission wizard is intuitive to use, even in the face of a new type of component that most
test subjects would never have encountered before, namely the argument enumeration wizard.
The response time and data presentation were all highly rated, providing further evidence in
support of this claim.

As with the previous task, test subjects were asked to comment on the interface and provide
suggestions as to where the component could be improved. As expected, 46% of test subjects
suggested improving the file browser to allow for highlighting of files when clicked. As men-
tioned at the beginning of this section, many test subjects got confused when file names were
not highlighted and needed reassurance that the correct file was selected. 13% of test subjects
indicated that strategic placement of tooltips would help to prevent confusion in the face of
many available options. The filtering wizard (see Figure 5.7) would be an ideal candidate for
the addition of tooltips, for example. Finally, a few subjects indicated that improvements to the
argument type names would help prevent confusion between the different file types.

Apart from the obvious usability problems highlighted by test subjects, possible future en-
hancements were also pointed out. Features such as a final summary of the job before it is
created, automatic addition of spaces between arguments, allowing for manual argument entry
and improvements to current buttons were noted. Finally, some test subjects thought it would
be a good idea to make the progress icons at the bottom of the job creation wizard clickable.
This would allow these buttons to be used for navigation and also for quickly moving among
the various steps in the wizard.

As with the previous task, the majority of the comments are restricted to component improve-
ments. Since no test subjects mentioned any drastic changes to the design of the interface,
as well as the high ratings the component obtained, it can be concluded that the design was
reasonably successful.

Task 3 : Job Monitoring

Sub-task 1 : Monitoring

The final task in the usage scenario, depicted in Figure 7.1, is the monitoring of the job submit-
ted to the Grid. Test subjects were asked to locate the job status component and then record
information present in the component. After the status was recorded, they were to refresh
the component and record any further status changes. Before each refresh, the contents of the
database was updated by the evaluator (recall the Wizard of Oz approach discussed earlier).
Once test subjects were satisfied that the system provided a clear indication that the job had
completed with no errors, the task was deemed complete. If errors were encountered, subjects
were instructed to remove the offending sub-job(s). As with the previous task, no explicit results
were expected from test subjects other than the successful completion of the task. However,
observational data was once again gathered.

All test subjects were able to successfully locate the job status component. However, some

87

subjects took some time to realise that jobs in the status window were collapsed by default and,
as with the Grid status task, did not see the expansion icon (+). Furthermore, since the job
monitoring component makes use of two job deletion mechanisms— one to delete an entire job
and one to delete sub-jobs— test subjects got these two confused. Test subjects attempting to
remove a failed sub-job made use of the complete job removal feature, thereby deleting their
entire job. This was the biggest problem noted during the completion of this task, but can easily
be fixed by way of tooltips and help functionality, or a restructuring of the deletion components.

Component Evaluation

Upon completion of the job monitoring task, test subjects were once again instructed to rate the
task. Tables 7.11 and 7.12 provide a summary and descriptive statistics of test subject responses
respectively.

Rating of
Responses

Excellent Very Good Neutral Poor Very Poor

Intuitiveness 5 12 7 0 0

Response Time 2 13 6 3 0

Sensible Data Presentation 7 16 1 0 0

Table 7.11: Job monitoring component ratings; n = 24

Statistical Analysis
Descriptive Statistics

Median Minimum Maximum Std dev

Intuitiveness 4 3 5 0.70

Response Time 4 2 5 0.83

Sensible Data Presentation 4 3 5 0.53

Table 7.12: Descriptive statistics of Job monitoring component ratings; n = 24

As can be seen from the tables, the results are similar to those of the previous two tasks.
Since the median is categorised as “Very Good”, there is evidence to support the claim that
the Grid monitoring component is intuitive and has a sensible data layout. The response time
scores, when looking specifically at the standard deviation, are not as compelling. Since the
component takes a long time to refresh, test subject responses reflected this.

Discussion

As mentioned in the previous section, one of the main problems with the job monitoring in-
terface was its slow response time when being refreshed. Since test subjects were Computer
Scientists, many mentioned some possible solutions to this. The first solution is to have the
component automatically refresh as the status of jobs change. It was also suggested that this
idea be taken further by refreshing only the jobs that have updated. Although this is by far a
more complex solution when compared to the current implementation, it will have the positive
effect of decreasing overall bandwidth as well as improving the responsiveness of the interface
upon such a refresh. Since the slow speed has to do mainly with the choice of toolkit widgets,
namely a grid component, choosing a component with less overhead also could potentially in-

88

crease the refresh speed.

Deleting jobs was another major problem that was identified with this component. The in-
terface allows for two ways of removing jobs. The first method allows a user to manually select
sub-jobs and delete them by making use of the “Apply Changes / Refresh” button (see Fig-
ure 5.14). The second method allows for the deletion of an entire job by specifying the job
number (see Figure 5.14). As already mentioned, test subjects found this mechanism ambigu-
ous and it was often observed that the latter method was used to attempt to delete individual
sub-jobs. For this reason an alternative unambiguous deletion mechanism needs to be instituted.

Many of the other suggestions by test subjects were made to improve the usability of the com-
ponent. Many test subjects noted that providing an overall status of a job as opposed to the
status of all sub-jobs within a job would be more useful, decrease refresh time and also make
better use of screen space. Furthermore, it also was suggested that the interface display noti-
fications on the status of the job in the right-hand panel. If a job is started or cancelled, for
example, such a notification could inform a user without the user having to make use of the job
monitoring component. The job status component would therefore only be used for the purpose
of troubleshooting and retrieving more detailed job information. Further suggestions include
the use of colour as opposed to merely textual information to display the status of a job and
listing jobs in error at the top of the list.

Overall Results

The above sections have presented an overview of the results from the user evaluations of each
of the interface components in isolation. This final section aims to tie together the results
from the previous sections as well as present the final thoughts of test subjects with respect
to the interface as a whole. This section will start by evaluating overall intuitiveness, response
time and sensible data presentation for the system as a whole. Finally, an overview of the entire
interface from the perspective of test subjects, in the form of general feedback, will be presented.

Usability

In order to determine how the interface performed overall in terms of both usability and perfor-
mance, the average result for intuitiveness, response time and sensible data presentation across
all three tasks was calculated. The descriptive statistics for these averages can be found in Table
7.13. These results also can be seen in the Box and Whisker plot displayed in Figure 7.2.

Statistical Analysis
Descriptive Statistics

Median Minimum Maximum Std dev

Intuitiveness 3.66 2.33 4.66 0.51

Response Time 3.83 2.33 4.66 0.67

Sensible Data Presentation 4.0 3.0 4.66 0.46

Table 7.13: Descriptive statistics for average over all tasks; n = 24

As can be seen from the plot as well as the statistics, the standard deviation for all three metrics
is reasonably low (less than 1). This indicates that there was little variation in the responses
from test subjects. Furthermore, as can be seen from the plot in Figure 7.2, there also is little
variation among the three independent variables across all three tasks. The high ratings pro-
vide strong evidence to suggest that the interface has an above average degree of usability and
response time. Furthermore, the ratings suggest that the way in which data is presented in the

89

Figure 7.2: Box and Whisker plots of intuitiveness, response time and data presentation for the
entire Grid interface

interface is sensible and easy to interpret, thus providing further evidence to support the high
usability ratings presented in the previous sections.

General Feedback

Once all three tasks were completed, test subjects were asked to answer a few questions on
issues such as aesthetics, features they did and did not like, overall responsiveness, as well as
overall comments and suggestions. The results from this section are presented in Table 7.14.
Note that in this case, n = 22, as two test subjects neglected to answer the general feedback
questions. As can be seen from the statistical results presented in Table 7.15, test subjects re-

Rating of
Responses

Excellent Very Good Neutral Poor Very Poor

Overall Responsiveness 1 14 4 3 0

Level of dynamic functionality 4 10 6 1 1

Table 7.14: Overall interface ratings; n = 22

ported above average results for the overall responsiveness of the interface. The result reported
for overall responsiveness is in line with the average response times over all three tasks reported

90

Statistical Analysis
Descriptive Statistics

Median Minimum Maximum Std dev

Overall Responsiveness 4.0 2.0 5.0 0.789542

Level of dynamic functionality 4.0 1.0 5.0 0.984732

Table 7.15: Descriptive statistics overall interface ratings; n = 22

in Table 7.13. This result therefore strengthens the analysis presented in the previous section
and provides further evidence to support the claim that the overall responsiveness of the inter-
face was deemed to be more than adequate by test subjects.

Recall from the test subject background analysis that 96% of test subjects had heard of the
AJAX Web development paradigm. This result is important at this point in the analysis in
order to determine if the interface successfully made use of AJAX principles in order to present
users with a more intuitive interface. From the results presented in Table 7.15, it can be seen
that test subjects deemed the interface to be highly dynamic. Since test subjects were able to
observe the dynamic elements of the interface in action while using the interface to complete
the tasks set out in the questionnaire, this rating provides evidence to suggest that the use of
AJAX was well received by test subjects.

In addition to the Likert scale questions, test subjects were asked to provide general sugges-
tions and comments about the interface as a whole. The questions in this section were split up
into a few groups, namely: general aesthetics; improvements; and likes and dislikes of interface
components. The results from each of these groups will now be discussed in more detail.

General Aesthetics

The general consensus on the part of test subjects was that the interface is clean, easy to un-
derstand due to its structure and, to quote a user, “very attractive and appealing, clear menu,
workspace and areas familiar to even a new user”. Other comments made by test subjects were
that the interface fits in well with that of the Web browser’s own interface and that effects
such as those present on tabs make the system appear professional and “finished off”. On the
negative side, some test subjects noted that since the interface is a very specialised tool, novices
might have trouble understanding it due to it being somewhat technical. Since the interface
is a scientific tool that is not intended to be used by people without some basic level of HPC
knowledge, the presence of technical information is unavoidable. What has been determined by
test subjects, however, is that the layout and presentation of this technical information has been
done in an intuitive way. Finally, one test subject also noted that the size of the font could be
increased. Since the interface requires that a large amount of information be displayed, the font
size was decreased in order to allow for more efficient use of screen space. This tradeoff cannot
easily be overcome without impacting the usability and sensibility of the data displayed on the
interface.

Improvements

As mentioned in the previous section, the interface was well received by test subjects. However,
some possible improvements were brought to light. These were mostly of a minor nature. The
main concerns had to do with notifications and alerts. Test subjects noted that the interface
should dynamically alert users to job status changes by displaying updates in the right-hand

91

pane. During the design phase of this research project, this pane was envisioned to perform
this function, but this feature was not implemented due to time constraints. The next major
improvement suggested by many test subjects was the use of documentation to assist with the
use and understanding of the functionality present in the various components. Furthermore, the
prolific use of tooltips and legends to make the understanding of icons and buttons clearer also
was suggested. Other minor suggestions included improving the visibility of links so as to be
able to tell them apart from static text such as labels.

Likes and Dislikes

As already mentioned, the most appealing aspects of the interface to test subjects are that
it has a clean look, is dynamic and responsive. Furthermore, test subjects mentioned that the
data presentation was clear, again providing evidence in support of the findings presented earlier
(see Figure 7.2).

In terms of dislikes, one of the most commonly mentioned problems with the interface is that it
did not have enough help functionality. As mentioned earlier, tooltips and more general docu-
mentation on the use of each component would make the interface much more usable. Similar
comments were made about the icons used in the interface. Without appropriate tooltips it can
become difficult to make out what each one does. Comments made during this section were
focused more on the improvement of the interface than actual problems.

92

7.3 Performance Evaluation

The user evaluations have only provided evidence to support the hypothesis that the Web in-
terface is intuitive and usable as a tool for submission and monitoring of parameter sweep Grid
applications. Although such an interface can be shown to be easy and intuitive to use, it can
also perform poorly in terms of perceived speed, bandwidth and latency when compared to other
design paradigms such as the traditional Web development paradigm. It is for this reason that
evaluation of performance was conducted.

A common selling point of the AJAX-based approach as an alternative development technique
is that it is more bandwidth efficient. The claim is that by reducing the amount of traffic
attributed to traditional full page refreshes, as well as a perceived speed increase due to its
dynamic loading properties, the AJAX approach is superior. One cannot, however, simply take
such claims on face value. In practice, many different toolkits are used for the development
of AJAX-enabled Web applications. Since a toolkit could be poorly designed or make use of
inefficient algorithms, it is possible that the full potential of an AJAX approach would not be
realized. For these reasons, a study was conducted to measure the performance of the Web
application developed as part of this research, primarily in terms of bandwidth efficiency and
latency. Such performance evaluations are generally used to show how one system compares to
another in terms of some pre-defined set of criteria. In order to evaluate the Web interface, this
was not possible. Since only one version of the interface exists, i.e the AJAX version, there is no
suitable candidate to which to compare the interface. Furthermore, building a duplicate system
using a traditional development approach was considered wasteful, therefore prompting the use
of the simulated analysis technique. Such an analysis simulates how the AJAX interface would
operate if the traditional development approach was used instead.

This section will discuss the techniques used to quantitatively evaluate the performance of
the AJAX Web interface as well as a simulated analysis of a Web interface developed using
a traditional approach. Finally, the results obtained from these evaluations will be discussed.

7.3.1 Methodology

Before any performance evaluations could begin, it was necessary to outline a usage scenario for
a typical Grid interface. By returning to the initial set of requirements outlined by the scientists
interviewed at the beginning of this research project (see Section 4.2.1) a Grid job submission
and monitoring scenario was decided upon (see Figure 7.1). This scenario consists of three
tasks, namely: Grid status examination; job submission; and finally job monitoring. Each of
these tasks was then broken down even further into sub-tasks which are numbered accordingly.
The usage scenario depicted in Figure 7.1 is identical to that used during the user evaluations
discussed in the previous section.

Once the usage scenario was finalised, each sub-task was evaluated in terms of its constituent
data components. To do this, the Firebug [Lerner, 2007] tool was used. Firebug is a Mozilla
Firefox [Hipson, 2005] plugin that provides a wealth of information as a page is loading, by
breaking up the data communication into its constituent components. Figure 7.3 shows a typi-
cal Firebug display as a Web application is loaded into the browser. The page elements that are
loaded also are visible as well as the times taken to load each individual element. As can be seen
from the toolbar present at the top of Figure 7.3, Firebug provides data on the size of each of
the HTML, CSS, JavaScript (JS), AJAX (XHR), image and Flash components of a client-server
communication. Each of these components was recorded separately for each of the sub-tasks.

For the AJAX interface, obtaining this information was as trivial as loading the Web appli-

93

Figure 7.3: Firebug in action during interface loading

cation and recording the values present for each of the components displayed by Firebug. For
the simulated analysis, however, it was necessary to make a number of assumptions in order
to generate data based on a traditional Web application development model. It was therefore
assumed that had the interface been HTML-only:

1. the menu pane would be located in a separate frame on the left side of the interface and
would therefore not be loaded each time a page is updated

2. no JavaScript or dynamic components would be present

3. the initial CSS file would be served only once and would then be resident in the browser’s
cache

4. as with the AJAX interface, each unique image would be taken into account only once and
would then be retrieved from cache

5. unlike the AJAX interface, no overlapping windows would be used and therefore the main
display area would be updated after each task

6. certain elements such as the argument selection popups would be opened in new windows
thereby reducing page load times

With the above assumptions in place, the same Firebug-based evaluation procedure was followed
as with the AJAX interface. The data generated by Firebug was then used to build a model of
a traditional Web interface by excluding extraneous parts and considering only those parts that
would contribute to the particular task being displayed. In other words, all dynamic content
was removed, leaving only data attributed to the static content for each sub-task. The size of
these filtered pages was then recorded instead of those reported by Firebug.

94

Requests HTML CSS JavaScript XHR Images Total
1 67 / -1 42.2 / 28.9 6 / 6 64 / 0 0 / 0 137 / 137 211 / 171.9
2 2 / -1 0 / 22.4 0 / 0 0 / 0 2 / 0 0.679 / 5.74 2.679 / 27.98
3 2 / -1 0 / 13.21 0 / 0 0 / 0 2 / 0 0.679 / 0.69 2.679 / 13.89
4 21 / -1 0 /13.29 0 / 0 7 / 0 2 / 0 286 / 34 293 / 47.29
5 1 / -1 0 / 13.75 0 / 0 0 / 0 0.2 / 0 0 / 0 0.2 / 13.75
6 3 / -1 0 / 26.84 0 / 0 0 / 0 1 / 0 0 / 43 1 / 69.84
7 1 / -1 0 / 12.94 0 / 0 0 / 0 0.71 / 0 0 / 37 0.71 / 47.94
8 12 / -1 0 / 21.99 0 / 0 0 / 0 5 / 0 9 / 11.735 14 / 33.725
9 1 / -1 0 / 39.39 0 / 0 0 / 0 0.144 / 0 0 / 40.733 0.144 / 80.123
10 3 / -1 0 / 21.99 0 / 0 0 / 0 4 / 0 0 / 0 4 / 21.99
11 1 / -1 0 / 49.34 0 / 0 0 / 0 0.143 / 0 0 / 40.618 0.143 / 89.96
12 6 / -1 0 / 27.14 0 / 0 0 / 0 4 / 0 0.303 / 0 4.303 / 27.14
13 3 / -1 0 / 28.55 0 / 0 0 / 0 3 / 0 0 / 0.678 3 / 29.23
14 7 / -1 0 / 29.96 0 / 0 0 / 0 7 / 0 0 / 0 7 / 29.56
15 2 / -1 0 / 12.94 0 / 0 0 / 0 0.282 / 0 0 / 40 0.282 / 52.94
16 3 / -1 0 / 12.95 0 / 0 0 / 0 1.09 / 0 0 / 0 1.09 / 12.95
17 38 / -1 0 / 20.23 0 / 0 0 / 0 13 / 0 0 / 4 13 / 20.23
18 12 / -1 0 / 43.54 0 / 0 10 / 0 18 / 0 4 / 4 32 / 47.54
19 2 / -1 0 / 50.54 0 / 0 0 / 0 0.229 / 0 0.064 / 0.064 0.293 / 50.54
20 1 / -1 0 / 43.54 0 / 0 0 / 0 18 / 0 0 / 0 18 / 43.54

Table 7.16: Performance data for the AJAX and traditional interfaces.

7.3.2 Results

The data generated during the Firebug-based user evaluations is shown in Table 7.16. The val-
ues on the left side of the “/” are associated with the AJAX interface, whereas the values on the
right refer to the hypothetical simulated HTML-only interface. Since the simulated interface,
as per the assumptions, has no dynamic components, the JavaScript and XHR columns have
zero values. Similarly, there is no data associated with the requests column for the simulated
analysis due to such data being unavailable, hence the “-1” values.

To make sense of the data present in Table 7.16, Figure 7.4 shows a cumulative bandwidth
plot for the interface usage scenario for both the AJAX and simulated interfaces. From the
graph it is clear that the AJAX interface rapidly begins to outperform the simulated interface.
The reason for this is that the AJAX interface does not reload data that doesn’t need to be
updated. The XHR calls, together with JavaScript’s capability of manipulating the DOM tree
in the browser dynamically, reduces the overall bandwidth consumption of the Web application.
Therefore, by the time the user is three quarters of the way through a job creation procedure
(sub-task 10), the interface becomes more efficient than its HTML-only counterpart. One thing
to note in the figure, however, is the peak at sub-task 4. Since the way in which the AJAX
application was developed causes the job creation wizard to be downloaded in its entirety when
the wizard is activated, a large peak can been seen at this point in the graph. The reason
for choosing such an approach is to allow for an uninterrupted job creation procedure, thereby
preventing a user from losing focus on the task at hand while creating his/her job.

Since the bandwidth reduction techniques of the AJAX-based development approach are com-
pounded over time, Figure 7.5 shows the effect of a longer usage session on overall bandwidth
usage. The graph shows four consecutive iterations of the usage scenario described above. The
vertical lines in the graph indicate the beginning of a new iteration. As can be seen from the

95

Figure 7.4: Cumulative bandwidth usage of the AJAX interface vs. an identical hypothetical
non-dynamic HTML-only interface for the interface usage scenario

Figure 7.5: Cumulative bandwidth usage of the AJAX interface vs. an identical hypothetical
non-dynamic HTML-only interface for four consecutive repetitions of the interface usage scenario

graph, the bandwidth usage over a longer period of time is greatly reduced by using an AJAX-
based approach. In the graph, images and CSS were assumed to be cached for each successive
iteration of the usage scenario.

The graphs so far have shown the benefits of the AJAX-based approach in terms of band-
width usage. However, with lower bandwidth consumption comes decreased latency, especially
over slower network connections. Figure 7.6 shows the non-cumulative bandwidth consumption
of the usage scenario outlined above. From the figure it is clear that by using the AJAX ap-
proach, a fully loaded interface (as from step 5 onwards) shows a significant decrease in data
transfer from the server to the browser. This decreases latency and provides a pleasanter user
experience. It is, however, the case that AJAX makes a larger number of requests than tradi-
tional techniques and could therefore lead to an increase in latency (see Table 7.16). To offset
such large numbers of requests, the way in which the Web application is designed can overcome
this problem. By ensuring that the bulk of requests are made before a user starts interacting
with the application, i.e. as the page is loading, latency issues are not as noticeable.

The results presented in this section show that the AJAX-based approach to Web applica-
tion development has significant advantages in terms of decreased overall bandwidth usage and
latency. The results show that an AJAX-based approach, although seemingly more heavyweight
in terms of its dynamic nature and underlying JavaScript core, is in fact more lightweight than

96

Figure 7.6: Discrete bandwidth consumption of the AJAX interface vs. an identical hypothetical
non-dynamic interface for the interface usage scenario

traditional development paradigms.

7.4 Summary

This chapter has presented two methods used to evaluate the interface designed as part of this
research. The first method— the user evaluations— aimed to gauge user responses towards the
interface in terms of usability, response time and data presentation. Test subjects were asked to
complete a series of tasks and then provide feedback by filling out a questionnaire. The results
from these evaluations were positive and provide evidence to suggest that the initial objectives
set out in Chapter 1 were met. Test subjects gave above average ratings for usability, sensible
data presentation as well as response times for each of the tasks in isolation and similar responses
for the interface as a whole indicating a good degree of consistency in the results.

The second method— the performance evaluations— were used to determine how well the in-
terface responded to user requests by making use of a typical usage scenario. This scenario took
the form of a job submission and query cycle and was designed to provide results indicative
of real-world usage. The results of these tests were then compared to a simulated analysis of
an HTML-only interface. The results from these experiments provide conclusive results which
prove that the AJAX-based interface is more efficient than an HTML-only interface during the
course of a typical usage scenario, both in terms of response time and bandwidth efficiency. The
lightweight objective set out in Chapter 1 has therefore been achieved.

97

Chapter 8

Conclusion

The usability of scientific software has often fallen by the wayside as the design and implemen-
tation of new features is considered to be a more important objective. The lack of usability
of such systems therefore hampers their uptake, somewhat ironically, due to an abundance of
features making the system as a whole difficult to use. This was and currently still is the case
with Grid middleware. For this reason, this research project has investigated how Grid technol-
ogy can benefit from lightweight Web technologies in order to abstract away the complexities
inherent in a Grid by providing users with access to a high-level interface to such systems. In
order to achieve this goal, a Web interface was researched, designed and built using a lightweight
AJAX-based approach. A number of experiments— case studies and user evaluations— were
then conducted in order to determine whether the initial objectives of the research project were
met.

This chapter will provide an overview of the findings from all experiments and evaluations
and draw together the steps taken during the research project to paint an overall picture of the
research as a whole. Firstly, however, the objectives and the way in which they were met will
be discussed.

8.1 Realisation of Objectives

8.1.1 Design and implement a Web interface to a local Grid computing sys-
tem with a high degree of usability

Designing and building an interface is a trivial task. However, building an interface that can
easily be used by novices is non-trivial. For this reason, a process of interviews, paper-prototype
construction and user evaluations of these prototypes was conducted. Only after the prototypes
were evaluated and the appropriate modifications made to the design, was a prototype of the
actual interface developed as software. This design lifecycle was decided upon in order to max-
imise user input during the design process.

Once the final system was developed, a series of prototype evaluations was once again con-
ducted by making use of the final system. The evaluations consisted of three tasks each with its
own sub-tasks. After completion of each task (with or without assistance), users were asked to
score the interface according to three pre-defined metrics, namely: intuitiveness, response time
and sensible data presentation. Furthermore, at the end of the evaluation session, users were
asked to score the interface as a whole according to these same metrics. The aggregate results
across all three tasks was found to be consistent with the scores for the interface as a whole,
thereby strengthening the results generated from the study. These results, reported in Chapter
7, provide evidence to suggest that the interface has a high degree of usability.

98

8.1.2 Ensure that computer literate non-Grid experts are able to make use
of the interface

A crucial part of the success of the interface was to enable non-Grid experts to easily make use
of it without having seen a similar interface before. Since more than half of the test subjects
had little to no knowledge of HPC, the high usability result reported by users, discussed in the
previous section, provides evidence to suggest that the use of the interface is not limited to Grid
experts only. In addition, the high data presentation ratings of the system as well as the clean
graphical nature of the interface appealed to test subjects, accounting for these above average
scores.

8.1.3 Implement the interface in such a way that it is lightweight and makes
use of Web 2.0 techniques

In order to construct an interface that attempts to look and feel like a desktop application,
Web 2.0 techniques were utilised to satisfy this requirement. In order to meet the high usability
objective discussed so far, the interface was designed to look like, act and respond like popular
Web applications such as Facebook, Flickr and Gmail.

In order to achieve the Web 2.0 look and feel as well as meet the objective of building a
lightweight system, an AJAX toolkit was utilised as the core of the system. An AJAX ap-
proach to Web development allows for asynchronous communication between the browser and
the server in order to update only relevant parts of a Web application dynamically. Such an
approach, if implemented correctly, promises to increase the efficiency of the Web application,
reduce server load and decrease request-response times by decreasing the overall bandwidth
requirements of the application. Experiments and simulated analyses confirmed this premise
and showed that the Grid interface built during this research project was, over the course of a
typical Grid job submission and monitoring cycle, more efficient than an HTML-only interface,
in terms of both response time and bandwidth usage. The Web 2.0 techniques, such as the use
of AJAX, have shown that a lightweight interface can be built to an inherently dynamic Grid
job submission and monitoring environment.

8.1.4 Ensure that the interface is extensible by allowing for inclusion of differ-
ent schedulers as “plug-ins” by utilising a component-based approach

Grid computing and scheduling systems, although different, are primarily based on the same
technology. In other words, the process of submitting, monitoring and viewing the status of a
Grid system is identical across most scheduling systems. However, each implementation and the
way in which each of these tasks is achieved is different. For this reason, some vendors (be they
proprietary or open-source) have built portals and interfaces (Web-based and Desktop-based)
for their particular system. Such an approach does provide a much higher level of usability to the
systems in question. However, in real-world environments, many different schedulers managing
different equipment can exist. For this reason, it was deemed important to develop the system
in such a way that different scheduling systems can be “plugged-in” to the interface by writing
a set of scripts. This goal was achieved during the development of this interface, allowing a user
to change from one scheduling system to another by selecting the scheduler of choice from a
drop-down list. This approach has the advantage of providing a central point of development
for scheduling system-independent interface technology as well as providing users with a central
point from which to submit all jobs, irrespective of the scheduler used.

99

8.2 Reflection

Before any of the research objectives could be researched, a test Grid had to be built on which
to base the research. Subsequent to this, an interface to such a Grid system had to be designed
and implemented without having much literature in the Grid domain on which to base decisions.
Current Grid portals and interfaces are merely designed as a means to an end with, what seems to
be, very little research conducted into creating an interface that is both intuitive and has a high
level of usability. For this reason, the process of building such an interface was rather daunting,
particularly since AJAX implementations also are fairly new and have only been used for the
past few years. Bearing all this mind, however, the experience of conducting research where
there were so many unknowns has been a positive one, from both an academic and practical
point of view. This section will present various views of AJAX from both the development
perspective and from a higher level as well as discuss some problems encountered during the
course of this research.

8.2.1 Is AJAX development really different?

As discussed earlier in this dissertation, AJAX is comprised of various technologies, both old
and new. In this regard, development of software using the AJAX paradigm is simply a term
used to describe a Web application developed using these technologies. In this sense, AJAX
development is no different to existing Web development techniques. In terms of technologies
alone, the term AJAX can be considered to be a buzz word. However, the concept of an AJAX
Web application goes further than just the core technologies upon which it relies. The term
AJAX is synonymous with usability, high levels of user interaction, collaboration, lightweight
applications, rich dynamic properties of such applications, efficiency, rich GUIs and much more.
AJAX is therefore an end-user centric paradigm that is used to enhance and deliver content to
the user in a dynamic, unobtrusive and aesthetic manner. The principles upon which the AJAX
paradigm is built therefore makes its use in practice very different from existing development
methodologies.

8.2.2 Will AJAX last?

The future of AJAX, as with any technology, is uncertain and can only be speculated on.
However, as the Web continues to become increasingly popular as a platform for hosting complex
applications with the need for enhancing usability, user centric paradigms such as AJAX will
be a necessity. In this regard AJAX will certainly be a popular choice for development of Web
applications in the future. The question as to whether AJAX will prevail over technologies such
as Flash, for example, is however difficult to answer. Although both AJAX and technologies
such as Flash aim to create rich user interfaces with high levels of interaction and dynamism,
each technology has benefits for the context in which it is used. However, in terms of support,
AJAX provides developers with the peace of mind that most modern day browsers support all
the technologies making up the core of AJAX. The same cannot be said for Flash, for example,
as Flash requires a third-party plugin to be installed before Flash-based applications will run in
the browser.

8.2.3 General Project Problems and Issues

Throughout this research project there have been many problems encountered. These have
been minor problems ranging from the recruitment of test subjects and small programming
snags to major problems such as the complete failure of the primary research cluster. Many
of the experiments and the Grid deployment discussed in this thesis made use of this cluster.
Such unforeseen problems inevitably delay the research process, but provide valuable experience.

100

In terms of the development of the interface itself, the use of AJAX, and in particular the
toolkit, provided a unique set of challenges. Firstly, hand-coded AJAX is extremely tedious
to write due to its complexity and other factors such as cross-browser incompatibilities. For
this reason it was decided to make use of the toolkit already mentioned. Since many of these
toolkits exist, much research had to be conducted by reading articles, blogs and feature lists
in order to make an informed decision on the choice of toolkit. Once the toolkit used in this
research was chosen, the next step was exploring its features and use. Many challenges presented
themselves in this part of the process. Firstly, the toolkit was developed in China and therefore
documentation was not always clear. Secondly, the examples provided on the Web are mainly
for beginners thereby requiring one to make use of forum posts in order to determine how more
advanced features can be used. Thirdly, during development one realises the shortcomings of
a toolkit that could not be anticipated before. All the afore-mentioned obstacles take time
to overcome and thereby increase development time substantially. The conclusion drawn from
developing in AJAX is that one must be careful when choosing a toolkit, especially since it is
practically impossible to convert from one to the other without incurring a significant loss in
time. Furthermore, the level of support provided by the developers of such a toolkit is of utmost
importance. Making use of an outdated or poorly supported framework will almost certainly
lead to problems during the development process. Lastly, one must consider the cost of utilising
a toolkit as opposed to writing hand-coded AJAX. For smaller projects the use of a toolkit is
almost certainly advantageous.

8.2.4 General Conclusions

This research project has shown that it is possible to display a large amount of technical HPC
information in a limited space by making use of the dynamic features provided by the AJAX
development paradigm. Of course, HPC is not the only scientific field that requires much data
to be displayed on screen. The fields of high energy physics, climate modelling and GIS as well
as many other such disciplines often require data to be summarised and displayed to users in an
intuitive fashion. This research has shown, by way of an implementation of an actual system,
the benefits that an AJAX-based Web application can have for use in these fields. Not only does
an AJAX solution allow for information to be hidden and displayed dynamically, but its ability
to update only specific page elements as desired makes it a sound development alternative to
existing methodologies.

101

8.3 Future Work

This research project has much scope for future additions as well as completely new research
topics altogether. An overview of each possible addition and research topic follows:

8.3.1 Interface improvements

Due to the prototypical nature of the interface there is still much room for improvement. One
of the main areas of improvement lies with the argument enumeration step of the wizard. This
component currently takes a directory of input files and uses these files to build a list of parame-
ters for each run of a parameter sweep application, if so desired by the user. However, the wizard
is incapable of recursively traversing directories in order to build runs off of child directories of
the parent directory from which input files are selected. This would be a powerful feature of
the interface as it is often the case that input files have the same file name, but can obviously
not reside in the same directory, necessitating the use of the hierarchical directory structure. A
further extension envisaged would be the ability of the interface to apply a pre-defined operation
or set of operations upon a directory or directories of files. Such an operation, for example, to
apply algorithm A, B, C and D to each of 100 files located in 50 subdirectories would then be
possible. Currently, in order to achieve such an operation using the interface, one would have
to create 50 jobs (1 for each sub-directory) and write a wrapper script to apply each algorithm
to each file in turn. The amount of effort currently required to obtain output from the system
for this type of job would most certainly dishearten users from using the interface.

8.3.2 Interface additions

Load Balancing

The current design of the Grid interface allows users to select the scheduler of choice from a
drop-down menu and then proceed to submit and monitor jobs pertaining to that scheduler.
However, as has been mentioned, an environment can consist of many different schedulers. A
possible future extension to the interface would allow the system to automatically select the best
scheduler for a particular job or have the system automatically submit a job to the scheduler
with the maximum available free resources, provided the job can run on those resources.

Visualization

The Grid status component of the interface built as part of this research is relatively simplistic
and serves to provide a general overview of the status of the pools or clusters of which the Grid
is comprised. However, in order to make this component more visually appealing and intuitive
to users, a visualization of the status of the Grid could be incorporated into the interface. This
visualization could take the form of a 3D-tree view of the Grid itself or a novel view for the
Grid could be created. Due to the dynamic properties of the Grid itself, a visualization for the
Grid could potentially be modelled in a similar way to that of a peer-to-peer network, with the
exception that nodes committed to the Grid are typically committed for a long period of time.
Intelligent grouping of nodes making up one “cluster” or “pool” would be needed to ensure that
users are able to select the approapriate co-located resources upon which their job is to execute.

Notification Panes and Feeds

Many features that were initially scheduled for integration into the interface were not imple-
mented due to time constraints. Features such as dynamic notifications in the right-hand notifi-
cation pane of the interface and RSS feeds, for example, were never implemented. Such features
would make the interface more usable and also provide more of the Web 2.0 functionality that

102

was initially envisioned for the system— functionality that people have grown accustomed to on
the Web.

Mobile Devices

It is often the case that one does not always have access to a PC when travelling or going out
for the day. For these cases, a mobile version of the interface, either pre-loaded onto a capable
handset or streamed via HTTP, would be useful for viewing the progress of jobs. This feature
poses many interesting research questions such as how to display the complex Grid job data on
devices with small displays and how the updating of such data will occur.

8.3.3 Additional Research

Grid Middleware Usability

This research project has abstracted away much of a complete Grid infrastructure by focusing
usability research on local scheduling systems only. In doing so, the scope of the project was
reduced and produced results which suggest that the full suite of Grid middleware could be made
more usable, based on the findings from this abstracted view of a Grid. Future research could
potentially investigate how usability of local scheduling systems differs from that of a complete
Grid.

Browser Desktops

In the current state of Web technology, the browser is used as a mechanism for displaying mostly
static text. Although some Web applications such as Gmail have succeeded in overcoming a
reliance on Desktop email clients, there is still a long way to go in realising a fully browser-based
desktop. Such a desktop would allow one to make use of word processors, email clients, photo-
editing software, CD-burning software, etc, all from within the browser. Such applications could
still leverage the power of a user’s processor but run such applications in a dynamic Web-based
environment. Such an environment would not suffer from the security problems that desktop
computers currently face and would allow updates to occur instantaneously as soon as a new
version of a program is released. As the future of computing becomes more closely intertwined
with the Web, research into this area should start to become more widespread.

103

Appendix A

Paper Prototypes

Chapter 4 discusses the prototype evaluations that were conducted as part of this research. The
aim of these evaluations was to gather user feedback on the Web interface, and in so doing,
manipulate the design to satisfy a more general audience. Only interface components present in
the final design (albeit in a different form) are included in this appendix.

As can be seen from Figure A.1, not much has changed from the initial prototype to the fi-
nal implementation. Since the menu on the left of the interface was well received by users, this
design feature was not altered. Users liked the simplicity and cleanness of the interface and it
was therefore not altered in any way. Some of the components visible in the menu pane are no
longer present in the final interface as these components were not implemented.

The main changes that were made after the prototype evaluations focused on the area of job
submission. Figure A.2 shows some of the initial ideas for choosing a job type at the begin-
ning of the submission process and thereby providing parameter sweep-like functionality in the
interface. This idea was deemed too clumsy and was extended to the argument enumeration
wizard (see Figure A.6) which will be discussed shortly. Furthermore, the job submission win-
dow (see Figure A.3) was modified to take the form of a wizard. This change streamlines the job
submission process into discrete steps and does not leave the user feeling overwhelmed with a
multitude of settings characterised by the initial design. The filtering window (see Figure A.4),
a popup launched from the original submission window, also was modified to form part of the
submission wizard found in the current interface. The panes of which the filtering window was
comprised, however, are still clearly discernible.

One of the major modifications to the design of the interface, and catering exclusively for
parameter sweep applications, was to the argument enumeration window (see Figure A.6). This
window was initially designed to allow a user to build the arguments expected by the applica-
tion from basic components. The components include different file types, flags and numerical
values. This window too was integrated into the job submission wizard, but kept its look and feel.

Figure A.7 shows the initial design of the job query window. Not many interface changes
were made, but the window was changed from a popup window to an embedded tabbed window
during implementation. Finally, Figure A.8 shows a first attempt at a Web-based file manage-
ment interface. The interface seen in the figure was not developed as the WebDAV approach
discussed in Section 5.3.3 was favoured.

104

Figure A.1: Main Interface Layout

105

Figure A.2: Job Type Selection Menu

Figure A.3: Job Submission Wizard

106

Figure A.4: Filtering Wizard

Figure A.5: Argument Settings Popup

107

Figure A.6: Argument Enumeration Wizard

Figure A.7: Job Query Component

108

Figure A.8: File Manager

109

Appendix B

Interview Questionnaire

B.1 Knowledge assessment

• How familiar are you or your department with Grid computing technology?

• Briefly describe your, or your department’s level of experience in either cluster computing,
Grid computing or both.

B.2 Current parallel applications, tools and hardware

B.2.1 Applications

• What kind of parallel problems are you currently running?

• Do these problems parallelize well (i.e embarrassingly parallel) or are they communication
intensive jobs?

• What language(s) is the source code for the above mentioned applications written in?

• What size data collections do these applications process in terms of:

– input size?

– output size?

• How long does the average program run take?

• How long does the longest program take to run?

• How long does a single batch job currently take to complete?

• How many CPU’s are currently being utilized during the run?

• How many resources are consumed on average (particularly disk space and memory)?

B.2.2 Tools

• Do you make use of any batch processing or scheduling software such as LSF, PBS or
Condor?

– If yes, which software suite is used and what type of applications is it used for?

• Do you make use of any Grid software such as Globus or Sun Grid Engine?

– If yes, which software suite is used and what type of applications is it used for?

110

• If you run both cluster software and Grid software, or run multiple types of cluster and or
Grid software, do you have a standard interface from which to run the different software
suites or does each software suite have its own independent interface and or command line
client?

• What kind of cluster tools or protocols do you make use of heavily during the course
of running a parallel application (please include cluster or Grid specific utilities, system
utilities and 3rd party products)?

B.2.3 Cluster architecture

• What type of cluster are you currently utilizing (Beowulf, Rocks, Oscar, home-grown
solution)?

• What operating systems are you currently running on you cluster(s)?

• What system architectures are you currently making use of?

– PowerPC

– X86 (32 bit)

– X86 (64 bit)

– Mac OS

– Windows

• Which, if any, local or distributed data storage solutions or systems do you make use of
(SRB, NFS etc).

B.3 User Interfaces

• Given a choice, would you rather make use of a front-end to a HPC environment or login
to a console and use native OS commands?

• Why would you prefer this option?

• Would you prefer a combination of console-based and interface-based tools or either?

• Do you use any user interfaces that make executing a parallel job any easier? (Web-based
or GUI based)?

• If you make use of some sort of user interface, what do you like most about it?

• If you do not make use of some sort of user interface, what key functionality would you
require or like to see in such an interface?

B.4 Importance of HPC Computing

• How important is HPC to your research?

• Do you think that the use of a campus wide Grid be beneficial to your particular applica-
tion(s)?

111

B.5 Clusters

• What is the size of your department’s cluster and what are the node configurations?

• What percentage of the time, on average, are your clusters utilized?

• Would you be interested in participating in a campus Grid effort (note the conditions
below)?

– Clusters are under complete owner control

– Profiles can be set that allows a job to run after specific conditions are met.

112

Appendix C

User Evaluation Exercise

A lightweight interface to local Grid scheduling
systems

Evaluation Exercise

· Approximate Duration : 30mins ·

113

C.1 Introduction

This evaluation exercise consists of a number of tasks. In order for these exercises to be mean-
ingful, some background information on Grid computing, scheduling techniques and parameter
sweep applications will be provided in the form of a self-paced presentation. After the presenta-
tion, you will be asked a few questions in order to evaluate your understanding of the concepts
you saw in the presentation. You will then have an opportunity to ask questions, after which
you will complete a series of two tasks. These tasks will evaluate components of a Web-based
Grid interface developed as part of this research project and each task will be followed by a
short questionnaire. Finally, you will be asked to answer a few questions on certain aspects of
the interface not related to any of the tasks in particular.

The questionnaires that you will be prompted to complete after each task will require writ-
ten answers as well as questions where the most appropriate answer needs to be selected.

Please note that you are taking part in this exercise on a voluntary basis, purely for academic
purposes, and the observations that will be recorded by means of pencil/pen and paper, as well
as the results thereof, will be confidential. This analysis is strictly based on the tools provided,
and at no point will the focus of the analysis be on you or your computer literacy. Feel free to
ask questions at any time while performing the tasks and you are not obliged to complete any
or all of the tasks, should there be a need for you not to do so.

114

C.2 Background Information

This section of the questionnaire will gather some basic information about yourself and your
level of experience with various technologies. Once again, bear in mind that this is NOT a test.

C.2.1 Qualifications

Please provide some information about your major(s) and/or research interests and year of study
if you are a student.

C.2.2 Parallel Computing

1. How do you rate your knowledge of parallel computing techniques and/or software?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

2. If you answered positively to the previous question, indicate which techniques or software
tools you are acquainted with (please give a high-level description, i.e courses attended,
projects done, etc.).

3. How do you rate your knowledge of volunteer computing projects?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

4. How do you rate your understanding of the concept of Grid computing?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

115

5. If you answered positively to the previous question, indicate whether your knowledge is
constrained to theory only, or theory and practical application of Grid technology.

6. Do you know what a parameter sweep application is?

aaaYes aaaNo

7. Have you ever heard of AJAX?

aaaYes aaaNo

8. How often do you use Gmail, Facebook and/or Google Maps?

116

C.3 Overview of Grid computing

In order to prepare you for the tasks ahead, please ask the evaluator to start an automated
presentation that will give you some background information on Grid computing. The presen-
tation will also provide some information that you will need to submit a job to the Grid in the
tasks to come. When you are done please feel free to ask the evaluator questions relating to the
presentation, then turn the page over and complete the questionnaire. Please do not turn the
page over until you have completed the presentation.

117

C.3.1 Questionnaire : Presentation

1. Please rate your understanding of basic Grid computing concepts in light of the information
presented in the automated lecture.

aExcellent Very Good aaNeutral aaaPoor aVery Poor

2. In light of the presentation, how do you rate your understanding of a parameter sweep
application?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

3. The presentation highlighted the importance of schedulers in Grid environments. How
do you rate the validity of the following statement? “Grid middleware hands off work to
schedulers and does not schedule jobs at the organisational level.”

aExcellent Very Good aaNeutral aaaPoor aVery Poor

4. The presentation highlighted the importance of schedulers in Grid environments. How do
you rate the validity of the following statement? “Execute nodes situated far apart need
not necessarily be connected by Grid middleware since the public internet can connect
them easily.”

aExcellent Very Good aaNeutral aaaPoor aVery Poor

118

C.4 Grid Status Task

Grid computing status systems are important to users as they provide information on the status
of the Grid at the current point in time. Without this status information, users would be
submitting jobs to a “black box” as they would have no way of evaluating the status of the Grid
before they submit jobs. The Grid portal you are to to use provides a mechanism to view the
current status of the Grid. The aim of this task is for you to find this information and answer
some questions before filling out the questionnaire on your experiences with the task.

C.4.1 Task

1. A typical Grid is composed of a number of independent pools which operate as a whole to
solve some problem. These pools, however, can be treated as independent entities and are
therefore treated as such by the Grid interface. Your task is to find status information on
the “HPC Cluster” pool and evaluate the operational status of this pool. Assume that you
have noticed that some of your Grid jobs are taking longer than they should on this pool
and you would like to find out why this is so. The table below will give you an indication
of what information is required. Fill in the table using information gathered from the
interface.

No. of machines
Idle / Awaiting
Jobs

No. of machines
Down

No. of architec-
tures avail.

No. of OSs avail.

2. The status tool provides a way of viewing statistics on each pool in the collapsed view (i.e
before expansion of a component to the summary view. Which statistic do you think each
of the five icons represent? If you do not know what an icon means, please indicate this.

119

C.4.2 Questionnaire : Status Task

1. Were you able to complete this task successfully?

aaaYes aaaNo

2. If you did not manage to complete this task, state why you were not able to do so.

3. How do you rate the intuitiveness of the Grid status component?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

4. How do you rate the response time or speed of the Grid status component?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

5. How easy was it to make sense of the information displayed in the Grid status component?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

6. Do you think that the Grid status component could be improved in any way?

120

C.5 Job Submission Task

Your friend Peter is an avid music fan and he has thousands of audio files. He has just purchased
a new computer but, alas, he has no money for Microsoft Windows as he bought a new set of
speakers as well. Due to these unfortunate monetary circumstances, he has decided to install
Linux on his new computer. He has, however, come to realise that the concept of open-source
software is a great one. For this reason he is getting rid of all his proprietary audio file formats
and, in so doing, needs to convert all his Windows media files to the mp3 format. He does not
know how to do this, so he has approached you. Since you are lazy, you downloaded a script with
some supporting software that would do this for you automatically. However, when Peter brings
you his music collection of 40435 wma files, you realise that you will have to use the university
Grid to convert these as the conversions will take too long on a single computer. To do this,
you have decided to do a test run, and perfect the Grid job before sending off all 40435 files to
the Grid. You have selected 50 wma files and will now proceed to create a Grid job for these files.

Your task is therefore to build a Grid job using the Grid interface to create a parameter sweep
application to submit Peter’s job to the Grid. To do this you have read the manual for the script
you downloaded and have written the following instruction set so you will remember how to use
this script in the future:

“Run the script (written for a Linux operating system on an Intel architecture), called
wmamp3.sh on the command line with the following arguments - 1) the name of the audio file to
be converted - 2) a bit rate in kbps (Peter likes high quality so use 320) - 3) the tar archive with the
supporting files, all space-separated of course. Example : wmamp3.sh beethoven adagio 01.wma
320 encoders.tar”

Now that you have all the information you need, create a new job using the wizard on the
interface. To do this, choose the correct option on the left pane of the interface and follow the
instructions. Once you have created the job, the wizard will exit and you will be able to launch
the job.

C.5.1 Questionnaire : Job Submission Task

1. How well did you understand the task that you were given?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

2. Were you able to complete this task successfully?

aaaYes aaaNo

121

3. If you did not manage to complete this task, state why you were not able to do so.

4. How do you rate the intuitiveness of the job creation wizard in general?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

5. Some of the wizard components you encountered operated in an unconventional manner, i.e
a manner not commonly encountered in similar systems. Indicate below how intuitive you
found these “unconventional” interfaces in the context of a parameter sweep application.

(a) Filtering wizard

aExcellent Very Good aaNeutral aaaPoor aVery Poor

(b) Argument specification wizard

aExcellent Very Good aaNeutral aaaPoor aVery Poor

6. How do you rate the response time or speed of the job creation wizard?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

122

7. How easy was it to make sense of the information displayed in the job creation wizard?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

8. Do you think that the job creation wizard could be improved in any way?

123

C.6 Job Query Task

Now that you have specified and launched your job on the Grid, your friend Peter asks you
to see how far the Grid job is. Use the interface to answer his question. To do this, you will
need to find the part of the interface that displays job information. Once you have found this
component, find the job you have submitted and record its status in the space provided below.
Once you have done this, find the button on the interface that will refresh the window, thereby
updating the information on the job you submitted. Repeat this process until all jobs have
completed. Once you are satisfied that ALL jobs have completed successfully, indicate in the
space below what lead you to this conclusion. If a subjob(s) has resulted in an error, delete
the job(s). Indicate below which subjob(s) failed and which functionality you used to delete the
job(s).

1. Were you able to find the information related to your Grid job?

aaaYes aaaNo

2. If you did not manage to find this information, state why you were not able to do so.

124

3. How do you rate the intuitiveness of the job status window?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

4. How do you rate the response time or speed of the job status window?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

5. How easy was it to make sense of the information displayed in the job status window?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

6. Do you think that the job status window could be improved in any way?

125

C.7 General Feedback

1. Comment on the general aesthetics of the interface.

2. Could the aesthetics be improved in any way?

3. What features/aspects did you like about the interface?

4. What features/aspects did you NOT like about the interface?

126

5. How do you rate the overall responsiveness of the interface?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

6. How strongly would you associate this interface and its behaviour to that of applications
such as Gmail/Flickr/Facebook?

aExcellent Very Good aaNeutral aaaPoor aVery Poor

7. If you have any other comments/suggestions/criticisms, please provide them here.

· THE END ·
· Thank you for participating in this study ·

127

Bibliography

[Abbas, 2004] Abbas, A. (2004). Grid Computing: A Practical Guide to Technology and Appli-
cations. Networking Series. Hingham, MA: Charles River Media.

[Agarwal & Levy, 2007] Agarwal, A. & Levy, M. (2007). The KILL Rule for Multicore. In
Proceedings of DAC Conference (pp. 750–753).: IEEE Computer Society.

[Anderson, 2004] Anderson, D. P. (2004). BOINC: A System for Public-Resource Computing
and Storage. In 5th International Workshop on Grid Computing (GRID 2004), 8 November
2004, Pittsburgh, PA, USA, Proceedings (pp. 4–10).: IEEE Computer Society.

[Anderson et al., 2002] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D.
(2002). SETI@home: an experiment in public-resource computing. 45(11), 56–61.

[Anderson & Fedak, 2006] Anderson, D. P. & Fedak, G. (2006). The Computational and Storage
Potential of Volunteer Computing. CoRR, abs/cs/0602061.

[Angel, 2001] Angel, E. (2001). Interactive Computer Graphics: A Top-Down Approach With
OPENGL primer package-2nd Edition. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

[Bar, 2003] Bar, M. (2003). OpenMosix, a Linux Kernel Extension for Single System Image
Clustering. In Proceedings of Linux Kongress: 10th International Linux System Technology
Conference (pp. 94–102). Saarbrucken, Germany.

[Baru et al., 1998] Baru, C. K., Moore, R. W., Rajasekar, A., & Wan, M. (1998). The SDSC
storage resource broker. In S. A. MacKay & J. H. Johnson (Eds.), CASCON (pp.5̃).: IBM.

[Beckles, 2005] Beckles, B. (2005). Re-factoring Grid computing for usability. In Proceedings of
the UK e-Science All Hands Meeting 2005 Nottingham, UK.

[Berners-Lee et al., 1994] Berners-Lee, T. et al. (1994). The world-wide web. Communications
of the ACM, 37(8), 76–82.

[Blender, 2008] Blender (2008). Blender Animation Software. www.blender.org/.

[Bruin et al., 2006] Bruin, R., White, T., Walker, A., Austen, K., & Dove, M. (2006). Job
submission to Grid computing environments. In Proceedings of the UK e-Science All Hands
Meeting 2006 (pp. 754–761). Nottingham, UK.

[Butt et al., 2003] Butt, A. R., Zhang, R., & Hu, Y. C. (2003). A Self-Organizing Flock of
Condors. In Proceedings of the IEEE/ACM Supercomputing Conference (SC2003) (pp.4̃2).
Phoenix, AZ, November 15-21: IEEE Computer Society Press.

[Cacheda et al., 2005] Cacheda, F., Plachouras, V., & Ounis, I. (2005). A case study of dis-
tributed information retrieval architectures to index one terabyte of text. Inf. Process. Man-
age, 41(5), 1141–1161.

128

[Codling, 2003] Codling, J. (2003). Using Macromedia Flash to Produce Rich Multimedia Con-
tent on the World Wide Web (v.1.1).

[Condor, 2007a] Condor (2007a). Condor GCB. http://www.cs.wisc.edu/condor/gcb/.

[Condor, 2007b] Condor (2007b). Condor version 7.0.4 manual.
http://www.cs.wisc.edu/condor/manual/v7.0/.

[Condor, 2008] Condor (2008). HPC vs. HTC. http://www.cs.wisc.edu/condor/htc.html [Last
Accessed 26/05/09].

[Cormode & Krishnamurthy, 2008] Cormode, G. & Krishnamurthy, B. (2008). Key differences
between Web 1.0 and Web 2.0. First Monday, 13(6).

[Crane et al., 2005] Crane, D., Pascarello, E., & James, D. (2005). AJAX in Action. Greenwich,
CT, USA: Manning Publications Co.

[Curnow & Wichmann, 1976] Curnow, H. J. & Wichmann, B. A. (1976). A Synthetic Bench-
mark. The Computer Journal, 19(1), 43–49.

[Czajkowski et al., 1998] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S.,
Smith, W., & Tuecke, S. (1998). A Resource Management Architecture for Metacomputing
Systems. Lecture Notes in Computer Science, 1459.

[Dahan et al., 2004] Dahan, M., Thomas, M., Roberts, E., Seth, A., Urban, T., Walling, D., &
Boisseau, J. R. (2004). Grid Portal Toolkit 3.0 (GridPort). In High performance Distributed
Computing, 2004. Proceedings. 13th IEEE International Symposium (pp. 272–273).: IEEE
Computer Society.

[Dean & Ghemawat, 2008] Dean, J. & Ghemawat, S. (2008). MapReduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1), 107–113.

[Delic & Walker, 2008] Delic, K. A. & Walker, M. A. (2008). Emergence of the academic com-
puting clouds. Ubiquity, 9(31), 1–1.

[Elephant’s Dream, 2008] Elephant’s Dream (2008). Elephant’s Dream.
www.elephantsdream.org/ [Last Accessed 26/05/09].

[Feldman et al., 2006] Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein, C., & Svitkina,
Z. (2006). On the Complexity of Processing Massive, Unordered, Distributed Data. CoRR,
abs/cs/0611108.

[Foster & Kesselman, 2004] Foster, I. & Kesselman, C. (2004). The Grid 2 : Blueprint for a
new Computing Infrastructure. Morgan Kaufmann Publishers, second edition.

[Foster et al., 2001] Foster, I., Kesselman, C., & Tuecke, S. (2001). The Anatomy of the Grid:
Enabling Scalable Virtual Organization. The International Journal of High Performance
Computing Applications, 15(3), 200–222.

[Foster, 2005] Foster, I. T. (2005). A Globus Primer. Argonne National Laboratory.

[Foster, 2006] Foster, I. T. (2006). Globus Toolkit Version 4: Software for Service-Oriented
Systems. J. Comput. Sci. Technol, 21(4), 513–520.

[Frey et al., 2002] Frey, J., Tannenbaum, T., Livny, M., Foster, I. T., & Tuecke, S. (2002).
Condor-G: A Computation Management Agent for Multi-Institutional Grids. Cluster Com-
puting, 5(3), 237–246.

129

[Garrett, 2005] Garrett, J.-J. (2005). Ajax : A new approach to Web Applications. http://
www.adaptivepath.com/publications/essays/archives/000385.php [Last Accessed 23/05/09].

[Global Grid Forum, 2007] Global Grid Forum (2007). Job Submission Description Language
(JSDL) Specification, Version 1.0. http://www.ogf.org/documents/GFD.56.pdf.

[Gutenberg, 2008] Gutenberg (2008). Project Gutenberg. www.gutenberg.org/ [Last Accessed
23/05/09].

[Hipson, 2005] Hipson, P. (2005). Firefox and Thunderbird: Beyond Browsing and Email. Indi-
anapolis, IN, USA: Que Corp.

[Jazayeri, 2007] Jazayeri, M. (2007). Some Trends in Web Application Development. In FOSE
’07: 2007 Future of Software Engineering (pp. 199–213). Washington, DC, USA: IEEE Com-
puter Society.

[Lerner, 2007] Lerner, R. (2007). At the Forge: Firebug. Linux Journal, 2007(157), 8.

[Linderoth et al., 2000] Linderoth, J., Goux, J.-P., & Yoder, M. (2000). Metacomputing and
the Master-Worker Paradigm. Technical Report ANL/MCS-P792-0200, Mathematics and
Computer Science Division, Argonne National Laboratory.

[Litzkow et al., 1988] Litzkow, M., Livny, M., & Mutka, M. (1988). Condor - A Hunter of Idle
Workstations. In Proceedings of the 8th International Conference of Distributed Computing
Systems (pp. 104–111).

[Mackinlay, 1988] Mackinlay, J. D. (1988). Applying a Theory of Graphical Presentation to
the Graphic Design of User Interfaces. In ACM Symposium on User Interface Software and
Technology (pp. 179–189).

[Mahemoff, 2006] Mahemoff, M. (2006). AJAX Design Patterns. O’Reilly Media, Inc.

[Maulsby et al., 1993] Maulsby, D., Greenberg, S., & Mander, R. (1993). Prototyping an in-
telligent agent through Wizard of Oz. In Proceedings of the INTERACT ’93 and CHI ’93
conference on Human factors in computing systems (pp. 277–284). New York, NY, USA:
Communications of the ACM.

[Message-Passing Interface Forum, 1997] Message-Passing Interface Forum (1997). MPI-2.0:
Extensions to the Message-Passing Interface, chapter 9. MPI Forum.

[Moore, 1965] Moore, G. E. (1965). Cramming more components onto integrated circuits. Elec-
tronics, 38(8), 114–117.

[Nielsen & Landauer, 1993] Nielsen, J. & Landauer, T. K. (1993). A Mathematical Model of
the Finding of Usability Problems. In S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, &
T. White (Eds.), Proceedings of the Conference on Human Factors in computing systems (pp.
206–213). New York: Communication of the ACM.

[OMII UK,] OMII UK. Gridsam. http://www.omii.ac.uk/wiki/GridSAM [Last Accessed
26/05/09].

[O’Reilly Media, 2007] O’Reilly Media (2007). Web2.0. http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.html [Last Accessed 26/05/09].

[Papadopoulos et al., 2003] Papadopoulos, P. M., Katz, M. J., & Bruno, G. (2003). NPACI
Rocks: tools and techniques for easily deploying manageable Linux clusters. Concurrency
and Computation: Practice and Experience, 15(7-8), 707–725.

130

[Preece et al., 2002] Preece, J., Rogers, Y., & Sharp, H. (2002). Interaction Design: Beyond
Human-Computer Interaction. John Wiley & Sons. OCLC 48265540.

[Scott, 2001] Scott, S. L. (2001). OSCAR and the Beowulf Arms Race for the “Cluster Stan-
dard”. In Proc. 2001 IEEE International Conference on Cluster Computing (3rd CLUS-
TER’01) (pp. 137). Newport Beach, California, USA: IEEE Computer Society.

[Sebu & Ciocarlie, 2006] Sebu, L. & Ciocarlie, H. (2006). The Design of Stateful Web Services
Based on Web Service Resource Framework Implemented in Globus Toolkit 4. In SYNASC
(pp. 309–316).: IEEE Computer Society.

[Sefelin et al., 2003] Sefelin, R., Tscheligi, M., & Giller, V. (2003). Paper prototyping - what
is it good for?: a comparison of paper- and computer-based low-fidelity prototyping. In CHI
’03: CHI ’03 extended abstracts on Human factors in computing systems (pp. 778–779). New
York, NY, USA: ACM.

[Shu et al., 2005] Shu, C., Yu, H., Xiao, L., Liu, H., & Xu, Z. (2005). Towards an end-user
programming envrionment for the Grid. In Proceedings of the Grid and Cooperative Computing
Conference (pp. 345–356). Beijing, China.

[Sommerer, 2004] Sommerer, R. (2004). Presentable Document Format: Improved On-demand
PDF to HTML Conversion. Technical Report MSR-TR-2004-119, Microsoft Research (MSR).

[Sunderam, 1990] Sunderam, V. S. (1990). PVM: A Framework for Parallel Distributed Com-
puting. Concurrency - Practice and Experience, 2(4), 315–339.

[Thomas W. MacFarland,] Thomas W. MacFarland. Mann Whitney U-test. http://www.nyx.
net/∼tmacfarl/STAT TUT/mann whi.ssi [Last Accessed 26/05/09].

[Underhill & Bradfield, 2001] Underhill, L. & Bradfield, D. (2001). IntroSTAT Second Edition.
Juta.

[Underwood et al., 2004] Underwood, K. D., Ligon, III, W. B., & Sass, R. R. (2004). An Anal-
ysis of the Cost Effectiveness of an Adaptable Computing Cluster. Cluster Computing, 7(4),
357–371.

[W3C, 2004] W3C (2004). Web services architecture. http://www.w3.org/TR/ws-arch/.

[Weinreich et al., 2008] Weinreich, H., Obendorf, H., Herder, E., & Mayer, M. (2008). Not
Quite the Average: An Empirical Study of Web use. TWEB, 2(1).

[Wikipedia, 8 09] Wikipedia (2007-08-09). History of the Graphical User Interface.

[Zkoss.org, 2008] Zkoss.org (2008). The ZK Toolkit. http://zkoss.org [Last Accessed 26/05/09].

131

