
1

Software Traceability using Latent Semantic Analysis
and Relevance Feedback

Hans-Peter Kr̈uger and Pieter S. Kritzinger
Technical Report CS08-01-00

Data Network Architectures Group,
Computer Science Department University of Cape Town,

Private Bag, Rondebosch 7700, South Africa
Email: {hkruger,psk@cs.uct.ac.za}

Abstract Software traceability (ST), in its broadest sense,
is the process of tracking changes in the document corpus which
are created throughout the software development life-cycle.
However, traditional ST approaches require a lot of human effort
to identify and consistently record inter-dependencies among
software artifacts. In this paper we present an approach that
reveals traceability links automatically using the information
retrieval (IR) techniques of Latent Semantic Analysis (LSA) and
Relevance Feedback and present a software tool to implement
these ideas. We discuss in detail how software artifacts can be
represented in a vector space model and how term extraction
and weighting can be accomplished for UML artifacts, such
as use-cases, interaction and state diagrams, as well as for
source code and natural language text documents. We also
explain how structural information which is always inherent
in software artifacts can be preserved in the term extraction
and weighting phase of creating traceable artifacts. Unlike
other tools, we incorporate human knowledge through relevance
feedback into the traceability link recovery process with the aim
to improve the quality of traceability links. Finally, we illustrate
the effectiveness of our tool-based approach and our proposals
through a case study with a pilot software project and compare
our results with those of a manual tracing process.

Keywords: Requirements Engineering, Software Traceability,
Software Development, Change Management, Latent Semantic
Indexing, Relevance feedback, Information Retrieval, UML.

I. I NTRODUCTION

The various types of artifacts that are produced throughout
the software development life-cycle describe different levels of
abstraction and perspectives of a software system. User require-
ments are initially formulated in natural language text during
the requirements specification phase. During the design phase,
a systems architecture is laid out that is capable of implementing
the user and system requirements. Software components are
identified and further divided into classes that implement the
functionality specified in the requirements. A software archi-
tecture is usually described both in natural language text as
well as in modeling languages such as UML. Many functional
requirements can be mapped directly to UML use-cases, which
are subsequently described in more detail through other UML
diagram types like sequence, activity or state diagrams. Finally,
a programming language such as Java is used to implement the
user requirements according to the systems architecture.

Software traceability is concerned with tracking a change
in one artifact to all the others. This is crucial to establish
and maintain consistency between heterogeneous artifacts used
throughout the system development life-cycle. In this paper we
present a tool-assisted automated technique for traceability and
to the extent that we used all artifacts normally created in the
software development life-cycle, we believe this work is unique.

II. RELATED WORK

The idea of applying information retrieval methods to dis-
cover traceability links in a artifact corpus is not new. In [12]
Marcus and Malectic present a traceability discovery approach
that is based on LSA and supports traceability between source
code and documentation. In their approach, an artifact corpus
is build from text documents that are broken up into smaller
sections or paragraphs, hoping that these will capture a single
topic appropriately. Traceable artifacts are created from source
code files while keywords are extracted from identifiers and
comments. When performing a search, the user can choose the
level of dimensionality reduction and a similarity threshold for
the documents in the corpus. This approach seems to produce
promising results. In a set of experiments, it was shown that their
approach was able to discover 83% of all traceability links but
unfortunately only with a precision of 53%, which means that
the number of false links was actually very high.

Another approach that uses LSA for traceability link discov-
ery is presented by De Luciaet al [3]. An existing artifact
management tool was enhanced to not only allow the discovery
of traceability links between natural language text documents
and source code, but also between requirement and design
artifacts (UML use-cases and interaction diagrams) as well as
test cases. Although some interesting ideas were presented,
such as variable similarity thresholds and artifact categorization,
their case study is not complete. Despite the claim that artifact
management systems can handle natural language text artifacts,
no requirements or architectural specifications were considered
in their case study.

Related to the same topic is the paper by Marco Lormans
and Arie von Deursen [10]. In this work the authors focused on
generating various requirements views through LSA between
requirements-design and requirements-test cases. They applied
LSA to three case study projects which differ strongly in size
and provided artifacts. Unfortunately, it was not always clear

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

what kind of design artifacts they actually used and the results of
their case studies were rather disappointing. Also in this paper,
similar to the work of De Lucia [3] a discussion of how term
extraction from artifacts and their weighting can be done, was
missing.

In remainder of this paper we first present the functional
design of LSITrace, a software tool which implements the
methodology we discuss in the following three sections. In
Sec. VII we describe how we build the artifact corpus from the
various documents, diagrams and software code that comprise
a working software system. Using LSITrace, we describe a
case study and the results of experiments with different matrix
reduction, threshold values and weighting techniques.

III. T OOL SUPPORT

In order to test software traceability with Latent Semantic
Analysis and relevance feedback we implemented the various
ideas in a software tool. Fig. 1 presents an system overview
of the tool. It allows one to recover traces among a variety

Fig. 1. The requirements engineer imports the software artifacts. The system
then goes through a number of stages to create the artifact corpus. While tracing,
the requirements engineer selects an artifact and issues a search request to the
system. Relevance feedbacks assist the engineer to improve the search results.

of different artifacts, including PDF documents, UML use-
cases, sequence and state diagrams, as well as source code
classes. Firstly, the human engineer is required to import these
artifacts in our as an Eclipse plugin [] designed tool. In the
next phase we extract terms from the artifacts, which includes
the removal of stop words and optionally the stemming of terms
to their morphological root form (see Section VII-D). Software
artifacts that are reduced to a set of terms will be mathematically
represented as vectors (see Section IV).

Every term that is extracted from an artifact has anartifact
attribute, i.e., the identifier of source code classes or the
description of a UML use-case. The terms in an attribute are
weighted differently, according to the attribute’s importance to
the content or meaning of the artifact itself. In an additional
weighting phase (see Section V-B) we apply commonly used
term weighting schemes, i.e.,Tf-Idf, to the software artifacts
and search queries.

Once the artifact corpus is built the tool allows the engineer
to enter queries. The user either types in keywords that describe
the artifact he is looking for, or selects existing artifacts in
the corpus. In the example shown in Figure2 the engineer has
decided to trace from an end-user requirement, calledPlace
Call, to all system requirement artifacts. The search process
starts initially and potentially dependant artifacts are ranked
in a list by their similarity to the search query. The engineer
either accepts the suggested artifact list or he can try to improve
the results through his expert knowledge by adding relevant
feedback to the discovery process. If the engineer is not satisfied
with suggested artifact list, he can remove them from the
candidate list and added his own suggestions the user-judged
artifact list which the system then uses in a potentially improved
search query. The process repeats until the engineer is satisfied
with the result or no improvement happens. More details about
the tool and its use can be found in the report by H-P Krüger [8].

Fig. 2. The tool contains a number of different views to approach the
traceability problem. The tracing and relevance feedback view is shown on the
left side. The upper right side shows a graphical representation of the traceability
matrix that was created among the recovery process. The bottom right view
shows an artifact browser that allows to explore the corpus.

IV. T HEORY

In order to formalize the traceability process one derives
a vector space model (VSM) [17] of the database orcorpus
of artifacts. In the VSM, a software artifact is represented as
an n-dimensional vector, wheren is the number of unique
terms, or words, that appear across the database ofm artifacts
or the corpus. The conceptual vector space is represented
mathematically by constructing a sparse matrix of terms by
artifacts defined by

An×m = [aij] i = 1, . . . , n; j = 1, . . . ,m (1)

whereaij is the weight of termi in artifact j.
In order to decide whether two artifacts trace to one another,

we compute the dot product, which directly corresponds to the
cosine of the angle, between the column vectors−→a·j , j =
1, . . . ,m. If two artifacts share common terms, their vectors
will be closer to each other inn-dimensional vector space and
are thus likely to share common terms.

3

Similarly, artifact vectors in close proximity to a query vector,
which usually represents the artifact from which traceability
links will be recovered, have a higher dot product than poten-
tially unrelated artifacts, and are returned as the highest ranked
artifacts. If the dot product of a retrieved artifact is below a
chosenthreshold value, implying that the vectors involved are
wide apart inn-space, it is considered as not being relevant to
the query.

In order to overcome the fundamental problem ofsynonymy
and polysemythat plague many text search approaches which
match words or terms of queries with words of documents,
we apply a technique called Latent Semantic Analysis (LSA)
[4]. There are usually many ways to express a given concept
in natural language, so the literal terms in a query may not
match those of a relevant document. LSA tries to reveal the
underlying or latent semantics among documents that is partially
obscured by variability in natural language word choice, which
is often referred asnoise in the literature. LSA applies a
powerful technique in matrix computation known as Singular
Value Decomposition (SVD) that reduces the dimensionality of
a document matrix and as a side effect, reduces thenoisein the
document corpus. Rather than use ann×m matrix An×m, one
uses a factorization of the matrix, namely

An×m = Un×lΣl×lV
T
l×m (2)

where Un×l and Vl×m are both orthogonal matrices,l =
min(n, m) andΣl×l is a diagonal matrix with elementsdij = 0,
wheneveri 6= j, anddii = di ≥ 0.

It can be shown that it always possible to find non-unique
matricesUn×l and Vl×m such thatd1 ≥ d2 ≥ · · · ≥ dr+1 =
· · · = dn = 0 wherer is the rank of the matrixAn×m. Note
that SVD neatly separates the original matrixAn×m into the
terms in matrixUn×l from the artifacts in matrixVl×m.

When one can restricts the matricesUn×l, Vl×m andΣl×l to
their first k < n rows one obtains an approximationA′

k×m of
the original matrixAn×m where the number of terms have now
been reduced tok < n.

A′
k×m = Uk×lΣl×lV

T
l×m. (3)

An obvious benefit ofA′
k×m is that it reduces the complexity

of the vector space, hence decreasing both size of the corpus
and the time for real time query analysis and data retrieval [9].

Choosing the number of dimensionsk for A′
k×m is an

interesting problem. While a reduction ink can remove much
of the noise, keeping too few dimensions may lose important
information. As discussed Deerwesteret al [4] using a test
database of medical abstracts, LSA performance can improve
considerably after 10 or 20 dimensions, peaks between 70 and
100 dimensions, and then begins to diminish slowly.

In Section VIII we describe the results of a case study. The
results prove that reducing the dimensionality of matrixAn×m

by 90%, that is,k = 0.1 not only reduces the storage and
retrieval complexity, but improves the accuracy of a search
significantly. This has to do with that fact that LSA spatially
separates relevant from irrelevant documents. LSA is a global
clustering technique that exploit inter-term relationships or the
co-occurrence of terms, among all documents in the corpus to
cluster similar documents in rank reduced space. In the case of
software traceability, this means that software artifacts with a

similar term usage will be closer to each other in rank reduced
space. The clustering process groups similar artifacts that are
related to a common concept and separates artifacts that are not
related to the concept. This process of clustering is illustrated
in Figures 3 and 4. The latter figure illustrates the rank reduced
corpus in which 3 clusters have been identified. Clearly these
are only illustrations since more than 3 dimensions, such as
artifacts will have, cannot be visualized.

Fig. 3. Artifact space before clustering through LSA

Fig. 4. Artifact space after clustering through LSA

V. I MPROVING LATENT SEMANTIC ANALYSIS (LSA)

The open literature contains several references to various
techniques to improve the performance of LSA. We discuss our
interpretation and use of these in the following sections.

A. Stemming

Stemming [5], or conflation, attempts to reduce all morpho-
logical variants of word to its stem or root form. Thus the terms
of a query or document are represented by stems rather than
by the original words. Natural language text artifacts, such as
requirements or architectural specification, are a major part of
the software development life-cycle corpus, stemming is useful
to improve the traceability results as we shall see in Sec. IX.

We applied stemming by employing a lookup table which
contains relations between root forms and inflected forms. To
stem a word, the table is queried to find a matching inflection.
If a matching inflection is found, the associated root form is
returned.

4

B. Term Weighting

Before we describe the various weighting schemes found in
the literature [11], [4] we first definetfij , the frequency of the
term i, in the artifactj; afi the artifact frequency or the number
of artifacts of the totalN in which termi occurs and finally,gfi

the absolute frequency with which termi occurs in the entire
corpus.

A normalized term-frequencytf i,j of term i in documentj
is given by

tf i,j =
tfi,j

maxl{tfl,j}
(4)

where clearly the maximum term-frequency is computed over all
terms in document j. In the event that there are large differences
in the term frequencies,log(tf ij + 1) takes the log of the raw
term frequency, thus dampening effects of large differences in
frequencies.

In order to improve the performance of LSA, a termi can
be given aglobal weightgi to stress its information content
across the document corpus, and alocal weight lij to stress the
content of the termi in documentj.

Global weightings are meant to diminish the influence of
words that occur frequently or in many of the documents. The
weight wij for a termi in documentj is defined to be

wij = lij × gi (5)

As opposed to local weighting schemes, global weighting
schemes take the distribution of terms in the whole document
corpus into account in order to weight terms within a document
appropriately. The inverse document frequency orIdf-factor is
a well known global weighting scheme [5] which is based on
the premise that terms which occur in many documents are
not very useful in distinguishing a relevant document from
non-relevant ones. Terms that occur in many documents are,
therefore, assigned a smaller weight. The Idf-factor of termi is
given by

idfi = log (
N

afi
) + 1 (6)

The best known weighting scheme for natural language text
documents is described by Saltonet al. [15] and balances local-
and global-weights and is known as theTf-Idf scheme defined
as follows:

tfidfi,j = tf i,j · idfi

=
fi,j

maxl{fl,j}
· log (

N

afi
) (7)

Another global weighting scheme, or entropy scheme, first
proposed by Dumais [5] normalizes the term frequencytfi,j by
dividing by afi as follows

tf ′i,j =
tfi,j

afi

tfii = 1− 1
logN

N∑
j=1

tfi,j × log tf ′i,j (8)

The term 1
logN

∑N
j=1 tij × log tf ′ij is called theentropy.

C. Query Weightings

Apart from weighting of terms in the document collection,
we also need to consider an appropriate weighting scheme of
the terms in the user query. Every term in the query vector
~q = (q1, . . . , qk) for k the threshold value discussed in Sec. I,
is weighted bywi where

wi =
(

0.5 + 0.5× fi

max fi

)
× log (

N

ni
) (9)

where fi is the frequency of termi in ~q and max fi the
highest frequency of a term in the query vector. Apart from
the term frequency, this weighting scheme also involves a global
weighting which, as already seen in Eq. 5, considers the entropy
of term i in the global context.

D. Relevance Feedback (RF)

Another way of improving the results of LSA is to use a local
clustering technique or relevance feedback. Relevance feedback
guides searches toward relevant documents by giving the system
feedback as to which documents returned by a previous search
are relevant to the initial query. The system can then use the
feedback to perform a subsequent search that will result in a
list of documents with a higher precision and recall.

In Dumais, et. al [5], Salton [16] and Lee [2], usage of
relevance feedback was found to greatly improve overall search
performance in text documents. They discovered that queries
composed from the highest ranked relevant document returned
by the initial query gave an average overall improvement of
33% and queries composed of the three highest ranked relevant
documents gave an average overall improvement of 67%. Their
studies also found that the user typically just view only a small
number of the documents returned by the initial search in order
to locate a few relevant documents. On the average, the most
relevant document was the top ranked document and the three
most relevant documents were within the top seven ranked
documents. In their definition,qi represents thei-th query, the
document vectors are designated−→a·j , j = 1, . . . ,m as before.
The constantsα, β, γ ≤ 1 are multipliers.

qi+1 = α qi + β
∑

relevant

a·j
|a·j |

− γ
∑

non-relevant

a·j
|a·j |

(10)

In contrast to the work of the authors mentioned above, the
software development life-cycle document corpus does not
contain only text documents. Nevertheless we show, in Sec. IX,
where we useα = 1, β = γ = 0.5 [14], that feedback can
improve certain query searches by as much as 20 percent.

VI. M EASURING LSA TRACEABILITY PERFORMANCE

The two most popular metrics for evaluating IR performance
are Recall and Precision[12]. Let Ci be the set of relevant
artifacts for a user queryi andRi the set of all retrieved artifacts.
RecallandPrecision is then defined as follows:

Recalli =
|Ci ∩Ri|
|Ci|

(11)

Precisioni =
|Ci ∩Ri|
|Ri|

(12)

5

In order to assess the overall performance on the entire system
the summation over all queries is performed. I.e.,

Recall =
Σi|Ci ∩Ri|

Σi|Ci|
(13)

Precision =
Σi|Ci ∩Ri|

Σi|Ri|
(14)

In general, retrieving a lower number of artifacts for each query
would result in higher precision, while a higher number of
retrieved artifacts would increase the recall. Both values depend
on the threshold used to cut the ranked list: in general, the higher
the threshold the lower the recall and the higher the precision;
and vice versa.

Another measure that is often used incorporates recall and
precision into one single value. The most popular single value
measure is the F-measure or balanced F-score as it computes
the harmonic mean of precision and recall. It is also known as
the F (1) measure and given by:

F (α)i = (1 + α) · Precisioni ·Recalli
α · Precisioni + Recalli

(15)

The influence of recall or precision in the single value ofF
can be changed by changing theα value. The two commonly
used F measures areF (2) which weights the recall twice as
much as precision andF (0.5) which is the other way around.
In our experiments we decided to useF (2) as the metric since
we believe that recall is more important than precision for
the software engineer. Failing to find important artifacts in the
traceability link recovery process has serious implications for
the correctness and costs of introducing a requirement change;
hence completeness is preferred to precision.

VII. B UILDING THE ARTIFACT CORPUS

In section I we introduced the vector space model to present
all software development life-cycle artifacts as n-dimensional
vectors. However, this representation raises several questions.
Which attributes of the software artifacts have to be incorporated
in the vectors, i.e., are method names and comments required in
the vector representation to reflect the meaning of a source code
artifact? Which terms have to be extracted from these artifact
attributes? Do only nouns and identifiers have to be considered?
And finally, how must these terms be weighted to reflect their
importance?

In the case study presented in Section VIII, we try to preserve
existing dependency information inherent in software artifacts,
such as use-case associations, by emphasizing the importance
of terms that occur in these associations. We call this technique
attribute weighting.

A. Natural language text artifacts

Natural language text artifacts, such as requirements or archi-
tectural specification, are a fundamental part of every software
development life-cycle. We present an text artifact vector as
the weighted sum of the twoattribute vectors

−−−→
Name and−−−−→

Content, see Eq. 16. The
−−−−→
Content vector contains terms that

were extracted from the description of an text artifact, i.e. from
a user requirement. The

−−−→
Name contains the terms extracted from

the name of the text artifact. The variablesw1 and w2 are

calledattribute weightsas they weight the importance of terms
extracted from the artifact attributes.

−−→
Text = w1 ·

−−−→
Name+ w2 ·

−−−−−−−→
Description (16)

B. UML diagrams

The UML notation comprises a large number of different
diagram types. We concentrate on the representation of a subset
of the most important diagrams, namely use-case, sequence
as well as state diagrams. A use-case vector, see Eq. 17, is
composed of the user-case name, the name of the associated
subject or system and involved actors. Additionally, we also
incorporate the comments that are either associated with the
subject or the user-case itself. Use-cases can have aincludeand
extendsrelationship to other use-cases. In order to preserve these
relationships we also incorporate the names of related use-cases
into the use-case vector.

−−−−→
Usecase = w1 ·

−−−−−−−→
SubjectName+ w2 ·

−−−−−−−−→
UsecaseName

+

|Actors|∑
i=1

(
w3 ·

−−−−−−→
ActorNamei

)
+

|Comments|∑
i=1

(
w4 ·

−−−−−→
Commenti

)

+

|Associated usecases|∑
i=1

(
w5 ·

−−−−−−−−→
UsecaseNamei

)
(17)

The representation of a UML sequence and state diagrams is
slightly more complex than for a use-case. A sequence diagram
vector, see Eq. 18, is composed of the interaction or diagram
name, the names of all classes involved (lifelines), the labels
of all messages exchanged among the classes as well as the
diagram comments.

−−−−−−−−−−−→
SequenceDiagram = w1 ·

−−−−−−−−−→
InteractionName+

|Lifelines|∑
i=1

(
w2 ·

−−−−−−−−→
LifelineName

)

+

|Messages|∑
i=1

(
w4 ·

−−−−−−−−→
MessageNamei

)

+

|Comments|∑
i=1

(
w3 ·

−−−−−→
Commenti

)
(18)

The representation of a UML state diagram is very similar to
the sequence diagram. A state diagram vector, see Eq. 19, is
composed of the state machine name, all diagram comments,
all state names as well as the state actions (entry, exit and
do). Additionally, also the labels of the state transition are
incorporated in the diagram representation.

−−−−−−−−→
StateDiagram = w1 ·

−−−−−−−−−−−→
StateMachineName+

|Comments|∑
i=1

(
w3 ·

−−−−−→
Commenti

)

+

|States|∑
i=1

w2 ·
−−−−−−→
StateName+ w4 ·

(−−−−−→
StateEntry+

−−−−−→
StateExit

)

+ w5 ·
−−−−→
StateDo+

|Transitions|∑
i=1

w6 ·
−−−−−−−−−−−−→
TransitionLinkNamei (19)

C. Source code

Changes to user or system requirements invariably result in
modifications to the source code and vice versa. These kind of
changes are costly as source code artifacts are complex. Since

6

source code artifacts describe a software system on the lowest
abstraction level, the number of artifacts the human engineer
has to examine for the purpose of validating and maintaining
traceability links is higher than for other artifacts types.

In order to represent source code artifacts adequately in vector
space, we propose the model shown in Eqs. 20 - 25. In this
model, the smallest traceable source code artifact is a class. A
class vector is composed of package, class, field and method
declarations, which contain associated comments and identifier
names. Additionally, we also incorporate comments and string
literals terms found in the body of methods.

−−−−−−−−−−−−→
PackageDeclaration = w1 ·

−−−−−→
Comment+

|Subpackages|∑
i=1

(
w2 ·

−−−−−−−−−−−→
SubpackageNamei

)
+ w3 ·

−−−→
Name (20)

−−−−−−−−−−→
ClassDeclaration = w1 ·

−−−−−→
Comment+ w2 ·

−−−→
Name

+

|Super classes|∑
i=1

w3 ·
−−−−−−−−−−→
SuperClassNamei (21)

−−−−−−−−−−→
FieldDeclaration = w1 ·

−−−−−→
Comment+ w2 ·

−−→
Type+ w3 ·

−−−→
Name (22)

−−−−−−−−−−−−→
MethodDeclaration = w1 ·

−−−−−→
Comment+ w2 ·

−−−−−−→
ReturnType+ w3 ·

−−−→
Name

+

|Parameters|∑
i=1

(
w4 ·

−−−−−−−→
ParamTypei + w5 ·

−−−→
Namei

)
(23)

−−−−−−−−→
MethodBody =

|Comments|∑
i=1

(
w1 ·

−−−−−−→
Commenti

)
+

|String literals|∑
i=1

(
w2 ·

−−−−→
Literali

)

+

|Remaining identifiers|∑
i=1

w3 ·
−−→
Identi (24)

−−→
Class =

|Package declarations|∑
i=1

(−−−−−−−→
Declarationi

)
+
−−−−−−−−−−→
ClassDeclaration

+

|Method declarations|∑
i=1

+
(−−−−−−−→

Declarationi +
−−−−−−−→
MethodBody

)

+

|Field declarations|∑
i=1

+
−−−−−−−→
Declarationi (25)

In order to recognize and weight the various class attributes, we
implemented a source code parser. Rather than simply extracting
terms by applying regular expressions like Marcus and Malectic
[12], we produced an abstract syntax tree (AST) of every source
code artifact. This allowed us to weight attributes according to
the number of times they occur in the hierarchy. Implementing
a fully featured parser for a modern programming language is
cumbersome and complex task so we support only a subset of
the grammar that is required to extract the earlier described
artifact attributes and skipped the rest.

D. Term extraction

After we identified the artifact attributes to incorporate in
the vector representation of the various software artifacts, we
next extract terms from these attributes. In the first step of the
extraction process every term is separated from the initial string
and saved in a hash table. Every hash table entry consists of a
key represented by the term itself and the weight of the term,
initially set to zero and increased by one every time the term is
subsequently found.

As an example, the tree in Figure VII-D illustrates the
term extraction process for the label of a lifeline message
of an UML sequence diagram which consists of a condition
and method call. In the extraction process we separate the
original string shown in the root node into its constituent terms.
Compound terms such asonReceiveData andSIPMsg are
further divided and added among the compound term to the
hash table. The rationale behind this is that compound terms
often represent identifiers, i.e., classes or names. Assuming that
most software developers follow best programming practises by
giving identifiers meaningful names, constituent terms can be
useful in determining the importance of the artifact itself.

After all attribute terms have been extracted, terms are
stemmed to their morphological root (see Sec. V-A). Although
LSA itself provides a mean to overcomesynonymywe found in
our case study (see Sec.VIII) that additional stemming of terms
improves search results.

In the final step we traverse the hash table and remove what
are known asstop words. Stop words are auxiliary words like
conjunctions and prepositions that do not contribute directly to
the semantics. As shown in Figure VII-D, the weight of term
on was identified as a stop word and set to0.0 and is thus
no longer part of the vector representation of the attribute. In
order to recognize stop words we used a slightly modified list
of terms created at the University of Tennessee [13]. We mainly
enhanced this list with keywords usually used in programming
languages, such asint , boolean or object .

Fig. 5. Example expanded term tree

VIII. C ASE STUDY

As most authors will know, one of the hard parts about
studying traceability in the software development life-cycle is to

7

find properly maintained, relevant artifacts for a working soft-
ware system. Confidential requirements mostly require software
companies not to make artifacts such as required, available.
Open software systems are largely bereft of documentation other
than the source code. Hence like other studies, for instance that
by Marcus [12], we had to resort to an internal software project.
The most suitable project was the implementation of a voice
over IP (VoIP) system, based on the Session Initiation Protocol
(SIP), and which was proscribed to follow best programming
practises in describing the software in a detailed and complete
fashion using requirements analysis, design, implementation and
testing phase.

Several case studies can also be found in the literature.
Marcus and Maletic [12] as well as Antoniol et al. [1] use two
identical software projects in their respective case studies. The
library of efficient data types and algorithms (LEDA) which
has been developed at the Max Planck Institut für Informatik,
Saarbr̈ucken, Germany, and the Albergate project which was a
final year student project for a hotel management system at the
University of Verona, Italy.

Hayes et al. [6], [7] follow a similar path by conducting
case studies on very technical artifact sets. In these studies the
requirements specification of the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) was used to trace between
16 high and 50 low level requirements.

Lormans and van Deursen [10] and De Lucia et al. [3]
conducted their studies on less technical software projects with
a broader set of artifact types.

A. Tracing Links manually

In order to assess the performance of the automatic trace-
ability link recovery method, one obviously needs to manually
identify the best set of traceability links among the chosen
software artifacts. Finding the best such set of traceability links
is clearly subjective, since the decision whether or not software
artifacts are dependent upon one another is to a certain degree a
matter of interpretation. This is particularly true for artifacts like
requirements, that are usually described in natural language text
on an abstract level. On the other hand, deciding whether two
source code artifacts, like classes, are dependent is much easier.
A simple rule could be: Class A is considered to be dependent
upon class B if class A accesses fields, methods of class B or
is derived from it.

The LSATrace tool removes the individual human interpre-
tation which is inevitably present in any manual traceability
technique. However, in order to say something about the per-
formance of our proposals, we needed the manually discovered
links, however biased.

In the case study we recovered traceability links as best as
possible and put a great deal of effort in validating them. We
had to become acquainted with the project and examined the
provided source code and documentation in detail. We also
compiled and ran the source code to get a better understanding
of the dependencies between the artifacts. In the end we
recovered traceability links from each user requirement to

– other user and system requirements, including
– UML use cases, collaboration and state diagrams and
– C# Classes

We also asked another experienced software developer to check
the manually found traceability links, discussed changes and
added or removed traceability links where necessary. In the end
we determined 593 links from 16 end-user requirements to the
artifact types mentioned above.

IX. EXPERIMENTS AND RESULTS

In all experiments, the original matrixA was transformed
using to the applicable weighting schemes, its SVD computed
and the resultant matrixA′ used for the analyses. We applied
the most common term weights found in the literature [16] to
our corpus of software artifacts and queries. A configuration
of term weights that consists of a local and global weight is
denoted in our case study asSn and defined as follows:

Sn =(LCorpus, GCorpus, LQuery, GQuery) where

LCorpus ∈ {Log,MaxTf, Tf}∧
GCorpus ∈ {Entrophy, Idf,None}∧
LQuery ∈ {AugTf, Log,MaxTf, Tf}∧
GQuery ∈ {Entrophy, Idf, None} (26)

The choice of parameters for any one experiment is huge
however: one can apply stemming or not, the number of com-
binations of global, local and query weightings (see amount to
108 for our choice of weights in Sec. V-B); the matrix reduction
can range from 0 to 95% and the choice of threshold value can
be anywhere between 0 and 1. Consequently, only a fraction of
all results can be reported here.

In our report, because of the relevance feedback process,
we placed more emphasis on recall than precision in our
experiments and therefore usedF (2), which weights the recall
twice as much as precision. In all experiments we traced from
the user requirements to each of the other artifact classes.
Moreover, we can obviously only report on results for which we
had manually traced the links (see Sec. VIII-A) for comparison.

In summary, the statistics of our artifact corpus is given in
Table IX.

A. Results

The fundamental question, naturally, is how well does LSA
work when tracing amongst software artifacts? Before deciding
that question, we investigated the best combination of corpus
and query weighting to use. It turned out that there was no
single answer to this question. Figure 6 plots the F(2) value
when tracing from End-user requirements to Use cases for
a threshold of 0.1 and various matrixA′ reductions and all
possible combinations of the weightings described in Sec. V-B.
Not only does the best combination depend on the percentage
of the matrix reduction, but it also depends on what is being
traced to and the threshold value.

The results of all these experiments are simply to numerous
to display and the reader is referred to [8] for all the data.
We determined that the weighting scheme which gave the best
overall results uses the corpus weighting Tf-Idf and Tf-Entrophy
for the query weighting. We therefore used this weighting
scheme in all the results to follow.

For the results in Fig. 7 we plotted the F(2) value while
tracing from End-user requirements to all remaining artifacts

8

Number of vectors Mean vector length Mean frequency of % of terms in vectors
(Number of terms) terms in vectors with frequency 1

End-user requirements 16 22.5 1.48 77%
System requirements 22 26.5 1.66 71%
Architectural features 27 67 1.7 71%

Use-Cases 44 8.8 1.01 99%
Sequence diagrams 14 65.6 1.7 66%

State diagrams 12 27.5 1.59 70%
Classes 230 85.8 1.49 82%

TABLE I

CORPUS ARTIFACT STATISTICS.

Fig. 6. Tracing from End-user requirements to Use cases for a threshold of 0.1 and various matrixA′ reductions and all weighting combinations.

Fig. 7. Tracing from End-user requirements to remaining artifacts for threshold value 0.1 and various matrixA′ reductions with stemming.

for a threshold value 0.1 and various matrixA′ reductions using
stemming. The F(2) values range from a low 51% for tracing to
Use cases to a high of 75% for architectural features. Although
an exact comparison is not possible since the experiments differ,

these results are considerably better than those found by Settini
et al [18]. We subsequently repeated this experiment by tracing
from End-user requirements to remaining artifacts averaged over
all matrix reductions for various threshold values. Threshold

9

Fig. 8. F(2) value tracing from End-user requirements to remaining artifacts averaged over all matrix reductions for various threshold values.

Fig. 9. F(2) value tracing from End-user requirements to remaining artifacts for threshold value 0.1 and various matrixA′ reductions with and without stemming.

values of less than 0.3 are clearly so low that all significance is
lost. Even for a threshold value of 0.1 the F(2) value, averaged
over matrix reductions from 0% to 97.5%, is a low 30%. It is
obvious from these last two set of results that a matrix reduction
of 97.5% and a threshold value of 0.1 give the best results for the
value F(2) indicating that there must be a great deal of sematic
noise in our artifact corpus. Since a large matrix reduction
also improves the efficiency of the technique, this result is
particularly significant. Next we wanted to know the effect
of stemming on the efficiency of LSA and our methodology.
Figure 9 is therefore a plot of the F(2) value tracing from End-
user requirements to remaining artifacts for threshold value 0.1
and various matrixA′ reductions with and without stemming.
Although the improvement in the results is marginal, stemming
has clearly improves the F(2) value at all matrix reduction and
in almost all cases.

B. Relevance Feedback

In the final experiment we used relevance feedback to it-
eratively refine a search query. As described by Lundquistet
al. [11], relevance feedback is a process through which a query
is selectively modified to retrieve more relevant documents from

a collection than the unmodified original version. The query can
be modified by either adjusting the term weights, i.e., increasing
or decreasing the weight of a term, by adding new terms or by
using the combination of these two approaches. The process
of judging and performing searches can be repeated until the
desired quality of traceability links is reached.

Relevance feedback, as the name implies, dependents upon
user input to determine relevant documents. Alternatively one
can simply assume that only the top ranked documents are
relevant without any user intervention. In our experiments we
used neither of these techniques. As explained in Sec. VIII-A,
we traced the links between some artifacts manually in order to
compare our automated technique with what may be considered
the correct results. In our query refinement we simulate the user
feedback by finding the top ranked artifact in our manually
traced matrix. If the artifact can be found in the traceability
matrix we mark it as being relevant, otherwise it is marked as ir-
relevant. Afterwards the artifact will be incorporated into a new,
potentially improved search query and another search operation
performed. We arbitrarily performed these query improvements
five times computing the F(2) value at all threshold levels at
every query iteration. In order not to distort the performance

10

Fig. 10. F(2) percentage performance increase at every query refinement iteration averaged over all threshold levels and 95 percent matrix reduction.

results we do not consider artifacts previously considered in the
result set. Each time we only considered the residual collection
in which all previously used artifacts have been removed.

Table 10 shows the F(2) values averaged over all threshold
levels for each query refinement iteration. Iteration 1 denotes
the original performance without applying relevance feedback.
The first query refinement in which only a single artifact was
rated improved the results for almost all artifacts types. Results
improved in average over all threshold levels by 9% for system
requirements, 12% for architectural features, 2% for use-cases,
4% for sequence diagrams, none for state diagrams and 7% for
class diagrams.

Further iterations continued to improve the results for all
artifact types except for sequence diagrams. After 5 iterations
results improved by 10% for system requirements, a staggering
20% for architectural features, 6% for use-cases, -4% for
sequence diagrams, 11% for state diagrams and 13% for class
diagrams.

X. CONCLUSION

The objective of software traceability is to find the links
between user requirements and artifacts produced during the
software development life-cycle. Although techniques for gen-
erating and validating traceability are available, in practice it
often suffers from the huge effort and complexity of creating
and maintaining traces or from incomplete trace information
that cannot assist software engineers in real-world problems.

As an alternative we present a tool-supported approach to
automatically trace between various software artifacts normally
created in the software development life-cycle using LSA and
relevance feedback. We also describe some enhancements to
the basic LSA method, including various term weighting and in
particular, what we call attribute weights. To the extent that we
used all artifacts normally created in the software development
life-cycle, we believe this work presented is unique.

With a huge database of results there are still many aspects
of the methodology that can be explored. Why are the particular

weightings we used generally the best, but not the best for all
artifacts? No doubt the length of the various artifacts have an
impact on this. The one conclusion that is evident is that a
threshold value of 0.1 and a matrix reduction of 95% deliver
the best F(2) result. It is important to emphasize again that our
results in all cases reflect both the validity and the precision in
the F(2) value.

REFERENCES

[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia,
and Ettore Merlo. Recovering traceability links between code and
documentation.IEEE Transactions on Software Engineering, 28(10):970–
983, 2002.

[2] H. Chuang D. Lee and K. Seamons. Effectiveness of document ranking and
relevance feedback techniques.IEEE Software, 14(2):67–75, March/April
1997.

[3] A. de Lucia et al. Enhancing an artefact management system with
traceability recovery features. InICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenanc, pages 306–315, 2004.

[4] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. L, and
Richard Harshman. Indexing by latent semantic analysis.Journal of the
American Society for Information Science, 41:391–407, 1990.

[5] S. T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments, and Computers, 23(2):229–236,
1991.

[6] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving
requirements tracing via information retrieval. InRE, pages 138–, 2003.

[7] Jane Huffman Hayes, Inies C. M. Raphael, Elizabeth Ashlee Holbrook,
and David M. Pruett. A case history of international space station
requirement faul. InICECCS, pages 17–26, 2006.

[8] Hans-Peter Kr̈uger. Software traceability using latent semantic analysis
and relevance feedbac. Master’s thesis, University of Cape Town, Septem-
ber 2008.

[9] T. A. Letsche and M. W. Berry. Large-scale information retrieval with
latent semantic indexing.Information Sciences, 110(1–4):105 – 137, 1997.

[10] Marco Lormans and Arie van Deursen. Can LSI help Reconstructing
Requirements Traceability in Design and Test? InCSMR, pages 47–56,
2006.

[11] Carol Lundquist, David A. Grossman, and Ophir Frieder. Improving
relevance feedback in the vector space model. pages 16–23. CIKM, 1997.

[12] A. Marcus and J.I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. InProc. of 25th
International Conf. on Software Engineering, pages 125–135, Portland,
Oregon, 2003.

11

[13] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and
Santosh Vempala. Latent semantic indexing: a probabilistic analysis.
In PODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 159–168,
New York, NY, USA, 1998. ACM.

[14] G. Salton and C. Buckley. Improving retrieval performance by relevance
feedback. Technical Report 87-881, Department of Computer Science,
Cornell University, November 1987.

[15] G. Salton and C. Buckley. Parallel text search methods.Communications
of the ACM, 31(2):202–215, February 1988.

[16] G. Salton and C. Buckley. Term weighing approaches in automatic
text retrieval. Journal of the American Society for Information Science,
41(4):288–297, 1990.

[17] Gerard Salton and Michael J. McGill.Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[18] Raffaella Settimi, Jane Cleland-Huang, Oussama Ben Khadra, Jigar Mody,
Wiktor Lukasik, and Chris DePalma. Supporting software evolution
through dynamically retrieving traces to uml artifacts. InIWPSE ’04:
Proceedings of the Principles of Software Evolution, 7th International
Workshop, pages 49–54, Washington, DC, USA, 2004. IEEE Computer
Society.

