
 1

Mapster: A Peer-to-Peer Data Sharing Environment

Colin Rouse

Department of Computer Science

University of Cape Town

Western Cape

South Africa

crouse@cs.uct.ac.za

Prof. Sonia Berman

Department of Computer Science

University of Cape Town

Western Cape

South Africa

sonia@cs.uct.ac.za

Abstract

This paper describes a system called Mapster that allows users

in a P2P network to share their databases. The research

addresses problems of heterogeneity and scalability in P2P

databases. To provide fine-grained access to users’ databases,

schema matching and a super-peer topology are used. The

schema matching component allows information to be

translated by semi-automatically determining the mappings

between the databases within the P2P network. A super-peer

topology enables the schema matching techniques to operate

effectively in large, dynamic, heterogeneous networks.

Keywords:

Peer-to-peer, database sharing, schema matching, super-peer,

JXTA

Computing Review Categories:

H.2.4, H.3.3, H.3.4

1 Introduction

Much recent research and development has focused on aspects

of peer-to-peer (P2P) systems, including resource-sharing

[15], searching [26], and security [5]. Search has received a

great deal of attention, particularly in file-sharing P2P

systems. By extending the search capability from files to

databases, a deeper level of information sharing can be

achieved.

A key success of P2P systems has come from the ease of use

they offer: a user can connect to the network, access or query

a particular resource and then simply leave. This flexibility

helped make file-sharing systems such as Napster [28] highly

successful. For peer-to-peer database (P2PDB) systems to be

successful, they need to be able to communicate seamlessly

with other peers’ databases, and to support querying and data

transfer with little user effort.

Much human information resides in databases, which support

fine-grained requests for specific subsets of their data. A

P2PDB system permits querying a network of databases that

are independently designed and managed. It offers the

benefits of database access as well as the advantages of P2P

communication. Data sharing in this manner is more flexible

than Web-based systems, and avoids problems of centralised

control inherent in client-server or multidatabase systems.

This paper describes Mapster [24], our P2PDB system which

aims to provide fine-grained sharing of heterogeneous

relational databases in a manner that can scale well. As part of

the solution, a schema interoperability approach that will

operate effectively in P2P environments is needed. Our

approach takes advantage of a P2P overlay network structure

based on super-peer clusters [24].

Schema interoperability is required for databases to

communicate with each other. This can be achieved using

semantic mappings between databases. Schema

interoperability is not new, but only a few systems, viz. Piazza

[12], Hyperion [1] and BestPeer [22], have implemented some

form of it within a P2PDB network. We exploit a specific

network topology, namely super-peer clusters, to make this

viable in dynamic P2P networks.

The rest of the paper is organized as follows. Sections 2 and 3

briefly cover the background of P2P systems and schema

matching, respectively, and section 4 gives an overview of the

Mapster architecture. Sections 5 and 6 describe

interoperability and query processing, and the components of

the prototype system are presented in section 7. Experimental

results are discussed in section 8. Section 9 compares

Mapster with related work. The last sections provide a

conclusion and suggestions for future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

2 P2P Networks

P2P systems are applications that allow a network of peers to

produce or consume a variety of resources in a scalable and

efficient manner [31]. Peers may range from cell phones to

high-end servers. These peers have control over their own

resources and choose when to be connected to the network. In

pure P2P networks, there are no central servers, all peers are

considered equal and they connect directly with each other

[14]. P2P systems are different to client-server systems, as

there is little node specialisation, the peers are more

interconnected and the workload is typically divided amongst

the peers. The P2P architecture allows ad hoc networks to be

created very easily and can connect existing databases without

requiring them to be changed. Client-server applications tend

to be less flexible and impose more rules and limitations upon

participating nodes.

Napster[28], a simple yet effective P2P file-sharing system,

was primarily responsible for popularising modern P2P

systems. They are now a very active research area. This

research has produced many systems that range Internet

telephony networks like Skype [2], to file-sharing systems,

like Gnutella [17], which are the most common application of

the P2P architecture.

The large-scale, dynamic, heterogeneous characteristics of

P2P systems pose three key challenges, viz. resource

management, search, and security [7]. Resource management

covers issues such as load balancing, fairness (which aims to

prevent those that do not contribute from benefiting), and data

replication. Search enhancement has focussed on routing

algorithms [6], distributed hash tables (DHTs) [26], and

caching [4]. More information on P2P file-sharing systems

can be found in [4] and [7]. After describing Mapster, section

9 outlines existing P2P database systems and compares them

with our approach.

2.1 Topologies

The P2P topology defines the layout of the underlying

network and dictates how the peers connect to each other. As

P2P systems became larger and more complex, more research

has focused on this aspect. Several approaches have resulted,

including unstructured networks, clustering, distributed hash

tables (DHTs), and super-peer (SP) networks.

Unstructured networks impose no constraints on the

placement of data or peers, and are the simplest topology.

Querying is done by recursively sending the query to all

neighbours, until the data is found or a time-to-live threshold

exceeded (flooding). Clustering is the process of grouping

peers together according to some constraints, usually peers’

interests. Distributed Hash Tables (DHTs) require peers to

store indexes of other peers’ resources. These can then be

used to direct queries to peers that contain the relevant

resources. Super-peer (SP) networks treat peers differently

based on their resources and network behaviour. Peers that are

connected for longer and have more resources are classified as

super-peers (SPs). All other peers are known as normal peers

(NPs). SPs can be used in a variety of ways to create efficient

topologies, such as HyperCuP [22]. SP networks have shown

good performance and have consequently become very

popular. Yet, they can be very inefficient if not implemented

properly. They should be built incrementally and should be

able to adapt to the environment. Several questions need to be

addressed when creating SP topologies, including how SPs

connect to each other and what is a good ratio of NPs to SPs.

2.2 P2P Systems

Napster [28] was the first popular file-sharing P2P system.

The system consists of several central index servers that act as

directories. A server stores metadata of all peers connected to

it, including IP addresses and shared filenames. Peers register

with one of these servers when they join the network. They

are then able to use it to search for files located on other peers

currently connected to the network by sending queries to the

server. A notable disadvantage with the Napster design is its

simple topology. The central servers form a single point of

failure. If a server goes down then all the peers connected to it

go down as well. These peers could connect to another server,

but this would cause scalability problems, as the server’s

workload would increase considerably. Napster has two

advantages in that it offers fast query processing and fast

updating of available resources, but its search is limited to

keyword lookups.

Gnutella [30] is a completely decentralised system where

peers connect to neighbouring peers to form a massive

collection of interconnected nodes. . Due to its decentralised

design and lack of central control, it is easy to create ad-hoc

 3

networks using Gnutella. Querying is in the form of keyword

lookups and is done by recursively passing on a query

(flooding). This unfortunately consumes an unnecessarily

large amount of resources. The messages passed in the

network use a time-to-live counter. If the time-to-live limit is

set too high then a message may loop in the network; if too

low then the message may only return a subset of the potential

results. Apart from the severe scalability problems that

Gnutella faces, there are also problems of inefficiency and

denial of service attacks [17]. The protocol used for answering

queries is expensive but useful in an environment where there

is a lot of peer activity, i.e. not only do peers constantly

change, but so do the resources offered by those peers.

Chord is a distributed lookup protocol that addresses the

problem of efficiently locating a peer that stores a particular

data item [27]. It provides support for just one operation:

mapping a key to a peer. Data location can be easily

implemented on top of Chord by associating a key with each

data item. Therefore, each peer stores a hash of the resources

offered by it. This hashmap is then stored by at least one

neighbour to quickly search for a particular resource. Chord

adapts efficiently as peers join and leave the system, and can

answer queries even if the system is continuously changing.

Unfortunately, Chord can only locate an item if it is given the

exact key that maps to that particular item. This limits how the

system can perform searches. Users cannot use phrases or

keywords that do not exactly match the relevant key.

3 Schema Interoperability

In order for different databases to communicate with each

other, semantic mappings between the databases’ schemas are

needed. A semantic mapping is a link between logically

equivalent attribute(s) in different schemas. For example, a

semantic mapping could exist between the attribute FName in

schema A and the attribute first_name in schema B. Defining

these mappings is difficult as database schemas are typically

designed independently and, consequently, often differ in

many regards. These differences include schemas that use

different structures, naming conventions and data models.

Furthermore, the same attribute name may have different

semantics in different schemas, formulae may need to be

applied to attributes in one schema to match attributes in

another schema, and one attribute may correspond to several

attributes in another schema. All these differences pose

significant challenges when matching two different schemas.

These mappings can be determined manually by domain

experts or semi-automatically using schema matching.

Domain experts are useful as they can define accurate and

extensive mappings. However, the process is very time

consuming, tedious and expensive. Schema matching is

explained in more detail next as it has been used in Mapster to

achieve schema interoperability. The various problems and

challenges associated with schema matching are covered in

more detail in [23].

3.1 Schema Matching

Schema matching is the process of computing the semantic

mappings between two schemas that pass user validation [18].

Due to the complex nature of potential matches, fully

automatic matching is deemed infeasible [18]. For this reason,

user interaction during a semi-automated match process, and

user validation after it, is recommended. Besides the two

schemas, input can also include auxiliary information, like

dictionaries.

Several schema matching techniques have been developed

over the years. An individual technique is called a matcher

and can be applied by itself or in combination with others.

These matchers work at one of three levels: schema structure,

attributes and stored values. Structure matchers typically

examine the path from the root of the schema to the current

attribute. They analyse the full path name, typically using

linguistic analysis, and perform subpath matching. Other

structure matchers increase the similarity of attributes based

on common neighbours. Cupid [18] and Similarity Flooding

[19] are two systems that make use of these techniques.

Attribute matchers are the most popular and typically analyse

the attribute names using dictionaries and thesauri to find

matching attributes. Data types and schema constraints are

occasionally used. Finally, attributes’ stored values can be

analysed to find matches, typically using machine-learning

techniques e.g. Bayesian Networks. Although useful data can

be found in stored values, it does mean that far more

processing needs to be done. iMAP [8] and LSD [3] both use

machine learning at this level.

Matchers are usually combined to improve match predictions.

Combination can be achieved by either using the hybrid

 4

approach or the composite approach. The hybrid approach is

more common but less flexible, as the selection of matchers

and their execution order are fixed. This approach is useful

when the problem domain is known quite well and the

combination of matchers can be tuned beforehand. With the

composite approach, the selection and execution order of

matchers can be chosen at runtime. This allows the system to

adjust for different environments. COMA [9] seems to be the

only system that has taken the latter approach.

3.2 Use of Mappings

There are two common methods of defining and using

semantic mappings. Two P2PDB systems, Piazza [12] and

Hyperion [1], use pairwise mappings. A pairwise mapping is a

mapping from attributes in one database to attributes within

another database. These mappings are usually defined

manually, which allows them to be accurate, but this is labour-

intensive. Countless mappings need to be generated, as a

mapping is required for every pair of related attributes.

Existing mappings can be used to determine new transitive

mappings, making pairwise mappings quite flexible.

However, a network of mappings can become exceedingly

complex, as sequences of mappings must often be traversed in

order to determine how peer A matches peer Z. This makes

scalability problematic for pairwise mapping.

An alternative method is to use a mediated schema. This

method has been used by the P2PDB system Edutella [21]. A

mediated schema is a single schema that is the combination of

several schemas. Mappings are then simply links between

individual schemas’ attributes and the attributes within the

mediated schema. Fewer mappings need to be created when a

mediated schema is used, as the schemas are only mapped to a

single mediated schema. No mappings need to be defined

between the different schemas, making the mediated schema

approach simpler and more scalable. Query processing is

easier as the query only needs to be translated once for each

schema, being from the mediated schema to the relevant

schema. A disadvantage of using a mediated schema is that it

can be difficult to maintain a complete up-to-date version,

especially in a dynamic P2P network.

4 Mapster Architecture

A P2PDB system is built upon a P2P platform which allows

nodes to communicate over the network and provides basic

topology management. Peer communication is important, as

numerous messages need to be sent across the network, such

as database queries, query results, topology adaptation

instructions, and coordination messages. Coordination

messages are vital for handling communication errors.

Query processing and a GUI are also necessary components.

Queries and their results are transported along the network.

This transportation is dictated by the P2P platform and, more

specifically, by the topology management scheme. Queries

also need to be translated for each peer according to the peer’s

schema. This is done by the semantic interoperability

component, either before queries are sent to peers or when

each peer receives the query. Post-processing of results, e.g.

for aggregation, is also needed. Although the query GUI can

be basic, it is helpful to have a good interface for querying and

displaying the results. Other components can be added to a

system. These can include security enforcement, advanced

GUI features, efficient topologies, and online editing of

database schemas.

Semi-automatic schema matching in Mapster aims to make

fine-grained querying of heterogeneous P2P databases

possible. While effective schema matching techniques exist,

they focus on static, small-scale and close-knit environments.

They do not scale well to environments like P2P networks.

This is due to several problems, including the dynamic nature

of the network, where peers can come and go at will. The size

of P2P networks and the speed at which queries need to be

processed makes this scaling problem important to address. In

addition, there is no central authority, which makes it difficult

to keep an up-to-date picture of all the current peers’ schemas,

consequently making it difficult to provide the peers with an

accurate view of available information.

Mapster exploits a cluster topology to make schema matching

viable in this context. Only a handful of P2PDB systems have

been developed [1,12,21,22] and none of them has focused on

exploiting the topology to influence schema matching.

Mapster uses a SP (super-peer) network and clustering of

peers according to areas of interest or domains. Clustering

peers according to their domain helps to break the network up

into sections that are more manageable. These domains are

 5

individually more stable than the entire network and, so,

provide a better environment for schema matching. Grouping

schemas by their domain also allows the schema matching

component to exploit any knowledge specific to those

domains, such as ontologies, which has been shown to be

effective in e.g. [4].

Each domain has an SP in charge of it. This SP performs the

bulk of the decision-making regarding the domain. It

maintains a mediated schema (MS) for the domain, which it

constructs from the schemas of the connected NPs. A

mediated schema is used to represent all the schemas within a

single domain. If a peer wishes to join the domain, it first

communicates with this SP. The SP will add the new peer’s

schema to the MS, using schema matching techniques.

SPs from different domains can communicate with each other

to support global queries, i.e. queries that are not limited to the

current domain or to any particular domain. This is useful, for

example, if a user wanted to know if there were any houses

for sale that fell within his budget and were close to certain

types of transport, then he would need to query the Property

domain and the Transport domain.

Figure 1 illustrates a basic network for Mapster. The large

circles represent domains. Each domain contains several NPs,

represented by small circles, and a single SP, represented by a

large square. The thick arrows indicate the connections

between domains. There are two mechanisms that can be used

to achieve communication between domains, namely pairwise

mappings and JXTA adverts; where JXTA[16] is a set of

protocols and primitives for building P2P networks. The

major components that make up Mapster are covered next.

Figure 1: Basic Mapster network

5 Interoperability in Mapster

5.1 Super-Peer Topology

The SP topology localises network changes and reduces the

effect these changes have on the surrounding peers. It also

pushes peers with low network stability to the edge of the

network, where the effects of their dynamic behaviour are

minimised. Peers that are not stable can cause disruption to

the domain. A peer with low network stability should not

become a SP, as the domain will need to be reorganised as

soon as the peer goes offline. This reorganisation takes time

and should be kept to a minimum.

The previous section explained that a single SP is used to

manage a domain. However, this is not very robust and will

not scale well when many peers join a domain. To address this

scaling issue and the dynamic nature of P2P networks,

replication is introduced - having several SPs present within a

single domain. These SPs all store the same MS (mediated

schema) so that when one SP goes down, the MS is still

available. Queries can be distributed amongst the SPs to

achieve load balancing. Since the most reliable NPs are made

SPs, SPs are unlikely to go offline excessively.

Control in a domain is maintained by having a certain SP act

as the root of the domain. This SP performs the bulk of the

decision-making. When NPs first connect to a domain, this is

the first peer with which they communicate. It is responsible

for maintaining the MS and distributing it amongst the

remaining SPs. This is the only SP that is visible from outside

the domain and is called the virtual SP (VSP) for this reason.

The remaining SPs present within the domain are called actual

SPs (ASPs).

Some examples of how the topology works are presented next.

Figure 2 demonstrates the topology without SP replication,

whilst Figure 3 illustrates the topology with SP replication.

Figure 2.a shows the setup just after a peer created a new

domain. Since the peer started the domain, it also becomes the

SP for it. The MS is created using the peer’s database. Even

though a peer is an SP, it also has the capabilities of an NP.

Therefore, a peer which is an SP is represented as both an NP

and as an SP in the figure. In the implementation, an SP

inherits from the NP class and extends this with SP

Normal peer

Super-peer

Property
domain

Transport domain

Airlines
domain

Pairwise mapping

 6

capabilities.

Figure 2.b shows what the topology looks like after more

peers have joined the domain. If an NP goes offline, the NP’s

database is flagged as offline in the MS. Flagged entries in

the MS are removed if the peer has not reconnected for longer

than the Reconnection Period threshhold.

If the SP goes offline, as shown in Figure 2.c by the dotted

boxes, then a new SP must be chosen and the MS

reconstructed. The MS needs to be reconstructed as the NPs

do not store a copy of it. The resulting topology is shown in

Figure 2.d. The process of choosing a new SP from candidate

NPs is explained in section 7.2.

Figure 2: SP topology without SP replication

Figure 3 illustrates how the addition of ASPs increases the

robustness of the network. In Figure 3.a a new domain is

created by a peer, and in Figure 3.b more peers have joined

the domain, requiring a new ASP. Two new scenarios occur

in this new topology; namely, when the VSP is changed and

when an ASP is changed. If the VSP goes offline, as in Figure

3.c, a new VSP is chosen from the existing ASPs. The new

VSP uses its current MS as the new domain MS. SPs can

afford to store the MS as they have more resources available

to them. This is far better than having to reconstruct the MS,

since applying schema matching to all the peers’ databases

would be time consuming. If an ASP goes offline, then its

children NPs ask the VSP to add them to another ASP. This is

also shown in Figure 3.c, where the second NP from the first

ASP connects to the remaining ASP (figure 3.d).

Figure 3: SP topology with SP replication

2.a

First peer becomes the SP for the domain and creates

the MS

SP

NP

More peers join the domain and have their schemas

added to the MS

2.b SP

NP NP NP

The SP goes offline, a new SP needs to be chosen,

and the MS needs to be rebuilt

NP NP NP

2.c SP

The SP is up and the MS has been rebuilt, resulting in

the domain being functional again

2.d SP

NP NP

First peer becomes the VSP and an ASP for the domain,

and creates the MS

3.a

ASP

NP

VSP

More peers join the domain, resulting in another ASP

being chosen

3.b

ASP

NP

VSP

ASP

NP NP

The VSP goes offline; however, the domain is still

functional as the MS is present on the other ASP

3.c

ASP

NP

ASP

NP NP

VSP

An existing ASP becomes the new VSP

3.d

ASP

NP NP

VSP

 7

5.2 Mediated Schemas

Since schema matching can be expensive in dynamic

environments, the network is broken up into more stable

sections using domains. Mapster assigns peers to domains so

that a domain comprises many semantically similar databases.

In order to create a MS, schema matching is required. Query

processing in systems that use pairwise mappings can require

multiple mappings to translate from peer A to peer Z, whereas

an MS approach allows any query to be answered in only two

steps (A � SP � Z), or three steps if peer A and peer Z are in

different domains (A � SP � SP � Z). This is the worst-case

scenario. Hence, the MS approach scales better, which is why

it has been used within each domain of the network.

An example of how the MS is constructed is now given. Table

1 to 3 illustrates three simple, slightly different schemas. The

MS is created using schema A. Since the MS is empty, each

attribute from schema A is put into its own cluster. Clusters

store schema attributes that are semantically similar to each

other. A cluster in the MS is analogous to an attribute in an

ordinary database. The entries in the cluster sets are in the

form schema.attribute (the table name has been omitted for

brevity). In step 2, schema B is added to the MS. Schema

matching is used to decide to which cluster each new attribute

belongs. After schema C has been added in step 3, the MS

represents the combination of the three schemas, with each

cluster comprising semantically similar attributes. For

instance, Age was not put into cluster one even though its

instances are similar to those of cluster one.

Table 1: Schema A

ID FName LName

21 Gareth Louw

22 Ben Smith

23 John Black

Step 1: MS is created using schema A

Cluster 1 = {A.ID}

Cluster 2 = {A.FName}

Cluster 3 = {A.LName}

Table 2: Schema B

Index First_name

99 Michelle

100 Mike

101 Mike

102 Steve

Step 2: Schema B is added

Cluster 1 = {A.ID, B.Index}

Cluster 2 = {A.FName, B.First_name}

Cluster 3 = {A.LName}

Table 3: Schema C

Index Age FirstName Surname

1 31 Lisa Blake

2 25 Ben Smith

3 56 Peter Black

Step 3: Schema C is added

Cluster 1 = {A.ID, B.Index, C.Index}

Cluster 2 = {A.FName, B.First_name, C.FirstName}

Cluster 3 = {A.LName, C.Surname}

Cluster 4 = {C.Age}

5.3 Schema Matching

Schema matching is used in the construction of the MS.

Mappings from the attributes of a new database to the clusters

in the MS are found semi-automatically using schema

matching techniques. These techniques allow the MS to be

constructed far more quickly and effortlessly than manually

creating them. Once the mappings have been defined, they are

stored with the MS and used by the query processor.

Schema matching is a complex task, so a Mapster utility is

provided that enables the automated part of schema matching

to be tuned to a particular domain. Specific matchers can be

selected and their parameters and combination method

adjusted. Results can be evaluated against a set of manually

defined matches, which are considered1 to represent the

perfect mappings between the two input schemas. Four

evaluation measures are calculated, viz. recall, precision, F-

measure and overall [10]. The figure below illustrates the

overall matching process. Section 7.4 covers the match

process in more detail, while section 8.1 explains the

evaluation measures and how they are used.

Figure 4: Schema matching process

6 Query Processing

Query processing is the last step in achieving a P2PDB

1 Schema matching is subjective and, so, perfect mappings

may differ from user to user

Calculate

evaluation

measures

Schema A

Output:

Set of mappings and

associated

probabilities

Input:

Pre-process schemas

(Includes tokenisation

and synonym lookups)

Choose matchers

and optionally

adjust thresholds

Match schemas

Schema B

 8

system. Once a peer has joined a domain and had its database

added to the MS, it will then want to make use of the

resources available to it. These resources are the other peers’

databases and there are two ways of accessing them: browsing

or querying. Browsing forces the user to explore all the peers’

databases in order to find something he wants. Querying is far

more powerful and efficient, as it allows the user to specify, in

SQL, which attributes he wants to view, what values they

should have and how they should relate to other attributes,

either in the same database or in other databases. Browsing is

not supported for efficiency reasons. Queries are specified in

terms of the peer’s own database. If this is not adequate then

the query can be specified in terms of the MS. Queries written

in terms of the local schema are preferred as the user should

understand his database better than the MS and, consequently,

be able to specify a query more accurately. Queries on the

MS allow attributes not present in the user’s own database to

be included when querying the network.

Once a query has been specified, it is sent to the NP’s parent

ASP. The ASP uses the MS to divide the query into

subqueries, based on which NPs contain attributes in the

query. These subqueries are then sent to the relevant NPs.

Once processed, results are sent directly back to the NP that

posed the query. Any post-processing, such as aggregation, is

then performed by that NP. If a peer fails to return a result

this does not affect the post-processing, which simply

consolidates information from those nodes that did respond.

If a query is phrased in terms of the peer’s own schema it is

first reformulated in terms of the MS. The algorithm first

extracts all attributes in the query; where there is a wildcard it

is replaced with all the attributes in that relation according to

the semantics of SQL. The attributes are stored in a hash map,

with the key being the attribute in the query and the object

being the corresponding cluster in the mediated schema. For

each peer that has data relevant to this query, this hash map is

then used to generate the corresponding query for the peer.

For example, the query

Select cust.*, day, fee from cust, sales where age>21

might translate to the following for different peers:

P1: Select name,age,day,fee from cust,sales where age>21

P2: Select fname,age from personnel where age > 21

P4: Select name, age, saleDate from sales where age > 21

if e.g. P2 does not have attributes in the day or fee cluster, and

P3 does not store data equivalent to the age attribute.

7 Implementation

The four main Mapster components are a JXTA [16] platform,

a topology manager, a mediated schema constructor, and a

schema matching utility. These components are outlined and

then their interaction in our P2PDB architecture is presented.

7.1 JXTA Database Sharing

JXTA is an open-source P2P library, which allows a variety of

devices, ranging from cell phones to high-end servers, to form

a P2P network. It aims to work independently of the

programming language, operating system, and network

protocol used by any peer [11]. JXTA was used to create the

underlying P2P system, as it provided all the basic P2P

functionality. The primary form of communication in JXTA

are adverts, which describe a resource in XML.

A custom JXTA advert type was created to describe a

database, which could be used to advertise peers’ databases on

the network. Whenever a new peer connects to the JXTA

network, a database advert is created for the peer’s database

and stored in the new peer’s local cache. This allows another

peer to retrieve the advert from that peer’s local cache at any

time, assuming that it is still valid, as adverts contain a time-

to-live value. Once a peer has obtained another peer’s

database advert, it can use the advert to view and query the

peer’s schema and data.

Figure 5 illustrates how the JXTA component works. A user

can connect to the network, as shown by point 1. The peer can

then advertise its database (2) and retrieve other peers’

database adverts (3). Once an appropriate advert has been

received, other peers can use that advert to request data from

that database (4). This request uses information from the

advert to send an instruction to the relevant peer to return the

corresponding data (5).

 9

Figure 5: JXTA database sharing outline

7.2 Super-Peer Topology Manager

A topology manager provides a layer above the JXTA

network which enables data access to be controlled by domain

super-peers. This component also automatically adjusts the

network under high loads. When too many NPs try to connect

to an SP, a new SP is automatically created from the most

willing NP. Willingness to become an SP is calculated using

peer information such as average CPU load, network

behaviour, bandwidth capabilities, etc. This value is called the

SP willingness. It is adjusted over time to reflect the peer’s

behaviour. The user can also explicitly set a peer’s SP

willingness value, e.g. if the user would like to have the peer

become an SP or definitely not become an SP. Every peer also

has an NP acceptance value, which is the maximum number

of NPs that the node can manage should it become an SP.

New NPs connect to the most accepting SP in a domain, based

on its NP acceptance level and the number of NPs already

connected to it.

The topology manager aims to build a balanced tree, where

the VSP is the root and the NPs are the leaves. However, each

SP can adjust its NP acceptance value, and SP willingness

values change over time. Thus the topology may not be

balanced structurally, but balanced in terms of SP load. The

ability to calculate how willing an NP is to become an SP is

useful in stabilising a domain. Since only the most willing

NPs become SPs, the SPs within a domain should be quite

stable. Every time a new peer joins the domain, its willingness

to be an SP is calculated. If it exceeds that of some existing SP

by more than a threshold amount, then it replaces the least

willing SP. This ensures that the domain remains stable in the

long term, by sacrificing some stability in the short term, and

also ensures that such reorganisation does not occur too

frequently.

7.3 Mediated Schema Construction

The MS construction algorithm is incremental, which allows a

database to be added to a domain at any point with minimal

interference to the working of the system. The algorithm was

adapted from the work done in WISE-Integrator [13]. The first

database is broken up into clusters, by putting each attribute

into its own cluster. These clusters become the initial MS

attributes.

When a new database is added to a domain, each attribute f

within that database is compared to every cluster within the

MS of that domain. f must be compared to every attribute

within the cluster to ensure a high degree of accuracy.

Comparison is done using schema matching techniques. f is

then added to the cluster that has the highest match similarity.

However, if the match similarity is below a given threshold

for all clusters then f is put into a new cluster. This process is

performed for every attribute in the new database. Section 5.2

contains an illustrated example of this process. The algorithm

presented below outlines the MS construction process.

For every attribute f1 in the new database

 For every cluster in the MS

 For every attribute f2 in the current cluster

 Compare f1 and f2 using schema matching

 Add the match probability to the cluster score

 c_max = cluster with the highest match probability

 If the match probability of c_max >= limit then

 Add f1 to c_max

 Else

 Create a new cluster for f1

 Update the schema mapping table

Every time an attribute is added to a cluster in the MS, an

entry is made in a schema mapping table. These mappings are

used in query processing to redirect queries to all relevant

peers and to link an attribute in the MS to the corresponding

data at each such peer.

When a peer disconnects, attributes from the relevant database

Database

3, 5

4

2

1

Example workflow:

1 – Log onto JXTA network

2 – Send advert of database over network

3 – Get all database adverts

4 – Request database data from peer using advert

5 – Receive database data

JXTA

Network

User

 10

are flagged as offline. They are not removed from the MS to

avoid having the peer go through the schema matching

process again. The mappings are removed only if the NP does

not reconnect after a specified time, currently 20 days.

However, the mappings are still available on the NP itself for

any future use.

7.4 Schema Matching

There are currently six matchers: three attribute matchers, two

structure matchers and one instance matcher. The most

accurate attribute matcher tokenises the attribute name and

then uses WordNet [30] to lookup all synonyms of the base

form of each token. Once all synonyms have been found,

similarity is calculated as follows [28]:

)2_(

_

÷

=

tokenstotal

synonymscommonofsum
similarityname

The EditDistance matcher uses the Levenshtein function [29]

to calculate the number of linguistic transformations required

to turn attribute name A into attribute name B. This was added

as WordNet cannot handle tokens that are not English words.

For example, the WordNet matcher will work well for the two

attribute names: FirstName and Name. The EditDistance

matcher will work well for the two attribute names: FName

and CustName. The third attribute matcher uses a data-type

compatibility table to compare attributes’ data types, as in

[23]. The table specifies how compatible two data types are.

This is most useful in excluding inappropriate matches

suggested by other matchers.

The two structure matchers are the NamePath and the Similar

Neighbour matcher. The NamePath matcher compares the

paths of the current attributes using an attribute matcher

because it is more flexible than string comparison. The second

matcher is called the Similar Neighbour matcher. This works

as follows: if attribute A matches attribute B with x probability

then the neighbours of A have their match probability to B’s

neighbours increased by a fraction. This fraction is usually

10% of x, but can be adjusted. This is a common approach in

schema matching, which captures the fact that logically

related attributes are often grouped together. Therefore, when

a match is found, this matcher helps indicate that the

neighbouring attributes of the current attributes are probably

similar. This matcher runs after all other matchers, using their

results to decide which neighbours are affected and by how

much.

At the instance level, a simple keyword matcher extracts all

words from all the stored values of the current attribute. The

most frequently occurring words of one attribute are then

compared to those of the other attribute. A similarity value is

calculated based on the number of common keywords found.

Each matcher computes a similarity value for each match it

proposes, which ranges from zero to one. These match

predictions need to be combined in order to benefit from the

use of multiple matchers. The default combination technique

in Mapster is to average the similarity values, which was

shown by COMA [9] to outperform all other combination

techniques. There are two other combination methods

available, namely minimum and maximum, which can be

requested instead using the schema matching utility.

7.5 Complete System

The components discussed above are used in Mapster as

indicated in figure 6. The sequence of work is shown on the

left of the diagram; the text in brackets indicates which

component is responsible for that work. Note, in point 3, that

an SP periodically updates the domain advert. The advert is

not actually sent out over the network, but is simply put into

the SP’s local cache. This reduces network traffic, as the

advert is only transmitted when a peer asks for it. Figure 7

shows the Mapster software components that exist on each

node, and how these interact with external entities viz. users

and databases at the node, and the JXTA P2P network

infrastructure.

Figure 6: Mapster Example

User A

3

1 2

4

Example workflow:

1 – Log onto network (JXTA)

2 – Get domain adverts (JXTA)

3 – Create new domain

 – Upgrade peer from NP to SP (SP topology manager)

 – Create MS and SMT (MS and SMT)

 – Periodically update the domain advert

4 – Join domain

 – Send database to SP so that the MS can be updated (MS and SMT)

JXTA

Network

Database

Mapster

software

Mapster

software

Database

User B

 11

Figure 7: Mapster Software

The first task a peer has is to connect to the network. This

requires the user to specify his database and to log onto the

network so that JXTA can assign a unique ID to the peer. The

peer then needs to create a domain or join an existing one. Let

us assume the peer creates a new domain. The creation of a

domain is handled by the topology manager. The peer is

upgraded to the VSP. Once the VSP is running, the initial MS

is built by the schema matcher.

The domain is now up and running. A domain advert is

periodically updated and published to notify other peers of its

existence and status. This status includes information like the

number of peers in the domain, the subject of the domain, and

its uptime. The advert and the way in which it is published are

handled by the JXTA component.

A new peer can connect to the network and browse domains.

The peer can then join a domain by extracting the VSP’s

address from the domain advert. The peer sends its database to

the VSP, where the schema matcher proposes mappings from

the peer’s database to the domain MS. These are sent to the

new peer for user validation. The confirmed/altered mappings

are sent back to the VSP, where they are added to the MS and

the peer is added to the domain. The VSP decides where to

put the new peer, either by making it an ASP or by adding it

to the most accepting ASP.

Handling nodes that leave the network

Research into the JXTA library showed that their solution of

having up-to-date peer information was only a proposal and

not yet implemented. Consequently, a pinging component was

added to Mapster. Peers need to ping each other continuously

in order to have fresh information about the peers connected

to them. A ping is done by trying to open a connection to the

peer. The ping operation will timeout after 10 seconds if a

connection cannot be opened. Pinging is done according to the

topology, i.e. an NP will ping an ASP and an ASP will ping a

VSP. If an ASP has not heard from the NP after 45 seconds

then it will try to ping it. If this fails then the NP is marked as

offline in the mediated schema and is removed from the list of

children on the ASP. The same applies to the VSP pinging

ASPs. If a peer cannot ping its parent ASP then it will try to

ping the VSP. If the VSP is online then the peer will ask the

VSP to reconnect it to the domain. If the parent was the VSP,

then the peer must cooperate with the other ASPs to choose a

new VSP. These checks allow the peers to handle the dynamic

nature of the network, where peers come and go at random.

Each pinging component is run in its own thread, to prevent it

from interfering with the normal operation of the peer. If the

peer is an ASP, then it will run two pinging threads: one to

ping the VSP and another to ping the NPs connected to it.

8 Evaluation

Three aspects of the system were tested, being the schema

matching, the P2P architecture and the usability of the system.

The tests aimed at checking the viability of the Mapster

approach to schema matching in P2P environments.

8.1 Schema Matching Utility

This utility allows a user to select and combine various

matchers in order to optimise the schema matching component

of Mapster. All parameters for each matcher can be set, in

order to improve match accuracy and execution time. The

combination method can also be adjusted. This level of

flexibility was useful in fine-tuning the schema matching

component of Mapster. Match candidates were evaluated

against a set of manually defined matches, which are

considered to represent the perfect mappings between the two

input schemas. Four evaluation measures were calculated to

measure performance and accuracy, viz. recall, precision, F-

measure and overall [10]. While earlier tests covered

databases from more than one domain, in the final evaluation

thirty-two databases were used which all contained data about

university courses and students, so as to maximise the number

User

Database

MSC

JXTA Kernel

GUI

Query

Processor Schema

Matcher

Topology Managaer

JXTA

Network

 12

of matches to detect. The databases had been created

independently by students in a third year course. Each

database typically had between three and four relations, and

an average of 14 attributes. The general similarity between

database schemas was about 75%.

For brevity, only overall and precision results are given here.

Overall aims to measure the post-match effort required to

remove false matches and add missing ones, whereas

precision measures the proportion of proposed matches

accepted by the user. The path matcher achieved an average

overall score of 0.22 and an average precision of 0.64. The

name matcher used WordNet and was the second best

matcher, with an average overall of 0.29 and an average

precision of 0.7. The edit distance matcher performed poorly,

with an average overall of 0.06 and precision of 0.54. The

datatype matcher proved ineffective unless used in

combination with other matchers. It scored an average overall

of -0.03 and an average precision of 0.33. The keyword

matcher performed the best, with an average overall of 0.34

and average precision of 0.73. The combination of matchers

was optimised - the weighted sum of three matchers proved

best for this domain: 45% for the keyword matcher, 45% for

the WordNet matcher and 5% for the name path matcher. The

matchers executed relatively quickly, with the combination

taking, on average, 44 seconds to execute.

8.2 P2P Architecture

Several aspects of the architecture were evaluated as the

network grew in size, including joining times, mediated

schema size, query times, and reconnection times. Tests

involved networks with up to 17 peers. Joining times were

used to measure how much strain the SPs were put under as

domain membership/size increased. It also checked how well

the use of a mediated schema was working. Joining times

were linear for all tests. The MS cluster size increased very

slowly as the domain grew, showing that it scales very well to

the number of schemas present in a domain. With 17 peers

connected, the total number of attributes in the domain was

over 220, but the size of the MS was only 26. Queries were

split into simple and complex queries, and times for each

query type were recorded. Complex queries were slightly

faster, which can be attributed to the fact that fewer schema

attributes and stored instances need to be transmitted along the

network. In general, query times grew linearly as the number

of peers increased. Reconnection times, i.e. the time taken by

online peers to reconnect to a domain when their parents went

offline, were very fast - typically less than 4 seconds, because

they did not have to add their schema to the MS.

8.3 Usability

We rounded off Mapster’s evaluation by checking user

satisfaction in an experiment involving 12 participants, six

system administrators and six subjects with average

computing ability. All were asked to query a P2PDB; the

former also had to configure and run the schema matching

utility. Participants were observed using the software and

then completed a questionnaire afterwards. While a number

of minor modifications were suggested, a substantive problem

was that subjects disliked using SQL and would have

preferred a query-by-example type of interface. This is left for

future work. Six system administrators who evaluated the

schema matching utility found the matchers and their results

easy to understand and were all able to configure Mapster as

required.

9 Related work

In this section we compare Mapster to the four other P2PDB

systems currently in existence. Piazza [12] is a P2P data

management system that provides semantic mediation

between peers using semantic pairwise mappings, which are

manually defined between pairs of peers. These mappings are

then used to compute mappings across the network by

exploiting transitive relationships. Manual mapping can be

tedious work, especially if it needs to be done for several

different peers’ schemas. The work done by the Piazza team

closely matches the work done with Mapster. However,

Mapster attempts to define as many mappings as it can

automatically. Mapster is also easier to query as transitive

mappings need not be computed.

Edutella [18] is an open source project that has been built on

top of JXTA. It uses RDF to provide a metadata infrastructure

for P2P applications. RDF was chosen as it is semantically

rich and supports extensive querying capabilities. However,

RDF is complicated to use. Wrappers need to be applied to all

schemas to transform them into schemas represented in the

common data model used by the Edutella network. Instead of

using wrappers, Mapster uses schema matching. Although

 13

Mapster uses mediated schemas, which can also be perceived

as a common data model, it does not force the users to define

mappings from their schema to the common data model nor

does it require wrappers.

Hyperion is a conventional DBMS augmented with a P2P

interoperability layer. The research thus far has focused on the

specification and management of the logical metadata that

enables data sharing and coordination between the peers [1].

A combination of mapping tables, expressions, and functions

are used to achieve data integration between peers. These

mapping are typically created manually by domain specialists.

Mapping expressions are based on the work proposed in [4],

particularly the Local Relational Model (LRM). This model

enables general queries to be translated into local queries and

new mappings to be found using existing ones. Hyperion uses

mechanisms called event-condition-action rules to enforce

mapping constraints, including mapping expressions. These

mechanisms are analogous to triggers in traditional database

systems. The system handles the reconciliation and integration

of data at query time, which means that results from queries

will reflect the current status of the network.

BestPeer enables peers’ databases to be shared to allow users

access to more fine-grained information [22]. The topology is

self-configurable and clusters peers together over time

according to the following theory: peers that answer queries

the most often or accurately will usually continue to do so,

and hence should be clustered together with the peers that

query them. To achieve schema matching, metadata for each

schema attribute is provided manually in the form of

keyword(s). These keywords are then compared to other

attributes’ keywords to find matching schema attributes semi-

automatically. Transitive mappings are also computed. Query

processing is a two-phase process. First, agents are sent out to

neighbouring peers to find matching relations relevant to the

query, using their keyword-based schema matching approach.

These matching relations are then sent back to the peer and a

query plan is created and executed. The use of agents is

distinctive to this system and highlights collaboration between

peers in order to achieve a certain goal. Whilst the use of

agents in querying processing is unique, the process is two-

phase and may take too long to perform, but no performance

figures are available. The schema matching is limited to one-

to-one matches and relies on good usage of keywords.

10 Conclusion

This paper describes a system called Mapster that allows users

in a P2P network to share their databases. The research

addresses problems of heterogeneity and scalability of

database sharing in P2P networks. It is also the only P2PDB

system that incorporates semi-automatic schema matching. To

provide fine-grained access to users’ data, Mapster takes the

unique approach of exploiting clustered topologies to make

schema matching viable in large-scale, dynamic networks.

The system uses a super-peer (SP) topology to break the P2P

network up into more stable sections. These sections are based

on the peers’ areas of interest or domains. These domains

contain a mediated schema that is created by the SPs using the

schema matching techniques.

The construction of the mediated schema is done as peers join

the network, so the impact on query processing is minimal.

The use of clustering according to the peers’ area of interest

ensures that the shared schemas contain overlapping data,

which greatly improves the accuracy of match predictors.

Other P2P database systems mostly use pairwise mappings,

which does not scale well, and none uses a structured network

topology to incrementally manage mediated schema

construction. Our approach is the first to use mediated

schemas within clusters and pairwise mapping across clusters,

and to make use of the topology of a network to enable

effective schema matching. It would not be appropriate to use

pairwise mapping within a domain cluster nor to use a

mediated schema across domains, since pairwise mapping is

not effective where the number of pairs is large, while

mediated schemas are inappropriate where there is a low

degree of overlap between schemas.

11 Future work

The query processing component of Mapster could be refined

to handle complex queries more effectively. These typically

require post-processing of peers’ results. It is unclear where to

do this post-processing. If the super-peer is not under too

much load then it could perform the post-processing,

otherwise the peer that issued the query must do so. Having

the super-peer perform post-processing is better, because it

subdivided the query and would know how to integrate the

results.

 14

To improve the schema matching component, a Bayesian

network instance matcher should be added. Once this exists

and query processing has been refined, the entire system will

be re-evaluated to measure how well various schema matching

techniques and combinations perform in a P2P network and

how the topology affects this performance. Experiments to

measure the performance of different topologies are also

needed to compare our super-peer clusters against alternatives.

12 Acknowledgements

Colin Rouse was supported by an NRF scholarship during his

MSc research, as well as a grant from the National University

of Singapore during his visit there.

13 References

[1] Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I.,

Miller, R. J., and Mylopoulos, J. The Hyperion Project - From

Data Integration to Data Coordination. SIGMOD Record, Vol.

32, No. 3, September 2003.

[2] Baset, S., and Schulzrinne, H., An Analysis of the Skype

Peer-to-Peer Internet Telephony Protocol, Department of

Computer Science, Columbia University, New York NY,

2004.

[3] Berlin, J., and Motro, A. Database Schema Matching

Using Machine Learning with Feature Selection. Technical

report, Information and Software Engineering Department,

George Mason University, Fairfax, VA, 2001.

[4] Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A.,

Mylopoulos, J., Serafini, L., and Zaihrayeu, I. Data

Management for Peer-to-Peer Computing: A Vision.

Technical Report, Microsoft Research, Microsoft Corporation,

2002.

[5] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W.

FreeNet: A Distributed Anonymous Storage and Retrieval

System. 2002.

[6] Crespo, C., and Garcia-Molina, H. Routing Indices For

Peer-to-Peer Systems. Stanford University, 2002.

[7] Daswani, N., Garcia-Molina, H., and Yang, B. Open

Problems in Data Sharing Peer-To-Peer Systems. Technical

report, Stanford University, 2002.

[8] Dhamankar, R., Lee, Y., Doan, A., Halevy, A., and

Domingos, P. iMAP: Discovering Complex Semantic Matches

between Database Schemas. SIGMOD 2004 June 13-18,

2004, Paris, France.

[9] Do, H., and Rahm, E. COMA: A system for flexible

combination of schema matching approaches, in Proceedings

of the 28th VLDB Conference, Hong Kong, China, 2002.

[10] Do, H., Melnik, S., and Rahm, E. Comparison of Schema

Matching Evaluations. Technical report, University of

Leipzig, Leipzig, Germany, 2002.

[11] Gong, L. Project JXTA: A Technology Overview.

Technical report, Sun Microsystems, Inc. Palo Alto, CA,

USA, 2002.

[12] Halevy, A., Ives, Z., Mork, P., and Tatarinov, I., Piazza:

Data Management Infrastructure for Semantic web

Applications, Proc. WWW2003, Budapest, May 2003.

[13] He, H., Meng, W., Yu, C., and Wu, Z. Automatic

integration of Web search interfaces with WISE-Integrator,

from The VLDB Journal, Springer-Verlag, 2004.

[14] Introduction to P2P networks, P2P networks project

(2003). http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/Intro.html,

accessed on 20/04/2006.

[15] Ives, Z., Khandelwal, N., Kapur, A., and Cakir, M.

ORCHESTRA: Rapid, Collaborative Sharing of Dynamic

Data. University of Pennsylvania, 2005.

[16] JXTA project homepage (2005): http://www.jxta.org/

[17] Lv, Q., Ranasamy, S. and Shenker, S., Can Heterogeneity

make Gnutella Scalable? Lecture Notes in Computer Science,

pp. 94 – 103, Springer-Verlag, 2002.

[18] Madhavan, J., Bernstein, P. A., and Rahm, E. Generic

Schema Matching with Cupid, Technical Report, Microsoft

Research, Microsoft Corporation, 2001.

[19] Melnik, S., Garcia-Molina, H. and Rahm, E. Similarity

Flooding: A Versatile Graph Matching Algorithm and its

Application to Schema Matching, in Proceedings of the 18th

International Conference on Data Engineering (ICDE), San

Jose CA, 2002.

[20] Napster website, http://www.napster.com, last accessed

07/09/2006.

[21] Nejdl, W., Wolf, B., Qu, B., Decker, S., Sintek, M.,

Naeve, A., Nilsson, M., Palm, M., and Risch, T. Edutella: A

P2P Networking Infrastructure Based on RDF, WWW2002,

May 7–11, 2002, Honolulu, Hawaii, USA.

[22] Ng, W. S., Ooi, B. C., and Tan, K. L. BestPeer - A Self-

Configurable P2P System. Technical report, School of

Computing, National University of Singapore, 2001.

[23] Rahm, E., and Berstein, P. A. A Survey of Approaches to

Automatic Schema Matching. Springer-Verlag, 2001.

[24] Rouse, C. Schema Matching in a Peer-to-Peer Database

System, Technical Report, Computer Science Department,

University of Cape Town, 2006.

[25] Schlosser, M., Sintek, M., Decker, S., and Nejdl, W.

HyperCuP: Hypercubes, Ontologies and Efficient Search on

P2P Networks. Technical report, Computer Science

Department, Stanford University, 2002.

[26] Shu, Y., Ooi, B. C., and Tan, K. L. Relational Data

Sharing in Peer-based Data Management Systems. SIGMOD

Record, Vol. 32, No. 3, September 2003.

[27] Stoica, I.. Morris, R., Karger, D., Kaashoek, M. F., and

Balakrishnan, H. Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications. MIT Laboratory for

Computer Science, MIT, 2001.

 15

[28] Sun, X., and Rose, E. Automated Schema Matching

Techniques: An Exploratory Study. Technical report, Institute

of Information and Mathematical Sciences, Massey

University, Auckland, New Zealand, 2003.

[29] White, S. Tame the Beast by Matching Similar Strings

(2004). http://www.devarticles.com/c/a/Development-

Cycles/Tame-the-Beast-by-Matching-Similar-Strings/,

accessed on 22 December 2004.

[30] WordNet: A Lexical Dictionary for the English

Language, http://wordnet.princeton.edu, last accessed

07/09/2006.

[31] Yang, B., and Garcia-Molina, H. Comparing Hybrid

Peer-to-Peer Systems, in Proceedings of the 27th VLDB

Conference, Roma, Italy, 2000.

