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Abstract 

This paper describes a system called Mapster that allows users 

in a P2P network to share their databases. The research 

addresses problems of heterogeneity and scalability in P2P 

databases. To provide fine-grained access to users’ databases, 

schema matching and a super-peer topology are used. The 

schema matching component allows information to be 

translated by semi-automatically determining the mappings 

between the databases within the P2P network. A super-peer 

topology enables the schema matching techniques to operate 

effectively in large, dynamic, heterogeneous networks.  
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1 Introduction 

Much recent research and development has focused on aspects 

of peer-to-peer (P2P) systems, including resource-sharing 

[15], searching [26], and security [5]. Search has received a 

great deal of attention, particularly in file-sharing P2P 

systems. By extending the search capability from files to 

databases, a deeper level of information sharing can be 

achieved.  

 

A key success of P2P systems has come from the ease of use 

they offer: a user can connect to the network, access or query 

a particular resource and then simply leave. This flexibility 

helped make file-sharing systems such as Napster [28] highly 

successful. For peer-to-peer database (P2PDB) systems to be 

successful, they need to be able to communicate seamlessly 

with other peers’ databases, and to support querying and data 

transfer with little user effort. 

 

Much human information resides in databases, which support 

fine-grained requests for specific subsets of their data. A 

P2PDB system permits querying a network of databases that 

are independently designed and managed.  It offers the 

benefits of database access as well as the advantages of P2P 

communication.  Data sharing in this manner is more flexible 

than Web-based systems, and avoids problems of centralised 

control inherent in client-server or multidatabase systems. 

This paper describes Mapster [24], our P2PDB system which 

aims to provide fine-grained sharing of heterogeneous 

relational databases in a manner that can scale well. As part of 

the solution, a schema interoperability approach that will 

operate effectively in P2P environments is needed. Our 

approach takes advantage of a P2P overlay network structure 

based on super-peer clusters [24]. 

 

Schema interoperability is required for databases to 

communicate with each other. This can be achieved using 

semantic mappings between databases. Schema 

interoperability is not new, but only a few systems, viz. Piazza 

[12], Hyperion [1] and BestPeer [22], have implemented some 

form of it within a P2PDB network. We exploit a specific 

network topology, namely super-peer clusters, to make this 

viable in dynamic P2P networks. 

 

The rest of the paper is organized as follows. Sections 2 and 3 

briefly cover the background of P2P systems and schema 

matching, respectively, and section 4 gives an overview of the 

Mapster architecture. Sections 5 and 6 describe 

interoperability and query processing, and the components of 

the prototype system are presented in section 7. Experimental 

results are discussed in section 8.  Section 9 compares 

Mapster with related work. The last sections provide a 

conclusion and suggestions for future work.  
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2 P2P Networks 

P2P systems are applications that allow a network of peers to 

produce or consume a variety of resources in a scalable and 

efficient manner [31]. Peers may range from cell phones to 

high-end servers. These peers have control over their own 

resources and choose when to be connected to the network. In 

pure P2P networks, there are no central servers, all peers are 

considered equal and they connect directly with each other 

[14]. P2P systems are different to client-server systems, as 

there is little node specialisation, the peers are more 

interconnected and the workload is typically divided amongst 

the peers. The P2P architecture allows ad hoc networks to be 

created very easily and can connect existing databases without 

requiring them to be changed. Client-server applications tend 

to be less flexible and impose more rules and limitations upon 

participating nodes. 

 

Napster[28], a simple yet effective P2P file-sharing system, 

was primarily responsible for popularising modern P2P 

systems. They are now a very active research area. This 

research has produced many systems that range Internet 

telephony networks like Skype [2], to file-sharing systems, 

like Gnutella [17], which are the most common application of 

the P2P architecture.  

 

The large-scale, dynamic, heterogeneous characteristics of 

P2P systems pose three key challenges, viz. resource 

management, search, and security [7]. Resource management 

covers issues such as load balancing, fairness (which aims to 

prevent those that do not contribute from benefiting), and data 

replication. Search enhancement has focussed on routing 

algorithms [6], distributed hash tables (DHTs) [26], and 

caching [4]. More information on P2P file-sharing systems 

can be found in [4] and [7].  After describing Mapster, section 

9 outlines existing P2P database systems and compares them 

with our approach. 

2.1 Topologies 

The P2P topology defines the layout of the underlying 

network and dictates how the peers connect to each other. As 

P2P systems became larger and more complex, more research 

has focused on this aspect. Several approaches have resulted, 

including unstructured networks, clustering, distributed hash 

tables (DHTs), and super-peer (SP) networks.  

 

Unstructured networks impose no constraints on the 

placement of data or peers, and are the simplest topology. 

Querying is done by recursively sending the query to all 

neighbours, until the data is found or a time-to-live threshold 

exceeded (flooding). Clustering is the process of grouping 

peers together according to some constraints, usually peers’ 

interests. Distributed Hash Tables (DHTs) require peers to 

store indexes of other peers’ resources. These can then be 

used to direct queries to peers that contain the relevant 

resources. Super-peer (SP) networks treat peers differently 

based on their resources and network behaviour. Peers that are 

connected for longer and have more resources are classified as 

super-peers (SPs). All other peers are known as normal peers 

(NPs). SPs can be used in a variety of ways to create efficient 

topologies, such as HyperCuP [22]. SP networks have shown 

good performance and have consequently become very 

popular. Yet, they can be very inefficient if not implemented 

properly. They should be built incrementally and should be 

able to adapt to the environment. Several questions need to be 

addressed when creating SP topologies, including how SPs 

connect to each other and what is a good ratio of NPs to SPs. 

2.2 P2P Systems 

Napster [28] was the first popular file-sharing P2P system. 

The system consists of several central index servers that act as 

directories. A server stores metadata of all peers connected to 

it, including IP addresses and shared filenames. Peers register 

with one of these servers when they join the network. They 

are then able to use it to search for files located on other peers 

currently connected to the network by sending queries to the 

server. A notable disadvantage with the Napster design is its 

simple topology. The central servers form a single point of 

failure. If a server goes down then all the peers connected to it 

go down as well. These peers could connect to another server, 

but this would cause scalability problems, as the server’s 

workload would increase considerably. Napster has two 

advantages in that it offers fast query processing and fast 

updating of available resources, but its search is limited to 

keyword lookups.  

 

Gnutella [30] is a completely decentralised system where 

peers connect to neighbouring peers to form a massive 

collection of interconnected nodes. . Due to its decentralised 

design and lack of central control, it is easy to create ad-hoc 
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networks using Gnutella.  Querying is in the form of keyword 

lookups and is done by recursively passing on a query 

(flooding). This unfortunately consumes an unnecessarily 

large amount of resources. The messages passed in the 

network use a time-to-live counter. If the time-to-live limit is 

set too high then a message may loop in the network; if too 

low then the message may only return a subset of the potential 

results. Apart from the severe scalability problems that 

Gnutella faces, there are also problems of inefficiency and 

denial of service attacks [17]. The protocol used for answering 

queries is expensive but useful in an environment where there 

is a lot of peer activity, i.e. not only do peers constantly 

change, but so do the resources offered by those peers. 

Chord is a distributed lookup protocol that addresses the 

problem of efficiently locating a peer that stores a particular 

data item [27]. It provides support for just one operation: 

mapping a key to a peer. Data location can be easily 

implemented on top of Chord by associating a key with each 

data item. Therefore, each peer stores a hash of the resources 

offered by it. This hashmap is then stored by at least one 

neighbour to quickly search for a particular resource. Chord 

adapts efficiently as peers join and leave the system, and can 

answer queries even if the system is continuously changing. 

Unfortunately, Chord can only locate an item if it is given the 

exact key that maps to that particular item. This limits how the 

system can perform searches. Users cannot use phrases or 

keywords that do not exactly match the relevant key. 

3 Schema Interoperability 

In order for different databases to communicate with each 

other, semantic mappings between the databases’ schemas are 

needed. A semantic mapping is a link between logically 

equivalent attribute(s) in different schemas. For example, a 

semantic mapping could exist between the attribute FName in 

schema A and the attribute first_name in schema B. Defining 

these mappings is difficult as database schemas are typically 

designed independently and, consequently, often differ in 

many regards. These differences include schemas that use 

different structures, naming conventions and data models. 

Furthermore, the same attribute name may have different 

semantics in different schemas, formulae may need to be 

applied to attributes in one schema to match attributes in 

another schema, and one attribute may correspond to several 

attributes in another schema. All these differences pose 

significant challenges when matching two different schemas.  

 

These mappings can be determined manually by domain 

experts or semi-automatically using schema matching. 

Domain experts are useful as they can define accurate and 

extensive mappings. However, the process is very time 

consuming, tedious and expensive. Schema matching is 

explained in more detail next as it has been used in Mapster to 

achieve schema interoperability. The various problems and 

challenges associated with schema matching are covered in 

more detail in [23]. 

3.1 Schema Matching 

Schema matching is the process of computing the semantic 

mappings between two schemas that pass user validation [18]. 

Due to the complex nature of potential matches, fully 

automatic matching is deemed infeasible [18]. For this reason, 

user interaction during a semi-automated match process, and 

user validation after it, is recommended. Besides the two 

schemas, input can also include auxiliary information, like 

dictionaries. 

 

Several schema matching techniques have been developed 

over the years. An individual technique is called a matcher 

and can be applied by itself or in combination with others. 

These matchers work at one of three levels: schema structure, 

attributes and stored values. Structure matchers typically 

examine the path from the root of the schema to the current 

attribute. They analyse the full path name, typically using 

linguistic analysis, and perform subpath matching. Other 

structure matchers increase the similarity of attributes based 

on common neighbours. Cupid [18] and Similarity Flooding 

[19] are two systems that make use of these techniques. 

Attribute matchers are the most popular and typically analyse 

the attribute names using dictionaries and thesauri to find 

matching attributes. Data types and schema constraints are 

occasionally used. Finally, attributes’ stored values can be 

analysed to find matches, typically using machine-learning 

techniques e.g. Bayesian Networks. Although useful data can 

be found in stored values, it does mean that far more 

processing needs to be done. iMAP [8] and LSD [3] both use 

machine learning at this level. 

 

Matchers are usually combined to improve match predictions. 

Combination can be achieved by either using the hybrid 
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approach or the composite approach. The hybrid approach is 

more common but less flexible, as the selection of matchers 

and their execution order are fixed. This approach is useful 

when the problem domain is known quite well and the 

combination of matchers can be tuned beforehand. With the 

composite approach, the selection and execution order of 

matchers can be chosen at runtime. This allows the system to 

adjust for different environments. COMA [9] seems to be the 

only system that has taken the latter approach. 

3.2 Use of Mappings 

There are two common methods of defining and using 

semantic mappings. Two P2PDB systems, Piazza [12] and 

Hyperion [1], use pairwise mappings. A pairwise mapping is a 

mapping from attributes in one database to attributes within 

another database. These mappings are usually defined 

manually, which allows them to be accurate, but this is labour-

intensive. Countless mappings need to be generated, as a 

mapping is required for every pair of related attributes. 

Existing mappings can be used to determine new transitive 

mappings, making pairwise mappings quite flexible. 

However, a network of mappings can become exceedingly 

complex, as sequences of mappings must often be traversed in 

order to determine how peer A matches peer Z. This makes 

scalability problematic for pairwise mapping.  

 

An alternative method is to use a mediated schema. This 

method has been used by the P2PDB system Edutella [21]. A 

mediated schema is a single schema that is the combination of 

several schemas. Mappings are then simply links between 

individual schemas’ attributes and the attributes within the 

mediated schema. Fewer mappings need to be created when a 

mediated schema is used, as the schemas are only mapped to a 

single mediated schema. No mappings need to be defined 

between the different schemas, making the mediated schema 

approach simpler and more scalable. Query processing is 

easier as the query only needs to be translated once for each 

schema, being from the mediated schema to the relevant 

schema. A disadvantage of using a mediated schema is that it 

can be difficult to maintain a complete up-to-date version, 

especially in a dynamic P2P network.   

4 Mapster Architecture 

A P2PDB system is built upon a P2P platform which allows 

nodes to communicate over the network and provides basic 

topology management. Peer communication is important, as 

numerous messages need to be sent across the network, such 

as database queries, query results, topology adaptation 

instructions, and coordination messages. Coordination 

messages are vital for handling communication errors.  

 

Query processing and a GUI are also necessary components.  

Queries and their results are transported along the network. 

This transportation is dictated by the P2P platform and, more 

specifically, by the topology management scheme. Queries 

also need to be translated for each peer according to the peer’s 

schema. This is done by the semantic interoperability 

component, either before queries are sent to peers or when 

each peer receives the query. Post-processing of results, e.g. 

for aggregation, is also needed. Although the query GUI can 

be basic, it is helpful to have a good interface for querying and 

displaying the results. Other components can be added to a 

system. These can include security enforcement, advanced 

GUI features, efficient topologies, and online editing of 

database schemas.  

 

Semi-automatic schema matching in Mapster aims to make 

fine-grained querying of heterogeneous P2P databases 

possible. While effective schema matching techniques exist, 

they focus on static, small-scale and close-knit environments. 

They do not scale well to environments like P2P networks. 

This is due to several problems, including the dynamic nature 

of the network, where peers can come and go at will. The size 

of P2P networks and the speed at which queries need to be 

processed makes this scaling problem important to address. In 

addition, there is no central authority, which makes it difficult 

to keep an up-to-date picture of all the current peers’ schemas, 

consequently making it difficult to provide the peers with an 

accurate view of available information. 

 

Mapster exploits a cluster topology to make schema matching 

viable in this context. Only a handful of P2PDB systems have 

been developed [1,12,21,22] and none of them has focused on 

exploiting the topology to influence schema matching.  

 

Mapster uses a SP (super-peer) network and clustering of 

peers according to areas of interest or domains. Clustering 

peers according to their domain helps to break the network up 

into sections that are more manageable. These domains are 
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individually more stable than the entire network and, so, 

provide a better environment for schema matching. Grouping 

schemas by their domain also allows the schema matching 

component to exploit any knowledge specific to those 

domains, such as ontologies, which has been shown to be 

effective in e.g. [4]. 

 

Each domain has an SP in charge of it. This SP performs the 

bulk of the decision-making regarding the domain. It 

maintains a mediated schema (MS) for the domain, which it 

constructs from the schemas of the connected NPs. A 

mediated schema is used to represent all the schemas within a 

single domain. If a peer wishes to join the domain, it first 

communicates with this SP. The SP will add the new peer’s 

schema to the MS, using schema matching techniques.  

 

SPs from different domains can communicate with each other 

to support global queries, i.e. queries that are not limited to the 

current domain or to any particular domain. This is useful, for 

example, if a user wanted to know if there were any houses 

for sale that fell within his budget and were close to certain 

types of transport, then he would need to query the Property 

domain and the Transport domain. 

 
Figure 1 illustrates a basic network for Mapster. The large 

circles represent domains. Each domain contains several NPs, 

represented by small circles, and a single SP, represented by a 

large square. The thick arrows indicate the connections 

between domains. There are two mechanisms that can be used 

to achieve communication between domains, namely pairwise 

mappings and JXTA adverts; where JXTA[16]  is a set of 

protocols and primitives for building P2P networks. The 

major components that make up Mapster are covered next. 

 
 
 

 
 

Figure 1: Basic Mapster network 

 

5  Interoperability in Mapster 

5.1 Super-Peer Topology 

The SP topology localises network changes and reduces the 

effect these changes have on the surrounding peers. It also 

pushes peers with low network stability to the edge of the 

network, where the effects of their dynamic behaviour are 

minimised. Peers that are not stable can cause disruption to 

the domain. A peer with low network stability should not 

become a SP, as the domain will need to be reorganised as 

soon as the peer goes offline. This reorganisation takes time 

and should be kept to a minimum.  

 

The previous section explained that a single SP is used to 

manage a domain. However, this is not very robust and will 

not scale well when many peers join a domain. To address this 

scaling issue and the dynamic nature of P2P networks, 

replication is introduced - having several SPs present within a 

single domain. These SPs all store the same MS (mediated 

schema) so that when one SP goes down, the MS is still 

available. Queries can be distributed amongst the SPs to 

achieve load balancing. Since the most reliable NPs are made 

SPs, SPs are unlikely to go offline excessively.  

 

Control in a domain is maintained by having a certain SP act 

as the root of the domain. This SP performs the bulk of the 

decision-making. When NPs first connect to a domain, this is 

the first peer with which they communicate. It is responsible 

for maintaining the MS and distributing it amongst the 

remaining SPs. This is the only SP that is visible from outside 

the domain and is called the virtual SP (VSP) for this reason. 

The remaining SPs present within the domain are called actual 

SPs (ASPs). 

 

Some examples of how the topology works are presented next. 

Figure 2 demonstrates the topology without SP replication, 

whilst Figure 3 illustrates the topology with SP replication. 

Figure 2.a shows the setup just after a peer created a new 

domain. Since the peer started the domain, it also becomes the 

SP for it. The MS is created using the peer’s database. Even 

though a peer is an SP, it also has the capabilities of an NP. 

Therefore, a peer which is an SP is represented as both an NP 

and as an SP in the figure. In the implementation, an SP 

inherits from the NP class and extends this with SP 

Normal peer 

Super-peer 

Property 
domain 

Transport domain 

Airlines 
domain 

Pairwise mapping 
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capabilities. 

 

Figure 2.b shows what the topology looks like after more 

peers have joined the domain. If an NP goes offline, the NP’s 

database is flagged as offline in the MS.  Flagged entries in 

the MS are removed if the peer has not reconnected for longer 

than the Reconnection Period threshhold. 

 

If the SP goes offline, as shown in Figure 2.c by the dotted 

boxes, then a new SP must be chosen and the MS 

reconstructed. The MS needs to be reconstructed as the NPs 

do not store a copy of it. The resulting topology is shown in 

Figure 2.d. The process of choosing a new SP from candidate 

NPs is explained in section 7.2. 

 

 

 
 

Figure 2: SP topology without SP replication 
 

 

Figure 3 illustrates how the addition of ASPs increases the 

robustness of the network. In Figure 3.a a new domain is 

created by a peer, and in Figure 3.b more peers have joined 

the domain, requiring a new ASP.  Two new scenarios occur 

in this new topology; namely, when the VSP is changed and 

when an ASP is changed. If the VSP goes offline, as in Figure 

3.c, a new VSP is chosen from the existing ASPs. The new 

VSP uses its current MS as the new domain MS. SPs can 

afford to store the MS as they have more resources available 

to them. This is far better than having to reconstruct the MS, 

since applying schema matching to all the peers’ databases 

would be time consuming. If an ASP goes offline, then its 

children NPs ask the VSP to add them to another ASP. This is 

also shown in Figure 3.c, where the second NP from the first 

ASP connects to the remaining ASP (figure 3.d).  

 

 
 

Figure 3: SP topology with SP replication 
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the MS 

SP 

NP 

More peers join the domain and have their schemas 
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NP 
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NP 
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The VSP goes offline; however, the domain is still 

functional as the MS is present on the other ASP 

3.c 

ASP 

NP 
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5.2 Mediated Schemas 

Since schema matching can be expensive in dynamic 

environments, the network is broken up into more stable 

sections using domains. Mapster assigns peers to domains so 

that a domain comprises many semantically similar databases.  

In order to create a MS, schema matching is required.  Query 

processing in systems that use pairwise mappings can require 

multiple mappings to translate from peer A to peer Z, whereas 

an MS approach allows any query to be answered in only two 

steps (A � SP � Z), or three steps if peer A and peer Z are in 

different domains (A � SP � SP � Z). This is the worst-case 

scenario. Hence, the MS approach scales better, which is why 

it has been used within each domain of the network. 

 

An example of how the MS is constructed is now given. Table 

1 to 3 illustrates three simple, slightly different schemas. The 

MS is created using schema A. Since the MS is empty, each 

attribute from schema A is put into its own cluster. Clusters 

store schema attributes that are semantically similar to each 

other. A cluster in the MS is analogous to an attribute in an 

ordinary database. The entries in the cluster sets are in the 

form schema.attribute (the table name has been omitted for 

brevity). In step 2, schema B is added to the MS. Schema 

matching is used to decide to which cluster each new attribute 

belongs. After schema C has been added in step 3, the MS 

represents the combination of the three schemas, with each 

cluster comprising semantically similar attributes. For 

instance, Age was not put into cluster one even though its 

instances are similar to those of cluster one. 

 

Table 1: Schema A 

ID FName LName 

21 Gareth Louw 

22 Ben Smith 

23 John Black 

 

Step 1: MS is created using schema A 

Cluster 1 = {A.ID} 

Cluster 2 = {A.FName} 

Cluster 3 = {A.LName} 

 

Table 2: Schema B 

Index First_name 

99 Michelle 

100 Mike 

101 Mike 

102 Steve 

 

Step 2: Schema B is added 

Cluster 1 = {A.ID, B.Index} 

Cluster 2 = {A.FName, B.First_name} 

Cluster 3 = {A.LName} 

 

Table 3: Schema C 

Index Age FirstName Surname 

1 31 Lisa Blake 

2 25 Ben Smith 

3 56 Peter Black 

 

Step 3: Schema C is added 

Cluster 1 = {A.ID, B.Index, C.Index} 

Cluster 2 = {A.FName, B.First_name, C.FirstName} 

Cluster 3 = {A.LName, C.Surname} 

Cluster 4 = {C.Age} 

5.3 Schema Matching 

Schema matching is used in the construction of the MS. 

Mappings from the attributes of a new database to the clusters 

in the MS are found semi-automatically using schema 

matching techniques. These techniques allow the MS to be 

constructed far more quickly and effortlessly than manually 

creating them. Once the mappings have been defined, they are 

stored with the MS and used by the query processor. 

 

Schema matching is a complex task, so a Mapster utility is 

provided that enables the automated part of schema matching 

to be tuned to a particular domain. Specific matchers can be 

selected and their parameters and combination method 

adjusted. Results can be evaluated against a set of manually 

defined matches, which are considered1 to represent the 

perfect mappings between the two input schemas. Four 

evaluation measures are calculated, viz. recall, precision, F-

measure and overall [10]. The figure below illustrates the 

overall matching process. Section 7.4 covers the match 

process in more detail, while section 8.1 explains the 

evaluation measures and how they are used. 

 
Figure 4: Schema matching process 

6 Query Processing 

 

Query processing is the last step in achieving a P2PDB 

                                                                 
1 Schema matching is subjective and, so, perfect mappings 

may differ from user to user 

Calculate 

evaluation 

measures 

Schema A 

Output: 

Set of mappings and 

associated 

probabilities 

Input: 

Pre-process schemas 

(Includes tokenisation 

and synonym lookups) 

Choose matchers 

and optionally 

adjust thresholds 

Match schemas 

Schema B 
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system. Once a peer has joined a domain and had its database 

added to the MS, it will then want to make use of the 

resources available to it. These resources are the other peers’ 

databases and there are two ways of accessing them: browsing 

or querying. Browsing forces the user to explore all the peers’ 

databases in order to find something he wants. Querying is far 

more powerful and efficient, as it allows the user to specify, in 

SQL, which attributes he wants to view, what values they 

should have and how they should relate to other attributes, 

either in the same database or in other databases. Browsing is 

not supported for efficiency reasons.  Queries are specified in 

terms of the peer’s own database. If this is not adequate then 

the query can be specified in terms of the MS. Queries written 

in terms of the local schema are preferred as the user should 

understand his database better than the MS and, consequently, 

be able to specify a query more accurately.  Queries on the 

MS allow attributes not present in the user’s own database to 

be included when querying the network. 

 

Once a query has been specified, it is sent to the NP’s parent 

ASP. The ASP uses the MS to divide the query into 

subqueries, based on which NPs contain attributes in the 

query. These subqueries are then sent to the relevant NPs. 

Once processed, results are sent directly back to the NP that 

posed the query. Any post-processing, such as aggregation, is 

then performed by that NP.  If a peer fails to return a result 

this does not affect the post-processing, which simply 

consolidates information from those nodes that did respond. 

 

If a query is phrased in terms of the peer’s own schema it is 

first reformulated in terms of the MS.  The algorithm first 

extracts all attributes in the query; where there is a wildcard it 

is replaced with all the attributes in that relation according to 

the semantics of SQL.  The attributes are stored in a hash map, 

with the key being the attribute in the query and the object 

being the corresponding cluster in the mediated schema.  For 

each peer that has data relevant to this query, this hash map is 

then used to generate the corresponding query for the peer.   

 

For example, the query 

 

Select cust.*, day, fee from cust, sales where age>21 

 

might translate to the following for different peers: 

P1:  Select  name,age,day,fee from cust,sales where age>21 

P2:  Select  fname,age from personnel where age > 21 

P4:  Select  name, age, saleDate from sales where age > 21 

if e.g. P2 does not have attributes in the day or fee cluster, and 

P3 does not store data equivalent to the age attribute. 

 

7 Implementation 

 

The four main Mapster components are a JXTA [16] platform, 

a topology manager, a mediated schema constructor, and a 

schema matching utility. These components are outlined and 

then their interaction in our P2PDB architecture is presented. 

 

7.1 JXTA Database Sharing 

 

JXTA is an open-source P2P library, which allows a variety of 

devices, ranging from cell phones to high-end servers, to form 

a P2P network. It aims to work independently of the 

programming language, operating system, and network 

protocol used by any peer [11]. JXTA was used to create the 

underlying P2P system, as it provided all the basic P2P 

functionality. The primary form of communication in JXTA 

are adverts, which describe a resource in XML. 

 

A custom JXTA advert type was created to describe a 

database, which could be used to advertise peers’ databases on 

the network. Whenever a new peer connects to the JXTA 

network, a database advert is created for the peer’s database 

and stored in the new peer’s local cache. This allows another 

peer to retrieve the advert from that peer’s local cache at any 

time, assuming that it is still valid, as adverts contain a time-

to-live value. Once a peer has obtained another peer’s 

database advert, it can use the advert to view and query the 

peer’s schema and data. 

 

Figure 5 illustrates how the JXTA component works. A user 

can connect to the network, as shown by point 1. The peer can 

then advertise its database (2) and retrieve other peers’ 

database adverts (3). Once an appropriate advert has been 

received, other peers can use that advert to request data from 

that database (4). This request uses information from the 

advert to send an instruction to the relevant peer to return the 

corresponding data (5). 
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Figure 5: JXTA database sharing outline 

7.2 Super-Peer Topology Manager 

A topology manager provides a layer above the JXTA 

network which enables data access to be controlled by domain 

super-peers.  This component also automatically adjusts the 

network under high loads. When too many NPs try to connect 

to an SP, a new SP is automatically created from the most 

willing NP. Willingness to become an SP is calculated using 

peer information such as average CPU load, network 

behaviour, bandwidth capabilities, etc. This value is called the 

SP willingness. It is adjusted over time to reflect the peer’s 

behaviour. The user can also explicitly set a peer’s SP 

willingness value, e.g. if the user would like to have the peer 

become an SP or definitely not become an SP. Every peer also 

has an NP acceptance value, which is the maximum number 

of NPs that the node can manage should it become an SP. 

New NPs connect to the most accepting SP in a domain, based 

on its NP acceptance level and the number of NPs already 

connected to it. 

 

The topology manager aims to build a balanced tree, where 

the VSP is the root and the NPs are the leaves. However, each 

SP can adjust its NP acceptance value, and SP willingness 

values change over time. Thus the topology may not be 

balanced structurally, but balanced in terms of SP load. The 

ability to calculate how willing an NP is to become an SP is 

useful in stabilising a domain. Since only the most willing 

NPs become SPs, the SPs within a domain should be quite 

stable. Every time a new peer joins the domain, its willingness 

to be an SP is calculated. If it exceeds that of some existing SP 

by more than a threshold amount, then it replaces the least 

willing SP. This ensures that the domain remains stable in the 

long term, by sacrificing some stability in the short term, and 

also ensures that such reorganisation does not occur too 

frequently. 

7.3 Mediated Schema Construction 

The MS construction algorithm is incremental, which allows a 

database to be added to a domain at any point with minimal 

interference to the working of the system. The algorithm was 

adapted from the work done in WISE-Integrator [13]. The first 

database is broken up into clusters, by putting each attribute 

into its own cluster. These clusters become the initial MS 

attributes.   

 

When a new database is added to a domain, each attribute f 

within that database is compared to every cluster within the 

MS of that domain. f must be compared to every attribute 

within the cluster to ensure a high degree of accuracy. 

Comparison is done using schema matching techniques.  f is 

then added to the cluster that has the highest match similarity. 

However, if the match similarity is below a given threshold 

for all clusters then f is put into a new cluster. This process is 

performed for every attribute in the new database. Section 5.2 

contains an illustrated example of this process.  The algorithm 

presented below outlines the MS construction process.  

 

 

For every attribute f1 in the new database 

     For every cluster in the MS 

          For every attribute f2 in the current cluster 

               Compare f1 and f2 using schema matching 

               Add the match probability to the cluster score 

     c_max = cluster with the highest match probability 

     If the match probability of c_max >= limit  then 

          Add f1 to c_max 

     Else 

          Create a new cluster for f1 

     Update the schema mapping table 

 

 

Every time an attribute is added to a cluster in the MS, an 

entry is made in a schema mapping table. These mappings are 

used in query processing to redirect queries to all relevant 

peers and to link an attribute in the MS to the corresponding 

data at each such peer. 

 

When a peer disconnects, attributes from the relevant database 

Database 

3, 5 

4 

2 

1 

Example workflow: 

1 – Log onto JXTA network 

2 – Send advert of database over network 

3 – Get all database adverts 

4 – Request database data from peer using advert 

5 – Receive database data 

 

JXTA  

Network 

User 
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are flagged as offline. They are not removed from the MS to 

avoid having the peer go through the schema matching 

process again. The mappings are removed only if the NP does 

not reconnect after a specified time, currently 20 days. 

However, the mappings are still available on the NP itself for 

any future use.   

7.4 Schema Matching   

There are currently six matchers: three attribute matchers, two 

structure matchers and one instance matcher. The most 

accurate attribute matcher tokenises the attribute name and 

then uses WordNet [30] to lookup all synonyms of the base 

form of each token. Once all synonyms have been found, 

similarity is calculated as follows [28]: 

 

)2_(

___
_

÷

=

tokenstotal

synonymscommonofsum
similarityname

 

 

The EditDistance matcher uses the Levenshtein function [29] 

to calculate the number of linguistic transformations required 

to turn attribute name A into attribute name B. This was added 

as WordNet cannot handle tokens that are not English words. 

For example, the WordNet matcher will work well for the two 

attribute names: FirstName and Name. The EditDistance 

matcher will work well for the two attribute names: FName 

and CustName. The third attribute matcher uses a data-type 

compatibility table to compare attributes’ data types, as in 

[23]. The table specifies how compatible two data types are.  

This is most useful in excluding inappropriate matches 

suggested by other matchers. 

 

The two structure matchers are the NamePath and the Similar 

Neighbour matcher. The NamePath matcher compares the 

paths of the current attributes using an attribute matcher 

because it is more flexible than string comparison. The second 

matcher is called the Similar Neighbour matcher. This works 

as follows: if attribute A matches attribute B with x probability 

then the neighbours of A have their match probability to B’s 

neighbours increased by a fraction. This fraction is usually 

10% of x, but can be adjusted. This is a common approach in 

schema matching, which captures the fact that logically 

related attributes are often grouped together. Therefore, when 

a match is found, this matcher helps indicate that the 

neighbouring attributes of the current attributes are probably 

similar. This matcher runs after all other matchers, using their 

results to decide which neighbours are affected and by how 

much.  

 

At the instance level, a simple keyword matcher extracts all 

words from all the stored values of the current attribute. The 

most frequently occurring words of one attribute are then 

compared to those of the other attribute. A similarity value is 

calculated based on the number of common keywords found.  

 

Each matcher computes a similarity value for each match it 

proposes, which ranges from zero to one. These match 

predictions need to be combined in order to benefit from the 

use of multiple matchers. The default combination technique 

in Mapster is to average the similarity values, which was 

shown by COMA [9] to outperform all other combination 

techniques. There are two other combination methods 

available, namely minimum and maximum, which can be 

requested instead using the schema matching utility. 

7.5 Complete System 

The components discussed above are used in Mapster as 

indicated in figure 6. The sequence of work is shown on the 

left of the diagram; the text in brackets indicates which 

component is responsible for that work. Note, in point 3, that 

an SP periodically updates the domain advert. The advert is 

not actually sent out over the network, but is simply put into 

the SP’s local cache. This reduces network traffic, as the 

advert is only transmitted when a peer asks for it.   Figure 7 

shows the Mapster software components that exist on each 

node, and how these interact with external entities viz. users 

and databases at the node, and the JXTA P2P network 

infrastructure.  

 

 

Figure 6: Mapster Example  
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3 – Create new domain 

     – Upgrade peer from NP to SP (SP topology manager) 

     – Create MS and SMT (MS and SMT) 

     – Periodically update the domain advert 
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     – Send database to SP so that the MS can be updated (MS and SMT) 
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Figure 7: Mapster Software  
 

The first task a peer has is to connect to the network. This 

requires the user to specify his database and to log onto the 

network so that JXTA can assign a unique ID to the peer. The 

peer then needs to create a domain or join an existing one. Let 

us assume the peer creates a new domain. The creation of a 

domain is handled by the topology manager. The peer is 

upgraded to the VSP. Once the VSP is running, the initial MS 

is built by the schema matcher.  

 

The domain is now up and running. A domain advert is 

periodically updated and published to notify other peers of its 

existence and status. This status includes information like the 

number of peers in the domain, the subject of the domain, and 

its uptime. The advert and the way in which it is published are 

handled by the JXTA component.  

 

A new peer can connect to the network and browse domains. 

The peer can then join a domain by extracting the VSP’s 

address from the domain advert. The peer sends its database to 

the VSP, where the schema matcher proposes mappings from 

the peer’s database to the domain MS. These are sent to the 

new peer for user validation. The confirmed/altered mappings 

are sent back to the VSP, where they are added to the MS and 

the peer is added to the domain. The VSP decides where to 

put the new peer, either by making it an ASP or by adding it 

to the most accepting ASP. 

 

Handling nodes that leave the network 

Research into the JXTA library showed that their solution of 

having up-to-date peer information was only a proposal and 

not yet implemented. Consequently, a pinging component was 

added to Mapster.   Peers need to ping each other continuously 

in order to have fresh information about the peers connected 

to them. A ping is done by trying to open a connection to the 

peer. The ping operation will timeout after 10 seconds if a 

connection cannot be opened. Pinging is done according to the 

topology, i.e. an NP will ping an ASP and an ASP will ping a 

VSP. If an ASP has not heard from the NP after 45 seconds 

then it will try to ping it. If this fails then the NP is marked as 

offline in the mediated schema and is removed from the list of 

children on the ASP. The same applies to the VSP pinging 

ASPs. If a peer cannot ping its parent ASP then it will try to 

ping the VSP. If the VSP is online then the peer will ask the 

VSP to reconnect it to the domain. If the parent was the VSP, 

then the peer must cooperate with the other ASPs to choose a 

new VSP. These checks allow the peers to handle the dynamic 

nature of the network, where peers come and go at random. 

 

Each pinging component is run in its own thread, to prevent it 

from interfering with the normal operation of the peer. If the 

peer is an ASP, then it will run two pinging threads: one to 

ping the VSP and another to ping the NPs connected to it.  

8 Evaluation 

Three aspects of the system were tested, being the schema 

matching, the P2P architecture and the usability of the system. 

The tests aimed at checking the viability of the Mapster 

approach to schema matching in P2P environments.  

8.1 Schema Matching Utility 

This utility allows a user to select and combine various 

matchers in order to optimise the schema matching component 

of Mapster. All parameters for each matcher can be set, in 

order to improve match accuracy and execution time. The 

combination method can also be adjusted. This level of 

flexibility was useful in fine-tuning the schema matching 

component of Mapster. Match candidates were evaluated 

against a set of manually defined matches, which are 

considered to represent the perfect mappings between the two 

input schemas. Four evaluation measures were calculated to 

measure performance and accuracy, viz. recall, precision, F-

measure and overall [10]. While earlier tests covered 

databases from more than one domain, in the final evaluation 

thirty-two databases were used which all contained data about 

university courses and students, so as to maximise the number 
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JXTA Kernel 
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of matches to detect.  The databases had been created 

independently by students in a third year course. Each 

database typically had between three and four relations, and 

an average of 14 attributes. The general similarity between 

database schemas was about 75%.  

 

For brevity, only overall and precision results are given here. 

Overall aims to measure the post-match effort required to 

remove false matches and add missing ones, whereas 

precision measures the proportion of proposed matches 

accepted by the user. The path matcher achieved an average 

overall score of 0.22 and an average precision of 0.64. The 

name matcher used WordNet and was the second best 

matcher, with an average overall of 0.29 and an average 

precision of 0.7. The edit distance matcher performed poorly, 

with an average overall of 0.06 and precision of 0.54. The 

datatype matcher proved ineffective unless used in 

combination with other matchers. It scored an average overall 

of -0.03 and an average precision of 0.33. The keyword 

matcher performed the best, with an average overall of 0.34 

and average precision of 0.73. The combination of matchers 

was optimised - the weighted sum of three matchers proved 

best for this domain: 45% for the keyword matcher, 45% for 

the WordNet matcher and 5% for the name path matcher. The 

matchers executed relatively quickly, with the combination 

taking, on average, 44 seconds to execute. 

8.2 P2P Architecture 

Several aspects of the architecture were evaluated as the 

network grew in size, including joining times, mediated 

schema size, query times, and reconnection times. Tests 

involved networks with up to 17 peers. Joining times were 

used to measure how much strain the SPs were put under as 

domain membership/size increased. It also checked how well 

the use of a mediated schema was working. Joining times 

were linear for all tests. The MS cluster size increased very 

slowly as the domain grew, showing that it scales very well to 

the number of schemas present in a domain. With 17 peers 

connected, the total number of attributes in the domain was 

over 220, but the size of the MS was only 26. Queries were 

split into simple and complex queries, and times for each 

query type were recorded. Complex queries were slightly 

faster, which can be attributed to the fact that fewer schema 

attributes and stored instances need to be transmitted along the 

network. In general, query times grew linearly as the number 

of peers increased. Reconnection times, i.e. the time taken by 

online peers to reconnect to a domain when their parents went 

offline, were very fast - typically less than 4 seconds, because 

they did not have to add their schema to the MS.  

8.3 Usability 

We rounded off Mapster’s evaluation by checking user 

satisfaction in an experiment involving 12 participants, six 

system administrators and six subjects with average 

computing ability. All were asked to query a P2PDB; the 

former also had to configure and run the schema matching 

utility.  Participants were observed using the software and 

then completed a questionnaire afterwards.  While a number 

of minor modifications were suggested, a substantive problem 

was that subjects disliked using SQL and would have 

preferred a query-by-example type of interface. This is left for 

future work.  Six system administrators who evaluated the 

schema matching utility found the matchers and their results 

easy to understand and were all able to configure Mapster as 

required. 

9 Related work 

In this section we compare Mapster to the four other P2PDB 

systems currently in existence. Piazza [12] is a P2P data 

management system that provides semantic mediation 

between peers using semantic pairwise mappings, which are 

manually defined between pairs of peers. These mappings are 

then used to compute mappings across the network by 

exploiting transitive relationships. Manual mapping can be 

tedious work, especially if it needs to be done for several 

different peers’ schemas. The work done by the Piazza team 

closely matches the work done with Mapster. However, 

Mapster attempts to define as many mappings as it can 

automatically. Mapster is also easier to query as transitive 

mappings need not be computed.  

 

Edutella [18] is an open source project that has been built on 

top of JXTA. It uses RDF to provide a metadata infrastructure 

for P2P applications. RDF was chosen as it is semantically 

rich and supports extensive querying capabilities. However, 

RDF is complicated to use. Wrappers need to be applied to all 

schemas to transform them into schemas represented in the 

common data model used by the Edutella network. Instead of 

using wrappers, Mapster uses schema matching. Although 
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Mapster uses mediated schemas, which can also be perceived 

as a common data model, it does not force the users to define 

mappings from their schema to the common data model nor 

does it require wrappers. 

 

Hyperion is a conventional DBMS augmented with a P2P 

interoperability layer. The research thus far has focused on the 

specification and management of the logical metadata that 

enables data sharing and coordination between the peers [1]. 

A combination of mapping tables, expressions, and functions 

are used to achieve data integration between peers. These 

mapping are typically created manually by domain specialists. 

Mapping expressions are based on the work proposed in [4], 

particularly the Local Relational Model (LRM). This model 

enables general queries to be translated into local queries and 

new mappings to be found using existing ones. Hyperion uses 

mechanisms called event-condition-action rules to enforce 

mapping constraints, including mapping expressions. These 

mechanisms are analogous to triggers in traditional database 

systems. The system handles the reconciliation and integration 

of data at query time, which means that results from queries 

will reflect the current status of the network.   

 

BestPeer  enables peers’ databases to be shared to allow users 

access to more fine-grained information [22]. The topology is 

self-configurable and clusters peers together over time 

according to the following theory: peers that answer queries 

the most often or accurately will usually continue to do so, 

and hence should be clustered together with the peers that 

query them. To achieve schema matching, metadata for each 

schema attribute is provided manually in the form of 

keyword(s). These keywords are then compared to other 

attributes’ keywords to find matching schema attributes semi-

automatically. Transitive mappings are also computed. Query 

processing is a two-phase process. First, agents are sent out to 

neighbouring peers to find matching relations relevant to the 

query, using their keyword-based schema matching approach. 

These matching relations are then sent back to the peer and a 

query plan is created and executed. The use of agents is 

distinctive to this system and highlights collaboration between 

peers in order to achieve a certain goal. Whilst the use of 

agents in querying processing is unique, the process is two-

phase and may take too long to perform, but no performance 

figures are available. The schema matching is limited to one-

to-one matches and relies on good usage of keywords. 

10 Conclusion 

This paper describes a system called Mapster that allows users 

in a P2P network to share their databases. The research 

addresses problems of heterogeneity and scalability of 

database sharing in P2P networks. It is also the only P2PDB 

system that incorporates semi-automatic schema matching. To 

provide fine-grained access to users’ data, Mapster takes the 

unique approach of exploiting clustered topologies to make 

schema matching viable in large-scale, dynamic networks.  

The system uses a super-peer (SP) topology to break the P2P 

network up into more stable sections. These sections are based 

on the peers’ areas of interest or domains. These domains 

contain a mediated schema that is created by the SPs using the 

schema matching techniques. 

 

The construction of the mediated schema is done as peers join 

the network, so the impact on query processing is minimal. 

The use of clustering according to the peers’ area of interest 

ensures that the shared schemas contain overlapping data, 

which greatly improves the accuracy of match predictors.  

Other P2P database systems mostly use pairwise mappings, 

which does not scale well, and none uses a structured network 

topology to incrementally manage mediated schema 

construction. Our approach is the first to use mediated 

schemas within clusters and pairwise mapping across clusters, 

and to make use of the topology of a network to enable 

effective schema matching.  It would not be appropriate to use 

pairwise mapping within a domain cluster nor to use a 

mediated schema across domains, since pairwise mapping is 

not effective where the number of pairs is large, while 

mediated schemas are inappropriate where there is a low 

degree of overlap between schemas. 

11 Future work 

The query processing component of Mapster could be refined 

to handle complex queries more effectively. These typically 

require post-processing of peers’ results. It is unclear where to 

do this post-processing. If the super-peer is not under too 

much load then it could perform the post-processing, 

otherwise the peer that issued the query must do so. Having 

the super-peer perform post-processing is better, because it 

subdivided the query and would know how to integrate the 

results.  

 



 14

To improve the schema matching component, a Bayesian 

network instance matcher should be added. Once this exists 

and query processing has been refined, the entire system will 

be re-evaluated to measure how well various schema matching 

techniques and combinations perform in a P2P network and 

how the topology affects this performance. Experiments to 

measure the performance of different topologies are also 

needed to compare our super-peer clusters against alternatives. 
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