
Dynamic Role Allocation for Small Search Engine Clusters

Ndapandula Nakashole
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch, 7701

nnakasho@cs.uct.ac.za

Hussein Suleman
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch, 7701

hussein@cs.uct.ac.za

Calvin Pedzai
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch

cpedzai@cs.uct.ac.za

ABSTRACT
Search engines facilitate efficient discovery of information in large
information environments such as the Web. As the amount of
information rapidly increases, search engines require greater
computational resources. Similarly, as the user base increases
search engines need to handle increasing numbers of user requests.
Existing solutions to these scalability problems are often designed
for large computer clusters. This paper presents a flexible solution
that is deployable also on small clusters. The solution is based on
the allocation and dynamic re-adjustment of indexing and querying
roles to cluster nodes in order to optimize cluster utilisation. By
allocating cluster machines to the job that requires the most
computational power, indexing and querying may both realize
performance gains, while neither overwhelms the limited resources
available. A prototype system was built and tested on a small
cluster using a dataset of over 100 000 Web pages from the
uct.ac.za domain. Initial results confirm an improved system
resource utilisation, which warrants further investigation.

Categories and Subject Descriptors
C.4 [Performance of Systems]: H.3.4 [Information Storage and
Retrieval]: Systems and Software H.3.5 [Information Storage
and Retrieval]: On-line Information Services

General Terms
Design, Performance

Keywords
Indexing, querying, small search engine cluster, dynamic
allocation.

1.INTRODUCTION
Cluster computing is a popular underlying architecture for modern
production search engines, such as those employed by Google and
Yahoo!. While popular, clusters are not necessarily the best
technology for such problems, as the data inversion involved in
creating search engine indices is not easily parallelisable [5].
However, the price-performance index makes clusters an attractive
choice, given the massive quantities of information and massive
numbers of requests processed by such Web search engines.

Assuming that a cluster is the architecture of choice, computation
must be distributed among the individual machines. Production
Web search engines may divide both the processing and data
among individual machines, with either a static assignment of
processes to processors, an on-demand task allocation or some
combination of these approaches. The static assignment approach

works well in large clusters where some nodes can be dedicated to
indexing new data while other nodes serve queries. In this case,
changing the task performed by a single computational node does
not have a major impact on the whole system.

In a smaller cluster, with possibly fewer users and possibly less
data, this is not the case. The role of a single node (indexing or
querying) may have a substantial impact on overall performance
and resource utilisation. An obvious choice may be to have all
nodes perform both indexing and querying tasks, but this may
result in problems because of the small number of nodes. Firstly,
the disk access operations of indexing and querying tasks typically
do not follow similar patterns, thus caching can be sub-optimal if a
node is interleaving indexing and querying operations. Secondly,
in a smaller cluster, one operation can easily swamp the cluster,
making it difficult for the alternative operation to execute to
completion. For example, if a large amount of data needs to be
indexed, all nodes could be heavily loaded, and an incoming query
will take much longer to process. If some resources or nodes could
be reserved for each operation, based on the current need for
indexing and querying tasks, both of these problems may be
suitably dealt with. This thus is the premise of this paper – that
nodes in a small cluster search engine could be assigned a
particular role, dynamically adjusted for changing loads, in order to
best utilise available resources while obtaining the benefits outlined
above.

The rest of this paper contains a brief discussion of core search
engine concepts, followed by the design and evaluation of the
dynamic role search engine, ending with a discussion of the
implications and how these relate to other and future efforts.

2.SYSTEM DESIGN

Introduction to Search Engines
Most practical search engines are based on a common architecture
with a set of key components, namely: the Crawler, the Local Store,
the Indexer and the Query modules. This architecture is used by
systems such as Google [4] and FAST [16]. The relationships
among various components are shown in Figure 1.

A Crawler is a component that recursively downloads pages from
the Web by following hyperlinked URLs to create a local copy of
part of the Web.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. Common search engine architecture

The Local Store is a snapshot of the Web at a given crawling time
for each document. These components are not necessarily present
if the search engine is not based on Web documents. The Indexer
module records which words appear in each document. For each
encountered word, the indexing system maintains a set of URLs or
identifiers that the word is relevant to, possibly along with other
positional information regarding the individual occurrences of
words. These indices must be kept in a format that allows their fast
intersection and merging during querying time [9]. Thus the index
is typically stored as inverted files. The inverted file for a term is a
list of identifiers of documents where the term appears. The Query
module accepts search queries from users and performs searches on
the indices. The query module ranks the results before returning
them to the user, such that the results near the top are most likely to
be what the user is looking for.

The algorithms for most of these components are omitted as they
are not critical to the discussion that follows, but details can be
found in [10][13]. The search engine presented in this paper is
made up of the components described above. In particular, the
Indexing and Querying subsystems are parallelized using cluster
computing, which is introduced in the next section.

System Overview
The prototype search engine used a cluster of computers to perform
the core indexing and querying operations. A cluster in this sense is
a collection of interconnected stand-alone computers working
together as a single, integrated computing resource. Such a system
can provide a cost-effective way to gain fast and reliable services
that have historically been found only on more expensive
proprietary shared memory systems [2].

The system was implemented in C++ in conjunction with the MPI
library for parallel programming. MPI is a standard for distributed
memory parallel computation using explicit message passing. The
C++ programming language was chosen over Java because C++
has well-established parallel programming libraries. Furthermore,
C++ execution speeds are preferable for high performance
computing. Before the architecture of the search engine is
presented, the dynamic role allocation algorithm is first discussed.

Dynamic Role Allocation
To illustrate the concept of dynamic allocation, an example that
compares dynamic allocation to static allocation is shown in Figure
2. In the example, the parameter ‘Files’ indicates how many
documents need to be indexed and the parameter ‘Queries’
indicates how many user queries are queued and need processing.
The example shows that dynamic allocation changes the number of
cluster nodes performing indexing or querying based on the
workload. The allocation changes over time as the workloads on
the querying and indexing machines change. In this example, the
first time step has 2 machines allocated to indexing and 10
machines allocated to querying since there are no files that require
indexing and 1000 queries that need responses. However, in the
second and third time steps, the number of indexing nodes
increases while the number of querying nodes decreases due to an
increased number of files to be indexed and a decline in query
numbers. The three time steps correspond to a reallocation count of
two. The reallocation count is defined as the number of times
reallocation of indexing/querying roles takes place during a fixed
time period. The reallocation count does not apply to static
allocation as node allocation does not change unless it is done
manually.

Figure 2. Difference between dynamic and static allocation

System Architecture
Figure 3 shows the overall architecture of the prototype search
engine. The highlighted parts of the diagram collectively make up
the Indexing subsystem – the non-highlighted parts show the
Querying subsystem. The parts in dotted lines are the interfaces
between the two subsystems. The interfaces through which the two
subsystems are connected are in the form of inverted index files
and a Load Balancer that is independently utilized by each
subsystem. These interfaces are described below.

The Interface files
The index is made up of inverted files. The Querying subsystem
relies heavily on the index produced by the Indexing subsystem as
the former needs to access the index before it can respond to
queries. The id_urls.INFO file contains the ID-to-URL mappings of
all the documents that have been indexed by the system. Identifiers
(IDs) are used by the indexing system as an efficient way to
uniquely identify each indexed document, but the query module
needs to respond to user queries with actual URLs.

The Load Balancer
This component monitors the load averages on the nodes allocated
to indexing and querying and redistributes roles as necessary. A
node’s load average is an indication of how much work it has been
doing in terms of jobs in the run queue or waiting for disk I/O,
averaged over a certain period of time. The UNIX virtual file

/proc/loadavg was used to obtain the load averages on individual
nodes. The /proc/loadavg file includes load average figures giving
the number of jobs in the run queue or waiting for disk I/O,
averaged over 1, 5 and 15 minutes respectively. The load balancer
periodically polls nodes for this information and updates the list of
nodes allocated to indexing and querying respectively. For
simplicity, this list is stored as the number of machines allocated to
indexing – all nodes with a higher node number are assumed to be
allocated to querying.

Figure 3. High level architecture of the dynamic role search
engine

The Indexing Subsystem
In order to make the system easy to extend, the indexing subsystem
was separated into six main components, namely: the Crawler, the
Parser, the Stemmer, the Indexer, the index Updater and the
Dispatcher. Parallel indexing was achieved by distributing these
components on the cluster as shown on Figure 4. A master-slave
approach was used to achieve parallel indexing. The idea behind
this approach is that one process, the master, is responsible for
coordinating the work of others, the workers. This mechanism is
particularly useful when there is little or no communication among
the slave processes and when the amount of work that each slave
has to perform is difficult to predict [8]. Both of the above cases
apply to the task of indexing. .

The Crawler and Dispatcher components are executed by the
machine with the smallest internal identifier within the cluster,
which henceforth assumes the role of the master node. The
documents are stored on the local disk of the master node. The
Indexer and Updater are executed by all machines allocated to
indexing at a particular point in time. These machines are the
worker nodes. All worker nodes create indices on their local disks
which are merged by the Dispatcher to create the main index. The
Indexer and Updater components parse and index the HTML
documents that are made available by the crawler. The Indexer
module creates an index from scratch whereas the Updater module
updates an existing index based on newly available data since the
last time indexing was performed. Extremely common words
(stop-words such as “the” and “is”) are excluded from indexing and
all terms are case-folded to lower case. In addition, all terms are
converted to canonical root forms using Porter’s stemming
algorithm [15]. The indexing subsystem employs an existing open-
source crawler, GNU Wget, a non-interactive command line tool
for retrieving files using HTTP, HTTPS and FTP [7].

The Querying Subsystem
The querying subsystem receives queries from users as a string of
keywords that represent the information needs of a user. These
queries are fed through the user interface to the querying dispatcher
for processing. Once they reach the dispatcher, the dispatcher has
to decide which machine in the cluster will handle the query. The
allocation of machines to querying by the load balancer is
consulted for this purpose.

When a cluster machine is chosen to respond to a query, the query
is sent off to the machine and the necessary index files are copied
over, if necessary. Each query is stemmed and stopped to improve
on accuracy. Term occurrence weights for each document from the
index files are used to compute the similarity of the document to
the request. Once the computation and results are done, a ranked
list of documents is sent back to the dispatcher to return to the user.

Figure 4. Distribution of the indexing subsystem components on
the cluster

3.PRELIMINARY RESULTS

Experimental Design
Tests were conducted to assess the performance and cluster
utilisation of the search engine system. A core aim of the
evaluation was to verify that dynamic role allocation results in
better cluster utilisation, as the main aim of this project is to
improve use of resources in small clusters.

The experiments were conducted on a cluster of 13 Gentoo Linux
PCs interconnected by a Gigabit Ethernet network. Of the 13
machines, 12 of the nodes could assume the roles of indexing or
querying – the remaining machine was used as the master node.
Each PC was equipped with a 3 GHz Pentium 4 processor, 512 MB

of RAM and 80 GB disk storage. The MPI implementation on the
cluster was LAM MPI version 7.0.6.

Results
The system was tested to establish how dynamic role allocation
affects the utilization of the cluster. Utilization is a measure of how
well the load is distributed within the cluster, and may be defined as
follows:

where n is the total number of worker nodes in the cluster, li is the
load on node i, and l is the average workload on all the nodes n.
Thus, if all workloads are equal, U will be equal to 1, but U will
have lower values as workloads deviate further from the average l.
The workload li refers to the per-node workload obtained from the
/proc/loadavg file. The load average figure refers to the number of
jobs in the run queue or waiting for disk I/O, averaged over a fixed
interval of time.

Figure 5 shows the cluster utilization for indexing operations with
increasing datasets. The utilisation is close to 1 independent of
dataset size. During indexing of different datasets, a random
number of queries were fed to the cluster. The number of queries
was varied between 0 and 2824. Each query is handled by a single
node in parallel with other nodes which process other queries.

Tests were then carried out to determine how this reasonably
balanced utilization affects performance of the indexing and
querying subsystems. The indexing subsystem was tested for the
effect of the two (static and dynamic) role allocation schemes on
the indexing time. Figure 6 shows the results for this test. In this
test, dynamic allocation was performed multiple times with
different reallocation counts. There are 6 nodes that performed
indexing in the static allocation case seen in Figure 6. The number
6 was chosen to assume indexing and querying have equal priority,
thus splitting the 12 worker nodes equally between the two roles.
The query load was held constant for this test scenario.

Cluster Utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20000 40000 60000 80000 100000 120000 140000

Total Workload (Number of files)

B
al

an
ce

 o
f U

ti
li

za
ti

on

Figure 5. Cluster utilization for different sizes of document
collection

Performance of static and dynamic allocation with different
reallocation intervals

0

100

200

300

400

500

0 50000 100000 150000

Data size (Number of files)

T
im

e
to

 i
n

d
ex

(s
ec

o
n

d
s)

static

3 reallocs

6 reallocs

9 reallocs

12 reallocs

Figure 6. Indexing performance for static and dynamic
allocation

From Figure 6 it can be seen that for small data sizes, the time
taken to index data for dynamic and static allocations is almost the
same. Different reallocation counts result in some performance
variance, in particular the smallest number of reallocations (3)
resulted in performance similar to the static case. 6 reallocations
provided the best performance in this particular test. Comparing
the static allocation case with the best case of dynamic allocation
(i.e., 6 reallocations), it can be seen that for small data sizes, the
time taken to index data for dynamic and static role allocation is
almost the same. However, as the size of the data increases, the
static allocation performance is significantly worse than that of
dynamic allocation. Therefore, with an optimal number and
distribution of reallocations, dynamic role allocation can realize
shorter indexing times than static allocation, as expected.

The querying subsystem was tested for the effect of dynamic role
allocation on query throughput – the total time it takes to respond to
a number of queries. Queries of varying lengths were generated
randomly by a separate program and written to a file. The querying
module then obtained a specified number of queries from this file.
Each node executed its own query in parallel with the other nodes.
Figure 7 shows the results with 2894 queries where the number of
nodes handling querying was dynamically assigned to 4, 7, 9 and
finally 10 nodes based on the workload. This decreasing service
time confirms that dynamic role allocation can bring into service
additional nodes as needed to improve the performance of query
processing. It important to note that in this test scenario query
response times are affected by the cost of disk access since queries
are obtained from disk. In a situation where queries come from the
network, which is often the case in practice, response times are
likely to be faster since network access is often faster than disk
access.

Effect of Reallocation on the handling of 2824
queries

0

20

40

60

80

100

120

4 7 9 10

Number of worker nodes

S
e

c
o

n
d

s

Figure 7. Effect of dynamic allocation on query throughput

In summary, these experiments have provided some initial evidence
that dynamic role allocation can result in scalable system
performance and balanced resource utilization, while maintaining
the core advantages of such a system as outlined earlier

4.RELATED WORK
Clusters of low cost workstations are exploited by many large-scale
Web search engines such as Google, Inktomi and FAST [6]. The
architectures of these search engines require high performance,
high scalability, high availability and fault tolerance. It is a
challenging task to develop a cluster that meets these requirements.
The difficulty is that most developments were done in competitive
companies that do not publish technical details, thus very few
papers discuss Web search engine architecture.

Orlando et al. [12] describe the design of their cluster-based search
engine called My Own Search Engine (MOSE). Their aim is to
increase query throughput by implementing an efficient
parallelization strategy. MOSE uses a combination data and task
parallel algorithm. The task parallel part is responsible for load
balancing. It does so by scheduling the queries among a set of
identical workers, each implementing a sequential Web search
engine. The data parallel part partitions the database, allowing each
query to be processed in parallel by several data parallel tasks, each
accessing a distinct partition of the database.

Lifantsev and Chiueh [9] describe Yuntis, a working search engine
prototype. One of the goals of Yuntis is to utilize clusters of
workstations to improve scalability. A Yuntis node runs one
database worker process that is responsible for data management of
all data assigned to that node. When needed, each node can also
perform crawler tasks. Yuntis differs from our system in that the
query nodes remain dedicated to responding to user queries. There
is no dynamic allocation of nodes to the roles of querying and
indexing. If the system is experiencing massive incoming data that
needs to be indexed and there are no incoming queries, query nodes
will be idle while the indexing nodes will be overloaded. In this
case, the cluster will be under-utilized.

The Google search engine architecture [3][4][6] combines more
than 15,000 commodity-class PCs with fault-tolerant software.
Each of the PCs has 256MB to 1GB of RAM, two 22GB or 40GB
disks and runs the Linux operating system. The nodes (PCs) are
connected with 100Mbit Ethernet to a gigabit Ethernet backbone
[3]. The architecture permits different queries to run on different
processors. The index is partitioned into individual segments, thus
queries are routed to the appropriate server based on which
segment is likely to hold the answer. Our system is different in that
it takes into account constrained-resource environments of small

or/and multi-use clusters as opposed to large task–specific clusters
inherent in the Google architecture.

The Inktomi search engine architecture serves many Web portals
such as Yahoo, HotBot, Microsoft and others. It is a cluster-based
architecture utilising RAID arrays with special focus on high
availability, scalability and cost-effectiveness. The index is
distributed and queries are dynamically partitioned across multiple
clusters. Each segment of the database handles a certain set of sub-
queries. Queries arrive at the manager where they are directed to
selected workers. Each worker sends the queries to all workers that
are tightly coupled with it through Myrinet [6].

AltaVista, Lycos and Excite make use of large Symmetric Multi-
Processor (SMP) supercomputers. The use of large SMP machines
allows fast access to a large memory space. The database is stored
and processed on one machine. Processors handle queries
independently on the shared database. The disadvantage of such
systems is mostly the high cost, that makes them infeasible for
smaller organisations.

5.CONCLUSIONS AND FUTURE WORK
Search engines are usually designed for very specific scenarios –
Web search engines in particular deal with large numbers of
requests and large quantities of data. The architectures of these
systems do not always scale down and it is not usually possible to
run a flexible search engine in an environment where resources are
limited and maximum utilisation is a key concern, such as at
institutions in developing countries.

This paper has presented a possible resource utilisation
maximisation approach that retains scalability, and is aimed at
smaller operations where changes in the actual resources can have a
substantial impact on system performance. The initial experimental
results indicate that resources are being utilised effectively and that
there is some degree of scalability in both the indexing and
querying operations, while in all experiments some resources are
always dedicated to handling incoming tasks. More experiments
are needed to further verify the initial results and to prove that this
approach works well with differing workloads and scales as nodes
are added to or removed from the system.

In general, systems for handling large quantities of data must work
at all scales of systems, not just for large numbers of nodes, and not
restricted to only search or information retrieval operations. This
ultimately supports a de-centralisation of search operations and
other services and will empower users in all countries to provide
interesting services with limited, but well-utilised, computing
resources. At the very least, everyone can and should have their
own little Google-like system based at their organisation, so
searching in an internal organisation does not have to be effected
through an external service provider as is currently the norm.

6.REFERENCES
[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S.

Raghavan. Searching the Web. ACM Transactions on
Internet Technology, 1(1): 2-43, 2001.

[2] M. Baker and R. Buyya. Cluster computing at a glance. In
Rajkumar Buyya, editor, High Performance Cluster
Computing, volume 1, Architectures and Systems, Chapter 1.
pp. 3-47. Prentice Hall, 1999.

[3] L.A. Barroso, J. Dean, and U. Holzle. Web search for a
planet: The Google cluster architecture. Micro, IEEE,
23(2):22-28, 2003.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1-7):107-117, 1998.

[5] F. Cacheda, V. Plachouras and I.Ounis. A case study of
distributed information retrieval architectures to index one
terabyte of text. Information Processing and Management,
41(5): 1141-1161, 2005.

[6] B. Choi and R. Dhawan. Distributed Object Space Cluster
Architecture for Search Engines. High Availability and
Performance Workshop. 2003.

[7] Free Software Foundation, Inc. GNU Wget. Available at:
http://www.gnu.org/software/wget/. 2006.

[8] W. Gropp, E. Lusk and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[9] M. Lifantsev and T. Chiueh. Implementation of a Modern
Web Search Engine Cluster. In Proceedings of USENIX
Annual Technical Conference, pp. 1-14, 2003.

[10] N. Nakashole. A Dynamic Query/Index Role Search Engine.
Honours Project Report, Department of Computer Science,
University of Cape Town.

[11] A. Ntoulas and J. Cho. What’s New on the Web? The
Evolution of the Web from a Search Engine Perspective. In
Proceedings of the 13th International Conference on World
Wide Web, pp.1-12, 2004.

[12] S. Orlando, R. Perego and F. Silvestri. Design of Parallel and
Distributed Web Search Engine. In Proceedings of the 2001
Parallel Computing Conference, 97-204, 2001.

[13] C. Pedzai.. A Dynamic Query/Index Role Search Engine.
Honours Project Report, Department of Computer Science,
University of Cape Town. 2006.

[14] G.F. Pfister. In search for clusters: The ongoing battle in
lowly parallel computing. Prentice Hall 1998.

[15] M. Porter. The Porter Stemming Algorithm: Available at:
http://www.tartarus.org/martin/PorterStemmer/ . 2006.

[16] K.M. Risvik and R. Michelsen. Search Engines and Web
Dynamics. Computer Networks, 9(3): 289-302, 2002.

[17] C.S. Yeo, R. Buyya, H. Pourreza, R. Eskicioglu, P. Graham
and F. Sommers. Cluster Computing: High-Performance,
High-Availability, and High-Throughput Processing on a
Network of Computers. In A. Y. Zomaya, editor, Handbook of
Nature-Inspired and Innovative Computing: Integrating
Classical Models with Emerging Technologies, chapter 16,
pp 521-551. 2006.

	1.INTRODUCTION
	2.SYSTEM DESIGN
	Introduction to Search Engines
	System Overview
	Dynamic Role Allocation
	System Architecture
	The Interface files
	The Load Balancer

	The Indexing Subsystem
	The Querying Subsystem

	3.PRELIMINARY RESULTS
	Experimental Design
	Results

	4.RELATED WORK
	5.CONCLUSIONS AND FUTURE WORK
	6.REFERENCES

