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Abstract: IEEE 802.11 (or WiFi) networks are now well-
established as the primary solution for delivering broadband
services to metropolitan areas and rural communities. Fur-
thermore, such networks are both easy to implement and
efficient at providing communications in support of rural fire-
fighting and similar emergency services. Moreover, in the
developing world wireless networks can be rapidly deployed
in rural areas, providing access to the Internet from public
kiosks for educational and entertainment purposes. Part of
the growing solution are Wireless Mesh networks, where
peers communicate with each another and connect through
a back haul network to the Internet. The back haul network,
which connects to the Internet, can be one of a number
of competing technologies, such as the increasingly popular
802.16 standard. Such a wireless network architecture is also
referred to as the Wireless Internet. As these networks become
increasingly more complex, modeling to evaluate the expected
QoS plays a crucial role in the design process. In this paper we
advocate a hierarchy of models which build upon an analytic
multi-class queueing network model. Furthermore, we show
the results of comparing an analytic model with simulations
of the associated network, using inter-arrival time and packet
distributions of measured Internet traffic.
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I. I NTRODUCTION

IEEE 802.11 (or WiFi) networks are considered thede facto
standard for accessing the Internet from a variety of locations
such as hotels, airports, conference centers, etc. However, the
limited transmission range of 802.11 may be inadequate to
provide coverage in a rural area and it seems likely that a
combination of 802.11 and the 802.16 series of standards will
be used for this purpose. In addition wireless mesh networks
where peers communicate with one another and with a gateway
on a back haul network may well be part of the future
infrastructure for rural or urban communication. Vertically
integrated 802.11 and 802.16 networks are commonly referred
to as the Wireless Internet (WIN).

Given the plethora of wireless networks and their inter-
connection there are a number of questions regarding call
admission control and the efficiency of routing protocols. All
such questions depend on the QoS, or performance, of the

network. In order to predict the performance of these networks
one requires an appropriate prototype or model. Simulation
models are an obvious option, however they become complex,
difficult to validate and require substantial processor time as
the network increases in size. Simulation models therefore do
not scale well.

Clearly, the ideal model of a network with guaranteed QoS
will have to take into account the full network, including
such detail as routing, scheduling and different Media Access
Control (MAC) schemes. The authors were unable to find any
such model in the literature and decided to explore Multi-class
Queueing Network (MQN) models as a foundation for the
analysis of the WIN. We also compare these analytic results
with the results from a simulation of the WIN.

In general, service disciplines in MQN models are not
particularly sophisticated and do not appropriately model the
detail of, for instance, the 802.11 DCF or 802.16 Connec-
tion Admission Control (CAC) mechanisms. Distributions are
represented by their mean values only, as opposed to the full
distribution used in a simulation. Stochastic models such as the
Markov model by Bianchi [1] for the 802.11 DCF or by Niyato
and Hossain [2] for 802.16 CAC exist in the literature for the
behavior of individual nodes. Our objective is to make use
of such models to compute the class dependent mean service
time for the particular DCF or CAC algorithm.

Moreover, the authors wanted to explore the robustness of
MQN analytical models in the case where the workloads are
not exponentially distributed as all Markov [1], [2], or MQN
model arrival times assume. It has been shown [3], [4] that
the exponential distribution does not adequately fit the profile
of Internet traffic.

We organized the paper as follows: In Section II we describe
our concept of the Wireless Internet. In the same section we
describe the analytic model we propose for modelling the en-
tire network while Section II-C discusses the simulation model
we built of the same sample wireless Internet. Apart from the
abstraction any model is only as good as the accuracy of the
workload model. We describe the part of Internet workloads
necessary for our study very briefly in Section III and the
parameters drawn from that are mentioned in Section IV. The
experimental results are given in Section V.
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II. M ODELS OF THEWIRELESSINTERNET: SERVERS,
ROUTERS ANDL INKS

Throughout this study we make use of the example WIN
illustrated in Figure 1. The number of nodes were deliberately
kept small with 6 nodes only, including the Internet. It is
believed that any larger topology will be an extrapolation of
this model and will only serve to complicate the discussion.

Fig. 1. Example Wireless Internet Network

The sample network consists of the following:

– 802.11 standard access points, calledSubscriber Stations
(SSs) (nodes N5 and N6 in the figure).

– 802.16 standard stations which are calledBase Stations
(BSs) (nodes N1, N2, N3 in the figure).

– A node, N4, modeling the delay in the Internet.
– Environments from which traffic arrive to the BSs, where

traffic consists of IP packets carrying only web browsing
traffic.

Subscriber stations communicate with the Base Stations using
a version of the 802.11 standard and BSs communicate using
a version of the 802.16 standard. In this model Subscriber
Stations do not communicate directly, as they would in a mesh
network. Such an extension to the model would be very trivial
to incorporate. The specific version of the standard will be
reflected in the sub-models and are not important for the base
model.

A. Multiclass Queueing Networks (MQN)

Appropriate models for the network in Figure 1 are open
multi-class MQN models. Multi-class MQNs have their ori-
gin in the classical work of Baskettet al (called BCMP
networks) [5]. Closed or mixed (open and closed) queueing
networks are also allowed if the modeling situation demands
it.

In an MQN model provision is made for a number of
different customer classesr = 1, . . . , R, thus allowing each
customer class to have a class-dependent service requirement
from a serveri = 1 . . . , N . Each network class can typically
represent a different 802.16 (or 802.11g) service class.

External classr customers arrive at nodej according to a
Poisson process with mean arrival rateλjr, j = 1, . . . , N and
r = 1, . . . , R. Customers may change their class in going from
one node to the next. That is, a customer of classr completing

its service at nodej may go to nodei and change to classs
with probability pjr,is. Clearly, if pjr,0 is the probability that
a customer of classr will leave the network at nodej, the
routing probabilities satisfy:

N∑
i=1

R∑
s=1

pjr,is + pjr,0 = 1 j = 1, . . . , N ; r = 1, . . . , R.

BCMP queueing networks allow for the following 4 differ-
ent types of servers:

1) First Come First Served (FCFS)servers which must
have exponentially distributed service times. In this case
the mean service time may not be class dependent.

2) Servers with aLast-Come First-Served Preemptive Re-
sume (LCFS-PR)rule. The service requirement of each
class of customer may be arbitrarily distributed (see
Chao et al [6]) and may depend on the class of the
customer.

3) The third type of server is of theProcessor-Sharing
(PS) type and the service requirement of each class of
customer may be arbitrarily distributed and may depend
on the class of the customer. This basically means that,
if there arenij classi, i = 1 . . . , R customers present
at serverj, j = 1, . . . , N , and the service requirement
of a classi customer is exponential with mean rateµij ,
then the mean service completion rate at serverj is

nij

nj
µji

wherenj =
∑R

i=1 nij .
4) A server with anInfinite Service (IS)capacity. Each

customer, upon arrival, starts its service immediately
and is delayed at the server for an arbitrary distributed
service time with mean equal to that specified for the
particular class to which the customer belongs.

Later work by Gelenbe [7] and others, described in
Chao [6], addssignalsto the network over and above regular
customers. A signal may have a “customer” associated with it.
When a signal arrives for service, it causes an event to occur.
This event may be the addition (positive signal) or the deletion
(negative signal) of one or more customers. The authors could
not for the moment, see the application of signals in the
models we developed. Internet traffic consists of down-link
and up-link flows as discussed in detail in Section III. Up-link
traffic are messages normally much shorter than down-link
traffic. MQN models, because of their class dependent service
time behavior (excluding FCFS servers) allow us to take this
difference in service requirements into account.

The MQN used in this paper is illustrated in Figure 2. Cus-
tomers of two down-link classes, shown as solid lines and each
with its own unique service requirement, arrive at SS servers
N5 and N6, respectively. We assume these servers to be of type
PS since the assumption is that they use 802.11 (CSMA/CA),
and typically the higher the traffic density generated by users
in the immediate environment of these SS servers, the slower
the throughput will be because of the contention resolution.



We assume therefore that all customers in the up-link are
transmitting messages, since there are more than one channel
available. Leaving servers N5 and N6, customers retain their

Fig. 2. MQN model of an example mesh network

class and enter the back haul network at BS server N2. Leaving
N2 they are routed with probabilityp2r,js where j = 1, 3
and s = up-link ∨ down-link to either of servers N1 and
N3. All three these servers are assumed to be generalized
processor sharing servers as described by Parekh [8] and
therefore represented as type PS in the MQN models. Note
that in our model N1 has no external traffic arriving at it and
serves merely as a relay station.

All customers of the up-link classes which complete service
at server N1 go to server N3 and all traffic go from N3 to the
Internet, modeled by an IS server N4 which is assumed to
impose a class dependent random delay on the traffic.

Having received an arbitrary distributed service time from
the IS server, each up-link class changes to its respective
down-link class (shown as broken lines) and returns in the
same way as explained above, via the various servers, to their
respective originating SS servers (as illustrated in Figure 2).

B. Solving the MQN models

Although the theory of MQNs was originally well-
understood, it was not initially clear how to solve such models
in finite time. Originally such models were solved using the
so-calledConvolution Algorithminvented by Jeff Buzen [9],
but it was soon clear that problems with numerical stability
arose in the solution of BCMP networks with implications for
the accuracy of the answers.

In 1980 Martin Reiser and Steve Lavenberg [10] pub-
lished the well-known Mean Value Analysis (MVA) solution
technique. MVA was subsequently adopted by one of the
authors [11] and his colleagues at the time, and turned into a
software tool, called MicroSNAP [12], for solving open and
closed MQNs. The interface to the tool is currently via a
command language. The tool has been in use for many years
and has withstood every stress test to date. MicroSNAP was
used to solve the analytical models described in this report.

C. OMNET++ and Simulation

MQN assumes a Poisson arrival process. Whereas this may
be an acceptable assumption, depending on the purpose of the
model, the random variables mentioned seldom exhibit this
ideal distribution. Nevertheless, most analyses, for example

that by Niyato and Hossain [2], implicitly assume that this is
the case. It was one of the purposes of our study to determine
the error such an approximation would introduce. The authors
therefore developed a simulation model, in which the arrival
process is no longer Poisson. Furthermore, the simulation
reflects the network shown in Figure 1 and not the MQN
model.

For the simulation we used the OMNET++ (Objective
Modular Network Testbed in C++) simulation development
environment. OMNET++ provides a component architecture
for models. Components (modules) are programmed in C++
and then assembled into larger components and models using
a high-level language (NED). The environment uses a message
passing model where the content of a message is defined by
the user.

Modules are connected via gates (or “ports”), and combined
to form compound modules. Connections are created within
a single level of module hierarchy; a submodule can be
connected with another, or with the containing compound
module. Every simulation model is an instance of a compound
module type. The components and topology are defined in
NED files.

The simulator writesoutput vectorand output scalarfiles.
The capability to record simulation results has to be explicitly
programmed into the simple modules by the model builder.

An output vector file contains several output vectors, each
being a named series of (time stamp, value) pairs. Output
vectors are capable of storing metrics such as queue length,
end-to-end packet delay, packet drops or channel throughput
over time according to how the simulation was programmed.
It is possible to configure output vectors to enable or disable
recording individual output vectors and limit recording to a
certain simulation time interval.

III. M ODELS OFWIRELESSINTERNET TRAFFIC

The difficult part of developing an analytical or simulation
model is finding realistic values for the parameters of both the
workload and system abstraction. One method is to measure
such parameters by in an operational system. This is somewhat
counterintuitive to the purposes of modeling, as the system
does not yet exist in reality and, thus, no workloads can be
measured.

In our study we assume that the traffic flowing into a WIN
is IP traffic only, the largest proportion of which would be
web queries on the up-link and web server responses on the
down-link. There are a number of different measurements
and analyses of web-traffic. Examples of such are those by
Crovella and Bestavros [3], and work done at the authors’
own institution by Walters [4]. The variables of interest to
this study are the Web clients’

1) request Inter-arrival Time (IAT),
2) request size or size of up-link requests, and the
3) response size or down-link requests size.

The random variable distribution function that best fitted
the inter-arrival time data is theWeibull distribution, which is



given by

F (x; k, α) = 1− e−( x−x0
α )k

(1)

for x ≥ x0 and F (x; k, α) = 0 for x < x0, wherek > 0
is the shape parameterand α > 0 is the scale parameterof
the distribution. The mean value of the two-parameter Weibull
distribution is given by

E[X] = x0 + αΓ
(

k + 1
k

)
(2)

For the Web client request and response distributions the
log-normal distributionprovided the best fit. This is the prob-
ability distribution of any random variable whoselogarithm
is normally distributed and has a probabilitydensityfunction
f(x; x̄l, σl) given by

f(x; x̄l, σl) =
1

xσl

√
2π

e−(ln (x−x0)−x̄l)
2/2σ2

l (3)

for x > x0, where x̄l and σl are the mean and standard
deviation of the variable’snatural logarithm. The mean value
is given by

E[X] = ex̄l+σ2
l (4)

There is no closed form for the log-normal cumulative distri-
bution function.

In estimating how well various distributions fit large data
sets, theλ2 discrepancy statistic as defined by Pederson and
Johnson [13], is normally used. Both the Pearson’sχ2 and the
λ2 statistics are based on histogram binning techniques and
measure the magnitude of departure of empirical data from a
mathematical distribution function fitted to the model. It has
been found that for smaller data sets theλ2 statistic was less
biased and has smaller variance than theχ2 statistic [13].

Of even greater importance was the fact that, unlike the
Anderson Darling statistic, theλ2 statistic could be used on
large data sets.

Another advantage of theλ2 statistic was that it could be
used to compare the goodness-of-fit of tests performed on data
sets with different sample sizes. It is not possible to compare
tests performed on data sets with different sizes when using
χ2 or the Anderson Darling statistic. Theλ2 statistic may be
used to compare results from tests performed on data sets of
different sizes, as the sample size and number of bins are taken
into account in the calculation of the statistic. The smaller the
value ofλ2, the better the fit of the data to the function it is
tested against as mentioned by Walters [4] (page 74).

IV. PARAMETER VALUES

Since we had access to the detailed analyses, we used the
parameter values for IP traffic measured by Walters [4] and
confirmed by Choi [14] and Barford [15]. The values found
by Walters were of the same magnitude as those of the other
authors.

Table I shows the mean and standard deviations measured
by Walters and Choi respectively, for the web client parameters
used in our models.

Parameter MEAN ( x̄) STD (σ)
Choi Walters Choi Walters

Request Size (bytes) 360 418 107 156
Response Size (bytes) 7 758 5 222 126 168 15 994
IAT (milliseconds) 900 1 500 2 200 5 700

TABLE I

TABLE OF MEASURED PARAMETER VALUES

Both Choi and Walters found that the web client response
and request sizes, respectively, were best approximated by a
log-normal distribution, Eq. 3. A visual representation of the
curve fitting can be seen in Figures 3 and 4 (Figures 36 and
42, respectively in [4]). Quantitatively, theλ2 values for the
various distributions and parameters are given in Table II.
We included the values for the exponential distribution for
comparison purposes only.

In the multi-class MQN model, as in the simulation, we
distinguish between the service times of up-link and down-link
traffic. MQN models allow this since customers can change
class.

We used the distributions with the smallestλ2 used in our
OMNET++ model experiments described below. The mean
and standard deviation used to compute the parameters (cf
Eq. 3) were taken from Table I. Choi reports that the Gamma

Fig. 3. Best fit comparisons for Web Client Request Size

distribution fits the web client request IAT best, while Walters
determined the best (or better said, the best of the worst) to be
the Weibull distribution. Figure 5 (from [4], Figure 32) gives a
visual representation of the original data fitted to the different
distributions. The quantitative difference (how well the two
distributions fit the measured data as measured by the value
of χ2) is slight and we decided to use the Weibull distribution
for the web client request IAT. Using the Gamma distribution
would have been just as easy.

We also assumed an equal number of request arrivals at
each of the two SSs in both the MQN and OMNET++ models.
When varying the mean IAT in each simulation experiment,



Exponential Weibull Lognormal Gamma
Request Size (bytes) 1.722 (1:72; 1:725) 18.125 (17:894; 18:356) 0.766 (0:753; 0:778) 4.304 (4:251; 4:357)

Response Size (bytes) 38.723 (38:185; 39:26) 1.383 (1:348; 1:417) 0.104 (0:104; 0:105) 7.909 (7:744; 8:075)
IAT (milliseconds) 396.152 (393:44; 398:864) 0.046 (0:046; 0:046) 0.032 (0:032; 0:033) 0.97 (0:949; 0:991

TABLE II

TABLE OF λ2 GOODNESS-OF-FIT VALUES

Fig. 4. Best fit comparisons for Web Client Response Size from [4], Figure
42

Fig. 5. Best fit comparisons for Web Client inter-arrival time distributions

we held the shape parameter i.e.,k = 0.371 in Eq. 2 ) constant
and computed the correspondingα value. In all cases we
used mean IAT values which would stress the capacity of the
network in order to amplify the difference between the analytic
and simulation values.

An important parameter value that we did not know, and
which Walters did not measure, is the Internet response time
modeled by node N4 in either Figure 1 or 2. However, nu-
merous measurements exist and one could choose any relevant

value.
We selected arbitrary values of 1Mbps for the mean service

times at a 802.11 node and 1.4Mbps at an 802.16 node. Mean
request sizes on the up-link were chosen to be 488 bytes and
5222 bytes respectively (see Table I).

Whenever IP requests may be routed to more than one node,
for instance at the AP node N1, they are assumed to go to each
node with equal probability. This is an arbitrary assumption
and is a parameter of either type of model and may easily be
modified if measured values are available.

V. EXPERIMENTAL RESULTS

With the types of distributions and the values of the pa-
rameters chosen, we were able to experiment with both the
MQN and the OMNET++ simulation models. From Figure 1
it should be clear that the most utilized node will be the AP
node N2, which is therefore the node for which we recorded
the queue length results reported below.

A. Validation

The first scenario assumes exponential distributions for
all variables in the models. This is the simplest Coxian
distribution (assumed to approximate the arbitrary distributions
of MQN) and is done to validate the analytic versus the
simulation models.

The results are illustrated as plotsOM: all
exponential in Figures 6 through 7 for the response time
of a SS (either node N5 or N6) and Figures 8 and 9 for the
queue length at the BS node N2. The analytic results are
annotated with the lettersMSin the figures and the simulated
results withOM. 90% confidence levels are shown only for
the plots with the Weibull IAT and log-normal distributions
described later.

As can be seen from the figures, the error is relatively small
— about 5% for the response time and almost 0% for the
queue length measurements. The greater error in the response
time arises from the difference between the way it is recorded
in the simulation and the analytic tool which calculates the
so-calledresidence timeof a customer in the network.

B. Weibull Inter-arrival Times

In the second scenario we changed the IAT distribution in
the simulation from exponential to Weibull using the parameter
values suggested by Walters [4] from the analysis resulting
in the fit illustrated in Figure 5. The results are illustrated
as the plotsOM: Weibull IAT/log-normal message
size in the figures already mentioned.

The simulation model now reports a longer response time
than in the first scenario. The results are fairly accurate



Fig. 6. Network response time

Fig. 7. Error between mean network response time simulated and analytic
results

except at high arrival rates with an average error between the
analytic and simulated response time values of 12% increasing
from 0% percent to a high of 33% at saturation. The trend
in the mean queue length results is the same except that
the error is unacceptably high, with a mean of 48%. The
Weibull distribution is a heavy tail distribution, with a higher
probability than the exponential distribution of long IAT. It is
to be expected that the queue length will be overstated in the
case of the exponential distribution.

Fig. 8. Mean queue length at BS N2

Fig. 9. Error between mean queue lengths at BS N2 for simulated and
analytic results

C. Log-normal Service Times

In the last scenario we change the simulation model so
that both the IAT and the message size distributions corre-
spond to the measured behavior. The results are illustrated
as the plotsOM: Weibull IAT/log-normal message
size in Figures 6 and 7 for the response time of a SS (either
node N5 or N6) and Figures 8 and 9 for the queue length at
the BS node N2.

The analytic values lie outside the 90% confidence interval
except for very low arrival rates. At network saturation the
difference between the mean response times reported by the



analytic and the simulation models at node N2 is an acceptable
6% to 20%, as a percentage of the analytic value. For the mean
queue length at node N2 the difference ranges from about 12%
to a high 60% at saturation, which is unacceptable.

In concluding this section, the authors acknowledge that
both the parameter values and the distributions used in their
models may not accurately representeverytypical web brows-
ing scenario, since every session is likely to be different from
all others. It is also likely that, due to the different behavior
of wireless versus fixed line networks, the characteristics of
the variables or their mean values and standard deviations will
be different. As far as we know, no such measurements are
available.

However, if anything, we wanted to base the parameter
values on measured data and we do not believe that our
assumptions invalidate the comparison of the results of MQN
and simulation models.

VI. CONCLUSION

In this project we investigated whether an analytical MQN
model with detailed sub-models would represent the WIN well
enough for comparing the effect on QoS of various MAC
scheduling or CAC schemes.

The motivation being that we do not believe it suffices to
study the effect on QoS of a particular MAC, routing or CAC
scheme at an isolated node. As the number of nodes increase,
analytic models scale more easily and are less prone to errors
introduced by a simulation.

The results show that the analytical results suffice to predict
trends, which is probably all that is required if one wishes to
compare the effect of different network configurations or MAC
schemes.

Some of the differences between the analytic and simulation
results reported can be attributed to different interpretations
of the metric in either model. For instance, the MQN model
solution uses Little’s law to calculate the mean queue waiting
time whereas in the simulation it is measured directly.

We have not yet included any sub-models, such as those
presented by Niyato and Hossain [2] or Bianchi [1], in the
results shown. We foresee this as the next step and expect
to study the effect of changes at a detailed level onoverall
network performance.
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