
Software Engineering for Development
A Position Statement

Edwin Blake

Dept Computer Science, University of Cape Town, Rondebosch, 7701, South Africa
Tel: +27 21 650 3661, Fax: + 27 21 689 9465, Email: edwin@cs.uct.ac.za

Abstract: There is little work on targeted methodologies to develop IT applications and
content in a developing world environment. This paper argues for a methodology called
Socially Aware Software Engineering that we are busy formulating based on firsthand
experience building Information and Communication Technology solutions. Our
method is based on a classical user-centred approach from Human Computer
Interaction combined with aspects of Participatory Design and cyclical software
engineering practises. These approaches are wrapped into an iterative Action Research
paradigm in order to directly include the community-based users of our systems. I
conclude with suggestions on changing the nature of tertiary curricula in developing
countries in a way that integrates this socially aware software engineering
methodology.

Keywords: Action Research, Computer Science, Developing world, Human Computer
Interaction, Participatory Design, Software Engineering.

1. Introduction
How can we develop software for rural and disadvantaged communities in the developing
world? Making useful and useable Information and Communication Technology (ICT)
applications for characteristic developing world situations turns out to be quite difficult. The
problems that arise are different from the typical software engineering issues that confront
software analysts and developers working in the paradigmatic situations covered by most
computer science training, even in developing world universities.

 We set out to develop and deploy useful systems for the kinds of users one meets in the
developing world. Our method is to build systems and then reflect on the design method that
will enable us to have a useful and sustainable impact. I argue for an alternative approach to
software engineering for these situations. This has implications for training ICT developers in
tertiary educational institutions situated within the developing world.

2. How to solve local problems in the developing world?
Ironically, the students nurtured by Computer Science departments in developing countries
are well positioned to create ICT solutions that meet the needs of users in the developed
world. Training projects often focus on applications that are far removed from the needs of
local communities. Computer Science innovation, when applied with a too narrow and
technical focus, produces applications suitable for developed countries instead of solving
local problems.

Students come from diverse backgrounds and they have some understanding of the needs
in local communities and how technology can help. Students who emerge from Computer
Science programmes are able to produce software for export but unfortunately they are often
simply trained to emigrate and support the economies of developed countries. These students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Software Engineering for Development 2

actually possess the social and technical abilities to address problems that arise in local user
communities, and our aim is to leverage their skills toward local solutions.

We are busy deriving an application development methodology suited to community-
oriented development in a developing country environment, mainly targeted to
underprivileged urban and remote rural areas. Aside from dealing with well-understood and
easily addressed technical challenges, we also focus on ways to steer Computer Science
students and researchers towards understanding community needs and social mechanisms,
and how these social implications affect technological choices and development.

I believe that there are clear differences between the requirements of ICT solutions
targeted towards problems in developing countries versus those for developed countries.
However, this research is not designed to undercover those domain differences in a systematic
way: we doubt that such an exercise is really possible — it would imply that one could
analyze every kind of problem and categorize them. For example, I would certainly not
suggest the kind of technology that developing world applications should use: it could be old
established technology, but frequently the most advanced technology is the easiest to use.
Instead we strive to develop a method whereby such differences can be uncovered for a
particular chosen problem domain by developers. Our emphasis is on training for design in
the developing world. We are currently interested in a method for investigating problem
areas, not a template for solving problems directly.

I believe that a Computer Science point of view is a fruitful one to bring to the discussion
on the use of ICT for development, because Computer Scientists have a profound realization
that ICT is completely adaptable and malleable. People who are trained in developing new
software have less of a tendency to take existing systems as immutable and given. Rather,
systems are seen as adaptable, and are often constructed in components that lend themselves
to usage in innovative ways. We do not have to make do with fixed applications and content
that is aimed at specific user communities. Instead, we can easily adapt software technology
to cater for social needs. Although we all know this about ICT, we have not yet learnt how to
exploit this flexibility for the typical user groups found in the developing world.

3. Software Development Methodology
The potential impact of Computer Science comes from the task that is facing developing
countries: ICT helps to make scarce knowledge resources available in a widespread fashion.
For this to happen we must have applications and content that address local needs. I maintain
that such development of new applications, as well as developing tools for creating content
and new software engineering methods is the task of Computer Scientists.

I believe that Computer Scientists in the developing world (or those interested in tackling
developing world ICT challenges) have to learn to target their applications to the needs of
local users. This requires an appropriately situated methodology for systems development that
can elicit user requirements from user communities and produce solutions that work
effectively. Computer Scientists will have to overcome a mindset that is fascinated by techno-
logical issues and somewhat disdains social involvement. As Software Engineers we have to
find partners from social disciplines to assist us in this and we have to train our students to
work accordingly.

The needs that arise in underdeveloped communities are not served by merely providing
access to equipment, or to applications developed for first world users, or simply access to the
Internet. A serious process of co-development has to be followed that involves a community
as a whole together with socially sensitive ICT specialists. It is the responsibility of the ICT
specialists to initiate and guide this cooperative process. It is the responsibility of Computer

Software Engineering for Development 3

Science departments to research and develop this process, investigate it with pilot sites and
then train students according to the outcomes.

In order to avoid the technical bias associated with traditional software engineering
approaches we are reaching towards a synthesis of several approaches. A bottom-up research
approach was chosen to understand and address real community needs. It takes into account
the issues related to developing and using software in the community aside from only the
technical ones. This process lead to a Socially Aware Software Engineering approach based
on a combination of the following:
• User-centred methods taken from the field of Human Computer Interaction (HCI)
• Participatory Design methods to ensure that solutions meet user requirements
• Action Research cycles to guide the process of working with actual communities

Essentially, the socially aware software engineering framework adopted for this project
represents a customized version of the Action Research process described by Susman and
Evered [12], with pertinent HCI and participatory design principles included in an iterative
development process. This is an alternative to the standard waterfall model of software
development [11].

Human Computer Interaction: HCI has a long history of user involvement, or user-
centred design. Many classical HCI heuristics and techniques can be tailored for use in
developing world situations. We have employed techniques such as paper prototyping and
mapping work processes but have come to see that many HCI heuristics fail to capture the
social complexities involved when designing ICT solutions for the developing world [10]. In
a developing world context, Dray et al. [7] recommend working the answers to questions like
“How to improve the fit between technology, specific human needs, and human contexts; how
to design technology to facilitate human interaction with it; and how best to manage the
process of technology introduction” into the software design process.

Participatory Design: Participatory Design evolved from attempts to empower workers
in industrial settings [5]. Contemporary Participatory Design specifies a set of techniques to
increase user involvement in the software development life cycle. This is done to increase the
chance that software solutions are appropriate for the people they serve. The techniques
include discussion groups and paper prototyping. However, as we found when trying to
deploy these methods in a developing world context, the users are not ICT savvy enough to
fully participate in the process. This is addressed in our conclusions with intermediaries.

Action Research: The Action Research methodology is geared towards helping a target
group of people by involving them as equal partners in the development process and using
their expertise in their area of work [1]. It aims to empower groups by creating relevant
solutions for their problems and benefits both participants and researchers in the process.
Action Research provides the steps needed for engineering locally relevant applications. It
describes the overall process for approaching a community and guidelines on how to work
with them in order to discover a problem area and provide a solution for this problem. The
key aspect is the personal participation of the researchers in the community [9].

Socially Aware Software Engineering: The process we used in our projects was
essentially user-centred and participatory since it involved the target community in the entire
software development process. The development process was cyclical and iterative, involving
traditional Action Research stages to analyse the circumstances of the target community,
identify a problem to work on, plan an intervention, implement an intervention and evaluate
the outcomes [2]. Finally, after each Action Research cycle, there was a period of reflection
on the results of that cycle in order to plan the next cycle correctly. At each stage of the
process, requirements were continually gathered for the design of prototype applications. The
entire process is documented using notes, semi-structured interviews, questionnaires and

Software Engineering for Development 4

audio records [1][9][12]. Additionally, the different versions of the software prototypes
developed acted as documents of the changes that were undertaken throughout the Action
Research cycles.

This contrasts with the (much critiqued) waterfall model of software development that has
pre-determined stages consisting of requirements definition, system and software design,
implementation and unit testing, integration and system testing and operation and
maintenance [11]. The socially aware software engineering methodology does not include
specific markers or indicators to measure success. Rather these need to be developed on a per-
project basis. A number of different evaluation methodologies are compatible with socially
aware computing, including Outcome Mapping [8] and the Real Access/Real Impact criteria
prescribed by bridges.org [3].

4. Challenges in Transforming the Computer Science Curriculum
Computer Science departments in South Africa tend to be rather small, are generally
understaffed and often suffer from high staff turnover rates. At an institutional level the
obstacles to be overcome include the lack of recognition given to work that spills over
traditional discipline boundaries (in spite of years of claims that interdisciplinary research is a
"good thing") and to largely qualitative research with its concomitant lack of hard research
results. Students that come to Computer Science are frequently interested in technology and
not initially interested in learning how to communicate with members of disadvantaged
communities. These difficulties in communication have many aspects, including large cultural
and language differences.

There are four major influences on Computer Science curricula in South Africa:
1. Tradition: this tradition has dictated a four-year Bachelors (Honours) degree followed by

a two-year purely research based Masters Degree. The Honours degree typically has a
large self-study development project in the final year. The course of study is based on
contributions from several largely autonomous departments in a Science Faculty.

2. Industry: emphasizes immediately useful practical skills for companies that have very
often not appreciated the implications of globalization. These are companies whose idea
of innovation is to be the first adopter in the country of an established practice from the
US or Europe.

3. Curricula: the work of the US bodies (ACM & IEEE) on Computer Science curricula has
been influential in determining content. The amount of material placed in the "core" of
discipline is large and leaves little room for local-orientated content.

4. Process: the impact of the British Computer Society (BCS) with its emphasis on the
process of teaching (rather than content) has been felt recently. The influence is generally
very positive except for the reduced emphasis on large group projects in the final year in
favour of individually assessable work.
None of these influences is particularly favourable to the kinds of innovations that are

needed to provide the kind of training for the approach outlined in the previous section and
developed in the rest of this paper.

5. Conclusions
In this paper I have argued that a new method of Software Engineering is required in the
developing world: it is one that is as equally aware of social issues as it is of technical issues.
I have also looked at issues that will have to be addressed to change the Computer Science
and Software Engineering curriculum in the case of South Africa.

Software Engineering for Development 5

Finally I believe that advancing Free and Open Source Software (FOSS) for the
developing world will require the kind of Software Engineering processes and skills that I
advocate in this paper. The strength of FOSS is in part predicated on access to the source but
that of course implies the need for local Software Engineering skills that can use and modify
the source appropriately. As Gabriella Coleman points out [6] there is significant lock-in to
proprietary software in the developing world due to a lack of skills in exploiting FOSS. The
report on FOSS by bridges.org [4] points out “specific software applications (whether FOSS
or proprietary) that could make computers more useful to local communities — such as
putting ICT to work to improve healthcare and education, and designed with cultural factors
in mind — are still missing”. If the developing world is to take ownership of FOSS we will
have to address such issues of technical skills and useful and useable software.

5.1. Academic Policy for Community-Based Computer Science

I think we should shape academic policy to make computer science research more relevant to
the needs of local communities. They are specifically targeted at Computer Science
Departments at Universities in developing countries.
• Software Engineering as a profession has to change to emphasize the social and economic

needs of local communities. A Software Engineering method that extends beyond purely
technical aspects, as demonstrated in this paper, is needed. An Ethics focussed on dealing
with development priorities has to replace the emphasis on first world professional issues
and values.

• IT professionals have to accept a new interdisciplinary approach to Software Engineering
that involves co-development of applications in a socially sensitive fashion. In practice
these projects are difficult to manage and further work is needed on this. The members of
the team have to understand and value the different roles and perspectives.

• Universities (and NGO’s) have great opportunities to design and implement new
approaches to using technology to support local communities in developing countries. The
responsibility incurred to avoid projects that remain forever pilot projects and to ensure
that solutions and projects that work are continued beyond the initial engagement.

• Innovative niche products arise from such IT developments and social entrepreneurship
can turn the outputs of community-based development into products and businesses.

5.2. Software Engineering Methodology for Developing Countries

I have outlined our method above for a Socially Aware Software Engineering methodology.
The basis of Critical Action Research gives a strong emphasis on the empowerment of
groups: facilitating change in a community through facilitating action. The precepts of
Participatory Design require the end user to participate in the software design process. The
flaw from our point of view is that it assumes at least a degree of sophistication of the user
community in relation to technological possibilities and an ability of software designers to
bridge large cultural and linguistic gaps. This may not be possible. The cultural gaps can be
enormous. The technological requirements exist within a complex web of other needs,
relationships and societal obligations. Misinterpretation (on both sides) and unexpected needs
are common. It is difficult for IT practitioners to appreciate, for example, how an IT
empowerment exercise may threaten power relations in such communities with dangerous
consequences for several participants.

Our tentative solution to this is to have local “interpreters” or champions who can bridge
the gaps. These act as our intermediaries into the communities. These are often school
teachers or students at the University who come from the target community groups. Through

Software Engineering for Development 6

them, we are better able to carry out Action Research cycles incorporating the most
appropriate aspects of participatory design and user-centred HCI into the software engineering
process.

5.3. Future work

The socially aware software engineering methodology needs to be refined and documented.
This means more work on integrating the Action Research, Participatory Design and HCI
aspects, and then relating those issues specifically to the software design and development
process. Furthermore, the study has to be expanded to include Computer Science in other
developing world nations: our interest is particularly in those in Sub-Saharan Africa.

Acknowledgements
My thanks colleagues and research students and to the dedicated staff of the firms we worked
with: CSIR, Eskom and NGO’s: bridges.org, Transcape, DCCT. My appreciation extends
especially to the people in the communities who were our co-workers on this project. Various
aspects of this work were funded by the IDRC (Canada), SANPAD (Netherlands), NRF via
its THRIP and Focus Area programmes, Cisco, Siemens and Telkom.

References
[1] E.R. Babbie and J. Mouton (2001). The Practice of Social Research. Oxford University Press.
[2] R.L. Baskerville and A.T. Wood-Harper (1996). A Critical Perspective on Action Research as a Method for

Information Systems Research. Journal of Information Technology, 11:235-246.
[3] Bridges.org (2004). The Real Access/Real Impact Framework for Improving The Way ICT Is Used In

Development. Available at: www.bridges.org/real_access/RealAccess_overview_bridges_03Aug04ii.pdf.
[4] Bridges.org (2005). Comparison Study of Free/Open Source and Proprietary Software in an African

Context. Available at http://www.bridges.org/software_comparison/report.html
[5] A. Clement and P. Van den Besselaar (1993). A Retrospective Look at Participatory Design Projects.

Communications of the ACM, 36(6):29-37.
[6] Gabriella Coleman (2004) The Politics of Open Source Adoption, NGO's in the Developing World.

Published by Tactical Technology Collective, found at http://www.tacticaltech.org/SSRC_Report.
[7] S. Dray, D.A. Siegel and P. Kotze (2003). Indra’s Net: HCI in the Developing World. Interactions, ACM

Press, 11(2):28-37.
[8] S. Earl, F. Carden and T. Smutylo (2001). Outcome Mapping: Building Learning and Reflection into

Development Programs. Ottowa, Canada: International Development Research Centre.
[9] S. Kemmis and R. McTaggart (2000). Participatory Action Research. Handbook of Qualitative Research,

N.K. Denzin and Y.S. Lincoln (Eds), 567-606.
[10] A. Maunder, G. Marsden and W. D. Tucker (2006). Evaluating the relevance of the ‘Real Access’ criteria as

a framework for rural HCI research. Proc. Computer Human Interaction in South Africa, CHI-SA 2006,
Cape Town, South Africa, ACM Press.

[11] I. Sommerville (1998). Software Engineering. Addison Wesley, Fifth edition.
[12] G.I. Susman and R.D. Evered (1978). An assessment of the Scientific Merits of Action Research.

Administrative Science Quarterly, 23:582-603.

