
Online Marking System for Vula
I-feng Yang

Department of Computer Science
University of Cape Town

iyang@cs.uct.ac.za

Choene Rammutla
Department of Computer Science

University of Cape Town

crammutl@cs.uct.ac.za

Tembela Godongwana
Department of Computer Science

University of Cape Town

tgodongw@cs.uct.ac.za

ABSTRACT
The University of Cape Town is in the process to migrate its
course contents from a disparate number of learning management
systems to the new Vula system. As the management of course
contents is often done using different systems through various
interfaces, Vula will be providing a common solution to all e-
learning needs at UCT.

However, Vula does not currently provide a tool that allows the
creation of marking guides and the subsequent use of such a
marking guide for inputting marks and comments as feedbacks to
students.

This report describes the process of creating such a tool - the
Vula Marking System , as it aims to solve the above problem,

using J2EE and JavaScript Technologies, and essentially acts as a
single entry point for all input of marks into Vula.

Keywords
Software Engineering, user interface, marking guide, user
evaluation, Vula, Web services, Java Script, JBOSS, SOAP

1. INTRODUCTION
Vula Marking System is a Web-based interface developed to help
instructors and tutors mark and grade student assignments online.
The application is developed for the Center for Higher Education
of the University of Cape Town. It is aimed to improve the
marking of assignments and feedback for all departments.

Users of the system are allowed to access courses they are
members of. Under each course the user can view all the
assignments and students registered in the course. Instructors have
rights to create a marking guide for a particular assignment, while
tutors may only view the marking guide that they use to grade
student assignments.

In this paper we start by briefly describing the background of the
technologies and processes used to develop the system. Then we
describe the software development methodology that we used,
explain the three components of the project and finally conclude
the document.

2. BACKGROUND
2.1 Developing Tools for Vula
The complexities and intricacies of Vula, or any learning
management system makes it tricky for developers to develop
modular components that could be plugged in and out of the
system. As Vula conforms to the Sakai framework, the best
approach to develop and provide tool support for Vula is to

conform to the Sakai architecture and develop components with
specifications agreed upon by the consortium.

Therefore, to develop a modular and usable system within the
time scope given, a separate web-based system, which
communicates with Vula via Web Services while running on its
own server, will be developed. This approach has many
advantages as it has minimum impact on the existing Vula system
while also allows the technologies used for the implementation of
the tool to be independent of those used by Vula.

2.2 Usability
The outcome of the project is a system that interacts with users
e.g. lecturers and tutors. The system interface therefore needs to
be usable and hence serve the purpose that it was created for.
Thus during the development of the system usability guidelines
and practices were followed and used to ensure that the interface
is usable.

3. DEVELOPMENT METHODOLOGY

3.1 Software Engineering Methodology
As a software engineering project that centers on usability,
incorporating design methodologies during the process of
software development is important. Parts of Extreme
Programming (XP) will be adopted as the main software
engineering methodology, as they provide a set of principles that
facilitate the production of high quality software in minimum
time.

Participatory design techniques will also be applied to facilitate
the design of user interface and the gathering of user
requirements.

Note that some practices of XP will be less applicable; techniques
such as pair programming would only be applied during the
integration of the different components, and 40-hour work week
is clearly not suitable for the nature of this project. The key
emphasis will be, however, on the identification of user stories
(use cases), following the simple design strategy and iteratively
developing small releases or prototypes with added features.

3.2 Division of System into components
To make the process of development easier, to thus allow
implementation to be carried out simultaneously by the
development team, the system is divided into three components
each with a distinct purpose. The EJB & Web Services
component is the backend of the system that provides Web
Services functionalities for accessing the Vula database; the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JavaScript component focuses on allowing the user to
interactively creating and using a marking guide; while the User
Interface component makes use of both components and glues
them together and provides other general usability features such
as user log in, browsing of courses and assignments, etc.

Figure 1. Components of Vula Marking System

The design and implementation of the system will be carried out
on the identified components, each following the XP
methodology, before they are finally ready to integrate. The next
three sections will describe the process of developing each of the
components.

4. USER INTERFACE
4.1 Design
The methodology used to design the Vula Marking tool is User-
Centered Design. A participative design form of this methodology
was applied in the design and usability of the interface.

4.1.1 Low fidelity prototypes/ paper prototyping
We held meetings with tutors in order to develop a pencil and
paper design of the interface. Tutors were driving the
development of the interface as they suggested ways of better
developing the interface. The low fidelity prototype was subjected
to scrutiny by the developer and tutors during a series of follow-
up meetings.

4.1.2 Card Sorting
Card sorting is a technique for exploring how people group items,
so that you can develop structures that maximize the probability
of users being able to find items [3]. See figure 2 for an
illustration of Card sorting that was done to complement and
confirm the paper design developed by the tutors and developers.
Five users were given cards and asked to group cards that belong
together. We approached users individually and explained the
exercise. These users were randomly selected on campus and the
results of sorting cards were compared to the flow of the paper
prototype. The adjustments were made depending on the
differences that arose between the prototype and the card sorting
mechanism.

Figure 2. Vula System card sorting

4.2 Implementation

4.2.1 JSP and Servlet Component
We now turn into the interaction between the JSP and the Servlet
component of the system. Figure 3 below shows some key JSP
components i.e. login, courses, assignments, submissions and
marking guide. The marking guide component is further divided
into sub parts and is discussed in Marking-guide Editor section.
All the JSP pages interact directly with the Servlet component in
order to get information to be displayed on the browser.

Figure 3. Interaction between JSP and Servlet components

The Servlet component is also currently divided into objects
corresponding to the JSP component. The Servlet component gets
information by using java beans from Vula via web services and
the information is then dispatched to the Java Server Pages.

4.3 Evaluation

4.3.1 Scenario Testing
Scenario testing is a form of usability testing whereby participants
use the Web site or prototype to do tasks. During testing users are
given tasks or goals to do either in writing or verbally. Twenty
users were involved in testing the interface prototype of the
system as a way scenario of testing. These users were split into
two equal groups. One group was asked to perform this scenario:
Create a marking guide for CSC115F . Scenario question for

group two: Mark one student s submitted assignment for
CSC115F . At this point of testing, the prototype was incredibly
simple and users understood the flow of the system quite easily
and therefore was usable.

5. MARKING-DUIDE EDITOR

5.1 Design

5.1.1 Initial Requirement Gathering
As the aim of the project is to provide a tool for Vula, it is
essential that the developers understand what feature(s) is needed
as far as Vula is concerned. As a user centered software project, it
is also imperative that the team has a good understanding of the
user requirements in the beginning of each XP iteration before
implementation.

Initial Meetings with Vula
The first two meetings with the Vula team established a
basic project specification. It was understood that the
current Vula system (built on the Sakai framework) lacks a
feature that facilitates the creation and use of a marking
guide.

Study of Existing Marking Guides
An example of a currently-used marking guide was
obtained from a tutor and the structure of which was
identified. This is important as the goal of the component is
to create such a marking guide.

Interview with Teaching Assistants
An interview session was set up with two teaching
assistants. Teaching assistants are responsible for
creating the marking guides for assignments and are
therefore the potential users of the marking-guide
editor. The current process of creating marking guides and
using marking guides were demonstrated and understood.

User Requirements
The initial requirement study set the scope for the project as well
as each component of the system. Here are the key points
identified that are relevant to the marking-guide editor:

The process of marking-guide creation and inputting marks
should be visual and facilitated through effective user
interactions.

A marking guide is essentially a tree with each node
containing question text and mark allocation.

Teaching assistants should be allowed to edit a marking
guide after submission; and tutors should be allowed to

make changes to marks and comments after submission.

Automated summing of marks, handling of bonus marks
and penalty deductions are bonus features that could
facilitate teaching assistants and tutors job.

The system will produce a HTML formatted marking-guide
for viewing by the students.

User Stories
As Extreme Programming (XP) requires the use of user
stories, the user stories for the first iteration of XP were
drawn up after the initial requirement analysis. Additional
features, or user stories, were identified during the user
feedback sessions in the beginning of each of the
subsequent iterations. Three iterations were used during the
development of the marking-guide editor.

Tree as Structure for Marking Guides
It was identified during the requirement analysis that a marking
guide has the structure of a tree with each node of the tree holding
some values. Therefore the marking-guide editor is essentially

a tree creator. Figure 4 below illustrates the correlation between a
tree and a marking guide.

Figure 4
5.2 Implementation
5.2.1 Building an Interactive Environment on Web
There are three popular technologies that allow the creation of,
web-based, dynamic and interactive user experience. JavaScript,
Macromedia Flash and Java Applets are all possible choices that
provide powerful tools for the creation of the marking guide
editor.

However, in addition to being an open source technology like
Java, JavaScript is the only technology that does not require any
additional browser plug-ins. JavaScript runs directly in a browser,
supports object-oriented programming and integrates easily with
HTML forms are its advantages and reasons why it was chosen as
the technology for creating a web interactive tool.

5.2.2 Creating a Marking Guide Editor
The following values were identified as the values necessary for
each node: question number, question text, mark allocation and
mark obtained. In addition, a comment field is added to allow the
input of comments into each node (section or question) by the
tutors during marking; and to uniquely identify a node, a node-id
field is added where the value is uniquely assigned depending on
the level of the node and its position under its parent node. Lastly,
since each question has a section which it belongs to (except for
the root node), each parent node, including the root node, must
hold a list of nodes (questions) which falls under it.

The Very First Prototype

Following the XP methodology, the very first self-
contained

prototype that allows the addition, deletion and
automatic id-assigning of nodes was developed. Figure 5
demonstrates the two basic operations the prototype
supports: addition and deletion (with reassigning of node-
ids) of nodes in particular.

Figure 5
XML Formatted Marking Guide
XML was a chosen as the language for storing the marking
guides after they are created. The popularity of XML, the
ease of defining formatted documents and the community
support for it made it a trivial choice. However, XML
formatted marking guides will not be visible to the users as
they are merely used for storage. In other words, users will
be interacting with a web interface to manipulate the
underlying tree. The tree is then stored as an XML
document for later retrieval.

Implementing a Complete Editor
Using a Library: XML for <SCRIPT> [1]

Although the prototype was created without the help of any
particular library, the possibility of using a JavaScript
library to manipulate an XML document was explored and
XML for <SCRIPT> was found to be a viable option. As
the library is W3C Dom Level 2 Compliant (essentially

supports generation 5 and above browsers) [2], we are
assured that the compatibility between browsers would not
be an issue with all modern browsers.

Making use of the library to implement a marking-guide
editor makes things simpler as the library essentially
provides all functions necessary for the creation of an XML
document.

Creating a Mark Editor
Creating a mark editor follows the same process as the marking-
guide editor. The two major differences between the marking-
guide editor and mark editor are:
1. Mark editor will not manipulate the structure of tree; but

instead allow the input of values (marks and comments)
into the tree.

2. The output of the mark editor will be in HTML format to
allow viewing.

5.3 Testing & User Evaluation
5.3.1 Testing
There are two types of testing that XP uses [4]:

1. Unit Tests are automated tests written by developers to test
functionality as they are written. Each unit tests only a
single class or a small cluster of classes.

2. Acceptance Tests (or Functional Tests) are specified to test
that the overall system is functioning as specified. This is
either automated or follows a scripted user process.

Both types of tests were utilized, each with a specific purpose,
during the development of the marking-guide component. Unit
tests were used to test all the utility classes which the main code
relied on; while acceptance tests were conducted to test the
overall features of the system.

Automated Unit Tests
JsUnit [5] was used as the tool for unit testing during the
development of the marking guide component. JsUnit is
essentially a tool that unit tests in-browser JavaScript. Since the
utility objects, such as the history object (a stack-like object that
provides the undo / redo feature) and other string filters and
methods are completely self-contained, it was simple to write
tests for those classes.

Scripted Acceptance Test
5.3.2 User Evaluation
Although the functional requirements of the component may have
been satisfied; much of the success of the component will depend
on its usability. Therefore, the outcome of user evaluations on a
prototype (or the final system) is important as it could be a
measure of success or achievement.

Subjects
The user evaluation of the system was conducted by 10 randomly
selected students. The subjects were not limited to the users of the
current marking scheme (including paper-based) and Computer
Science students, as essentially all students are potential tutors
and teaching assistants.

Evaluation Process
A brief introduction about the purpose of the project with key
emphasis on the marking guide component was given to the
student prior to his or her testing. Then the user would follow the
instructions to carry out tasks given; and would then require to
answer a questionnaire and rate his or her experience on a scale of
1 to 5 based on the questions. Comments and possible
improvements on the features were also requested.

Result of Evaluation
The usability scores obtained for the marking-guide editor and
mark editor were divided into current users (teaching assistants

and tutors) and potential users and results were analyzed.

Transfer of Knowledge and Experience
Based on the outcomes of the small sample, the current
users found the marking-guide editor simple to use, giving
an average score of 4.8 to the component; compare to the
3.4 the potential user gave. This may perhaps be an
indication that the knowledge and experience of a user
gained from the current system has been carried over,
resulting in an easy transition to the new system.

Simplicity of Usage
Although the potential users did not strongly agree

and
tend to stay neutral on whether the interface was easy to
understand; and that the behavior of the marking-guide
editor was of what they had anticipated, they gave a highly
favorable score of 3.88 when asked whether they agreed
that the editor was simple to use.

As 6 of the 8 inexperienced users gave 4 or 5 for the
simplicity of usage, we may conclude that although the
interface of the system was not the easiest to understand
and has room to improve, the system was after all simple to
use.

6. EJB & Web Services

6.1 Design and Implementation

Secure communication is always an issue amongst the web
developers. Web services technologies present with it self
sophisticated mechanisms to invoke client /server like enterprise
applications.

The communication module was implemented using JBOSS 4.04
with Netbeans 5.0 as the IDE. Both these tools provide intense

support for EJB 3.0 which is and SOAP architecture which are
useful in client server distributed computing. Extreme
programming methodology was highly followed in producing a
highly effective communication module.

6.2 Testing

Stress / Load tests, amongst other testing strategies for web
services we done using a dynamic test simulation tool. Since it
was not possible to employ 1000 people for this project under
normal conditions, Siege tool was used for simulations.

7. Conclusions
We will now draw the following conclusions based on the project
experience as a whole, and with a greater perspective.

7.1 Extreme Programming (XP) promotes user
participatory

essential for developing

successful user-centered software
Although due to time constraint, there have only been two formal
XP iterations during the development of the marking guide
component, the user evaluation performed on the last prototype
could essentially be seen as the beginning of the last iteration
before the release of the final system.

It is worth noting that repeatedly involve user into the design
process has been effective, as during each feedback session, users
were able to give meaningful responses on the features
implemented, as well as identify new features that could
potentially facilitate their tasks. This is clearly visible during the
feedback sessions on the two prototypes as new features were
identified that could otherwise be missed by developers.

Therefore, it could be said that XP or part of XP that promotes
user participation makes it a good choice of methodology for user
centered software development where requirements can not be
clearly laid out at the commencement of the project.

7.2 Unit testing is important for building
complex systems
Although unit tests were only written on a small scale for the
purpose of this project, it was not hard to see its advantages in a
more complex environment. In cases where the implementation
had to change, or codes had to be refactored as to eliminate
duplicate codes, unit tests become really handy. As it ensures the
flow of logic or coding does not break when changes are made,
some significant debugging time would be greatly saved.

7.3 JavaScript is a powerful language for
browser-based applications
Although there are some intrinsic weaknesses to programming in
JavaScript, its inefficiencies, and debugging issues (mentioned in
4.4.1) etc, are some of those; developers should not overlook the
capabilities of JavaScript; and the tool support it has.

During the development of the marking guide component, a
JavaScript library was used to help with the manipulation of an
XML document; and JsUnit was also utilized for unit testing in
JavaScript. As the final product of the component demonstrates
the dynamic environment JavaScript can create on web, the
emerging popularity of Ajax (asynchronous JavaScript
technology and XML) confirms the usefulness of combining
JavaScript and XML in a web environment.

As compatibility between browsers become less and less of an
issues, we will certainly see more JavaScript on the Web.

8. FUTURE DEVELOPMENT
There are essentially two directions where the marking system as
a whole could be heading. One, the likely short term possibility, is
that it will remain as a standalone system (running on its own
server while communicating with Vula via Web Services). Here
are some possible features to add in this, short term, scenario:

Sending email reminders to tutors when the deadline of
marking is approaching and there are still unmarked
assignments.

Add other marking tools to the system. Such an example
would be a marking tool that facilitates the marking of an
essay by allowing the marker to highlight the text within an
essay and attach color tags with comments. The color tags
highlighting the text will then be visible to on retrieval of
the essay. To view the attached comments, the user could
simply click on the tags.

Another possible direction of the marking system, which is likely
to be the long term solution, is to use this current system as a
temporary solution or a prototype; and develop a similar marking
system under the Sakai framework (or alternately, replace the
current marking system when such a tool is available from the
Sakai community).

This has the advantage of eliminating the need for exposing
unnecessary Web Services (reducing likely security issues) and
the running of a separate system on a separate server (which could
both be costly and hard to maintain). More importantly,

developing a tool under the Sakai framework will allow it be
shared among the members of the Sakai community.

9. ACKNOWLEDGMENTS
Our thanks to Donald Cook our project supervisor for his
guidance though-out the project. We also extend our thanks to
tutors for their involvement in the application development.
Finally our thanks to Vula for the opportunity to develop the
marking system.

10. FERENCES
[1] XML for <SCRIPT> http://xmljs.sourceforge.net

Last
accessed: 2006-10-25

[2] Documentation FAO XML for <SCRIPT>,
http://xmljs.sourceforge.net/website/documentation-faq.html

Last accessed: 2006-11-10

[3] Information & design
http://www.infodesign.com.au/ftp/CardSort.pdf Last
accessed: 2006-10-12

[4] John Brewer, & Jera Design. Extreme Programming FAQ.
http://www.jera.com/techinfo/xpfaq.html Last Accessed:
2006-10-25

[5] JsUnit http://www.jsunit.net Last Accessed: 2006-11-10

http://xmljs.sourceforge.net
http://xmljs.sourceforge.net/website/documentation-faq.html
http://www.infodesign.com.au/ftp/CardSort.pdf
http://www.jera.com/techinfo/xpfaq.html
http://www.jsunit.net

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

