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ABSTRACT 
This paper describes the design and implementation of a visual 
tagging SDK which can be used to create customized tags and 
tag decoders. Its aim is to extend the usability of visual tags by 
increasing the efficiency at which the tags are processed and by 
incorporating encryption. The SDK consists of three core 
components namely, the Tag Generator module, Image 
Enhancement module and the Tag decoder module. The 
efficiency and accuracy of the SDK was evaluated under varying 
light intensities and the results are presented in this paper  

1. INTRODUCTION 
The ubiquity of powerful programmable mobile phones with 
integrated digital cameras has lead to the development of mobile 
visual tagging decoders.   

A visual tag is simply an image which contains encoded data. A 
typical example of encoded data is a website address.   

A major application of this can be seen in the tourism industry. 
A visual tag (in such an application) would be attached to a 
building s façade so that tourists can take a snapshot of the tag 
with their camera phone. Decoding the snapshot provides a URL 
to an online encyclopedia containing important facts about the 
building, company or organization it represents (e.g. Semapedia 
[15])    

This technology enhances the usability of mobile phones by 
allowing vision based input.  

The first stage of this project was to evaluate existing visual tag 
decoder designs in order to identify algorithms and techniques 
which offer the best tradeoffs between speed and accuracy. In 
addition, an encryption module was developed so as to allow 
tags to be encrypted using a secret key. This is a feature that has 
not been provided by other tags evaluated.  

The results of the research led to the development of a visual tag 
decoding SDK for both desktop applications and mobile phones. 
The SDK provides a complete framework for creating tags, as 
well as an accurate, robust and high performance decoder.  

For the rest of this paper our motivation for working on this 
project is explained, after which a short discussion on related 
work is presented. This is followed by a discussion on the 

development of the SDK and finally the paper ends with the 
conclusion and possible future work.  

2. MOTIVATION 
Mobile phones have truly revolutionized the way we 
communicate and have proved to be an invaluable tool in 
today s hi-tech world. The mobile phone possesses qualities 
which make it a popular tool in many facets of life including 
business, fashion and entertainment. However, due to its small 
compact design, the degree of usability remains low and input 
via small keypads remains a major problem. Innovations such as 
predictive text and voice commands have improved this but the 
HCI (Human Computer Interaction) situation is still far from 
ideal.  

Thus visual tags were developed, to alleviate some of the 
usability issues affecting mobile phones.  

Organisations such as SemaCode[10] and ShortCode[11] 
currently use Visual Tagging technology to improve the manner 
in which web address are inputted.  

Our primary concern was to extend the usability of visual tags 
by:  

 

Increasing accuracy and versatility of tag decoding in 
varying light conditions.  

 

Use encryption to provide flexibility in the type of 
information that a tag can store.  

3. RELATED WORK 
Provided below is a short description of works related in the 
field:  

CyberCode [6] is a Visual Tagging System which is designed to 
be used in several augmented reality systems. CyberCode uses 
the tag system to create a link between physical and digital 
spaces. These links may be attached to specific data or activate 
some associated action on a digital device.  

[10] talks about a system for ubiquitous computing, which is 
known as SemaCode. Using the SemaCode SDK you can create 
visual tags for objects and contexts, and read them using a 
mobile camera phone. The SemaCode software running on the 
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phone will then deliver the appropriate mobile content. This 
system works by embedding a URL (web address) into a two-
dimensional barcode (the tag). The SDK software contains the 
capability to detect and decode tags that are obtained from 
cellular phone cameras. It extracts the URL and sends you to 
that address using the phone's built-in browser.  

[12] Describes a 2D Bar code system known as QR code. This 
system was released in 1994 and was built to try and meet the 
growing demands for codes that were capable of storing more 
information. This system was an upgrade from the bar code 
system that was being used at the time, which only stored 
information in one direction. The QR code, on the other hand, 
stores information both in the vertical and horizontal directions 
and thus has greater volume in which to store data.  

In [4], a visual tagging system called TRIP (Target Recognition 
using Image Processing) is presented as a solution to the costly 
installation of Sentient Computing in living spaces. Sentient 
Computing provides computers with the ability to perceive the 
location or action of a user so that the computer system may 
assist or react to the user s activities. Typical installations 
require specialized hardware like infrared sensors to be installed 
throughout the user s environment. The cost of such installations 
would be in the order of $1000-$2000 per room. TRIP provides 
a visual tagging system which provides the location detection 
properties of Sentient Computing using off-the-shelf webcams 
and computers. The major part of TRIP is the TRIPtag which is 
a circular 2D black and white identifier. The computer system 
would be constantly taking snapshots of the living space through 
the webcams and would scan the images, in real-time, for the 
TRIPtag. The orientation and depth of the tag within the image 
would determine the user s location in the living space.  

In [1], an infrared LED tag called Balloon tag is introduced. 
This tag works by emitting invisible signal patterns which an 
ordinary video camera can recognize. The tag would emit a 
signal which identifies the user. The authors combine this idea 

with Bluetooth wireless communication. The Balloon tag 
receiver (computer and video camera) selects the nearest 
Bluetooth transmitter and create a connection by using a part of 
the Bluetooth device address. The Balloon tag receiver can then 
choose whether or not it wants to communicate with user based 
upon the ID.  

4. IMPLEMENTATION 
In order to make our SDK as universal as possible the system 
was broken down into a number of modules, each of which can 
be customized or replaced. The core modules are:  

 

Tag generator module: This essentially creates tags which 
encodes information which a user provides.  

 

Image enhancement module: This enhances images of tags 
that are taken with a camera, so as to improve the 
performance of the tag decoder in terms of accuracy 
without negatively affecting speed.  

 

Tag decoder module: This module decodes the information 
stored within a tag.   

Together these modules provide the main functionality needed 
to successfully create and decode tags. Additional optional 
modules are also included which enhance the capabilities of the 
system. These include the Encryption/Decryption Module, the 
Error Correction/Detection Module, the Camera Interface 
Module and the ASCII/Binary Converter. Figure 1 shows how 
these modules relate.      

 

Figure 1: The Core (gray) and Optional Modules (gold) of the Visual Tagging SDK      



4.1 Tag Generator 
The aim of this module was to design a visual tag that provided 
efficiency in terms of space, and allowed for quick detection 
(within an image), and accurate decoding.  

Following is a description on the design of the tag.  

4.1.1 Design 
The Tag Creator module is responsible for creating the 
CipherCode tag. The only input to this module is an array of bits 
that need to be embedded into the tag. Each bit is represented by 
a square; black squares representing the value 1 and white 
squares representing the value 0 .   

 

Figure 2: CipherCode Tag Design  

The tag consists of two guide bars and three cornerstones. The 
top guide bar is always four blocks shorter than the length of the 
entire tag. If the tag dimensions were 10 x 10, the top guide bar 
would be made up of 6 blocks. The bottom guide bar is always 
half the length of the top guide bar. It is oriented in such way 
that the centre of the bottom guide bar is inline with the centre 
of the top guide bar. The three cornerstones are situated in the 
top left, top right, and bottom left corners of the tag. The black 
square at the bottom right corner of the tag in Figure 10 signifies 
the data bits are encrypted. If there is no black square in that 
corner then this signifies the data bits do not require decryption. 
The geometry of the tag requires the tag decoder to find two 
parallel bars, one bar half the length of the other, with 
cornerstones situated collinearly with respect to the guide bars at 
specific relative positions. For decoding simplicity, the guide 
bars and cornerstones are separated by white space with respect 
to each other and the data area of the tag. The area in-between 
the row of white space adjacent to the top and bottom guide bars 
and cornerstones is reserved for data. For a tag of dimensions m 
x n (row by column), the data area of the tag will always be (m-
4) x n. The 4 in the formula represents the four rows reserved 
for the guide bars, cornerstones, and white space.  

In order to make the tag more versatile and robust the following 
optional modules (indicated in gold in figure 1) are used by the 
Tag Generator:  

The Character Encoding module is responsible for converting 
characters into ASCII binary bits and vice-versa. Each character 
within the input data is represented as a 7-bit ASCII character.  

The Error Detection and Correction module is responsible for 
implementing the Hamming Code algorithm [16, 17]. This 
algorithm provides 1-bit error correction and 2-bit error 
detection within each block of data. Typically a block of data 
will be seven or eight bits.   

The Encryption module is responsible for encrypting data 
before it is embedded within a tag, and decrypting data read 
from a CipherCode tag. This module implements the Advanced 
Encryption Standard [18] (AES) algorithm for encrypting and 
decrypting data. A 128-bit secret key is generated from a user-
defined passphrase every time data is encrypted and decrypted.  

The Parameterisation module can come in use when multiple 
data items are required to be embedded within a visual tag. An 
example of this would be in creating an ID card. The tag could 
encode the owner s name, home address, and telephone number. 
Each data item would be separated by a splitter and would be 
decoded separately by the tag decoder. It is up to the tag 
developer to decide what splitter to use.  

4.2 Image Enhancement 
Once the tag has been created it may be used in a variety of 
applications, all of which require a picture of the tag to be taken, 
at some point, for further processing.  

The camera interface module (indicated in figure 1) is used to 
capture an image of a tag, and it is at this point that image 
enhancement module comes into play.  

Image enhancement is used as a pre-process to tag decoding.  

The aim of this module is to enhance the image of a visual tag so 
as to improve the accuracy at which tags are decoded in poor 
light conditions. This will make a visual tag system more robust.  

4.2.1 Design 
Three image enhancement techniques were considered: 
Histogram Equalization (HE), Adaptive Histogram Equalization 
(AHE) and Contrast Limited Adaptive Histogram Equalization 
(CLAHE).   

These techniques were tested under varying light conditions, and 
the best technique (in terms of processing time and accuracy) 
was then selected to be part of the visual tagging SDK. The 
design and results of these tests are shown in sections 5.2 and 6 
(respectively) of this paper.  

The image enhancement module consists of two core 
components (which exclude the techniques mentioned above), 
these are:  

 

Gaussian smoothing component: This is essentially used to 
remove any noise that has been introduced during the 
acquisition of a tag.   

 

Laplacian edge enhancement component: Used to enhance 
the edges of a tag.  

Both the Laplacian and the Gaussian filters were used as pre and 
post processing techniques during image enhancement.  

4.2.2 Properties of Image Enhancement 
techniques 
HE, AHE and CLAHE all make use of an image s histogram to 
perform enhancement. 



 
The Histogram of an image represents the relative frequency of 
occurrence of gray levels within an image. Histogram modelling 
techniques are used to modify the grayscale (and colour) range 
and contrast values of an image such that its intensity histogram 
fits a desired shape.   

Histogram Equalization is used to modify an input image s 
intensity histogram in order to obtain an output image with a 
uniformly distributed histogram. The resultant effect will be that 
the output image will have a perception that overall contrast is 
optimal (thus giving an enhanced image).   

The process of histogram equalization involves the use of a 
transfer function which reassigns the brightness values of output 
pixels based on the input image histogram. The process does not 
affect individual pixels brightness order (that is they remain 
brighter or darker than other pixels) but only modify/shift the 
brightness values so that an equal number of pixels have each 
possible brightness   

In more complicated cases, the image histogram may not be a 
good representation for local statistics in two separate parts of 
the image. In such a case Histogram Equalization may not 
enhance the image well enough to represent the two areas. In 
such a case Adaptive histogram equalization, is more 
appropriate. In this algorithm the image is segmented into 
several rectangular domains (windows), the histogram 
equalization is then applied to each of these domains. Once this 
is completed the brightness levels are modified to match across 
boundaries.  

CLAHE is an extension to AHE which limits the maximum 
contrast adjustment that can be made to any local histogram. 
This limitation is useful so that the resulting image does not 
become too noisy (which is a problem with adaptive histogram 
equalization).The limitation is performed by allowing only a set 
maximum number of pixels within each gray level associated 
with a local histogram. After clipping the histogram, the pixels 
that were clipped are equally redistributed over the whole 
histogram to keep the whole histogram count unchanged.  

Table 1 below summarises the properties of the image 
enhancement techniques used.    

Table 1: Properties of image Enhancement Techniques 

Technique

 

Property

 

Histogram 
Equalization 

Adjusts the global contrast of an image, 
by sharing out the intensity levels of each 
pixel across the image. Thus entire image 
is enhanced.  

Downside of techniques is that it cannot 
provide local enhancement of specific 
regions within an image. It also tends to 
introduce undesirable artefacts and noise  

Adaptive Used for local enhancement of a region 

Histogram 
Equalization 

within an image. Is an extension of 
Histogram Equalization.   

The downside of technique is that 
enhancement is so strong that it has the 
tendency to amplify noise in flat (uniform 
contrast levels) regions of an image and 
create ring artefacts at strong edges.   

Contrast 
Limited 
Adaptive 
Histogram 
Equalization 

Provides for local enhancement of regions 
within an image. Is an improvement over 
Adaptive Histogram Equalization. It 
reduces undesired noise amplification and 
reduces boundary artefacts. 

 

Figure 3 (appendix A) shows the effect of applying each of these 
techniques (in combination with Gaussian smoothing and edge 
enhancement) on a sample tag image taken in poor light. The 
images are shown after binarization (conversion to black and 
white) has been performed since that is the image used by the 
tag decoder.  As can be seen HE does well to enlighten the 
image but in the process it has also diminished the tag. AHE 
does well in bringing out the contents of a picture, but the 
process introduces too much noise for it to be useful. CLAHE, 
on the other hand, seems to enlighten the image without 
diminishing the tag. Visually CLAHE seems to produce the best 
images.  

4.3 Tag Decoder 
After the tag image has been processed by the image 
enhancement module, the decoder module is used to extract the 
information stored within the tag.  

The aim of this module is to efficiently (in terms of time) detect 
a visual tag within an image and then accurately decode the 
information stored in it.  

Following is a description on its design.  

4.3.1 Design 
Figure 4 (Appendix A) shows the outline of the decoding 
process.  

The decoding process is divided into 11 stages, each of which 
performs a different image processing task. Four of the stages 
(shown as blue boxes in the Figure 4) are actually implemented 
in external modules and are simply used by the decoder module. 
Background research revealed that many tag decoders have 
common designs and share numerous components. Based on 
these commonalities, 7 key stages (shown as gray boxes in the 
Figure 4) were identified and integrated into the decoder design.  

 

Grayscale Conversion: The system begins the decoding 
process by first converting the colour image (obtained from 
the Camera Interface Module) to a grayscale image. This 
conversion uses the ITU standard formula: G = (222 * Red 
+ 707 * Green + 71 * Blue)/1000  

 

Image Enhancement : The decoder then uses the external 
Image Enhancement (discussed in previous section) 



Module to improve the quality, contrast and clarity of the 
grayscale image as well as to enhance the edges of the tag.  

 
Binarization: The next step is binarization which thresholds 
the grayscale pixel values to either 0 or 1 for black and 
white respectively. Two thresholding algorithms, namely 
global thresholding and quick adaptive thresholding 
(presented in [14]), were implemented and tested. 
Experimentation revealed that quick adaptive thresholding 
yielded superior results for the majority of test cases. This 
algorithm calculates a moving average and sets a pixel to 
black only if it is significantly darker than this average. 
Otherwise the pixel is set to white.  

 

Region Detection: Binarization is followed by a two pass 
region detection algorithm which identifies large regions of 
connected black pixels. The first pass labels all black pixels 
according to the labels of its neighbours:  

o If all the neighbours have 0 labels (i.e. are all white) 
then the pixel is labelled with a new unique non-zero 
label.   

o If there is exactly one neighbouring pixel with a non-
zero label then the pixel is assigned the same non-zero 
label  

o If there is more than one neighbouring pixel with a 
non-zero label then the pixel is assigned the smallest 
label and the conflict is recorded in a special 
equivalence data structure.  

Label conflicts are resolved during the second pass which 
re-labels pixels according to the equivalence data structure. 
This data structure is a table which stores pairs of adjacent 
(or conflicting) labels  

 

Guide Bar Identification: For each region identified in the 
previous step, the second-order moments [7, 13] are 
calculated. From these moments the eccentricity (measure 
of how long a region is) and orientation are calculated. 
Pairs of parallel and elongated regions (eccentricity greater 
than 6) where one bar is twice the length of the other are 
identified as candidate guide bar pairs  

 

Cornerstone Detection: The orientation and size of these 
guide bars pairs are then used to estimate the position of the 
three cornerstones. Since second-order moments provide 
the major and minor axis, the lengths of the bars as well as 
the lengths of a single cell are known. These lengths are 
then used to estimate the position of the cornerstones 
relative to the centres of the two guide bars.  

 

Projective Matrix Transformation: The positions of the 
second shorter guide bar together with the positions of the 3 
cornerstones are then used in a texture mapping technique 
described in [2] to calculate the transformation matrix. 
Once this matrix is known, tag coordinates can be 
converted into image coordinates. The image coordinates 
estimates the centres of the corresponding block.  

 
Decoding: The final step in the decoding process is simply 
checking whether or not the pixel values at the calculated 
positions are black or white. An array is then built up and 
passed onto other modules for further processing.  

 
Other Modules: The decoder uses additional modules to 
convert the binary information into human readable text.  

o Error Detection/Correction: used to compensate for 
any decoding errors.  

o Encryption/Decryption module: If the encryption 
check cornerstone is filled then this module is used to 
acquire a key from the user and decrypt the text.  

o ASCII/Binary Converter: converts the decoded and 
possibly decrypted bits into ASCII characters   

5. TESTING  

This section describes the tests that were carried out to evaluate 
the performance of each of the core modules.  

5.1 Tag Generator Test 
Tests showed that the CipherCode tag is more space efficient 
overall than the Semacode[10] tag. This result is quite 
significant considering that semacode is one of the better known 
and more popular Visual Tag systems.  

5.2 Image Enhancement Test 
One of our main objectives is to develop a Visual Tagging SDK 
that is capable of decoding tags accurately under poor light 
conditions. Thus to provide this feature the image enhancement 
module was developed.  

In order to effectively evaluate the performance of the visual 
Tagging SDK and the impact that image enhancement has in 
improving the processing (detecting and decoding) of visual 
tags, tests  were carried out on separate sets of pictures taken at 
varying light intensities.   

The time taken for each image enhancement algorithm to 
process an input image was recorded as the objective is to find 
an algorithm that enhances a tag image enough so as to provide 
accurate but fast decoding of a tag. This is necessary for 
applications that will be run on cell phones which, generally, 
have slow processors.   

The enhanced images were then passed through the tag decoder 
module, where the output was compared to the input data (i.e. 
the data used to generate the tag). The number of matches was 
then recorded and categorized based on the measure of the light 
intensity that the pictures were taken. The results were evaluated 
based on accuracy and efficiency. The accuracy of an algorithm 
is defined as:      



Accuracy  = 
number of matches / total no of comparisons                         1  

The efficiency of the results was based on a comparison of the 
accuracy and the time taken to perform the image enhancement. 
Hence the efficiency was recorded as a rank of the different 
algorithms used. Thus a ranking position of 1 was interpreted 
as the most efficient.  

The experiment was carried out in a dark room. The dark room 
consisted of 40 Watt ceiling spot lights whose direction and 
intensity can be manually controlled. The room was closed off, 
and the only light source available is the one mentioned.   

Pictures were taken at the following intensities:  

 

Full intensity 

 

1/2 of full intensity 

 

1/4 of full intensity 

 

1/8 of full intensity  

The evaluation was carried out on a Pentium 4, 3.0 GHz 
computer. The pictures were taken with a Nokia 6280 cell phone 
which has a 2 Mega Pixel camera embedded. The night mode 
and flash features of the phone were not used during the 
experiments.   

For each of the light conditions considered 10 pictures were 
taken. Thus there were four sets of 10 pictures. Each set was 
used in the evaluation of image enhancement techniques. The 
size of the pictures used was 640 x 480.  

5.3 Tag Decoding Test 
The following tests were carried out to check the performance of 
the decoder:  

 

Rotation Tests: these were conducted by using a sample set 
of specially chosen images. The sample set consisted of 8 
instances of the same image, each one differing by a 
rotation of 45°. This was needed to ensure that the all 
trigonometric based calculations were correct. Figure 5 
(Appendix A) Shows the sample set tested. All the tags in 
the sample were decoded successfully  

 

Tilting Tests: Tilting tests were conducted in order to 
determine the tilting angles at which decoding would fail. 
During the implementation of the decoder, black box 
testing revealed that the dimensions of the tag could not be 
accurately calculated when tilted by large angles due to the 
perspective distortion. However, if the tags dimensions are 
fixed then the decoder works at larger tilt angles. The 
decoder was therefore modified to be able to decode both 
fixed and dynamic tag sizes. The Table below shows the 
result of the tests.      

Table 2:The maximum tilting angle (that allows for 
successful decoding) for the two different tag types 
Tag Dimensions Maximum Tilting Angle 

Fixed 45° 

Dynamic 20° 

  

6. RESULTS 
Table 3 in appendix B provides a summary of the results 
obtained from performing the image enhancement test. The 
processing time indicated in table 3 is that of the image 
enhancement technique used and not the total time for decoding 
the tag.  

In all cases tested CLAHE proves to be the most efficient image 
enhancement algorithm, due to its lower average processing time 
and higher accuracy. In the ¼ and ½ light intensity scenarios the 
algorithm was limited to an accuracy of 70%, at the time of 
testing due to the decoder module not being able to decode tag 
images that were taken at certain angles away from the normal 
of the image. (This problem was fixed at the time of writing this 
paper but is yet to be tested).  

In terms of processing time CLAHE is the fastest, this may be 
due to the fact that the algorithm accesses the image pixels less 
frequently than the other the other algorithms during the 
construction of the image histogram.  

The processing time for all the algorithms shortens as the light 
intensity increases. This may be due to the increasing light 
providing certain regions within an image an even spread of 
contrast across the grayscale range (i.e. a certain region may 
have an even set of pixels that have grayscale values that range 
from 0-255). This would reduce the processing time of the 
algorithms implemented since their intended effect is to spread 
the entire range of grayscale values across the pixels of an 
image.  

7. CONCLUSION 
This project has led to the development of a contemporary open 
source visual tagging framework which can be easily integrated 
into other PC and mobile phone applications. The modular 
design of the SDK has resulted in a flexible system, where any 
module can be enhanced and improved independently.   

Based on the experiments carried out, the use of CLAHE as an 
image enhancement technique successfully met our objective of 
improving the accuracy of the decoding process under poor light 
conditions.   

A head-to-head performance comparison with Semacode 
revealed that our mobile phone version of the SDK is more 
efficient than the popular propriety decoder. Table 4 (in 
appendix B) summarises the results obtained.  

On average the decoding time for CipherCode was found to be 
4.5 seconds on a mobile phone and 0.390 seconds on a PC, 
whereas that of Semacode was 6.5 seconds on a mobile phone.  



8. FUTURE WORK 
As indicated, due to time constraints, not all optimizations could 
be implemented. Thus as an extension to the work already 
completed the following could be done:  

 
Conducting further tests with other image 
enhancement techniques.  

 

Testing the efficiency of the Visual Tag SDK under 
different environmental conditions such as fog.  

 

Adapt the tag decoder to handle tilted images.  

 

Improve performance of decoder by considering sub-
images where potential tags are thought to be located.  
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APPENDIX A: LIST OF FIGURES  

    
              (a)               (b)                 (c)  

            

 

              (c) 
Figure 3: Results from using image enhancement: (a) Original image;(b) Result of performing edge enhancement then HE then smoothing 
then applying binarization to (a); (c) Result performing AHE then smoothing then to (a) then applying binarization;(d) Result of performing 
edge enhancement then CLAHE(with 16x16 windows and a histogram clip limit of 3) then smoothing then applying binarization to (a).   
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Figure 4:The Internal Design of the Decoder Module  



 

Figure 5: Sample set used for rotation tests   

APPENDIX B: LIST OF TABLES   

Table 3: Summary of Results obtained from testing procedure 

Enhancement 
Technique 

1/8th light intensity 1/4 Light Intensity 1/2 light intensity 
Overall 

efficiency 
(rank) 

 

Avg. 
processing 
time (secs) 

Accuracy 
(%) 

Efficiency 
(rank) 

Avg. 
processing 
time (secs) 

Accuracy 
(%) 

Efficiency 
(rank) 

Avg. 
processing 
time (secs) 

Accuracy 
(%) 

Efficiency 
(rank)  

HE 1.82 0 2 1.70 40 2 1.44 60 2 2 
AHE 1.96 0 3 1.91 0 3 1.44 30 3 3 

CLAHE 1.70 0 1 1.53 70 1 1.46 70 1 1 

  

Table 4:Performance Comparison between CipherCode and Semacode 
Type of Image CipherCode Semacode 

Close-up of tag 4.5 seconds 6.5 seconds 

No tag with few regions 5.1 seconds 10.3 seconds 

No tag with many regions 

(complex scene) 

14.3 seconds 22.1 seconds 
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