
CipherCode: A Visual Tagging SDK
Ashish Mehta Ramone Karodia Steven Lee

Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
University of Cape Town University of Cape Town University of Cape Town

South Africa South Africa South Africa

Supervisor: Audrey Mbogho

{amehta|rkarodia|slee|ambogho}@cs.uct.ac.za

ABSTRACT
This paper describes the design and implementation of a visual
tagging SDK which can be used to create customized tags and
tag decoders. Its aim is to extend the usability of visual tags by
increasing the efficiency at which the tags are processed and by
incorporating encryption. The SDK consists of three core
components namely, the Tag Generator module, Image
Enhancement module and the Tag decoder module. The
efficiency and accuracy of the SDK was evaluated under varying
light intensities and the results are presented in this paper

1. INTRODUCTION
The ubiquity of powerful programmable mobile phones with
integrated digital cameras has lead to the development of mobile
visual tagging decoders.

A visual tag is simply an image which contains encoded data. A
typical example of encoded data is a website address.

A major application of this can be seen in the tourism industry.
A visual tag (in such an application) would be attached to a
building s façade so that tourists can take a snapshot of the tag
with their camera phone. Decoding the snapshot provides a URL
to an online encyclopedia containing important facts about the
building, company or organization it represents (e.g. Semapedia
[15])

This technology enhances the usability of mobile phones by
allowing vision based input.

The first stage of this project was to evaluate existing visual tag
decoder designs in order to identify algorithms and techniques
which offer the best tradeoffs between speed and accuracy. In
addition, an encryption module was developed so as to allow
tags to be encrypted using a secret key. This is a feature that has
not been provided by other tags evaluated.

The results of the research led to the development of a visual tag
decoding SDK for both desktop applications and mobile phones.
The SDK provides a complete framework for creating tags, as
well as an accurate, robust and high performance decoder.

For the rest of this paper our motivation for working on this
project is explained, after which a short discussion on related
work is presented. This is followed by a discussion on the

development of the SDK and finally the paper ends with the
conclusion and possible future work.

2. MOTIVATION
Mobile phones have truly revolutionized the way we
communicate and have proved to be an invaluable tool in
today s hi-tech world. The mobile phone possesses qualities
which make it a popular tool in many facets of life including
business, fashion and entertainment. However, due to its small
compact design, the degree of usability remains low and input
via small keypads remains a major problem. Innovations such as
predictive text and voice commands have improved this but the
HCI (Human Computer Interaction) situation is still far from
ideal.

Thus visual tags were developed, to alleviate some of the
usability issues affecting mobile phones.

Organisations such as SemaCode[10] and ShortCode[11]
currently use Visual Tagging technology to improve the manner
in which web address are inputted.

Our primary concern was to extend the usability of visual tags
by:

Increasing accuracy and versatility of tag decoding in
varying light conditions.

Use encryption to provide flexibility in the type of
information that a tag can store.

3. RELATED WORK
Provided below is a short description of works related in the
field:

CyberCode [6] is a Visual Tagging System which is designed to
be used in several augmented reality systems. CyberCode uses
the tag system to create a link between physical and digital
spaces. These links may be attached to specific data or activate
some associated action on a digital device.

[10] talks about a system for ubiquitous computing, which is
known as SemaCode. Using the SemaCode SDK you can create
visual tags for objects and contexts, and read them using a
mobile camera phone. The SemaCode software running on the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

phone will then deliver the appropriate mobile content. This
system works by embedding a URL (web address) into a two-
dimensional barcode (the tag). The SDK software contains the
capability to detect and decode tags that are obtained from
cellular phone cameras. It extracts the URL and sends you to
that address using the phone's built-in browser.

[12] Describes a 2D Bar code system known as QR code. This
system was released in 1994 and was built to try and meet the
growing demands for codes that were capable of storing more
information. This system was an upgrade from the bar code
system that was being used at the time, which only stored
information in one direction. The QR code, on the other hand,
stores information both in the vertical and horizontal directions
and thus has greater volume in which to store data.

In [4], a visual tagging system called TRIP (Target Recognition
using Image Processing) is presented as a solution to the costly
installation of Sentient Computing in living spaces. Sentient
Computing provides computers with the ability to perceive the
location or action of a user so that the computer system may
assist or react to the user s activities. Typical installations
require specialized hardware like infrared sensors to be installed
throughout the user s environment. The cost of such installations
would be in the order of $1000-$2000 per room. TRIP provides
a visual tagging system which provides the location detection
properties of Sentient Computing using off-the-shelf webcams
and computers. The major part of TRIP is the TRIPtag which is
a circular 2D black and white identifier. The computer system
would be constantly taking snapshots of the living space through
the webcams and would scan the images, in real-time, for the
TRIPtag. The orientation and depth of the tag within the image
would determine the user s location in the living space.

In [1], an infrared LED tag called Balloon tag is introduced.
This tag works by emitting invisible signal patterns which an
ordinary video camera can recognize. The tag would emit a
signal which identifies the user. The authors combine this idea

with Bluetooth wireless communication. The Balloon tag
receiver (computer and video camera) selects the nearest
Bluetooth transmitter and create a connection by using a part of
the Bluetooth device address. The Balloon tag receiver can then
choose whether or not it wants to communicate with user based
upon the ID.

4. IMPLEMENTATION
In order to make our SDK as universal as possible the system
was broken down into a number of modules, each of which can
be customized or replaced. The core modules are:

Tag generator module: This essentially creates tags which
encodes information which a user provides.

Image enhancement module: This enhances images of tags
that are taken with a camera, so as to improve the
performance of the tag decoder in terms of accuracy
without negatively affecting speed.

Tag decoder module: This module decodes the information
stored within a tag.

Together these modules provide the main functionality needed
to successfully create and decode tags. Additional optional
modules are also included which enhance the capabilities of the
system. These include the Encryption/Decryption Module, the
Error Correction/Detection Module, the Camera Interface
Module and the ASCII/Binary Converter. Figure 1 shows how
these modules relate.

Figure 1: The Core (gray) and Optional Modules (gold) of the Visual Tagging SDK

4.1 Tag Generator
The aim of this module was to design a visual tag that provided
efficiency in terms of space, and allowed for quick detection
(within an image), and accurate decoding.

Following is a description on the design of the tag.

4.1.1 Design
The Tag Creator module is responsible for creating the
CipherCode tag. The only input to this module is an array of bits
that need to be embedded into the tag. Each bit is represented by
a square; black squares representing the value 1 and white
squares representing the value 0 .

Figure 2: CipherCode Tag Design

The tag consists of two guide bars and three cornerstones. The
top guide bar is always four blocks shorter than the length of the
entire tag. If the tag dimensions were 10 x 10, the top guide bar
would be made up of 6 blocks. The bottom guide bar is always
half the length of the top guide bar. It is oriented in such way
that the centre of the bottom guide bar is inline with the centre
of the top guide bar. The three cornerstones are situated in the
top left, top right, and bottom left corners of the tag. The black
square at the bottom right corner of the tag in Figure 10 signifies
the data bits are encrypted. If there is no black square in that
corner then this signifies the data bits do not require decryption.
The geometry of the tag requires the tag decoder to find two
parallel bars, one bar half the length of the other, with
cornerstones situated collinearly with respect to the guide bars at
specific relative positions. For decoding simplicity, the guide
bars and cornerstones are separated by white space with respect
to each other and the data area of the tag. The area in-between
the row of white space adjacent to the top and bottom guide bars
and cornerstones is reserved for data. For a tag of dimensions m
x n (row by column), the data area of the tag will always be (m-
4) x n. The 4 in the formula represents the four rows reserved
for the guide bars, cornerstones, and white space.

In order to make the tag more versatile and robust the following
optional modules (indicated in gold in figure 1) are used by the
Tag Generator:

The Character Encoding module is responsible for converting
characters into ASCII binary bits and vice-versa. Each character
within the input data is represented as a 7-bit ASCII character.

The Error Detection and Correction module is responsible for
implementing the Hamming Code algorithm [16, 17]. This
algorithm provides 1-bit error correction and 2-bit error
detection within each block of data. Typically a block of data
will be seven or eight bits.

The Encryption module is responsible for encrypting data
before it is embedded within a tag, and decrypting data read
from a CipherCode tag. This module implements the Advanced
Encryption Standard [18] (AES) algorithm for encrypting and
decrypting data. A 128-bit secret key is generated from a user-
defined passphrase every time data is encrypted and decrypted.

The Parameterisation module can come in use when multiple
data items are required to be embedded within a visual tag. An
example of this would be in creating an ID card. The tag could
encode the owner s name, home address, and telephone number.
Each data item would be separated by a splitter and would be
decoded separately by the tag decoder. It is up to the tag
developer to decide what splitter to use.

4.2 Image Enhancement
Once the tag has been created it may be used in a variety of
applications, all of which require a picture of the tag to be taken,
at some point, for further processing.

The camera interface module (indicated in figure 1) is used to
capture an image of a tag, and it is at this point that image
enhancement module comes into play.

Image enhancement is used as a pre-process to tag decoding.

The aim of this module is to enhance the image of a visual tag so
as to improve the accuracy at which tags are decoded in poor
light conditions. This will make a visual tag system more robust.

4.2.1 Design
Three image enhancement techniques were considered:
Histogram Equalization (HE), Adaptive Histogram Equalization
(AHE) and Contrast Limited Adaptive Histogram Equalization
(CLAHE).

These techniques were tested under varying light conditions, and
the best technique (in terms of processing time and accuracy)
was then selected to be part of the visual tagging SDK. The
design and results of these tests are shown in sections 5.2 and 6
(respectively) of this paper.

The image enhancement module consists of two core
components (which exclude the techniques mentioned above),
these are:

Gaussian smoothing component: This is essentially used to
remove any noise that has been introduced during the
acquisition of a tag.

Laplacian edge enhancement component: Used to enhance
the edges of a tag.

Both the Laplacian and the Gaussian filters were used as pre and
post processing techniques during image enhancement.

4.2.2 Properties of Image Enhancement
techniques
HE, AHE and CLAHE all make use of an image s histogram to
perform enhancement.

The Histogram of an image represents the relative frequency of
occurrence of gray levels within an image. Histogram modelling
techniques are used to modify the grayscale (and colour) range
and contrast values of an image such that its intensity histogram
fits a desired shape.

Histogram Equalization is used to modify an input image s
intensity histogram in order to obtain an output image with a
uniformly distributed histogram. The resultant effect will be that
the output image will have a perception that overall contrast is
optimal (thus giving an enhanced image).

The process of histogram equalization involves the use of a
transfer function which reassigns the brightness values of output
pixels based on the input image histogram. The process does not
affect individual pixels brightness order (that is they remain
brighter or darker than other pixels) but only modify/shift the
brightness values so that an equal number of pixels have each
possible brightness

In more complicated cases, the image histogram may not be a
good representation for local statistics in two separate parts of
the image. In such a case Histogram Equalization may not
enhance the image well enough to represent the two areas. In
such a case Adaptive histogram equalization, is more
appropriate. In this algorithm the image is segmented into
several rectangular domains (windows), the histogram
equalization is then applied to each of these domains. Once this
is completed the brightness levels are modified to match across
boundaries.

CLAHE is an extension to AHE which limits the maximum
contrast adjustment that can be made to any local histogram.
This limitation is useful so that the resulting image does not
become too noisy (which is a problem with adaptive histogram
equalization).The limitation is performed by allowing only a set
maximum number of pixels within each gray level associated
with a local histogram. After clipping the histogram, the pixels
that were clipped are equally redistributed over the whole
histogram to keep the whole histogram count unchanged.

Table 1 below summarises the properties of the image
enhancement techniques used.

Table 1: Properties of image Enhancement Techniques

Technique

Property

Histogram
Equalization

Adjusts the global contrast of an image,
by sharing out the intensity levels of each
pixel across the image. Thus entire image
is enhanced.

Downside of techniques is that it cannot
provide local enhancement of specific
regions within an image. It also tends to
introduce undesirable artefacts and noise

Adaptive Used for local enhancement of a region

Histogram
Equalization

within an image. Is an extension of
Histogram Equalization.

The downside of technique is that
enhancement is so strong that it has the
tendency to amplify noise in flat (uniform
contrast levels) regions of an image and
create ring artefacts at strong edges.

Contrast
Limited
Adaptive
Histogram
Equalization

Provides for local enhancement of regions
within an image. Is an improvement over
Adaptive Histogram Equalization. It
reduces undesired noise amplification and
reduces boundary artefacts.

Figure 3 (appendix A) shows the effect of applying each of these
techniques (in combination with Gaussian smoothing and edge
enhancement) on a sample tag image taken in poor light. The
images are shown after binarization (conversion to black and
white) has been performed since that is the image used by the
tag decoder. As can be seen HE does well to enlighten the
image but in the process it has also diminished the tag. AHE
does well in bringing out the contents of a picture, but the
process introduces too much noise for it to be useful. CLAHE,
on the other hand, seems to enlighten the image without
diminishing the tag. Visually CLAHE seems to produce the best
images.

4.3 Tag Decoder
After the tag image has been processed by the image
enhancement module, the decoder module is used to extract the
information stored within the tag.

The aim of this module is to efficiently (in terms of time) detect
a visual tag within an image and then accurately decode the
information stored in it.

Following is a description on its design.

4.3.1 Design
Figure 4 (Appendix A) shows the outline of the decoding
process.

The decoding process is divided into 11 stages, each of which
performs a different image processing task. Four of the stages
(shown as blue boxes in the Figure 4) are actually implemented
in external modules and are simply used by the decoder module.
Background research revealed that many tag decoders have
common designs and share numerous components. Based on
these commonalities, 7 key stages (shown as gray boxes in the
Figure 4) were identified and integrated into the decoder design.

Grayscale Conversion: The system begins the decoding
process by first converting the colour image (obtained from
the Camera Interface Module) to a grayscale image. This
conversion uses the ITU standard formula: G = (222 * Red
+ 707 * Green + 71 * Blue)/1000

Image Enhancement : The decoder then uses the external
Image Enhancement (discussed in previous section)

Module to improve the quality, contrast and clarity of the
grayscale image as well as to enhance the edges of the tag.

Binarization: The next step is binarization which thresholds
the grayscale pixel values to either 0 or 1 for black and
white respectively. Two thresholding algorithms, namely
global thresholding and quick adaptive thresholding
(presented in [14]), were implemented and tested.
Experimentation revealed that quick adaptive thresholding
yielded superior results for the majority of test cases. This
algorithm calculates a moving average and sets a pixel to
black only if it is significantly darker than this average.
Otherwise the pixel is set to white.

Region Detection: Binarization is followed by a two pass
region detection algorithm which identifies large regions of
connected black pixels. The first pass labels all black pixels
according to the labels of its neighbours:

o If all the neighbours have 0 labels (i.e. are all white)
then the pixel is labelled with a new unique non-zero
label.

o If there is exactly one neighbouring pixel with a non-
zero label then the pixel is assigned the same non-zero
label

o If there is more than one neighbouring pixel with a
non-zero label then the pixel is assigned the smallest
label and the conflict is recorded in a special
equivalence data structure.

Label conflicts are resolved during the second pass which
re-labels pixels according to the equivalence data structure.
This data structure is a table which stores pairs of adjacent
(or conflicting) labels

Guide Bar Identification: For each region identified in the
previous step, the second-order moments [7, 13] are
calculated. From these moments the eccentricity (measure
of how long a region is) and orientation are calculated.
Pairs of parallel and elongated regions (eccentricity greater
than 6) where one bar is twice the length of the other are
identified as candidate guide bar pairs

Cornerstone Detection: The orientation and size of these
guide bars pairs are then used to estimate the position of the
three cornerstones. Since second-order moments provide
the major and minor axis, the lengths of the bars as well as
the lengths of a single cell are known. These lengths are
then used to estimate the position of the cornerstones
relative to the centres of the two guide bars.

Projective Matrix Transformation: The positions of the
second shorter guide bar together with the positions of the 3
cornerstones are then used in a texture mapping technique
described in [2] to calculate the transformation matrix.
Once this matrix is known, tag coordinates can be
converted into image coordinates. The image coordinates
estimates the centres of the corresponding block.

Decoding: The final step in the decoding process is simply
checking whether or not the pixel values at the calculated
positions are black or white. An array is then built up and
passed onto other modules for further processing.

Other Modules: The decoder uses additional modules to
convert the binary information into human readable text.

o Error Detection/Correction: used to compensate for
any decoding errors.

o Encryption/Decryption module: If the encryption
check cornerstone is filled then this module is used to
acquire a key from the user and decrypt the text.

o ASCII/Binary Converter: converts the decoded and
possibly decrypted bits into ASCII characters

5. TESTING

This section describes the tests that were carried out to evaluate
the performance of each of the core modules.

5.1 Tag Generator Test
Tests showed that the CipherCode tag is more space efficient
overall than the Semacode[10] tag. This result is quite
significant considering that semacode is one of the better known
and more popular Visual Tag systems.

5.2 Image Enhancement Test
One of our main objectives is to develop a Visual Tagging SDK
that is capable of decoding tags accurately under poor light
conditions. Thus to provide this feature the image enhancement
module was developed.

In order to effectively evaluate the performance of the visual
Tagging SDK and the impact that image enhancement has in
improving the processing (detecting and decoding) of visual
tags, tests were carried out on separate sets of pictures taken at
varying light intensities.

The time taken for each image enhancement algorithm to
process an input image was recorded as the objective is to find
an algorithm that enhances a tag image enough so as to provide
accurate but fast decoding of a tag. This is necessary for
applications that will be run on cell phones which, generally,
have slow processors.

The enhanced images were then passed through the tag decoder
module, where the output was compared to the input data (i.e.
the data used to generate the tag). The number of matches was
then recorded and categorized based on the measure of the light
intensity that the pictures were taken. The results were evaluated
based on accuracy and efficiency. The accuracy of an algorithm
is defined as:

Accuracy =
number of matches / total no of comparisons 1

The efficiency of the results was based on a comparison of the
accuracy and the time taken to perform the image enhancement.
Hence the efficiency was recorded as a rank of the different
algorithms used. Thus a ranking position of 1 was interpreted
as the most efficient.

The experiment was carried out in a dark room. The dark room
consisted of 40 Watt ceiling spot lights whose direction and
intensity can be manually controlled. The room was closed off,
and the only light source available is the one mentioned.

Pictures were taken at the following intensities:

Full intensity

1/2 of full intensity

1/4 of full intensity

1/8 of full intensity

The evaluation was carried out on a Pentium 4, 3.0 GHz
computer. The pictures were taken with a Nokia 6280 cell phone
which has a 2 Mega Pixel camera embedded. The night mode
and flash features of the phone were not used during the
experiments.

For each of the light conditions considered 10 pictures were
taken. Thus there were four sets of 10 pictures. Each set was
used in the evaluation of image enhancement techniques. The
size of the pictures used was 640 x 480.

5.3 Tag Decoding Test
The following tests were carried out to check the performance of
the decoder:

Rotation Tests: these were conducted by using a sample set
of specially chosen images. The sample set consisted of 8
instances of the same image, each one differing by a
rotation of 45°. This was needed to ensure that the all
trigonometric based calculations were correct. Figure 5
(Appendix A) Shows the sample set tested. All the tags in
the sample were decoded successfully

Tilting Tests: Tilting tests were conducted in order to
determine the tilting angles at which decoding would fail.
During the implementation of the decoder, black box
testing revealed that the dimensions of the tag could not be
accurately calculated when tilted by large angles due to the
perspective distortion. However, if the tags dimensions are
fixed then the decoder works at larger tilt angles. The
decoder was therefore modified to be able to decode both
fixed and dynamic tag sizes. The Table below shows the
result of the tests.

Table 2:The maximum tilting angle (that allows for
successful decoding) for the two different tag types
Tag Dimensions Maximum Tilting Angle

Fixed 45°

Dynamic 20°

6. RESULTS
Table 3 in appendix B provides a summary of the results
obtained from performing the image enhancement test. The
processing time indicated in table 3 is that of the image
enhancement technique used and not the total time for decoding
the tag.

In all cases tested CLAHE proves to be the most efficient image
enhancement algorithm, due to its lower average processing time
and higher accuracy. In the ¼ and ½ light intensity scenarios the
algorithm was limited to an accuracy of 70%, at the time of
testing due to the decoder module not being able to decode tag
images that were taken at certain angles away from the normal
of the image. (This problem was fixed at the time of writing this
paper but is yet to be tested).

In terms of processing time CLAHE is the fastest, this may be
due to the fact that the algorithm accesses the image pixels less
frequently than the other the other algorithms during the
construction of the image histogram.

The processing time for all the algorithms shortens as the light
intensity increases. This may be due to the increasing light
providing certain regions within an image an even spread of
contrast across the grayscale range (i.e. a certain region may
have an even set of pixels that have grayscale values that range
from 0-255). This would reduce the processing time of the
algorithms implemented since their intended effect is to spread
the entire range of grayscale values across the pixels of an
image.

7. CONCLUSION
This project has led to the development of a contemporary open
source visual tagging framework which can be easily integrated
into other PC and mobile phone applications. The modular
design of the SDK has resulted in a flexible system, where any
module can be enhanced and improved independently.

Based on the experiments carried out, the use of CLAHE as an
image enhancement technique successfully met our objective of
improving the accuracy of the decoding process under poor light
conditions.

A head-to-head performance comparison with Semacode
revealed that our mobile phone version of the SDK is more
efficient than the popular propriety decoder. Table 4 (in
appendix B) summarises the results obtained.

On average the decoding time for CipherCode was found to be
4.5 seconds on a mobile phone and 0.390 seconds on a PC,
whereas that of Semacode was 6.5 seconds on a mobile phone.

8. FUTURE WORK
As indicated, due to time constraints, not all optimizations could
be implemented. Thus as an extension to the work already
completed the following could be done:

Conducting further tests with other image
enhancement techniques.

Testing the efficiency of the Visual Tag SDK under
different environmental conditions such as fog.

Adapt the tag decoder to handle tilted images.

Improve performance of decoder by considering sub-
images where potential tags are thought to be located.

9. REFERENCES

[1] Aoki H. Balloon Tag: (In)visible Marker which tells
u who s who , Proceedings of the Fourth International
Symposium on Wearable Computers (ISWC'00),
2000.

[2] Heckbert P. S., Fundamentals of Texture Mapping
and Image Warping Master s Thesis, Dept. of
Electrical Engineering and Computer Science,
University of California, Berkeley, 1989.

[3] Iannizzotto G. et al. Badge3D for Visually Impaired.
Proc. of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR'05,
2005

[4] Ipina D, Mendonca P, and Hopper A TRIP: A Low
Cost Vision Based Location System for Ubiquitous
Computing

Personal and Ubiquitous Computing
(2002) 6:206 219, 2002. Available online:
http://paginaspersonales.deusto.es/dipina/cambridge/P
UC/PUCpaper.pdf

[5] Mbogho A. et al., Towards reliable computer vision
based tangible user interfaces

proceedings of the
IASTED international conference, Human Computer
Interaction, 2005.

[6]. Rekimoto J. & Ayatsuka Y. CyberCode: Designing
Augmented Reality Environments with Visual Tags .
Sony computer Science Laboratories, Inc. Available
Online: www.csl.sony.co.jp/person/rekimoto.html

[7] Rohs M., Gfeller B., Using Camera-Equiped Mobile
Phones for Interacting with Real World Objects .
Institute for Pervasive Computing, Department of
Computer Science. Available:
http://www.vs.inf.ethz.ch/res/papers/rohsgfeller-
visualcodes-2004.pdf

[8] Rohs M., Visual code widgets for marker based
interaction

proceedings of the 25th IEEE

international conference onn distributed computer
systems workshops (ICDCSW 05) 2005

[9] Scott D., et al., Using Visual Tags to bypass
Bluetooth device discovery Mobile computing and
communications review, volume 9, number 1. 2005.

[10] Semacode Technical Paper. Semacode Corporation.
Available: http://semacode.org/about/technical

[11] Shotcode FAQ. Available: http://www.shotcode.com

[12] QR code. Available: http://www.denso-
wave.com/qrcode/index-e.html

[13] Veltkamp R. C., Hagedoorn M., State of the Art in
Shape Matching

[14] Wellner P. Interacting with paper on the DigitalDesk.
Communications of the ACM 1993; 36(7): 87 96

[15] Semapedia Website, Available
http://www.semapedia.org

[16] Thomas G. Dietterich and Ghulum Bakiri. Solving
Multiclass Learning Problems via Error-Correcting
Output Codes. Journal of Artificial Intelligence
Research, pp. 263-286, January 1995.

[17] Wicker, Error Control Systems for Digital
Communication and Storage. Prentice-Hall, 1995.

[18] Stallings, W. Network Security Essentials

Applications and Standards. Prentice Hall, Second
Edition, 2003.

http://paginaspersonales.deusto.es/dipina/cambridge/P
UC/PUCpaper.pdf
http://www.vs.inf.ethz.ch/res/papers/rohsgfeller-
visualcodes-2004.pdf
http://semacode.org/about/technical
http://www.shotcode.com
http://www.denso-
http://wave.com/qrcode/index-e.html
http://www.semapedia.org

APPENDIX A: LIST OF FIGURES

 (a) (b) (c)

 (c)
Figure 3: Results from using image enhancement: (a) Original image;(b) Result of performing edge enhancement then HE then smoothing
then applying binarization to (a); (c) Result performing AHE then smoothing then to (a) then applying binarization;(d) Result of performing
edge enhancement then CLAHE(with 16x16 windows and a histogram clip limit of 3) then smoothing then applying binarization to (a).

Tag Decoder Design

Grayscaling

Cornerstone
Detection

Region
Detection

Guide Bar
Identification

Binarization

Transformation
Matrix

Calculation
Decoding

Lighting
Enhancement

Encryption/
Decryption

Error
Detection/
Correction

ASCII/Binary
Converter

1001101110

the encoded text
Blue boxes represent external modules

Figure 4:The Internal Design of the Decoder Module

Figure 5: Sample set used for rotation tests

APPENDIX B: LIST OF TABLES

Table 3: Summary of Results obtained from testing procedure

Enhancement
Technique

1/8th light intensity 1/4 Light Intensity 1/2 light intensity
Overall

efficiency
(rank)

Avg.
processing
time (secs)

Accuracy
(%)

Efficiency
(rank)

Avg.
processing
time (secs)

Accuracy
(%)

Efficiency
(rank)

Avg.
processing
time (secs)

Accuracy
(%)

Efficiency
(rank)

HE 1.82 0 2 1.70 40 2 1.44 60 2 2
AHE 1.96 0 3 1.91 0 3 1.44 30 3 3

CLAHE 1.70 0 1 1.53 70 1 1.46 70 1 1

Table 4:Performance Comparison between CipherCode and Semacode
Type of Image CipherCode Semacode

Close-up of tag 4.5 seconds 6.5 seconds

No tag with few regions 5.1 seconds 10.3 seconds

No tag with many regions

(complex scene)

14.3 seconds 22.1 seconds

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

