
Verifiable Digital Object
Identity System ∗

Alapan Arnab
†

& Andrew Hutchison
Data Networks Architectures Group
Department of Computer Science

University of Cape Town
Rondebosch, 7701

South Africa
{aarnab, hutch}@cs.uct.ac.za

ABSTRACT
Identification is a two part system comprising of a token
or label (an identifier) that can be used to reference an en-
tity and a process that can be used to create label-entity
associations and verify that the reference and entity belong
together. There are a number of identity systems for digital
objects that provide identifiers (such as the Handle system,
the DOI and URIs). However none of these systems pro-
vide verification services. The primary application for our
proposed system is in a DRM system, where it is necessary
to correctly match users’ use licenses to the digital objects
covered by the use licenses. In such a case, incorrect associ-
ations are effectively failures of the system, and could have
wide ranging legal and economic impact, depending on the
nature of the protected data.

In this paper we present an identity system for digital
objects that support verification and the related details such
as the identifier format, the verification process as well as a
protocol to create identifiers for digital objects.

Categories and Subject Descriptors
K.6.5 [Management Of Computing And Information
Systems]: Security and Protection; E.0 [Data]: General

∗This work is partially supported through grants from the
University of Cape Town (UCT) Council and the National
Research Foundation (NRF) of South Africa. Any opinions,
findings, and conclusions or recommendations expressed in
this paper/report are those of the author(s) and do not nec-
essarily reflect the views of UCT, the NRF or the trustees
of the UCT Council.
†This is the author’s version of the work. It is posted here
by the permission of the ACM for your personal use.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-555-X/06/0010 ...$5.00.

General Terms
Design, Security

Keywords
vdoi, data identity, identifier, identity verification, digital
signatures, handle system

1. INTRODUCTION
In computer security, issues surrounding digital identity

often revolve around user identity, in particular managing
multiple user identities and various associated problems. A
user’s digital identity plays a very crucial role in determining
which services and data can be accessed by that user and
thus is a corner stone in the security building blocks of any
system. However, what is often overlooked are the issues
surrounding data identity, which also plays a crucial role as
there is a need to ascertain that the user has the correct
access permissions for a unit of digital data.

In RFC 2828, Internet Security Glossary, the process of
identification (an act or process that presents an identifier
to a system so that the system can recognize a system entity
and distinguish it from other entities) and the closely related
authentication (the process of verifying an identity claimed
by or for a system entity) are well defined concepts, but
the building blocks, identity and identifiers, have no clear
definition [10]. Identity verification is defined as a process of
“presenting information to establish the truth of a claimed
identity”.

Identity is a difficult concept to define; the Oxford En-
glish Dictionary (online version) and many other online dic-
tionaries emphasize the idea of “sameness” or “oneness” to
a set of characteristics, often to a group of people. The
closest definition of identity, as applicable in a digital world
is from “The American Heritage Dictionary of the English
Language”, which defines identity as “the collective aspect
of the set of characteristics by which a thing is definitively
recognizable or known” [2]. Identifier, however seems to be
easier to define. In the DOI Handbook, an identifier is de-
fined as:“
(1) A single unambiguous string or “label” that references
an entity (e.g. ISBN 0-19-853737-9)
(2) A numbering scheme: a formal standard, an industry
convention, or an arbitrary internal system providing con-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sistent syntax for generating a series of labels ... intention
is establishing a one-to-one correspondence ...” [7].

Digital identifiers also need to be globally unique, i.e. the
identifier references only one object in the world, regardless
of the location of the object. However, an object can have
more than one globally unique identifier. This allows for
an object to be identified under different identifier schemes,
including support for different languages etc.

Thus, an identification system for a unit of digital data or
digital object1(e.g. a file) can be considered to be composed
of two parts – a set of labels that can be used to uniquely
reference each digital object and a mechanism to verify the
identity (i.e. given a set of labels and a digital object, it
should be possible to refute the claim that the labels corre-
spond to the digital object, if untrue).

Currently, there are a number of different identification
schemes for digital objects. The identifier format for most
many such schemes are based on the Universal Resource
Identifier(URI), which defines a common standard for ex-
pressing identifier protocol and the label itself [10]. How-
ever, none of the schemes provide any verification support,
and thus we consider them to be incomplete. In this pa-
per we discuss a verifiable identification system for digital
objects.

The primary application for our proposed system is in
a Digital Rights Management (DRM) system, where there
is crucial need to match the correct digital object, its use
license and the user. However, this system can be applied
to any digital objects including ordinary web-pages and thus
could be a solution to check for the defacement of web-sites.

The paper is laid out as follows: in section 2 we discuss
why verifiable identifiers are necessary in DRM systems and
why current identity schemes for digital objects are unsat-
isfactory. This section is followed by a discussion on the
requirements for an identity system for digital objects in
section 3. We then detail our proposed system in 4, fol-
lowed by a discussion of the security considerations for such
a system in section 5, before concluding in section 6

1.1 Scope
The system presented here is aimed for single digital ob-

jects and not complex, heterogenous objects. For example,
in a web page, the HTML file is a single object, addressable
by our system. However, objects embedded by links in the
HTML file (for example images) need separate identifiers.
Verification of a group of identifiers is not handled in our
paper but would be a trivial extension.

2. BACKGROUND
In [5], Gladney discussed the need for a strong identity

system for digital libraries. Gladney argued that future
users of digital libraries would need a strong assurance for
the authenticity of the digital data, and discussed how a
strong identity system for digital objects provides this assur-
ance. However, the systems discussed by the author (most
of which are discussed below in section 2.1) do not provide
any verification service.

1In this paper, we would like to define a digital object as
“a stream of logical contiguous bits stored as a single unit,
typically in a file system on disk or magnetic tape” (adapted
definition from Wikipedia) but not consider structures used
in programming languages (although some of the concepts
discussed could apply).

2.1 Current Digital Object Identity Systems
There are a number of different identity systems for digi-

tal objects, most of them independent of each other. How-
ever, most modern identity systems make use of the Univer-
sal Resource Identifier (URI) as the base for their identifier
system. The URI system defines both the syntax for an
identifier system and a grammar on how to interpret the
identifiers [3] and enjoys almost universal support at appli-
cation level. For this reason, our proposed identity system
also bases its identifier format on the URI.

While URI provides a standard base for creating identi-
fiers, identity systems for digital data also need to provide
mechanisms for locating the digital data. Thus, using the
identifier on a system (usually networked), the identity sys-
tem locates the data through the use of resolution servers.
Resolution of the identifier does not necessarily locate the
data itself, but would usually locate metadata and a direct
network address to the data. However resolution systems,
such as the Universal Resource Locator (URL) used for web
pages have a problem with persistence - digital data can
be easily moved to different servers, web sites can be re-
organised etc. - and thus do not provide an efficient mecha-
nism as an identifier for digital objects. For this reason, most
of the digital object identification systems have focused on
allowing for the persistent identifiers – the location of the
data can change without a change in the identifier.

Probably the most widely used persistent identity system
for digital objects is the Digital Object Identifier (DOI) sys-
tem [6], which is in turn based on the Handle system [7].
The Handle system is primarily an identifier resolution sys-
tem similar to DNS. When it recieves a query, it looks
up the identifer in its database and finds an appropriate
server. The Handle server then returns the server address
to the requestor. Often, the resolution is not directly to the
data itself, but to a website that has a direct link to the
data. For example, in the ACM digital library, the DOI sys-
tem resolves to the abstract page for a given entry (usually
papers from various journals and conference proceedings).
The Handle system also provides distributed administration
and resolution mechanisms allowing for greater availabil-
ity. Rosenblatt has previously advocated the use of DOI
for DRM systems [8], but DOI lacks verification support (as
discussed in more detail section 2.2), and thus we feel it is
unsuitable for DRM systems.

Other digital object identification systems include the ARK
Persistent Identifier Scheme, which is a persistent identi-
fication scheme [6] and the Extensible Resource Identifier
(XRI), which is a broad identity scheme aimed at combin-
ing multiple resource identification schemes [1]. Although
the ARK Specifications recognises that identification is an
association between an object and a label, and verification
is required [6], the scheme has no verification support.

2.2 Problems with non-verification
The problem with non-verification in current identifier

mechanisms for digital objects is clearly demonstrated in
the DOI Handbook’s numbering system – the DOI hand-
book always has the identifier doi://10.1000/182. Thus
edition 1 (released February 2001) has the same identifier as
the fourth edition (released April 2004). While this does al-
low one identifier to identify the latest version, it also means
that the identification for earlier versions of the document
are effectively lost. Furthermore, the DOI (or any other sim-

ilar system) does not have any mechanism to prove that a
downloaded version of the document is the same as the doc-
ument located through the resolution process. Thus, if the
latest version is compromised (by a hacker, virus, disgrun-
tled maintainer or even negligence), there is no mechanism
for the user to know that the data is compromised.

The same problem exists in conventional web pages –
there is no mechanism to inform the user that the page
served by the server is in fact the intended page and not a
defaced or outdated page. A verifiable identification system
for digital objects would be able to overcome these problems.

2.3 DRM Systems
DRM systems aim to provide “persistent access control”

for digital objects [9]. There are at least three identity sys-
tems involved in a typical DRM system – a system to identify
users (both end users and rights holders), a system to iden-
tify digital objects and a system to identify use licenses2.
One of the cornerstones in any DRM system is to ensure
that the digital object and the use license correspond to each
other; and should there be a mismatch, the user should not
be allowed access to the digital object (there is also another
authentication step involving the user and the use license).

Figure 1: A layered view of DRM Packages

In figure 1 we show a DRM data package as a set of lay-
ers as we see it (as far as we know, this exact approach is
not used by any current DRM system, but most systems
would make use of something similar). Currently, to en-
sure integrity and thereby establish correspondence, DRM
packages and use licenses are signed and a valid signature es-
tablishes the integrity of the respective digital objects. But,
the digital signature only provides for the integrity of the
package and does not actually provide any mechanism to
verify that the identifier has any relation to the data, be-
cause the digital signature is for the integrity of the entire
package.

But the identifier is related to the data and not to the
package. In a flexible packaging system, it is necessary to
allow for this type of flexibility where packages with the

2Use licenses identify the rights allowed by the rights holder
to the end user and are very similar in concept to access
control lists in some Unix based file systems.

same data require different encryption, compression or sec-
ondary security features. However, a use license should not
necessarily be restricted to a specific package but rather to
the data contained in the package.

The above problem is not crucial in media DRM solutions,
where there is typically only one DRM package for each
digital object. However, in a broader context, for example
enterprise DRM systems, there could be multiple versions
of the data and simple user error (or identifier policy) could
assign one identifier for multiple versions of the package.
This could have serious security implications as it is possible
that a user could have access rights to one version of the data
but not other versions of the data - but the use license will
not have any mechanism to correct this.

3. REQUIREMENTS
In section 2 we discussed why we feel current identification

schemes are inadequate for digital objects. In this section
we discuss the requirements for a digital object identifica-
tion system, which we have divided into three types: core
requirements, optional requirements and security require-
ments.

3.1 Core Requirements

3.1.1 Globally Unique Identifier Scheme
As discussed in the ARK specifications, naming of digital

objects is a political issue and not a technological issue [6].
Names are also common and often share a one to many
relationship with objects. Since the intended application of
the identity system is global, the identifier scheme needs to
create globally unique identifiers. While an identifier should
only resolve to one object, an object can have more than
one identifier.

3.1.2 Persistent Identifiers
Even if an object is totally removed from public access,

there is a high probability that the object was replicated.
Due to the global nature of the Internet, the identity of the
digital object must not be tied to the location of the object.
Once an identifier is issued to an object, the identifier should
not be reassigned to another object [1].

3.1.3 Versioning Support
Because an identifier can refer to only one object, there is

a need to provide versioning support. Current digital object
identification schemes often leave versioning as an optional
component, but verification will require versioning.

3.1.4 Wild Card Query Support
Identifiers should support wild card queries from applica-

tions.

3.1.5 Identity Verification Service
Given an identifier and a digital object, it should be pos-

sible to examine the truth of the association between the
two entities.

3.1.6 Federation of Verification
Any server that is involved in the proposed scheme must

be able to verify any identifier from the system. If the server
does not have the necessary information, it should be able

to forward the request to the appropriate server, and return
the information to the requestor.

3.1.7 Federated Resolution
The DOI Handbook describes identifiers using the Handle

service as “actionable identifiers” [7]. This means that given
an identifier, the server can forward the user to either a
service that gives information about the data, including a
direct download of the data or a direct link to the data.
Thus, resolution can be defined as a process that links an
identifier to information about the identifier [7].

Any server that is involved in the proposed scheme must
be able to provide resolution service for identifiers; although,
like federation of verification, they could choose to forward
the request to the appropriate server, and return the infor-
mation to the requestor.

3.1.8 Encryption Independence
It should be assumed that verification and resolution re-

quests will not be signed or encrypted and thus the system
should not require the use of any encryption service. How-
ever it could make the use of encryption an optional service.

3.2 Optional Requirements

3.2.1 Internationalisation
The roman character set is not the only character set in

use around the world. For this reason, it would be useful
to allow for internationalisation of identifiers and other ser-
vices.

3.3 Security Requirements

3.3.1 Chain of Trust
There is a need to establish a chain of trust, as verification

is useless if the process itself is not trusted.

3.3.2 Privacy and Data Confidentiality
It should be possible to assign an identifier of a digital

object without revealing neither the details of the owner of
the digital object nor the actual object itself. The later is
particularly important, not only from a data confidentiality
point of view, but also for practical reasons (if data sizes are
too big, then communication time and cost will make the
system unpractical).

3.3.3 Access Control
There needs to be limited access to the records of a reso-

lution and verification service.

3.3.4 Data Integrity
If records are replicated to other servers (for caching),

there is a strong need to ensure that data integrity is pre-
served.

4. VERIFIABLE DIGITAL OBJECT
IDENTITY SYSTEM

There is a simple solution to allow verification – with ev-
ery mapping between the identifier and the object, include
a digital signature of the digital object. Thus, resolving
an identifier would not only locate the digital object, but
would also verify whether the object is the intended object.

A digital signature would also allow for verification of the
object either offline (by including the signature as part of
the identifier tag) or online through a related web-service.
In the remainder of this paper we discuss the Verifiable Dig-
ital Object Identity (VDOI) System, which we believe is a
better identity system for digital objects.

The VDOI system can be broken into four components:

1. Identifier Format

2. Identity Verification

3. Identifier Resolution

4. Management of Identifiers

4.1 Basic Setup
Like DOI, the VDOI is also an extension of the Handle

service [7]. By basing the system on the Handle service,
the identifier format and the resolution process will follow
the protocols of the Handle service. This also provides per-
sistence of identifiers. The VDOI system will also have a
web service frontend that will handle the verification and
management functions. SOAP will be the basis of the com-
munication protocol for the web service functions.

4.2 Identifier Resolution
The VDOI System will based on the the Handle service,

and thus will follow the protocols defined in RFC 3650 [12].
This should also mean that a Handle server should be able
to resolve a VDOI identifier and vice versa.

Resolution should be possible by any VDOI server and
can be handled in two ways. Firstly, the servers could keep
a store of all possible identifiers and corresponding resolu-
tion addresses; but this could be a lot of data to store and
thus be impractical. However, there should be a few “root”
servers that could handle such storage in case of failures of
original servers. The second approach would be to forward
the resolution request to the appropriate server and then re-
turn the response back to the requestor. In this scenario, the
server could also cache frequent requests for faster access.

4.3 Identifier Format
As explained earlier, VDOI is based on the Handle system

and thus the identifier format is also based on the Handle
service. It should be possible to extend this format to cater
for internationalisation through the use of Internationalized
Resource Identifiers (IRIs) as detailed in RFC 3987 [4]. How-
ever, the current scheme presented in this paper, unfortu-
nately does not conform to the IRI specifications. The pro-
posed format is detailed below:

vdoi://dir id.reg server/object class/id/version

The vdoi tag represents the service identifier. The dir id
and reg server are part of the Handle service protocol for
identifiers and this identifier is thus compatible for reso-
lution with any Handle service. Verification support can
however only be provided by the VDOI service. The regis-
tration server is responsible for the allocation of the actual
identifier. The directory identifier represents the server that
allocated the identity of the registration server (for example,
10 represents the DOI foundation). The directory identifier
is handled by the Handle system.

The id is generated by the registration server and can be
in any alpha-numeric scheme desire. It is left up to the regis-
tration server to make sure that the id is unique. Combining
the unique id with the rest of the identifier guarantees global
uniqueness. Like the id, the version scheme does not have
a prescribed format. A suggestion is to use MajorVer-
sion.SubVersion.MinorVersion format. Thus two ob-
jects of different identifiers may have the same id, but by
using different version numbers have globally unique identi-
fiers. It is recommended that objects with different versions
keep the existing identifiers (or maybe change identifiers at
major versions). The major advantage is the flexibility in
licensing, as licenses could therefore implement a wildcard
scheme for access to objects.

The object class tag is a feature aimed to ease adminis-
tration of identifiers. We propose to use a set of integers
to denote these classes, and thus a standardised mapping
could be useful. This approach also increases the number
of identifiers that can be used by the registration server.
Identifiers must be case insensitive. Although the handle
system does prescribe the use of case sensitive identifiers,
the DOI foundation have commented on the complexity of
such a system [7].

4.4 Identifier Verification
When an identifier is issued to a digital object, a signed

hash of the digital object is stored along with the resolution
and supplementary information (identifier of owner of digital
identifier for example). The signed hash will be used for the
verification service provided by the VDOI server.

For verification, the user (or service) submits the identifier
of the digital object in question as well as the hash of the dig-
ital object (taken by the user or service) to the VDOI. The
server will then verify the submitted information in relation
to the information stored in its own database, and return
either a message confirming validity or invalidity to the re-
questor. Thus this process removes the user’s knowledge of
the true identity of the hash if the object does not match
the identifier reducing the chance of a successful attack in
attaching a false identifier to a digital object.

Any server should be able to provide verification for a
VDOI identifier. VDOI servers could approach this in two
ways. Firstly, the servers could keep a store of all possi-
ble identifiers and corresponding hashes; but this could be
a lot of data to store and thus be impractical. However,
there should be a few “root” servers that could handle such
storage in case of failures of original servers. The second
approach would be to forward the verification request to
the appropriate server and then return the response back to
the requestor. In this scenario, the server could also cache
frequent requests for faster access.

A self verification scheme can also be supported if the dig-
ital object is wrapped in an envelope with the identifier and
the digital signature from the VDOI. However this scheme
does allow for the possibility of attaching a false identifier
to a digital object if both objects have the same hash. With
the use of a strong and secure hashing algorithm however,
the chances of successfully creating such an attack can be
substantially lowered.

4.5 Management of Identifiers
Management of identifiers fall into two categories – the

registration of a new identifier and the maintenance of the

identifier. Because the identifiers are persistent, there is no
need to delete an identifier once an association has been
made. Maintenance of identifiers include updates of resolu-
tion addresses and updates to meta-data of the registration
such as owner of the data object, copyright information and
search terms.

Updates of meta-data and resolution addresses imply that
other servers that had the information will also need to be
updated. However, it is highly likely that updates will not
be regular, thus synchronising servers at regular intervals
should be sufficient.

In the remainder of this section, we present a protocol for
registering a new identifier. All communication must take
place using signed SOAP messages and through an estab-
lished encrypted tunnel (like an SSL session). It is assumed
that the server has access to the user’s public key.

V => VDOI Server

R => Requestor

Rid => Requestor Identifier

Vid => VDOI Server Identifier

Oc => Object’s class

Ov => Object’s version

Os => Object’s digital signature

Oid => Object’s identifier

Ooid=> Object’s old identifier (optional)

Or => Object’s resolution address

ad => Additional Data (Optional)

t1, t2, t3, t4 => Timestamps

n1, n2, n3 => Nonces

R->V: Rid, Oc, Ov, t1, n1, Ooid

V->R: Vid, Rid, Oid, t2, n1, n2

R->V: Rid, Oid, Os, Or, t3, n2, n3, ad

V->R: Vid, Rid, Oid, t4, n3

In the first step, Ooid refers to an existing identifier if
this is a registration for a new version. Only the server that
issued the existing identifier can issue a new version. The
nonces are used to maintain linkages between communica-
tions, while the timestamps maintain freshness of messages.
Timestamps are also useful in detecting dead connections
should a requestor not follow through with the protocol.
Additional information in step 3 could be information re-
quired by the registration server.

In step 2, an identifier is set aside for a set amount of time.
The time interval allows the requestor to add the identifier
to the object (for example in the title of document). Step
4 serves as a confirmation of registration for the object. An
example of the XML messages (step 3) is shown in figure 2.

Once the server acquires the object’s digital signature, it
extracts the hash and signs it. The registration server never
gets a copy of the digital object, just the metadata, the hash
and the respective identifier. Thus the VDOI system can be
used for sensitive data on an open network like the Internet.
This promotes data privacy and security especially as data
itself does not have to leave the control of the owner to
receive an identifier.

Figure 2: XML schema for registerDataIdentifierType type
for the VDOI system

4.6 Chain of Trust
In the system, the user is always trusted to provide the

correct data. The original registration server is also trusted
not to tamper with the data (but any cached copies can be
seen to be untrusted).

It is the registration server’s responsibility to maintain
and secure the records. Some of this functionality is pro-
vided by the Handle service framework. In an implementa-
tion, the registration and verification service is a business
opportunity and thus there will be economic incentive for
the service to maintain and secure the records.

5. SECURITY CONSIDERATIONS
Verification of identity is a security service, and thus there

is a need to ensure the integrity of the service. However, the
service provided is essentially a public one, and thus acces-
sibility of the service also needs to be taken into account.
The identification system provides the following classes of
services:

1. Resolution of identifiers

2. Verification of identifiers

3. Management of identifiers

4. Management of the system (administration etc.)

Resolution and verification are free public services that
must be able to function anonymously. Registration and
management of identifiers (for example the change of reso-
lution address) could be a paid service and thus may have
restricted access. Management of the service is a private
service and thus must have restricted access. For the rest of
this section, we examine the services against the 5 security
services identified in ITU’s X.800 specifications as well as
availability, which is not explicitly mentioned in X.800 [11].

5.1 Authentication and Access Control
Authentication and access control are services which are

controlled by the administrators of the servers. These ser-
vices are only required to authenticate administrators and
for the management of identifiers; and thus restricted to
server management.

5.2 Data Confidentiality
This system provides a security service, and thus it is

paramount that the data is stored in a secure environment.
The use of a secure tunnel for management provide data con-
fidentiality at the transport level. Because the system does
not require the actual data being registered, confidentiality
of the original data is assured.

5.3 Data Integrity
This system provides a security service, and thus it is

paramount that the data stored are correct. The hash of the
object is signed by the registration service and this provides
for a check of data integrity for the verification. The use
of signed hashes of all the stored data could help with data
integrity for the remainder of the records. The use of signed
messages provide data integrity for all communication.

5.4 Non Repudiation
The use of signed SOAP messages for all communication

provide non repudiation for all communication. Non repu-
diation of requests would depend on the requestor (user)
management systems deployed.

The hashes are signed by the registration service and thus
provides for non repudiation.

5.5 Availability
Availability is of critical importance for persistent identi-

fiers. We propose the use of multiple root servers that hold
copies of all data, and the use of a distributed architecture
should allow for a higher tolerance of denial of service at-
tacks or high load of requests.

6. CONCLUSION
In this paper we have presented an identity system for dig-

ital objects, which includes the verification of identity. As
far as we are aware, this is the first digital object identity
system that supports verification of identifiers. Although
primarily geared towards the use in a DRM system, the
system can be used for other purposes through the use of
a generic web service interface. The system we have pre-
sented could be used as a mechanism to prevent defacement
of web sites; although the approach will not work for highly
dynamic web pages.

As part of the system, we have presented the requirements
of a digital object identity system, the design of the system
including a protocol for registering identifiers. We have also
explored the security considerations for such a system.

7. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers

for their comments and suggestions.

8. REFERENCES
[1] Extensible Resource Identifier (XRI) general syntax

and resolution specification, 2004.

[2] American Heritage Dictionaries, Ed. The
American Heritage Dictionary of the English
Language, fourth ed. Houghton Mifflin Company, 2000.

[3] Berners-Lee, T., Fielding, R., and Masinter, L.
RFC 3986 – Uniform Resource Identifier (URI):
Generic Syntax, 2005.
URL: http://www.faqs.org/rfcs/rfc3986.html.

[4] Duerst, M., and Suignard, M. Internationalized
Resource Identifiers (IRIs), 2005.
URL: http://www.faqs.org/rfcs/rfc3987.html.

[5] Gladney, H. M. Trustworrthy 100-year digital
objects: Evidence after every witness is dead. ACM
Transactions on Information Systems 22, 3 (2004),
406 – 436.

[6] Kunze, J., and Rodgers, R. The ARK persistent
identifier scheme, 2005.
URL: http://www.ietf.org/internet-draft/draft-kunze-
ark-10.txt.

[7] Paskin, N. The DOI Handbook, 4.0.0 ed.
International DOI Foundation, 2004.

[8] Rosenblatt, B. Solving the dilema of copyright
protection online. The Journal of Electronic
Publishing 3, 2 (1997).
URL:
http://www.press.umich.edu/jep/03-02/doi.html.

[9] Rosenblatt, B., and Dykstra, G. Integrating
content management with digital rights management -
imperatives and opportunities for digital content
lifecycles. White paper, Giantsteps Media Technology
Strategies, 2003.
URL: http://www.giantstepsmts.com/drm-
cm white paper.htm.

[10] Shirey, R. RFC 2828 – Internet security glossary,
2000.
URL: http://www.faqs.org/rfcs/rfc2828.html.

[11] Stallings, W. Network Security Essentials –
Applications and Standards, international second ed.
Prentice Hall, 2003.

[12] Sun, S., Lannom, L., and Boesch, B. RFC 3650 –
Handle System Overview, 2003.
URL: http://www.faqs.org/rfcs/rfc3650.html.

