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ABSTRACT

Software engineering is a discipline concerned with manufacturing or developing software.
Software plays a pivotal role in everyday life, an absence of which will be devastating to a
number of governmental, recreational and financial activities, amongst many others. One of the
latest branches of software engineering, component-based software engineering, is concerned
with the development of software systems using already existing components which specula-
tively will ensure rapid and inexpensive software development processes.

Parallel with the advances in software engineering, the field of digital libraries — a field deal-
ing with Web-based access to and management of structured digital content — has adopted this
development model from software engineering to shift focus from developing and using tradi-
tionally monolithic software systems to developing and using more flexible component-oriented
software systems.

Since componentised development approaches are relatively recent, other areas such as packag-
ing and managing component-based software systems still remain unattended to. This disserta-
tion presents research on techniques and methodologies for packaging customisable component-
based digital libraries such that deployment is rapid and flexibility is not compromised. Al-
though the reference point of this research was that of component-based digital library systems,
it is believed that this research can be generalised across the family of Web-based component-
based software systems.

An outcome of this research was a prototype packaging system consisting of a pair of tools:
a package builder tool and a package installer tool. This packaging system was developed
to model the ideas and methodologies that were identified as important to the processes of
packaging and installing component-based digital library systems. These tools consequently
underwent a user evaluation study whereby they were evaluated for understandability, usability
and usefulness to the processes of packaging and installing component-based digital libraries.

A key contribution of this research was identifying requirements for a generic component pack-
aging framework. For a component to be seen as ”fit-to-package”, it must posses the following
at the very least: the component must be configurable automatically; the component must have
a formal description of its dependency software; there must be formal descriptions that describe
individual components as well as systems composed of components; and there must be a way
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whereby installation questions are formally encoded such that components are able to correctly
receive configuration information.

In totality, this research has shown that component-oriented software development approaches
can benefit from an infrastructure which allows for component-based software systems to be
composed, distributed and installed effortlessly.
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CH A P T E R 1

INTRODUCTION

The Web, a global collection of resources accessible via the Internet, is one of the most useful
inventions to come about in the field of computing yet. It has informed the current state of
affairs across myriad societies and disciplines since its inception almost two decades ago. A
consequent of the Web is the Web-based services paradigm of computing. With this paradigm,
corporate and academic institutions alike have had much success in terms of economic growth,
structural reformation and deliverance, mostly through an adoption of some or other kind of
Web-based solutions [21, 25, 36]. With current and predicted future Web-based applications,
the Web will remain integral to daily life, making it more comfortable, more endurable and
more affordable.

To take full advantage of Web-based services and what they have to offer, software engineers
need to equip themselves with necessary tools and strategies to deal with the dynamics of this
computing paradigm. Inevitably for software developers, developing Web-based applications
will become a natural choice. This will be driven by an expectation of simpler, better and
faster methodologies with which to configure, deploy and manage applications from the general
public. Dividing a software system into smaller parts (or components) has become common
practice in software development in general and is encouraged by the software engineering
field [14, 15]. This already is a remarkable step towards simplifying software development
processes which offers a multitude of benefits such as component reuse, which are otherwise
unattainable. However, as good a practice as this might be, there are challenges associated
with this approach. One of these challenges is the effort required to develop, maintain and
provide support for these components. This research has focused on investigating the effects
of introducing a packaging solution for Web-based component-based software systems, paying
particular attention to the processes of embodying a Web-based software system as a single
installable package, configuring and deploying the resultant package as well as maintaining the
deployed package throughout its lifetime.

This chapter introduces the bigger project which this research is part of. The research problem
is briefly introduced in Section 1.2. Section 1.3 presents the domain and scope within which
this research is confined while Section 1.4 gives a detailed breakdown of the structure of this
dissertation thenceforth.
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– 2 – Chapter 1 — Introduction

1.1 FLEXIBLE DIGITAL L IBRARIES

The Flexible Digital Libraries (FDL) project is a research initiative which aims to investigate
certain issues surrounding component-based approaches to building and maintaining Web-based
component-based software systems in the context of component-based digital library systems.
Sulemanet al. break down the aims of the FDL project into the following subgoals [48]:

Visual Component Composition — Many software components provide a manner with which
they can be instantiated and be connected with other software components or complete
software systems. Usually, this is done through interfaces that are command-line-based
and difficult to work with. Eyambe [19, 20] has shown that a component-based digital
library can be constructed visually using the BLOX system [37].

Interface Customisation — This is work in progress which deals with the customisation of
digital library interfaces to accommodate varying system configurations. The general idea
is that a digital library user can design, from within a Web-based interface, a front-end
interface by selecting elements (including but not limited to text boxes, images and page
types) to form part of the interface, identifying digital library services (such as content
searching, browsing and rating) that are to be accessible over this interface and defin-
ing the workflow to which the selected elements and services must adhere. Preliminary
results obtained through a series of participatory design sessions have shown that this
approach is preferable over traditional approaches seen in many digital library systems
where interfaces are either hard-coded or require programming knowledge for their cus-
tomisation.

Flexible Component Packaging —In order to show that there is no loss of generality in em-
ploying component-based approaches over traditionally monolithic systems, components
must be packaged into a single distributable package together with their formal descrip-
tions, connectivity specifications as well as any other entities necessary for installation.
This package must appear as a single entity and should maintain flexibility while pro-
moting rapid deployment. Research presented in this dissertation attends to this subgoal.
Section 1.2 elaborates further on this topic.

Scalability of Component-based Systems —This part of the FDL project is concerned with
identifying techniques and methodologies whereby any relatively large component-based
digital library system can be distributed over a cluster of computers. Initial research has
demonstrated that it is possible for a simple digital library to run on a distributed set of
machines. Future work will be looking at issues surrounding migration and replication of
component instances on a computing cluster.

The visual component composition and flexible component packaging goals are closely related.
Putting this relation into perspective, a digital library user can visually compose a component-
based digital library – an outcome of which can be a package representation of this visual
composure and possibly a live demonstration of the composed digital library. The BLOX system
already provides functionality to instantiate and test a fully functional digital library live on a
server. Later chapters discuss how a digital library package can be created as a consequence of
this visual composition. Figure 1.1 demonstrates these two outcomes.
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Figure 1.1: Visual component composition and flexible component packaging relationship

1.2 FLEXIBLE COMPONENT PACKAGING

Recent efforts in the field of digital libraries have resulted in a component-based approach
to composing digital libraries, yielding numerous complexities despite significant advantages
inherent in the approach. One such complexity is that of component management. Component
management encompasses the processes of building a software package for a digital library
from a resource pool of components, deploying this software package on a target system and
ensuring proper functioning of the package while in operation on a target system.

Digital libraries need to be simple enough to be understood and utilised by everyone. Unfortu-
nately this is far from reality. Instead, digital libraries are perceived by many as systems that
only a select few can utilise. Componentising digital libraries is a remarkable step towards
achieving this simplicity. However, it is important that any undesired effects, such as managing
components, which result from this componentisation are adequately handled.

The main aim of this research was to investigate requirements for a generic component packag-
ing framework by first assessing available resources and subsequently producing a packaging
system to model some of these requirements. Strong emphasis was put towards developing
techniques and methodologies that can be employed in packaging component-based digital li-
braries for distribution, deployment as well as managing components belonging to installed
component-based digital library packages on a particular system. Another important aspect of
this research was to ensure that the flexibility provided by individual components is not com-
promised in the context of packaging while ensuring a rapid deployment process.

1.3 RESEARCH DOMAIN AND SCOPE

This research utilises principles and procedures from established branches of computing and as
such, it is logical that terms and concepts that are pivotal throughout this dissertation are clearly
introduced before delving into more elaborate detail. Although some definitions are given as
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the dissertation unfolds, the following definitions present the fields of computing which this
research spans.

1.3.1 Web Service

A Web service is an application or an integrated set of applications that appear as one and
which can be invoked through the Internet. Web services are usually accessed over the Hyper
Text Transfer Protocol (HTTP) through messages that are encoded using Web-related standards
such as Web Services Description Language (WSDL), Simple Object Access Protocol (SOAP)
and eXtensible Markup Language (XML) [7].

Web services offer an array of benefits over using other kinds of Internet protocol-based ser-
vices. Classically, they provide very loose coupling between applications that use these Web
services and the actual Web services themselves. This promotes flexibility and allows for either
of these entities to be altered without negatively affecting the other. Other advantages of utilis-
ing Web services lie in their interoperability, usability, re-usability, reliability and deployability.

1.3.2 Information Management

Historically, information management has been perceived as the process of administering the ac-
cess to, usage of, dissemination of and life-cycle of traditionally filed, mostly paper-documented
information. However, with the proliferation of the Information and Communication Technol-
ogy (ICT) era, information management has grown to mean a lot more [33]. In addition to
the above definition, information management is concerned with administering knowledge that
is acquired through some study or experience or both, by ensuring that the tasks of creating,
capturing, registering, classifying, indexing, storing, retrieving, modifying and disposing of
this knowledge, in digital format or otherwise, are clearly accounted for. Some distinguished
branches of information management include imaging, records management, document man-
agement as well as knowledge management systems.

1.3.3 Digital Library

A digital library is an organised integrated set of services for capturing, cataloguing, storing,
searching, protecting and retrieving information all of which is accessible over the Internet.
In other words, a digital library is a type of Web service that deals with information and the
management thereof through a series of identified services.

There is an array of other definitions, each with its own historical connotations, which have
prevailed in this field such as those given by Gladneyet al. in [24] and Suleman in [47],
however the definition that has been provided above will suffice throughout this dissertation.
Chapter 2 dwells more on the history of research in the digital libraries field.

1.3.4 Software Component

A software component is a piece of software that provides functionality, usually a single func-
tion, service or commodity, in a black-box manner through a well defined interface to human
agents or other software artifacts. A good component, at least in the context of this research,
can be identified as one which can stand alone, is reusable, adheres to some specification and



Chapter 1 — Introduction – 5 –

can be easily integrated with other components with relatively minimal effort.

The history of software components goes as far back as in the late 1960s, but it has only been
in the last decade or so that the computing industry has taken much interest in the principles
of software components. The field of software engineering is especially active when it comes
to component research and this has resulted in a number of novel solutions and practices that
govern the development of software in a componentwise environment. Chapter 2 gives a more
detailed discussion on this matter.

1.3.5 Software Installation Authoring

Software installation authoring is a process that deals with drafting the process of installing
some software. A common and somewhat traditional manner with which to achieve software
installation authoring is to compile a set of instructions, usually as areadmefile, that users need
to read and follow so to accomplish the task of installing some software. Over the years, this
practise has proven to be cumbersome. This can be attributed to the facts that: increasingly
many derived software solutions tend to require much more attention at installation time; and
documentation that accompanies software that is meant to assist users during its installation
process is inadequately compiled.

Current software installation authoring practices are aligned more towards automation, which
will ultimately make things easier. Chapter 2 elaborates more on a kind of software installation
authoring commonly known as software packaging.

1.4 DISSERTATION OUTLINE

The remainder of the dissertation is arranged as follows:

Chapter 2: This chapter presents relevant researched information pertaining to this research
that was available at the time of writing this dissertation. The chapter first introduces
software engineering and one of its branches that deals with component-based software.
Subsequent sections in the chapter report on available tools and resources relating to this
research project as well as report on the history of digital libraries. The main purpose of
the chapter is to draw attention to the convergence of research in the software engineering
field towards a component-based platform, while analogously linking these proceedings
to developments in the field of digital libraries and Web-based services in general.

Chapter 3: The aim of this chapter is to introduce the problem statement of this research
project. This problem statement is then broken down into a series of smaller manage-
able tasks, which are further structurally outlined. The remainder of the chapter is con-
cerned with the procedures and methodologies that were adopted in addressing each of
the problem statement tasks.

Chapter 4: The outcome of Chapter 3 was that a component management platform, a set of
tools, to deal with the issues raised by the problem statement was to be developed. This
chapter therefore introduces the design and implementation of this component manage-
ment platform. There is a clear distinction between specifications and tools that formed
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part of the design and implementation process, supported by adequate illustrations and
examples.

Chapter 5: Following the design and implementation of the tools described in Chapter 4 was
an appropriate evaluation process in order to assess the acceptability of this component
management platform across different criteria. This was in a form of a user study where
25 users participated in a questionnaire-based experimental study. The balance of the
chapter presents a thorough statistical analysis of the obtained results and correlates this
analysis to the problem statement outlined in Chapter 3.

Chapter 6: This chapter draws conclusions to this research based on the results and the analysis
thereof portrayed in Chapter 5. These conclusions show that the approach that has been
taken in addressing the problem statement of Chapter 3 is favourable and overwhelmingly
preferred.

Chapter 7: In this chapter, other approaches that would speculatively have improved the results
of this research are presented. Also included in this chapter are means with which the
current component management platform can be improved in order to attend to those
needs where minimal effort has been put or to those that are currently unattended.
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BACKGROUND

Software engineering, although the very nature of its title warrants it to be anengineering,
has been caught in a war of decidability of whether it should belong to one field or the other.
Contributors of high stature in software engineering have argued on different grounds, some
saying that it should be a branch of mathematics, an argument raised by Edsger Dijkstra [16],
while others believe that it is somewhat artistic and therefore should be an art, as Donald Knuth
famously argued in his seven-volume series entitled The Art of Computer Programming. The
reality of this matter is that although software engineering reflects traces of other renowned
fields, it is too big a discipline to perfectly fit as a branch of any other. It goes without saying
that software engineering is understood differently by different communities and such is even
reflected by well established bodies of standards that govern the specifics of technology that are
failing to agree on a unified definition of what software engineering is or should be. Perhaps it
should be viewed as a field in its own right, which is the view that will persist for the remainder
of this dissertation.

Since its inception not five decades ago, the field of software engineering has grown to become
one of the pioneering disciplines at the forefront of this revolutionary ICT era. Software engi-
neering is concerned with manufacturing or developing software. Undeniably, software plays
a pivotal role in everyday life and as emphasised by the Software Engineering 2004 Volume,
government, recreational and financial activities amongst other things will be hindered by the
absence of software [41].

Software engineering is a relatively new field and as such: it is vastly dynamic; other advanta-
geous practices that are evident in other fields, such as componentisation1 and automation, are
still being experimented upon; and the credibility of design methodologies, tools and entities
is still questionable. This can arguably explain why software development projects often run
behind schedule and exhaust their allocated budgets. Wang believes that software engineering
still has a long way to go and further postulates that software engineering has not benefitted
from automation to the same extent as other disciplines [52].

1Henceforth, componentisation should be understood asi) an approach of utilising parts (or components) to
form, build or compose a whole entity; orii) a decomposition of traditionally monolithic entities into parts (or
components).

7
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Software is developed with an eventual intent that it will be utilised by users, hence the many
user-aware software development models and methods where users give constant input, es-
pecially feature-based input, during software development. Unfortunately, users (and conse-
quently, software developers) often tend to concentrate more on software features and in the
process, overlook equally important areas such as the ease of installing the software on target
systems as well as dealing with post-installation (or maintenance) issues that may arise and
complicate their lives. Figure 2.1 shows a software publishing process, roughly illustrating
where users and developers fit in this process.

Figure 2.1: A software engineering aware process of publishing software

Figure 2.1 emphasises that software engineering should devote as much attention to users as it
does to developers. The remainder of this chapter is centered around this figure. Sections 2.1
and 2.2 respectively give an analysis of current provisions of software engineering for develop-
ers and users as well as an account of the direction that this field might be heading towards in the
near future. Section 2.3 looks into the field of digital libraries relative to the current progress in
the field of software engineering and reflects on how successful software engineering has been
with respect to Web-based systems.

2.1 SOFTWARE ENGINEERING FOR DEVELOPERS

Software developers are now able to draw from a variety of available resources when develop-
ing software systems. There are hundreds of programming languages and development meth-
ods that are at the disposal of developers, each of which is favourable more than others with
respect to the tasks at hand and of course the preferences of the developers. Since the days
of the Fortran and Cobol programming languages, there has been much progress in the types
and paradigms of programming languages and in ways that software systems are developed in
general. The following section looks at how programming languages have evolved relative to
periodic improvements in computer hardware as well as resultant changing needs in various
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societies. Section 2.1.2 then discusses one of the latest branches of software engineering —
component based software engineering (CBSE).

2.1.1 Why did Programming Languages Evolve?

There are mainly four programming paradigms into which programming languages can be clas-
sified: procedural, logical, functional and object-oriented. Object-oriented programming, the
examples of which include C++ and JavaTM , is regarded as the latest of these paradigms and
has been appraised for attending to areas of development where other paradigms were still
struggling. Prior to object-orientation, it was considered normal to write a computer program
line-by-line, which consequently led to delayed project deadlines and other significant disad-
vantages. With the advent of the object-oriented paradigm, software development became more
bearable and more practical as this paradigm gained support from diverse communities. It
seemed probable that object-orientation was the solution to reusability of software [18].

Object-oriented programming is structured around objects. Objects are better understood as
distinct individual elements (blocks of code) that are sometimes able to receive messages, pro-
cess these messages and produce some outcome. Furthermore, object-oriented programming
is founded upon three concepts that govern how these objects are manipulated: encapsulation,
polymorphism and inheritance. Encapsulation ensures that objects are prohibited from altering,
in any way, the internal structure of other objects. This ultimately implies that an object can be
altered only by itself. Polymorphism allows for different objects to respond to a single method
call. The concepts of encapsulation and polymorphism can then be enhanced by inheritance.
Inheritance allows for objects to be defined as specialised types of other objects that already
exist. These three concepts ultimately reduce the number of lines of code in a program, a result
that would otherwise not be possible with earlier programming paradigms.

Wang in [52] argues that although object-oriented programming results in shortened solutions
to many programming problems, it still is just programming but based on a totally different
way of thinking. This way of thinking is mostly unique to individual developers and can be
difficult to learn and apply in practice. Emmerich takes the argument further and discredits
object-orientation saying that software reuse in a broader view has never been achieved by
object-oriented development [18]. Emmerich further emphasises that the reuse of objects in
object-oriented development is hampered due to a large number of fine-grained objects that are
developed in accordance with some design but are then buried deep within other aggregations
and generalisations, which consequently makes it hard for them to be extracted and used in
other contexts.

From what has been stated above, it can be affirmed that one of the reasons why programming
languages evolved (but more importantly, why the object-oriented paradigm of programming
emerged) was the need to urgently meet the changing needs of society by offering better solu-
tions whereby software systems can be developed at much faster rates hence lowering costs.
This of course has been facilitated by accommodating improvements in hardware systems.
What has been changing over the years is the manner with which to reason about, and ulti-
mately formulate an informed solution to, particular programming problems. Writing code
line-by-line has persisted. Wang insists that line-by-line coding should be replaced by a more
coarse-grained process of developing systems, a process that will require minimal programming
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knowledge from a developer in order to develop some software system. This process can theo-
retically continue from where the efforts of the object-oriented paradigm ended [52]. Inevitably,
code must be written, but there can be solutions in place that will shift the focus of producing
software systems from writing code to other higher levels of abstraction.

The Software Engineering Institute (SEI) at Carnegie Mellon University has speculated that one
of the latest branches of software engineering, CBSE, promises to deliver exactly what has been
missing in the field of software engineering to date [2]. The following section introduces CBSE
and discusses its advantages and disadvantages as an approach to composing software systems.

2.1.2 Component-based Software Engineering

CBSE is concerned with the development of software systems using already existing compo-
nents. According to Crnkovic, CBSE has been put in place to attend to the development of
systems as an assembly of parts (components) [11]. Crnkovic further elaborates saying that
CBSE also encompasses the development of parts as reusable entities and qualifies the mainte-
nance and upgrading of systems by customising and replacing such parts as an elementary part
of CBSE.

There are component-oriented models and technologies that directly or indirectly form a sub-
domain of CBSE. These include Sun Microsystems’ JavaBeansTM and Microsoft’s Component
Object Model (COM+). Commercial off-the-shelf (COTS) systems are a variation of compo-
nentised approaches. These systems are commercially focused and in most cases, are more
coarse-grained than other component-oriented models. Developing software involves a number
of necessary steps, which can be a variation of requirements analysis, specification, design and
architecture, coding, testing, documentation and maintenance. This process will soon be altered
by the prevalence of these component-oriented approaches and these steps will become more
applicable to developing components rather than to developing complete software systems. Fig-
ure 2.1 has illustrated that developers are able to choose from various development styles when
developing software and componentisation can/should/will now be one of those styles to choose
from. Putting this into perspective, from user requirements, the developer can infer whether to
develop a system from its roots or gather together some components and produce the required
system or an amalgam of both. In whichever case, the requirements will inform the developer
of an approach to adopt and determine what is ultimately packaged.

CBSE promises to offer a variety of advantages such as a decrease in development cycles of
projects, an increase in the usability and reusability of developed software entities as well as a
decrease in production costs. It is undeniable however that as CBSE is a recent sub-discipline
of software engineering, it is subject to an array of disadvantages which the proponents of this
field still need to attend to. Crnkovicet al. believe that there soon will be what they term ”auto-
mated component-based software engineering” which will primarily deal with the intricacies of
software deployment in an automated manner [12]. Other areas that are still lacking attention
include the availability, testing, adaptability, security, performance, versioning, maintenance
and credibility of these components [5, 9, 11, 12, 38]. On the area of testing for instance, once
these components have been made available, whose responsibility is it to test them and against
whose specifications should these tests be conducted? How trustworthy are these components
and what should the key distinguishing factors be between components aligned with carrying
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out identical tasks?

In general, CBSE has many obvious benefits but other areas in this sub-discipline still need
thorough attention in order to not jeopardise the future success of CBSE. Software packaging
(see Figure 2.1) is a gateway to delivering software systems to users and it is arguably through
this packaging process that most or all of these problematic areas of CBSE can be addressed.
The following section discusses software engineering for users with a specific interest in users’
involvement in the the processes of software packaging and deployment.

2.2 SOFTWARE ENGINEERING FOR USERS

User requirements and software packaging are an intersection of developers’ and users’ partic-
ipation in a software engineering aware process of publishing software portrayed in Figure 2.1.
Ideally, users should be able to create their own software systems — this, with the proliferation
of CBSE and similar component-oriented approaches, without relaying their requirements to
developers. However, this is still work in progress. The process of packaging software strongly
relies on the type of software that must be packaged, the operational platform that this package
must be created for and the packaging tool that is used in creating such a software package. It
is disappointing to reveal that packaging tools are not intuitive enough to be utilised by typical
users and furthermore, they are still playing catchup to recent software development solutions
such as CBSE. In the following section, the design and functionality of various prominent pack-
aging tools is looked at with an aim of highlighting most of the prohibiting factors that make
these tools difficult to handle. The final section looks at how these tools facilitate the processes
of installing software as well as managing installed software.

2.2.1 Software Packaging

Software packaging is a process concerned with creating a single bundle of software, in most
cases executable, for distribution and installation on a target computer. Installing software
from source is regarded as a painstaking and error-prone practice that is seldom admired by
the majority of software users [40]. It is therefore imperative that solutions which attempt to
simplify the process of installing software be effective enough to make the software installation
process minimally frustrating to its intended audience. More often than not, software developers
derive brilliant solutions to various problems but the brilliancy of those solutions never quite
makes it through to consumers, thanks to unnecessarily complicated installation instructions
and procedures.

Before elaborating further on the process of and tools for software packaging, it is best to
first define formally what a software package is and what constitutes the process of building a
software package.

Building a Software Package

A software package is a bundle of software that projects itself as a coherent software system
once installed on a target system. Just like a physical package, it has a descriptor that describes
the contents, contents that make up a specific object as well as instructions on how to assemble
and use the contents.
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When building a software package, the type and size of the anticipated package informs the
building steps that need to be followed. Generally, the package building process encompasses
the preparation of all the elements needed for successfully creating an installation package.
Staelin breaks this process down into five steps explained below [46]:

Create Package Manifest —A manifest is a list of files that the package will install on the
target machine when the package is deployed. It is critical that all files be included in the
package, otherwise the package might not behave as it is expected to behave. For some
packages, creating a manifest is a relatively straight-forward task that can be accom-
plished easily by visually inspecting the software at hand. For other packages however,
this process is inundated by hundreds or even thousands of files in which case it becomes
a bit more difficult to produce an accurate and complete package manifest in an ad hoc
manner. The two most common errors that arise when creating a package manifest are
including unrelated files and excluding necessary files.

Determine Package Dependencies —It is often the case that a package depends on other
software packages in order for it to function as desired. It is therefore important that
when building a package the package composer is presented with the ability of specifying
dependency software for the package. Some dependencies are able to be bundled with
other package files and be distributed while others have intellectual property rights (IPRs)
restrictions imposed on them. Depending on the dependency type, the onus is on either the
package composer or the package user to ensure the availability of dependency software
when it is needed.

Develop Scripts — The specifications of a candidate system that is likely to have the package
being constructed installed on are usually unknown when the package is being built and
as such, it is desired that the package being built be ’smart’ enough to be able to deter-
mine most, if not all, the characteristics of a target system that it will need in order for it
to be installed successfully. A multitude of tasks such as determining the operating sys-
tem that a target system runs, the version thereof and other system dependent variables
amongst other things may need to be known to the package before, during or even after
package deployment. This requires that there are scripts, whether pre-built or built on-
the-fly, which are able to attend to the above mentioned tasks and which also control the
installation process as a whole.

Gather Package Contents —The gathering of package contents involves collecting all the
files that have been identified as belonging to the package (i.e., all the files that are in-
cluded in the package manifest), all the packagable dependencies as well as all the control
scripts that have been developed. All these entities are then usually placed in some pro-
visional location in preparation for the remaining step of assembling the package.

Assemble Package —At this stage of the package building process, most of the work is al-
ready done. Assembling the package simply means bundling everything found in the
provisional location mentioned in the previous step into a single package file. This pack-
age file can be as simple as aZIP file or a tarball , or as complex and custom as the
packager may wish it to be.
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Most tools that are (or can be) used to create software packages adhere to the steps that are listed
above. The following section looks at some of the prominent package managers and analyses
the stages and procedures that these tools follow when creating software packages.

Software Packagers

Software packagers, which are alternatively known as package builders or package managers,
are tools which are in place to ease the process of building (and sometimes installing) a software
package by introducing simpler and sometimes automated solutions to achieving the five steps
that have been mentioned in the previous section. The work of most package managers is
twofold: building a software package; and managing the package throughout its lifetime once
deployed on a particular system. Figure 2.2 show the structure of a typical package manager as
well as other entities that it interacts with.

Figure 2.2: Interactions of a typical package manager

Each of these entities play a special role in the way the package manager functions. These roles
are described briefly below:

User Interface — The user interface provides a platform through which a user can communi-
cate and interact with the package manager. Most package managers that are available for
open source operating systems employ a command-line-based user interface with a select
few providing a graphical user interface. Where graphical user interfaces are provided,
they often operate as a layer above the text interface (e.g., rpmdrake, a graphical-based
tool for Red Hat Package Manager (RPM) on Mandriva GNU/Linux distributions).
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Package Files —A package file, as earlier defined, is that which includes all the parts (pro-
gram, data, documentation and configuration files) necessary to carry out an installation.

Installed Files — These are files that have been installed on a particular system as a result of
a package installation.

Package Database —This database describes every installed package. For each installed
package, it stores its descriptor as well as information pertaining to files that the pack-
age owns. For instance, given an arbitrary file, it should be possible to associate that file
with a package to which it belongs, provided of course that the files belongs to a package,
and not the base operating system.

The balance of this section looks at a few package building tools with respect to the manner
in which they handle the package building process. It is worth noting that in order to build a
software package in general, one needs a thorough understanding of how the software works
and how it is installed manually.

Red Hat Package Manager

RPM is the most widely used package manager that most commercial GNU/Linux distributions
are based on [3, 23]. An entry point into building an RPM package is creating a formal recipe
that RPM will understand and convert into a package according to the recipe’s specifications.
This recipe, or better known as the RPM specification file, has sections that address specific
aspects of the package creation process as well as characteristics of the distribution package to
be built. Figure 2.3 shows an example of an RPM specification file showing some of the sections
that are important when creating an RPM package. These sections are analysed in greater detail
next.

preamble — The preamble is an unlabeled section that constitutes everything appearing be-
fore the%prep section in an RPM specification file. The preamble presents a human
readable descriptor of the package to be built by RPM, which is returned when a user
requests information about the package. When building a package, details such asName,
Version andRelease are used to ensure uniqueness of the package amongst other sim-
ilar ones. Although some of the fields are not mandatory in the preamble section of an
RPM specification, it is usually best practice to include as much information as possi-
ble. The field names in an RPM specification are relatively straight forward save for the
Source andRequires fields, which are explained further below:

Source — This field tells RPM where to find the source files of the package being de-
scribed by the specification. If this field contains a Uniform Resource Locator (URL),
RPM will attain these files automatically from the enlisted URL, otherwise RPM will look
for the source file locally in the RPM SOURCES directory (see Figure 2.4). In the case
where there are more than one source files, the listing convention becomesSource0,

Source1, Source2 and so on until all the source files can be listed.

Requires — To specify dependencies manually, a package composer can list such de-
pendencies under aRequires field. Dependency specification can be as simple as just
stating that the package requires a particular dependency package — as is the case with
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Summary: Version 2 of the spreadsheet formulae package
Name: spreadsheet-formulae
Version: 2
Release: 11
Copyright: GPL
Group: Applications/Office
Source: http://www.spreadsheet.org.uk/downloads/spreadsheet-formulae-2.11.tar.gz
URL: http://www.spreadsheet.org.uk/documents/
Packager: Matthew Stone
ExclusiveArch: i386
Requires: spreadsheet >= 2.1
Requires: perl
Requires: postgresql

%description
This is Version 2 of the spreadsheet formulae package distribution. This version includes
support for most Fourier Analysis and Mechanical Engineering formulae as well as a rich
database of common equations and examples.

%prep
rm -rf $RPM_BUILD_DIR/spreadsheet-formulae-2.11
zcat $RPM_SOURCE_DIR/spreadsheet-formulae-2.11.tar.gz | tar -zvf -

%build
./getsystemdeps.sh
./createconfig.sh
./configure.sh
make

%install
make install

%files
%doc README

Figure 2.3: Example of an RPM specification file

perl andpostgresql in the illustration. It is possible also to specify dependencies in
a more thorough fashion. This is seen with thespreadsheet dependency in the illus-
tration where the least version of the dependency is specified (at least version 2.1). Other
version range combinations can be stated in this manner. RPM also claims that shared
library dependencies are automatically determined and satisfied by RPM [3].

%prep — The %prep section is where preparation for installing the package is done. Like
any of the remaining sections, any shell constructs can be included in this section. As
illustrated in Figure 2.3, RPM is told to remove any old builds of the same package
(for precautionary measures) and extract the contents of the source tarball into the build
directory. For packages that require patching and other similar tasks, such tasks can be
done or prepared for in this section.

%build — This section contains the exact instructions that would need to be executed in the
case of a manual build process. In the case of the example in Figure 2.3, to build the
package being described, a series of shell scripts will need to be run before running the
make utility command-line tool.
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%install — The%install section, just like the%build section, contains the exact instruc-
tions that would be executed for a manual installation process. The illustration shows that
installation instructions are contained in a makefile, however, other custom scripts can be
included in this section.

%files — One of the five steps for creating a package mentioned earlier was concerned with
creating a package manifest. Together with the preamble section of an RPM specifica-
tion file, this section completes the task of creating a manifest for the package being
described. In this section, all files that cannot be specified anywhere else in a spec-
ification file are specified. These are usually documentation files, such as in the ex-
ample, which RPM will consequently place in a documentation directory on a target
system once the package is deployed. A typical directory for this example would be
/usr/doc/spreadsheet-formulae-2.11/ .

Once an RPM specification file has been constructed, it can then be placed in the SPECS direc-
tory. Figure 2.4 shows how all the RPM build directories are structured.

Figure 2.4: Layout of RPM build directories

RPM can then be told to create the package using therpm command. The commandrpm

-ba spreadsheet-formulae-2.11.spec executed from within the SPECS directory will
tell RPM to build all (-ba ) packages (i.e., the binary and source packages) by iterating through
%prep , %build and%install sections of the RPM specification file shown above in the above
example. The output packages are placed in their respective locations (SRPMS for source pack-
ages and RPMS for binary packages). When the-b flag is used alone, only the binary package
will be built. However, there are no specific entries in the specification file to differentiate be-
tween source and binary packages. If there are any errors with the specification file, RPM will
report these to the package composer — otherwise the package(s) will be available and will be
ready to be tested and distributed.

RPM is known to have inconsistencies when it comes to package names, package contents
and dependency handling, but perhaps the most noticeable disadvantage is that only privileged
users are able to build and install RPM based packages, since the RPM database (as shown in
Figure 2.2) can be accessed only by privileged users. Another negative with RPM is that it is
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command-line-based and as such, offers a steep learning curve for those interested in learning
how it works. There are other systems that are used in open source operating systems, which
are somewhat similar to RPM. These are briefly looked at in the next section.

Other Software Packagers for GNU/Linux-based Operating Systems

Debian and Gentoo are two types of GNU/Linux distributions that each employ a different
package manager tool, just as RPM is to Red Hat and its derivative distributions. This section
briefly looks at two tools that these systems as well as their derivatives employ for their package
management needs.

Debian GNU/Linux Package Manager — This is a suite of programs for creating, installing
and removing package files, which was initially targeted at Debian and Debian-based
GNU/Linux distributions but may now work on or be ported to other GNU/Linux systems
[28]. More commonly known as ’dpkg’, it is functionally similar to RPM, but differs in
its architecture in that it employs other tools such as the Advanced Packaging Tool (APT)
to sit at a higher level of abstraction and provide a simplified interface for accessing the
functionalities it provides.

The process of building a Debian package, commonly known as a ’deb’, begins with
creating a specification file, called a control file, which holds all the information about
the deb to be built. This file is strikingly similar to that employed by RPM. Once this
control file has been constructed, its corresponding package can then be built using a
combination of thedpkg-deb , dpkg-source anddpkg-buildpackage tools. A big
advantage in using Debian-based GNU/Linux distributions is that there are thousands
of software packages which have been created and are ready for download (whether as
stand-alone applications or as specified dependencies of other packages) using the APT
apt-get command. This provides a smooth procedure when creating and deploying
debs. For RPM, resources such ashttp://rpmseek.com/andhttp://rpmfind.net/allow users
to search for and download any packages that they may be requiring.

Notable disadvantages with dpkg are that, just like RPM, it maintains a database for ac-
counting for all the packages that it installs on a target system. This of course means that
only privileged users are able to find complete satisfaction when working with debs. An-
other point worth noting is that the modularised structure of the dpkg tool may intimidate
novice users since there are many tools to get around.

Portage — The Gentoo GNU/Linux distribution employs Portage as its package management
system. Unlike RPM and dpkg, Portage does not support the notion of packages in a
traditional sense, but prefers that software be acquired as source code, and be compiled
and installed on demand [10].

The common element that Portage has with RPM and dpkg is that it also has build recipes,
called ebuilds, which describe candidate packages. Essentially, each ebuild describes
the package’s metadata (which includes amongst other things, source and dependency
information) and contains instructions on how the package can be compiled, installed
and configured on a target system. In general, creating ebuilds is a lot more complicated
than creating RPM’s specification or dpkg’s control files. This can be attributed to the
fact that ebuilds are shell-based scripts with various subroutines for controlling each step
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of the deployment process and as such, implementing these subroutines can quickly get
confusing and complicated.

On the front-end of the Portage package management system is theemerge utility com-
mand (or tool) that users use to access the features of Portage. Theemerge utility tool
has many useful (and sometimes elaborate) commands but a simple command such as
emerge mozilla-firefox will tell the emerge tool to download the Mozilla Fire-
fox Web browser as source, compile all the downloaded source files and install the Web
browser in a sandbox environment. This sandbox environment is one of the prime attrac-
tions of how Portage manages packages. It ensures that the rest of the system is relatively
safe from whatever harm may be inflicted by an installation. Portage is also a global
package management system and as such, theemerge utility can be used only by users
with specific privileges.

Software Packaging for the Microsoft Windows Operating System

The Microsoft Windows operating system is different from any GNU/Linux-based operating
system and as such, package management follows a slightly different approach to those dis-
cussed in earlier sections. At the heart of the Microsoft Windows operating system is the
Windows Installer tool. Rather than an installation program or package manager, Windows In-
staller is the base installation tool with which applications are installed on Microsoft Windows
systems. Many package management applications such as Altiris’s Wise [1], Macrovision’s
InstallShield [32], Proggle’s Installer GD [42] and Caphyon’s Advanced Installer [4], to name
but a few applications, use the Windows Installer engine when installing software in order to
maintain consistency in the internal database that Windows Installer maintains. This ensures
reliable operation of important installation features such as rollback and software versioning.
Another powerful feature inherent in using Windows Installer is the automatic generation of the
uninstallation sequence for a particular application.

Characteristic of the Microsoft Windows operating system, all of the package management
tools mentioned above employ a graphical user interface, which makes for a much favourable
experience if compared with package managers of GNU/Linux-based operating systems. Figure
2.5 shows a screen-shot of a general setup interface of the Installer GD software packager tool.
The interface in other tools is typically similar to the one shown in this figure.

The Windows Installer tool does not provide for any dependency handling methods. It is there-
fore up to package managers to deal with dependency issues. Some of these tools, such as the
Advanced Installer tool, go a certain distance towards entertaining dependency specific issues
while other tools do not even look into such matters. Ideally, all tools should attend to depen-
dency issues. It is interesting to note that the latest version of InstallShield (version 11) now has
support for RPM and a few other packaging platforms as well as support for various other op-
erating systems beyond Microsoft Windows. Perhaps in the not so distant future, such practices
will become a norm in package management software, which will be a welcomed improvement
in current software publishing processes.
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Figure 2.5: Screen-shot of Installer GD general setup interface

2.2.2 Software Deployment

Software deployment is a process whereby a software system is introduced and monitored
throughout its lifetime on a target system. Carzanigaet al. define software deployment as an
array of activities, including but not limited to the release, activation, deactivation, update and
removal, applicable to software systems on consumer computers [5]. Arguably, software pack-
aging and software distribution (as depicted in Figure 2.1) form part of software deployment
[9].

With the recent advances in software design such as CBSE, it is beyond the duties of software
producers to distribute complete software systems and moreover, the growing complexity of
software systems prompts that software deployment activities be given special attention. Cou-
payeet al. advocate that the process of application deployment persists in an ad hoc and very
poorly automated manner, possibly because it has previously been considered as unimportant
or too complex or hardly feasible with respect to available technologies [9]. Recently though,
a fair number of technologies have begun to emerge (some of which are mentioned in Section
2.2.1) to attend to the software deployment problem. However, these technologies still present
a staggered view of how the issue of software deployment should be tackled.
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The remainder of this section explains some of the activities that constitute the process of soft-
ware deployment before looking at a number of issues that complicate the process of deploying
software.

Software Deployment Activities

For the purposes of this research, the process of software deployment was regarded as that which
could be arranged into four distinct groups as described below. These groups of activities differ
slightly to those mentioned in the literature but in general, present similar ideas. The main cause
of this difference is that other software deployment activities are not applicable to certain types
of software systems.

Packaging and Distribution — The process of packaging software has already been intro-
duced in the previous section. This process is undergoing a transformation due to various
recent models for developing and delivering software to consumers. User requirements
now play an increasingly important role in informing software vendors and/or develop-
ers of what to package and distribute. Ideally (presumably in the near future should the
promises of CBSE materialise), users should be able to craft and package their own soft-
ware systems with minimal effort. Software packaging can be viewed as an entry point
to the process of software deployment, following which is the distribution of a packaged
software solution.

With the advent of the Web, it has become intuitive for software vendors and/or develop-
ers to make software available over the Internet. This allows users to easily search and
download software at their will, provided of course that the luxury that is the Internet is at
their disposal. Other methods of distributing software include DVD-ROMs, CD-ROMs
and floppy disks and these methods are preferable for distributing either relatively large
software systems (such as comprehensive word processors, accounting packages and op-
erating systems) or software (such as software drivers) that accompanies new hardware.
It is equally important, especially if the software is not tailored according to a particular
consumer, that software be advertised appropriately to ensure that interested parties are
made aware of the characteristics of the system [5].

Installation — Software installation is introducing a software system (software package) to a
consumer’s machine. From this process on, the user interacts directly with the software
system as it was developed and packaged. At this stage of the deployment process, the
software system is configured and prepared to interact with the user’s system. This usually
includes evaluating the package’s software and possibly hardware prerequisites as well as
gathering other required input from the user. The installation process culminates in a
coherent software system at a consumer’s site, which can then be launched and utilised
on demand. Using the installed software differs with respect to the type of software
in question. For instance, some software systems are launched through some sort of a
clickable icon, others are Web-based and require some URL to be accessed while others
are command-line-based daemons.

Updating and Upgrading — Updating and upgrading a software system are two amongst
many post-installation activities. Updating encompasses modifying the current system
to a logically next version, usually referred to as a minor version. This can be achieved
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through applying patches, which themselves can be perceived as stand-alone, deployable
packages [13]. Other means of updating software include automated procedures such as
those employed by Microsoft Windows XP and Mozilla Firefox but these rely entirely on
the availability of the Internet. The frequency of updates vary from weeks to months ac-
cording to a number of factors such as the system’s stability in the conditions it is exposed
to and bugs that have been identified since its distribution.

Upgrading a software system is slightly more complex than updating it. This usually re-
quires that the current version of software be completely removed from the consumer’s
system so that the logically next version (usually referred to as a major version) can be
installed. This is evident mainly in operating system software where is it common to
upgrade, say, from Microsoft Windows 98 SE to Microsoft Windows XP or from Man-
drake 9.1 to Mandriva 11.0. The granularity of upgrading software also varies according
to certain conditions but it is commonly in a range of months to years.

Uninstallation — When a software system is no longer needed by a consumer it, in most
cases with its prerequisite software packages, can be totally removed from the consumer’s
system. For some software systems, this process can be devastating. Consider removing
a software system that shares dependency software with one or more other systems. If
removing a software system implies removing its dependency software, other software
systems that rely on the dependency may not function appropriately at its removal should
the software being removed not be aware of these other software systems. This has been
the motivation behind keeping a database of all installed software and its metadata at the
disposal of package management tools as discussed in Section 2.2.1. In ideal situations,
the stability of a consumer’s system should not be compromised by the removal of some
or other software system.

Software Deployment Issues

The process of deploying software systems, whether it is identical software packages or not, is
almost always unique to the characteristics of the consumer’s site. Nevertheless, there are some
aspects in which all the instances of deploying software are comparable. This section lists some
of the common complications that surface at software deployment.

Heterogeneous Operational Platforms —Developing software for use in more than one op-
erating system has always been a challenge. Different consumers are comfortable with
different platforms and as such, it is required of the software developers that the software
they develop be able to work on various operational platforms with little or no extra effort
required from consumers. Carzanigaet al. qualify that the coexistence and the interop-
erability of heterogeneous platforms pose new challenges for software deployment and
furthermore, the platform type becomes a new variable that has to be taken into account
when dealing with configuration and dependencies [5]. Coupayeet al. emphasise the
importance of ensuring uniformity across all computers at an organisation, even if the
computers are running different platforms [9].

If developers are using cross-platform tools such as JavaTM for development, then the
issue of developing for different operational platforms becomes a step closer to being
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solved, but even with such practices, software may still be interacting with platform-
specific libraries, which is still undesirable. Other means of dealing with this issue is to
have different ports2 of the software for as many operating systems as is possibly required.

Resolving Dependencies —There are various types of dependencies that software packages
have to resolve during the deployment process. Some of these are hardware types, for in-
stance, a specific type of a graphics card may be required for an image editing/processing
software package. The majority of these dependencies however, are software-based. Sec-
tion 2.2.1 has introduced how some package managers handle dependency specification
and satisfaction. During the process of specifying dependencies, it sometimes may be-
come tricky to specify those dependencies that are known by more than one name such
as the Apache Web server, which can either beapacheor httpddepending on the server’s
configuration and platform it is configured on. For these types of dependency software
packages, some packagers do make provision for anor (as inapache or httpd) during
specification, but for RPM,or is not defined. Another overhead at dependency specifica-
tion is that package composers need to know the exact versions of dependency software
packages that the package needs, which may take some effort to discover.

When a software package has been distributed to a consumer’s site, it needs to resolve
(if possible) dependencies upon installation. Some of these dependencies are required
to drive the installation process. For example, the software package require the Perl
interpreter to execute configuration scripts or an archiving tool for those packages that
are distributed as compressed archives. Other types of software dependencies that are
required for the functioning of the software can be checked for on a user’s system — oth-
erwise some software packagers allow for these dependencies to be automatically down-
loaded and then installed. The download process alone can prove to be a complication,
but another is when installing the downloaded dependency at a consumer’s site. Some
dependency packages are accompanied by licence enforcements where users are usually
required to accept or agree to the terms stated in the licences before the installation can
continue. Licence restrictions may also prohibit dependency software from being bundled
and distributed with software packages or even from being automatically downloaded, in
which case it is up to the consumer to resolve any dependencies manually.

Interoperability — Software systems usually have features that are absent in other similar
software systems. In this case, consumers may want to access the same piece of work us-
ing different software systems or access data belonging to other applications from within
another application without any complications. An example of this is using Microsoft
Paint for basic image editing and Adobe Photoshop for advanced image editing.

Data Migration — It is sometimes desirable that data be migrated from system to system. For
example, if upgrading a database management system (DBMS), it is often the case that
the user might still need the data (both content- and configuration-type data) from the
old DMBS to be available for the latest system. Many software systems provide for such
deployment issues, but in most of these systems, this is poorly done and not as effective
as it ought to be.

2Modified versions of software for use on different machines or platforms.
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An alternative view to data migration is seen in content management systems, where it
makes sense that content management software systems be distributed with some data,
sufficient to demonstrate the functionality of the system and also be readily usable. This
however depends on users’ preferences since different users may require different content
distributed with their packages, which may impose a lot more work on current packaging
processes.

Updates and Upgrades —These two processes are multifaceted. Generally, they refer to any
change in the environment in which a software system is deployed, which can conse-
quently affect the functioning of the software system. On the hardware side, computer
systems can be upgraded by adding better hardware components such as network adapters
and other peripherals, which in turn will require respective changes in software (e.g.,
newer software drivers) that could then affect the functioning of the installed software.

Another instance of this problem is when dependency software is updated either by other
systems or voluntarily, which can cause the software system to not function with the new
update of the dependency software.

A less common problem, although equally problematic, can occur when a software sys-
tem composed of different components is updated/upgraded componentwise, that is, some
components get updated and/or upgraded while others remain unaltered. This may result
in a mis-communication between system components where components are failing to
communicate or are communicating incorrectly with others.

Internet Solutions — The Internet has significantly improved the software deployment pro-
cess by providing a common interface through which software developers communicate
with consumers. However, the Internet has also fallen victim to criticism when consider-
ing certain aspects of security relating to the deployment process. Consumers need pro-
cedures to ensure the integrity of the software (and software-related information) that is
distributed over the Internet. It can be devastating for a consumer to install an application
acquired over the Internet only to find that it violates the coherency of that consumer’s
system. For those types of applications requiring constant contact with online servers for
updates or whatever other reasons, authentication and privacy should be guaranteed for
the consumer. No unauthorised party should have access to the data being transmitted by
an application at a consumer’s site.

Besides security aspects, not having access to the Internet can prove to be unsettling,
especially when looking at applications that have some interaction with it, since the con-
sumer should probably now have to derive other means of mimicking what the Internet
would otherwise have been responsible for.

So what this means is that developers should be extra cautious when it comes to devel-
oping applications that might utilise the Internet in some way. They must address both
security aspects in the case where the Internet is available to consumers and the possibility
that the Internet might not be present at a consumer’s site.

The issues that have been presented above are some of many that cause complexities during
the software deployment process. The stem of many of these issues is at the development
phase and it is at this stage that counter-measures can be introduced. In most instances, it is
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difficult for system developers to infer counter-characteristics to the above issues from user
requirements. It is therefore at their discretion that these issues can be implemented for. In
an ideal scenario, there should be regulations or policies in place that govern the process of
developing software so to ensure that certain software deployment requirements are met before
advertising and distributing software packages to consumers.

2.3 DIGITAL L IBRARY SOFTWARE SYSTEMS

A digital library, as initially defined in Section 1.3.3, is an electronic platform that provides
an organised integrated set of services for capturing, cataloguing, storing, searching, protecting
and retrieving information, all of which may be accessible over the Internet. Digital library
software systems are a specialisation of what is commonly known as information management
systems since they possess most, if not all, characteristics of information management systems.
This section covers most of the recent developments in the field of digital libraries with an
intention of highlighting the effects of software engineering in Web-based software systems.

In the late 1990s, the need to efficiently and effectively disseminate scholarly content without
any prohibiting factors arose [26]. The Open Archives Initiative (OAI) stepped into the chal-
lenge and provided a Protocol for Metadata Harvesting (OAI-PMH) which has since been a
key player in promoting interoperability amongst digital library systems through a simplified
approach, addressing the issue of connecting multiple digital library systems in a distributed en-
vironment [30]. The OAI-PMH has since been implemented and supported by various projects
worldwide, some of which include Kepler [34, 35] and NCSTRL [50]. These digital library
software systems were initially aimed at disseminating scholarly content. Other digital library
systems such as Greenstone3 [43], DSpace [31, 45] and EPrints [39] mimic, as closely as pos-
sible, traditional libraries in that they were designed to house and manage any type of digital
content beyond documents.

Initially, the systems that have been mentioned above were relatively monolithic by the nature
of their design. This presented a problem when it came to the portability of as well as user
requirements for each system amongst other things. For instance, since these systems were
inflexible, users would often be overwhelmed by features that they do not require, which would
in turn overshadow the basic features that each of the systems claim to provide. As research
progressed, modularisation or componentisation approaches begun to emerge in the field of
digital libraries, which ultimately saw prominent digital library systems adopt modular-based
designs. This process has already been witnessed in other branches of computing such as in
programming languages. Figure 2.6 depicts the structure of a typical component-based digital
library composed of two components: theSearchandBrowsecomponents. These components
work on the digital library dataCollectionand their services are made available to users through
theUser Interface.

According to Wittenet al., digital libraries need to be dynamic [17]. They (Wittenet al.)
support this by emphasising the need for administrators to routinely add new collections or
new user interfaces or completely new kinds of services to a digital library at runtime, that

3Greenstone is not a digital library system per se, but rather, a software suite for building and distributing digital
library collections [43].



Chapter 2 — Background – 25 –

Figure 2.6: A typical component-based digital library system

is, without bringing it to a complete halt. These requirements are also applicable to other
software systems that have adopted a component-based approach in their design [13]. This has
seen the realisation of the recent Greenstone 3 project, now an agent-based (component-based)
digital library tool, something that its predecessors were not. Other digital library systems are
following in Greenstone’s footsteps.

The transition from the mentioned monolithic systems to more flexible approaches was initiated
by research efforts like the OpenDLib [6] and Open Digital Libraries (ODL) [47, 49] projects.
The primary aim of the OpenDLib project was to create a system that manages digital library
services by providing an infrastructure with which a digital library can be customised on-the-
fly, hence making the digital library expandable. The outcome of the ODL project was an
array of lightweight components that can be connected and can communicate with one another
through a well defined set of protocols influenced by the OAI-PMH where each component
corresponds to a typical digital library service such as searching or browsing. These efforts
have partly been driven by the growing need for simple digital libraries in varied communities.
Another influencing factor was that breaking down a complex Web-based system into smaller
manageable pieces can be motivated as being a good strategy for taking maximum advantage
of the distributed nature of networks within which the resultant component-based system will
be housed. A more classical factor however is that it is regarded as good practice in the field of
software engineering to break down a complex system into smaller manageable pieces.

It is characteristic of most digital library systems to utilise some sort of DBMS for data storage
or perhaps some Web-server for publishing purposes. In general, prerequisite software for
most digital library systems is similar. Rhyno suggests that using open source systems for
digital libraries will facilitate the development and functioning of digital libraries in today’s
communities [44].

From the above discussion, it can be ascertained that the design trends in the field of digital
libraries are similar to those in the software engineering discipline — a shift from inflexible de-
signs to much more flexible component-based approaches. This means that the same problems
such as component testing, integrity, maintenance and so forth, as well as all the advantages
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of component-based design that are associated with CBSE, are equally applicable to the digital
libraries field. If considering the deployment process of current digital library software systems,
including the processes of packaging and distributing a digital library system, there are varying
degrees of similarities in the way these processes are handled. With EPrints for instance, al-
though it only functions in Unix-like operating systems, it does not employ any of the package
management solutions as it is distributed as a tarball and installed and configured by manually
running corresponding scripts from command-line. DSpace operates in a similar fashion. This
is possibly the case to avoid any limitations to the operational platforms since there is no generic
package management tool to span across most Unix-like systems. Greenstone 3 on the other
hand boasts a JavaTM design, which means that it is flexible across most platforms. Although
there are different distributions for various operating systems (Microsoft Windows, Unix and
Macintosh OS X) due to different platform-specific dependencies, the underlying features are
the same and each distribution package, when executed, presents a graphical user interface
where the installation and configuration processes are carried through.

2.4 SUMMARY OF K EY POINTS

Software engineering as a field in its own right has seen much progress in the past decade, with a
shift of focus from developing complete systems to developing components that can ultimately
be glued together on demand to create flexible systems according to consumer’s needs. This
approach is also witnessed in other fields concerned with the development of software such as
in Web-based service-oriented fields (of which digital libraries is an example) where the design
of software systems in such fields is adapting to meet the changing needs in their respective
societies. There are still some inconsistencies with component-based approaches despite all
the colourful advantages and it will be with a firm addressing of these inconsistencies that the
success of modularised approaches will be determined.
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RESEARCH OVERVIEW

Previous chapters have been employing a relatively general tone and have not been thoroughly
specific with respect to defining the problem statement that this research has been guided by.
The main aim of this chapter is to introduce the problem statement to the reader and put into
context some of the theories, concepts and practices that were discussed in Chapter 2. Section
3.1 gives a brief discussion on some of the points that motivated this research. The problem
statement is explained in detail in Section 3.2.

3.1 M OTIVATION

Any field that falls under the computing industry, or any industry for that matter, is subject to
growth as time progresses. Notwithstanding this unavoidable growth, it is equally important
that the stakeholders associated with any field that is subject to this growth are well prepared
in order to avoid any possible shortcomings. Following are some anchoring points that have
motivated the proceedings of this research:

• Digital libraries are evolving: This can be attributed to the change in needs in the au-
diences and communities that these systems are applicable to. Sulemanet al. in [48]
reaffirm that traditional digital library platforms, often portrayed as immutable and mono-
lithic, are now facing extinction and are making way for much tidier, simpler and flexible
compositional platforms to challenge the future of the digital libraries field. However,
there are still some concerns due to various inadequacies that are inherent in component-
based approaches as discussed in detail in Chapter 2.

• Current packaging practices are delaying to adjust accordingly:The design of cur-
rent package management tools is unable to accommodate software systems composed
from a pool of components. This is so because, traditionally, these tools were not devel-
oped for the possibility that they would one day need to align their functionality and goals
with those of technology trends such as component-based solutions.

• There is a need to complement and support the growth in the field:This should be
in a timely manner so to promote continuity and encourage future growth. Successfully
attending to the inadequacies of component-based approaches will demonstrate that these

27
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approaches are sound and will shift the focus to possibly exploring other avenues where
component-based approaches can prove to be equally rewarding.

3.2 PROBLEM STATEMENT

This research is part of a bigger project whose aim was concerned with investigating techniques,
models and tools for constructing flexible digital libraries by addressing the question of how to
effectively and efficiently build digital library systems based on simple components arranged
into a network of services. Specifically, this research tackled the component management issue
as thoroughly manifested in Chapter 2 and in the previous section by formulating the following
problem statement and employing it as a starting point.

To investigate techniques and methodologies for packaging component-based
digital library systems such that deployment is rapid and flexibility is not com-
promised.

This problem statement was further broken down into a series of distinct smaller tasks in order
to promote manageability. The remainder of this section presents each of these tasks. For
each of the identified tasks, a motivational description is given as well as methodologies and
strategies that were followed in addressing that particular task.

3.2.1 Packaging of Heterogeneous Components for Heterogeneous Operational Platforms

Description

Recent research has shown the idea to compose a component-based digital library system from
components initially developed under different environments and attending to different needs
to be possible [19, 20]. This given, the first part of this task was to achieve whether or not the
process of moving from a specification of such a heterogeneous composure of a component-
based digital library system to a readily installable package is possible, and if it is, within which
scope can this process be useful. The second part of this task is dependent on the outcome of the
first part. It seeks to determine if this installable package can be built irrespective of operating
systems’ barriers.

Methodology

Fundamentally, this task was the cornerstone of this research, the outcome of which influenced
that of the other three. It was not arguable that some sort of a packaging and management
platform was to be employed, whether developed from scratch or adopted from existing solu-
tions, en route to completing this task. The main issue of concern was that of heterogeneous
packaging, however attained. The following are steps that were followed in completing this
task.

• Launched a study into existing packaging tools:This study commenced by looking
into popular package management tools (e.g., RPM, InstallShield, etc. as documented in
Chapter 2) with a goal of establishing whether any of them are suitable to serve as a basis
of this research.
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• Employed the most flexible of these tools:RPM proved to be the viable choice due
to its functionality and overwhelming popularity as a package management tool amongst
the general public [3, 23].

• Evaluated the chosen tool against the intentions of this task:A component-based
digital library was built into an RPM package and these were the main observations:

– RPM packages are only compatible with Red Hat and Red Hat-based Linux distri-
butions, thus they do not offer a great degree of heterogeneity.

– To install an RPM package, one requires special administrative rights, otherwise the
installation will not succeed. This goes against therapid andflexiblegoals of this
research.

– Finally, RPM does not allow for an interactive installation process, forcing for pre-
and post-installation user interaction, which is less than desirable for component-
based digital libraries and once again is in conflict with therapid andflexiblegoals
of this research.

Taking the observations noted on the final step above into consideration, it was then decided
that a new packaging system would be designed specifically to be as portable and minimalistic
as possible, with an emphasis on the ability to compose and configure individual components
during installation. The design and implementation of this system is presented in Chapter 4.

3.2.2 Comparatively Assessing the Effort in Installing Individual Components Making
up a Bigger System and Installing the Same System but as Packaged Components

Description

Background research revealed the advantages and disadvantages associated with package man-
agement software. Consolidating all the advantages and putting them into practice minimises
the amount of work that users have to go through to successfully install software. However, as
involved as the individual component installation might be, many users still prefer it over pack-
aged solutions, claiming that individual component installation offers more freedom. Putting
this into perspective, suppose a simple digital library system is available as both a package and
as loose components (typically, ODL components). Some users might not be interested in how
the components are connected and will settle for the default settings that the package provides
while other users may want to manually configure each component according to their desires.
This task has been set out to uncover the preferences of the majority of the users.

Methodology

To comparatively assess these two processes, a comparative user experiment was constructed
and incorporated into the final evaluation process. In this experiment, users were requested to
perform both processes, namely, installing a component-based digital library system by con-
figuring each component separately and through a package, and give feedback on their experi-
ences. Chapter 5 gives a detailed breakdown of the results obtained from this user evaluation
process.
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3.2.3 Efficiently and Effectively Dealing with Package Dependencies and their Intricacies

Description

Software installations are hampered due to license restrictions which forbid bundling of all nec-
essary dependency packages in a single distribution [14]. More often than not when installing a
software package, it is the case that the package may depend on other packages in order for it to
function as desired. There are a number of employable solutions, but mostly outdated, that can
address this matter. One of these, and a trivial one at that, is to shift the dependency burden to
be dealt with by users whereby they have to manually satisfy dependency requirements prior to
installing software packages. This is only reliable pending both the availability of these depen-
dency packages from their nominated locations and the clarity in the communication between
the package and the user in terms of requirements and so forth. This solution is regarded as
unacceptable and painstaking by users. Another of these solutions, which seems to be more
profitable, is that of automating this dependency requirements satisfaction process. Chapter 2
has presented a detailed discussion on this matter and from that it is evident that automation
will yield desired results but not before founding a normalised, uniform and flexible manner to
create packages and specify dependencies.

Methodology

Most package management tools have various means of dealing with dependencies. At first
glance, these seem uniform but differ drastically at ground level. A step taken in dealing with
this task was to learn how prominent package managers dealt with dependencies, all of which is
shown in Chapter 2. A satisfactory level of automation is achieved by these package managers
but there are still areas that lack attention. For instance, when specifying dependencies in
the Preamble section of an RPM specification, one does so under theRequires tag where
one specifies these dependencies by name. In this case, a problem is encountered when a
dependency goes by more than one name such as the Apache Web Server which some systems
understand asapacheand others ashttpd. It then becomes more complicated to specify these
types of dependencies.

A more serious problem, however, is that of attending to dependencies that have strict license
restrictions. These are more complicated to provide automation for and it seems that package
managers have turned a blind eye to these. Chapter 4 presents an approach which has been
formulated and structured to deal with dependencies within the scope of this research project.

3.2.4 Identifying and Addressing Users’ Post-deployment Needs

Description

Software is developed with an eventual goal of making the lives of its end users simpler. It
is therefore imperative that users’ input and experiences are incorporated at software develop-
ment level. This becomes especially essential once the software has been installed on a user’s
machine after which point it will require constant maintenance to keep it going. Depending on
the type of software system installed, there are different maintenance processes but the most
common include updates, upgrades and uninstallations. Completing this task meant identifying
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pressing post-deployment user needs in the field of digital libraries and consequently devising
means with which to address the most pressing of these user needs.

Methodology

Digital library communities are dispersed globally and, as such, it can prove to be ineffective,
if not redundant, attempting to determine digital libraries users’ post-deployment interests by
simply looking at a local user sample representing such large communities. This motivated the
idea of methodically scanning mailing lists of prominent digital library systems, specifically,
those of DSpace and EPrints, with a hope that this will offer maximum insight into users’ post-
deployment needs on a global front as communities worldwide contribute to these mailing lists.

Fourteen months (to the end of February 2005) worth of mailing list entries were scanned for
possible post-deployment needs and the following list presents the most popular of these needs.
Section 5.1 shows the complete list of possible post-deployment user needs from scanned en-
tries.

– Upgrading to newer software versions
– Migrating data from system to system, and
– Clarifying installation instructions and requirements

Some of these needs have been incorporated into the design of the packaging system and Chap-
ter 4 elaborates more on this while a more thorough analysis on relevant scanned entries is done
in Chapter 5.

3.3 SUMMARY OF K EY POINTS

The problem statement — conveniently broken down into a series of smaller, manageable tasks,
commanded initial research on a number of topics that this research touched on. The outcome
of this preliminary research showed that current technologies are inappropriate in attending to
the aims presented in the problem statement. This resulted in a decision that a new packag-
ing system be built with an emphasis on the minimalistic and portable characteristics that this
system must possess.
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DESIGN AND IMPLEMENTATION

Chapter 3 has presented the overview of this research giving the problem statement broken into
simpler goals. The outcome of the initial research showed that in order to properly attend to the
problem as stated, a packaging system was to be developed accordingly. This chapter therefore
discusses the design and implementation strategies that were adopted in the development of
this packaging system. The immediate section looks into the specifications that played a major
role in the design stages of this packaging system. Subsequent sections describe the system
architecture in depth.

4.1 SYSTEM ARCHITECTURE : SPECIFICATIONS

The design and implementation of the packaging system was enhanced by formalisms, some of
which have been developed from scratch and others adopted from elsewhere. In this section,
these specifications are introduced and discussed, aided by illustrations and examples where
appropriate.

4.1.1 Component Connection Language

The Component Connection Language (CCL) stems from the design of the BLOX component
composition Integrated Development Environment (IDE). Eyambe describes the CCL as a sim-
ple and effective XML-based manner with which to formalise the connectivity of components
within the BLOX framework [19]. This formal specification has since been adopted and is now
a vital entity in the package building and installation processes described in later sections. The
next two sections will show and describe the original and modified CCL specifications.

Original CCL Specification

The CCL specification contains instance descriptions of all connected components. Figure 4.1
shows a shortened example of the original CCL specification. In this case, all the elements have
been collapsed but briefly explained below since the details contained within are not a very
important part of this research. For a full example, see Appendix A (A.1).

Within the instance elements are all the details pertaining to a particular component includ-
ing configuration details, server details as well as details applicable only to the BLOX IDE.
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<?xml version="1.0" encoding="UTF-8"?>
[-] <ln:CCL xmlns:ln="http://nala.cs.uct.ac.za/ccl">
[+] <instance>
[+] <instance>

.

.

.
[+] <instance>
[+] <connection>

.

.

.
[+] <connection>

</ln:CCL>

Figure 4.1: Abridged original CCL specification example

Parts of theinstance element are analysed further in later sections. Connectivity information
describing the connectivity of each of the components described within theinstance elements
is contained within theconnection elements. One of the important advantages of the CCL
specification is that it facilitates automatic configuration of the specified components. This is
achieved by extracting a particular instance’s configuration and its associated connectivity in-
formation off the CCL specification and feeding that information to the component’s automatic
configuration script. Much of this process is described in Section 4.3.2.

Modified CCL Specification

When configuring any ODL component manually, there is a series of questions aimed at gath-
ering configuration information, which are asked by the component’s configuration script. If
installing a digital library composed of many ODL components, all the questions for each of
the components (some of which are repeated for most if not for all components) need to be at-
tended. This clearly shows that the amount of effort required to install such a component-based
digital library is multiplied. In the BLOX IDE, the notion of a question has been abstracted to
an interface where relevant values are inserted by the digital library composer per component.
However, this manner of abstraction cannot be directly inherited by the implementation of the
packaging system.

This motivated the design of thequestions element, which forms part of the modified CCL
specification. This element encloses an unlimited number ofquestion elements each of which
formally describes a single question. Figure 4.2 shows a skeleton example of a modified CCL
specification, a full version of which can be seen in Appendix A (A.1). Figure 4.3 shows the
structure of each of thequestion elements with annotations. The purpose for including ques-
tions in the CCL specification is twofold: at the very least, to ensure that the most mandatory
of these questions (i.e., those questions that ask for the important configuration information
without which the components will not function) are listed to be utilised by the package builder
tool; and to reduce the effort required from the digital library composer in specifying these
installation questions.
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<?xml version="1.0" encoding="UTF-8"?>
[-] <ln:CCL xmlns:ln="http://nala.cs.uct.ac.za/ccl">
[+] <instance>
[+] <instance>

.

.

.
[+] <instance>
[+] <connection>

.

.

.
[+] <connection>
[-] <questions>
[+] <question>
[+] <question>

.

.

.
[+] <question>

</questions>
</ln:CCL>

Figure 4.2: Abridged modified CCL specification example

Figure 4.3: Structure of thequestion element of the modified CCL specification
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.

.

.
<question>

<description>
This is the username that will be used to connect to
the database that has been specified.

</description>
<text>Please Input the Database Username</text>
<answer></answer>
<default>username</default>
<locations>

<location>/CCL/instance[1]/.../irdb/dbusername</location>
<location>/CCL/instance[2]/.../dbunion/dbusername</location>

</locations>
</question>
.
.
.

Figure 4.4: Example of thequestion element

In Figure 4.4 is a populated example of thequestion element. This example gives the actual
wording of the question as well as a brief description of what the question asks about. In
addition, two XPath locations into which the answer to this question should go are shown.
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4.1.2 Component Name Mappings

The packaging and installation processes, as will be shown in Section 4.3, need to be able to
map from any component’s name that can be contained within a CCL specification onto an
actual file name associated with that particular component. There is no defined relationship
between component file names and those component names that can be contained within a CCL
specification. This prompted that a formal method of describing these mappings be devised.

Figure 4.6 shows an annotated structure of the component name mappings specification. An
elaborate mappings example can be found in Appendix A (A.2). There are no limitations to the
number of component mapping descriptions that can be contained in a mappings specification
as illustrated in Figure 4.6.

An example showing mapping information of an ODL component,DBUnion , is shown in Figure
4.5. It gives a short description of the component and shows that the component has three
versions. Eachversion element contains text corresponding to a filename of a component
being described from which an actual version number can be extracted. These versions are
listed chronologically, with the first version listed first and the latest version listed last.

<?xml version="1.0" encoding="UTF-8"?>
[-] <components>
[+] <component>
[+] <component>

.

.

.
[-] <component>

<name>dbunion</name>
<description>

An ODL union archive component. Harvests several open archives
and roles as a service provider for other ODL components.

</description>
<versions>

<version>DBUnion-1.0.tar.gz</version>
<version>DBUnion-1.1.tar.gz</version>
<version>DBUnion-1.2.tar.gz</version>

</versions>
</component>
.
.
.

[+] <component>
</components>

Figure 4.5: Example of thecomponent element
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Figure 4.6: Structure of the component name mappings specification
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4.1.3 Dependency Specification

The primary aim for developing a dependency specification was so that components are able
to formally describe software packages that they require in order for them to function appro-
priately. Each of the components describes its own set of dependencies together with sufficient
information per dependency which can lead to various automated solutions at different stages
of building and installing a package. Appendix A (A.3) shows a detailed example of the depen-
dency specification.

If there are no dependencies associated with a component, the dependency specification can be
without anydependency elements. Section 4.2 shows how dependency specification fits into
the file structure of a component. Figure 4.7 shows the structure of the dependency specification.
From this figure, it is evident that even a dependency can have its own set of dependencies
which can be recursively specified. The dependency specification also allows for operating
system (interchangeably used with ’platform’) related information to be encoded for each of
the specified dependencies. Figure 4.8 structurally shows how this can be achieved.
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Figure 4.7: Structure of the dependency specification
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Figure 4.8: Structure of theplatform element of the dependency specification

Figure 4.8 is an extension of Figure 4.7 and shows how platform information can be encoded
within the dependency specification. Many software systems have varying versions for different
operating systems, which is why it was essential to enable the encoding of information for each
of the software system versions. This information can then be used in various ways as will be
shown in Section 4.3.

An example of adependency element is shown in Figure 4.9. It describes information of
themysql dependency, giving information of two platforms in which this dependency can be
deployed. Appendix A (A.3) shows a complete example of specifying dependencies.
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<?xml version="1.0" encoding="UTF-8"?>
[-] <dependencies>
[+] <dependency>
[+] <dependency>

.

.

.
[-] <dependency>

<name>mysql</name>
<description>

An Open Source Software relational Database Management System (DBMS)
which uses a subset of ANSI SQL (Structured Query Language). This
DBMS is be used by various components for data storage and retrieval
purposes.

</description>
<version>

<atleast>4.1.1</atleast>
<atmost>5.0.15</atmost>

</version>
<platforms>

<platform>
<name>GNU/Linux</name>
<version>

<atleast>2.2.13</atleast>
<atmost>2.6.15</atmost>

</version>
<check>

<command>java checkmysql</command>
</check>
<source>

<url>http://www.mysql.com/downloads/mysql-5.0.15.tar.gz/</url>
</source>
<install>

<command>gzip -cd | tar -xf - mysql-5.0.15.tar.gz</command>
<command>mysql-5.0.15/install</command>

</install>
</platform>
<platform>

<name>Windows</name>
<version>

<atleast>98</atleast>
<atmost>XP</atmost>

</version>
<check>

<command>java checkmysql</command>
</check>
<source>

<url>http://www.mysql.com/downloads/mysql-5.0.15.exe/</url>
</source>
<install>

<command>mysql-5.0.15.exe</command>
</install>

</platform>
</platforms>
<rights/>
<dependencies/>

</dependency>
.
.
.

[+] <dependency>
<dependencies>

Figure 4.9: Example of thedependency element
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4.1.4 Installation Script

The installation process is controlled by the installation script which is created by the packager
tool at package creation time. The installation script is divided into two main sections, the
preamble and theinstallation sections, as seen in Figures 4.10 and 4.11.

<?xml version="1.0" encoding="UTF-8"?>
[-] <script>
[-] <preamble>

<dlname/>
<location/>

</preamble>
[-] <installation>
[+] <question>
[+] <question>

.

.

.
[+] <question>

</installation>
</script>

Figure 4.10: Abridged installation script example

Figure 4.11: Structure of the installation script

The preamble section contains simple metadata for the digital library. The name and the
installation location of the digital library package are respectively encoded under thedlname

andlocation elements. Theinstallation element contains installation questions that are
included at packaging time and are asked at installation time. These follow the exact structure
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as that which is depicted in Figures 4.3 and 4.4. A full example of the installation script is seen
in Appendix A (A.4)

4.2 SYSTEM ARCHITECTURE : F ILE STRUCTURES

The core of the design and implementation process of this research was to devise a methodology
whereby an installable package can be built from loose components. These components, ODL
components, have been introduced in earlier chapters but not much detail has been provided
about their internal file structures. In this section, the internal file structure of these components
is highlighted together with that of packages that are created with the package builder tool
discussed in Section 4.3.1. This has been done so that the interface through which the packaging
system as a whole interacts with components is clearly defined before delving into how the tools
carry out their respective processes.

4.2.1 ODL Components’ File Structure

The file structure of ODL components is similar and as such it is sufficient to describe it using
any one component as an example. Figure 4.12 partially shows how files are organised in ODL
components relative to the root location using theDBUnion component as an example. For
clarity purposes, files that are not directly related to this research have been omitted in the
figure.

Figure 4.12: File structural organisation of ODL components

The DBUnion directory contains two important files:configure.pl andautoconfig.pl .
These files are responsible for manually and automatically configuring an instance of theDBUnion

component respectively upon request. Thetype directory, also contained within theDBUnion

directory, holds the XML schema definition of theDBUnion component. Libraries that the
component relies on are contained in thelib directory. Thereadme , history andlicence

files are self-explanatory.

An important addition to the file structure of the components is that of the dependency spec-
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ification file, dependencies.xml — highlighted with a white background in Figure 4.12,
describing all the dependencies that the component requires in order to function appropriately.
The structure and format of this file is as documented in Section 4.1.3.

4.2.2 Package Format

The output of the package creation process is a package. This package is in the form of a
compressedZIP file which contains all the files necessary for an installation to carry through
successfully. Figure 4.13 shows the structure and organisation of this package.

Figure 4.13: Package structure and contents

Thesystem directory contains all the important scripts and specifications that are required at
installation time. To drive the installation process is the installation scriptinstall script.xml .
The component name mappings specifications,mappings.xml , and the CCL specification,
description.ccl , also form part of thesystem directory. These have all been introduced
and described in Section 4.1.

All the components that form part of the package (described in the CCL specification) are con-
tained in thecomponents directory. The file structure of components has been described in
the previous section. If any of these components have any dependency requirements, scripts
and/or programs that are responsible for checking for the availability of these dependencies can
be found in thechecks directory and if these dependencies are allowed to be bundled and dis-
tributed with any software package, these dependencies can then be found in thedependencies

directory.

To install the package, the user needs to run theinstaller program. This is an executable
JavaTM Archive (JAR) file which contains the compiled source of the package installer tool. The
images directory contains images that assist in rendering the interface of the package installer
tool. Section 4.3.2 further discusses the package installer tool.
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4.3 SYSTEM ARCHITECTURE : T OOLS

The packaging system is comprised of a pair of tools that complete the processes of constructing
and ultimately installing a component-based digital library package. One of the subtasks of the
problem statement presented in Chapter 3 was to design for heterogeneous operating systems.
Employing the cross-platform JavaTM programming language in conjunction with XML for
data presentation, as manifested in the design of specifications in Section 4.1, was a design
strategy adopted to deal with the heterogeneity of operational platforms.

The remainder of this section looks into the design and implementation of the pair of tools
that are key to the packaging system. This will put into context the specifications and other
information from previous sections of this chapter.

4.3.1 Package Builder

Building a package essentially means structuring the package suitably by including in the pack-
age all files necessary, excluding all files unnecessary and resolving most possible complications
that may arise at package installation time, all in a consolidated effort to improve and make the
process of installing software more bearable. Figure 4.14 summarily shows all the steps of the
package building process.

Figure 4.14: Package building process

This package building process can be better understood as that comprising of two distinct stages:
gathering and analysing input; and structuring the output package. The following two sections
look into these two steps in further detail.
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Input and Input Analysis

The aim of the package builder is to build a digital library package according to an input spec-
ification. The input to the packaging process is a CCL specification file as shown in Figure
4.14. This specification file is produced primarily by the BLOX system and is slightly mod-
ified as detailed in Section 4.1.1 to serve as input to the package creation process. Once the
specification has been supplied to the package builder tool, the components that make up the
digital library are systematically identified and consequently, other information related to the
components, such as dependency information, is identified. At this point, the component name
mappings specification,mappings.xml 1, is used to find the exact filenames of components in
preparation for the final step of structuring the package.

Structuring the Package

Structuring the package is concerned with gathering the package’s metadata as well as other
information and entities that are inferred from the input specification to ultimately produce a
single installable package. This process can therefore be segmented into three sections which
are elaborated upon in the following sections.

Static Questions

Static questions are designed to gather information about the package (metadata) that is used at
installation time. These are static in that they are built into the packaging tool and need to be
answered irrespective of the package being built. Figure 4.15 shows an example of one such
static question.

Figure 4.15: Static question: Default digital library installation location

1Themappings.xml specification can be created manually as new versions of components
become available. Ideally, a simple application that handles component additions can be more
useful.
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This question asks for the default installation location whereas the other static question asks
for the default digital library name. These static questions are given default values when the
package is being built and these values are presented at installation time.

Dynamic Questions

Dynamic questions are those that are constructed by the package designer when the package
is being built. To reduce the effort required from the package designer, the essential of these
questions are already encoded within the input CCL specification, hence the modified CCL
specification in Section 4.1.1. These questions are specific to the configuration of the compo-
nents that the digital library is composed of. Figure 4.16 shows an interface through which these
questions are accessible. Each of these questions can be edited by the package designer if there
is a need to do so. Additional questions can also be constructed.

Figure 4.16: Dynamic questions: Constructing digital library installation questions

When installing components individually, each component has its set of questions that it asks of
a user. For ODL components, these questions have a varying degree of similarity across most of
them. It is therefore necessary to ensure that during package installation, the user is presented
with a seemingly uniform installation process while each of the components’ configurations
take place transparent to the user. This was one of the problems that the packager tool dealt
with. Figure 4.17 shows an example question which asks for a database username of a database
shared between two components.

What Figure 4.17 also shows is a question editing/adding interface. Three of the fields in this
interface, thequestion , description anddefault fields are relatively self-explanatory.
TheAnswers’ Path(s) deserves further explanation. The package designer needs to specify
components which expect an answer to this question. This is done through the TheAnswers’

Path(s) button, which presents the package composer with an interface containing a graphical
presentation of the input CCL specification. Through this interface, the package composer
can select a path to which the answer to the question being asked must go, once available at
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installation time. Figure 4.18 shows this interface.

Figure 4.17: Dynamic question: Question constructing interface

Figure 4.18: Specifying answer location from CCL specification

A package composer is able to select the answers’ path guided by theNode Value andXPath

fields. These fields show the node value and the XPath expression of the selected node.
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.

.

.
<instance>

<instanceDescription>
<name>Search</name>
<description>

<blox:irdb>
<repositoryName>ODL Search Engine</repositoryName>
.
.
.
<archive>

<identifier>HUSPICS</identifier>
<url>

<!--URL_TO_CGI_LOCATION-->/ODL-DBUnion-1.2/
DBUnion/evaluation/union.pl

</url>
.
.
.

</archive>
</blox:irdb>

</description>
</instanceDescription>

</instance>
.
.
.

Figure 4.19: Special token for path to CGI location

There is another question type which the package builder tool deals with internally. This can
be thought of as a static dynamic question type — a static question which gets dynamically
added if needed. To put this into perspective, consider a case of the installation location of an
ODL-component-based digital library. ODL components need to be instantiated in a location
where CGI/Perl scripts are executable. For these components to interconnect, each component
requires URLs (baseURLs) of all the components that it connects to. However, for other types
of components, this may not necessarily be the case. So, the package builder tool needs to
dynamically determine whether to include a question, such as asking for a URL to a CGI lo-
cation, for the installation process or not. To achieve this, special tokens are embedded in the
CCL specification file, which consequently inform the packager tool of these static dynamic
questions to include when finalising the package. Figure 4.19 shows an excerpt from a CCL
specification file with a special token<!--URL TO CGI LOCATION--> .

Special tokens such as these correspond to predefined questions both (the special token and its
corresponding predefined question) of which can be specified in the source code of the package
builder tool. The package builder tool systematically scans the CCL specification file for any
special tokens and include any corresponding questions when finalising the package. The spe-
cial token illustrated in Figure 4.19 tells the package builder tool to include its corresponding
question shown Figure 4.20.
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.

.

.
<question>

<description>
The URL to CGI location is that which grants access to the
CGI location where this Digital Library will be installed.

</description>
<text>Please Input URL to CGI Location</text>
<answer> </answer>
<default>http://localhost/cgi-bin/</default>
<locations>

<location> <!--URL_TO_CGI_LOCATION--> </location>
</locations>

</question>
.
.
.

Figure 4.20: Static dynamic question: Question for path to CGI location

Once the answer to this question is available at installation time, it replaces the special token
found in the CCL specification file, otherwise the default value replaces the special token.

Finalising the Output Package

The final stage of the package creation process follows this sequence: collect all questions
and their associated data; create an installation script; collect components and other associated
entities (from the components and resources repositories as in Figure 4.14); create the actual
package; and dispose of unwanted files that were utilised by the package builder tool during
the package creation process. Figure 4.21 shows the interface that gives feedback on these
sequential processes.

Figure 4.21: Package finalising process
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The installation script is made up of all the questions that are collected in the first step. The
preamble section of the installation script (recall from Section 4.1.4) is made up of all the
information gathered by static questions. The remainder of the questions (the dynamic and
static dynamic questions) form the rest of the installation script and are encoded within the
installation element of the installation script.

From the input stage of the package creation process, components and other associated entities
are known. These are then collected and structured accordingly, conforming to the package
format described in Section 4.2.2, before being bundled and compressed as aZIP file ready for
distribution.

4.3.2 Package Installer

The process of installing a digital library package is relatively simpler if compared to that of
building a digital library package and really depends on how the package was structured at
creation time. Figure 4.22 shows a summary of steps that are taken when installing a package.

Figure 4.22: Package installation process

There are four steps that this process follows. These are: package contents extraction; system
checks; questioning; and finalising the installation process. The following sections elaborate
more on these steps.

Package Contents Extraction

The extraction of the contents of the package is twofold: it is the extraction of the package itself
as it is a compressedZIP file; and it is the extraction of the components into their nominated
installation location. The former extraction process is intuitive and results in a root directory
adhering to the package format described in Section 4.2.2. The latter process happens during
the actual installation of the package once theinstaller program has been launched.

The installer tool prompts the user to supply an installation location into which the digital library
should be installed. The components are then extracted into this location after which they are
ready to be instantiated. Figure 4.23 shows the extraction of all the component files into a target
installation location.
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Figure 4.23: Extracting component files into an installation location

System Checks

Once the components have been extracted into an installation location, the package installer
tool then systematically scans through all the components’ root directories for their associated
dependencies specified independencies.xml files, the structure of which is introduced in
Section 4.2.1. Once all the dependency information has been collected, the package installer is
then able to perform some checks based on the dependency specifications. Figure 4.24 shows a
typical result set after performing some of these checks.

Figure 4.24: Dependency check summary

The dependency summary shows the dependencies as well as their associated components.
For example,perl [:BRSUI:] means thatperl is a dependency associated with theBRSUI
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component. The status column shows the outcome status after the dependency checks have
been performed. The checking process depends on the availability of checking scripts and/or
programs found in thechecks directory (recall from Section 4.2.2) which should correspond
to the dependencies specified by components. Should these checks return unfavourable results,
it is likely that the installation process will not succeed.

Questioning

The questioning process is the most important part of the installation process. This is where
the installer tool gets to ask the dynamic and static dynamic questions that have been included
at package creation time. Figure 4.25 shows an interface through which a question is asked at
installation time.

Figure 4.25: Asking a question at installation time

This question asks for a database username of a database to be used by the components being
installed. At this point, as emphasised in Section 4.3.1, the user is unaware that this question is
in fact linked with two components. Once all the questions have been answered, the next step
is to finalise the installation process.

Finalising Installation Process

This process is sequentially similar to the final step of the package creation process. Figure 4.26
shows how this process is carried through in three simple steps. In the initial step of this process,
all the answers to the questions that have been asked are collected. These answers are then
stored in the installation script, under correspondinganswer elements, for future references
and are also distributed to all the XPath locations, found under thelocations element of the
question element as seen in Section 4.1.1, in the CCL specification file. The following two
steps build towards instantiating/configuring each of the components to produce a fully fledged
digital library.

Recall from the structure of ODL components in Section 4.2.1 that there are two scripts,
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Figure 4.26: Finalising installation process

configure.pl andautoconfig.pl , that deal with the configuration of the component. For
automatic configuration, theautoconfig.pl script is used. This script is a byproduct of the
work done by Eyambe on a component connection assembly of digital libraries [19]. This
script takes as input an instance name and an instance description encoded in an XML file
namedconfig.xml . Figure 4.27 shows an example of how this instance description file is set
up for theIRDB ODL component.

<?xml version="1.0" encoding="UTF-8"?>
<blox:irdb xmlns:blox ="http://nala.cs.uct.ac.za/blox">

<repositoryName>ODL Search Engine</repositoryName>
<adminEmail>smhlongo@cs.uct.ac.za</adminEmail>
<database>DBI:mysql:evaluation_db</database>
<dbusername>root</dbusername>
<dbpassword>root</dbpassword>
<table>search</table>
<archive>

<identifier>HUSPICS</identifier>
<url>

http://nala.cs.uct.ac.za/cgi-bin/evaluation/ODL-
DBUnion-1.2/DBUnion/evaluation/union.pl

</url>
<metadataPrefix>oai_dc</metadataPrefix>
<interval>86400</interval>
<interrequestgap>10</interrequestgap>
<overlap>86401</overlap>
<granularity>second</granularity>

</archive>
</blox:irdb>

Figure 4.27: Example of an ODL component instance configuration information

This instance description can in fact be derived from each of theinstance elements that are
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part of the CCL specification. So, after the answers to all the questions have been made avail-
able to the components that need them, the package installer tool is then able to extract instance
descriptions (Dis) from the CCL specification and use them as input in the automatic configu-
ration of each of the components (Cis) making up the digital library. This is illustrated by steps
2 and 3 of Figure 4.26. The order of the configuration is determined by the connection informa-
tion, also encoded in the CCL specification underconnection elements. Besides instantiating
a component, it may be required that it harvests (collects) data from other components or Open
Archives2 that it connects to before other components that connect to it can be fully functional.
This task also forms part of the installation finalisation process.

4.4 SUMMARY OF K EY POINTS

The design and implementation phase of this research was concerned with identifying develop-
ment strategies aligned with meeting the requirements presented in Chapter 3. A clearly defined
set of specifications was developed to be ultimately used in the development of the packaging
system composed of two tools: the package builder and package installer. The specifications
were presented in XML format while the tools were a JavaTM implementation. This ensured
the heterogeneity of the packaging system, which was one of the aims presented by the problem
statement.

2An Open Archive is a data store which is compliant with the OAI.
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EVALUATION AND RESULT ANALYSIS

”... evaluation is what it takes in order to know if all your hard work is achieving
the results you seek! ” — http://www.benton.org/ —

Chapter 3 introduced the problem statement of this research. This problem statement was sub-
sequently broken down into smaller tasks and the methodologies that were employed in com-
pleting these tasks were then outlined. The key outcome was that a packaging system for
packaging and managing component-based digital libraries was to be implemented in meeting
some of these tasks while some research was concerned with discovering user requirements in
the field of digital libraries, some of which would later be incorporated into the design of the
packaging system. In this chapter, an analysis of these user needs is presented in the immediate
section. Section 5.2 presents and discusses results that were obtained from the controlled user
study that was conducted in order to evaluate the packaging system across different criteria.

5.1 DIGITAL L IBRARY USERS’ N EEDS

Identifying digital library users’ post-deployment needs was one of the key tasks related to the
problem statement. In Chapter 2, an outline of activities constituting a software deployment
process as well as issues that complicate this process was presented. Although these activities
and issues are applicable to the deployment process of digital library systems, it was necessary
to uncover those which were (or more correctly, are) most important to digital library commu-
nities. This was achieved by periodically scanning the mailing lists of the DSpace and EPrints
digital library systems, as these systems are two of the highly regarded in the field. Fourteen
months (to the end of February 2005) worth of mailing list entries were manually scanned for
possible deployment needs. The most relevant of the scanned entries are shown in Figures
5.1 and 5.2. Table 5.1 shows how each of these entries can be distributed across 6 different
categories and the analysis of these categories is presented in the following sections.

56
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1 License agreement for each item [2003-12-30 15:31]
2 DSpace running problems: am I missing a package of some sort [2004-05-11 12:25]
3 Batch import tools [2004-06-23 12:05]
4 Importing items [2004-08-18 13:42]
5 Moving items from one collection to another [2004-09-01 09:48]
6 Migrating data between servers [2004-09-07 08:59]
7 Java component license [2004-09-10 08:37]
8 Moving items from one collection [2004-09-29 01:34]
9 Moving a collection [2004-10-18 05:39]
10 Upgrade 1.1.1 to 1.2, now select e-person doesn’t pop up [2005-02-11 12:33]
11 Need information on possible DSpace security issue [2005-02-16 06:59]
12 Import problem [2005-02-24 08:23]
13 FW: DSpace upgrade - please help!!! [2005-02-28 00:36]

Figure 5.1: Scanned entries from the DSpace technical mailing list

1 Mass import of files [2005-01-26]
2 Export citation function[2004-11-30]
3 Moving an archive from one table to another [2004-11-01]
4 EPrints 3 update [2004-09-10]
5 Moving databases [2004-09-24]
6 Loss of eprints in database when moving to new server [2004-08-17]
7 When are upgrades appropriate [2004-08-26]
8 Problems with eprints installation [2004-07-15]
9 New installation: Configuration files [2004-07-27]
10 Installation problems [2004-07-29]
11 Importing external data [2004-07-29]
12 New install [2004-05-28]
13 Import EPrints [2004-05-31]
14 Moving EPrints to a new server [2004-03-15]
15 Migrating EPrints to new server [2004-02-16]
16 Also stuck while migrating/upgrading [2004-02-21]
17 Perl modules bundled with EPrints [2004-02-26]
18 Security & memory [2004-02-29]
19 Importing data into EPrints [2004-03-03]
20 Problems with apache.conf in EPrints 2.3.3 [2004-03-08]
21 Moving EPrints to another server [2004-01-20]
22 Moving EPrints to a new server [2004-02-10]
23 Upgrade blues [2004-02-09]

Figure 5.2: Scanned entries from the EPrints technical mailing list

5.1.1 Post-deployment User Needs

Data and System Migration — Out of all the entries that are shown in Figures 5.1 and 5.2,
more than half are concerned with moving data into or out of systems and moving com-
plete systems from one server to another. Data migration is mostly a result of a fresh
installation of a similar digital library system being installed elsewhere, whereby data
needs to be moved out of an existing installed system to a newly installed one. Another
factor leading to data migration is system backups (especially upgrade-induced). It is safe
that when upgrading a digital library system, data be somehow backed up to be restored
once the upgrade has succeeded so that at no point during the upgrade process is the
data compromised (see Figure 5.2 entry 6). A simple example of data migration is with
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Category DSpace Entries EPrints Entries Total

Data System Migration 3, 4, 5, 6, 8, 9, 12 1, 2, 3, 5, 6, 11,
13, 14, 15, 16, 19,
21, 22

20

System Installation 2 8, 9, 10, 12, 20 6

System Updates and Upgrades 10, 13 4, 7, 23 5

Entity and Prerequisite Software Licences1, 7 - 2

Security Measures 11 18 2

Dependency Packaging - 17 1

Table 5.1: Classification of user needs into categories

MySQL’s mysqldump command, where data stored in some database can be ’dumped’
into a file to be restored at a later point. This and other similar commands on DBMSs can
play a pivotal role during data migration in systems that utilise a DBMS for data storage.

Moving an entire system to a newer server is a result of a server software/hardware up-
grade, where the new system has better performance than the older one. This is a complex
process since there may be some mismatches between the digital library system and the
new software/hardware which will need to be attended to before the digital library system
can again function as expected.

System Updates and Upgrades —The main concern is the frequency with which updates and
upgrades should be carried through. Digital library system administrators are concerned
with updating and upgrading the systems they maintain, saying that updating or upgrading
whenever a newer version is released is not worth the effort since, especially with updates,
new versions are released quite often. A discussion in the thread of entry 7 in Figure
5.2 affirms that this is not worth the effort because there is a lot that is bound to go
wrong during these processes such as other features of the digital library system failing
to function as they ought to (see Figure 5.1 entry 10), which will consequently increase
the digital library system’s downtime.

5.1.2 Additional User Needs

System Installation — Issues surrounding system installation largely stem from the documen-
tation that has been provided to facilitate the installation process. Sometimes this docu-
mentation is too summarised and does not highlight other important procedures for the
installation process. Provided documentation usually lists prerequisite software, instal-
lation steps and troubleshooting information for certain common problems. If the docu-
mentation is relatively acceptable, installation problems can arise from the heterogeneity
of consumers’ systems, where maybe some system libraries are missing or system con-
figuration files, such as Web server configuration files, are problematic and so on. Some-
times it is possible that the software be installed without any notable complications but
gives unexpected performance at runtime as a result of missing/incorrect configuration
information.
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Entity and Prerequisite Software Licences —The DSpace, EPrints and possibly other digi-
tal library systems hold data that may have intellectual property restrictions enforced over
it. These restrictions apply to, amongst other things, modifying and distributing these
data entities. Some entity licences, such as the GNU Public Licence (GPL), are flexible
enough to facilitate the functionality of digital library systems while others are not as
accommodating. Dependency software licences also present some or other difficulty to
digital library systems’ administrators.

Security Measures — System administrators are increasingly getting concerned with security
issues that are associated with digital library systems they manage. Although this is not as
urgent as other needs, it is still important that there are counter measures in place, should
the digital library system be subject to any external threat. Most of these systems employ
different levels of access to users which, to a certain extent, ensure that certain features
of the system are accessed only by relevant entities.

Dependency Packaging —The final need prevalent in the scanned entries is that of packag-
ing some of the important modules (dependency software) with the digital library system
distribution. This is possible if there are no restrictions on bundling of dependency ma-
terial. The thread of entry 17 in Figure 5.2, entitled’Perl modules bundled with

EPrints’ , discussed this further and it is evident from this discussion that in general,
this may prove to be unsuccessful since bundled versions of dependency software may
conflict with other versions already installed on a consumer’s system. However, this can
be useful for consumers in the case where the dependency does not exist on their systems.

There is a correlation between the above needs (issues) with those mentioned in Section 2.2.2.
A distinguishing factor with software deployment issues is the type of software system in ques-
tion which, together with users’ experiences, determines the most frequent of these issues. Ulti-
mately, these issues should be taken into account during the design stages of software packaging
systems.

5.2 PACKAGING SYSTEM EVALUATION

The main aim of the packaging system evaluation exercise was to comparatively assess the effort
in installing individual components making up a bigger system and installing the same system
but as packaged components. This assessment was done across different aspects, including un-
derstandability and usability associated with both installation methods. The packaging system
was evaluated in a controlled exercise session in which each of the participants had to perform a
series of exercises and provide feedback on a questionnaire. The structure of this questionnaire
as well as the results obtained in the exercises are all discussed in subsequent sections.

5.2.1 About the Questionnaire

The questionnaire that was used for the evaluation exercise was divided into 5 different sections:
introduction; background; digital library componentwise installation; digital library package
building and installation; and an overall survey. Appendix B shows the questionnaire. A brief
explanation of each of the sections is given below:
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Introduction — The purpose of the introduction section was to introduce some background
information relevant to the exercise, introduce the tools that the participants were to in-
teract with as well as define some terminology that was used throughout the evaluation
exercise.

Background Information — The background information section was aimed at gathering par-
ticipants’ background knowledge relevant to the evaluation exercise. This section also
collected qualification details from the participants.

Installing a Digital Library Componentwise — This was an exercise in which participants
were requested to install a component-based digital library by configuring each of the
components individually. To ease this process, one of the three components had already
been configured on behalf of the participants.

Building and Installing a Digital Library Package — In this exercise, participants were re-
quested to build and install a component-based digital library package using the packag-
ing system that had been designed and described in Chapter 4.

Survey — Feedback on each of the two exercises described above was gathered directly af-
ter each exercise. This section therefore collected overall feedback of the participants’
experiences during these two exercises.

There were no guarantees that the participants will be random. Furthermore, it was possible
that the participants’ feedback on the first of the two exercises could influence their feedback on
the second exercise. To counter both these concerns, the two exercises were swopped around in
about half of the questionnaires.

The majority of the questions that were asked during feedback stages throughout the question-
naire were in a form of 5-point Likert-type questions. The rest of the questions were open-
ended questions where participants were able to respond with open and constructive comments.
Before presenting the results and the analysis thereof, the next section introduces Likert-type
questions, highlighting some of the problems associated with gathering data using these types of
questions, and presents a statistical analysis method that has been used in analysing Likert-type
data collected during the evaluation exercise.

5.2.2 Methods for Collecting and Analysing Data

Likert-type Questions

These types of questions are a simple way in which to gather feedback especially if there is a
lot of feedback required. For these to be effective, it is best to present them in a balanced form
(i.e., with two or an odd number of choices). An option of ’no response’ can also be provided
over and above specified choices and this can prove to be useful if the meaning of this choice is
properly introduced.

Problems that arise with Likert-type questions are due to the interpretation of the centre choice,
usually denoted as ’neutral’, and that of the ’no response’ or ’not applicable’ choices if such
choices are part of the question being presented. A summary online discussion conducted by
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the Overseas Chinese Association for Institutional Research (OCAIR) presented a discussion
on ”Neutral and Not Applicable on the Likert Scale. [22]” In this discussion, amongst other
points, it was said that some users choose the centre choice as a way of implying ”I do not
know” while others treat it as ” I do not want to take a stand on either side.” Further to these,
some users even leave the entire question unanswered, which subsequently complicates the data
analysis process.

Theχ2 Analysis Test

Data collected from Likert-type questions is categorical and as such, it does not make much
sense to statistically reason about characteristics like the standard deviation and mean in the
context of this data and in general, well known statistical analysis methods, such as Pearson
Correlation andt-test which are primarily targeted at non-categorical data, do not readily apply
[8, 27, 29]. This leaves only a handful of analysis methods of which theχ2 (chi-square) test
is the most prominent. Howell defines theχ2 test as a statistical test often used for analysing
categorical data and further discusses this statistical analysis test in Chapter 19 (pages 371 –
392) of his book [27].

There are two types ofχ2 tests that have been used in the result analysis stages. These are
the goodness-of-fit test and the test of independence, and are both types of hypothesis testing.
Theχ2 goodness-of-fit test is used to compare recorded results with some theoretical expected
distribution as an indicative measure of how these results might vary for an arbitrary group of
participants. The test of independence on the other hand is used to determine if two or more
variables are independent of one another. The first step in employing any of these tests is to for-
mulate a hypothesis to test, often called a null hypothesis or hypothesis of no difference, which
is usually denoted byH0 and from that, apply theχ2 formula to determine if the formulated
hypothesis does or does not hold. For the two types of tests mentioned above, the applicable
formula follows:

χ2 =
∑[

(E−O)2

E

]
In this formula,E is the expected frequency whileO is the observed frequency per category.
The 5-point Likert-type questions used throughout the exercises each contain 5 categories,
hence 5-point. Table 5.2 defines other symbols that are used during the analysis.

To determine if the null hypothesis should or should not be rejected, the significance level (α)
or rejection level is considered. This is the criterion that is used to reject the null hypothesis.
Traditionally, most research cases use theα = 0.05 (or 5%) level of rejection. There is no rule
regarding this choice but in general, the lower the significance level, the more the data must
converge from the null hypothesis so as to be statistically significant. If the calculatedP -V alue
is lower than the significance level, then the null hypothesis is rejected. Alternatively, if the
calculatedχ2 value is greater than or equal toχ2

α(DF ) for a particular value ofDF andα, then
the null hypothesis is rejected.

The χ2 test has a few disadvantages/constraints associated with it [29]. A few of these are
shown in the list below:

• The representative sample must be random.
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Symbol Definition

N Number of categories

DF Degrees of freedom computed asN − 1

P -V alue Probability that the obtained results occurred by
chance

χ2
α(DF ) The critical value ofχ2 value givenDF and sig-

nificance levelα

θE A set ofN expected frequencies

Table 5.2: Chi-square analysis symbol table

• The acquired data must be categorical.

• Individual observations must be independent of each other.

• Although not obligatory, the sum of observed frequencies (O) must equal that of expected
frequencies (E) especially for smaller sample sizes.

• The size of the representative sample must be adequate. In a2 × 2 table (test for inde-
pendence)χ2 should not be used if the number of participants falls below20. In a larger
table, no expected value should be less than1 and not more than20% of the variables can
have expected values of less than5.

These constraints are addressable with relatively minimum effort save for the last one. It speci-
fies some constraints regarding the allowed values of expected frequencies. Hidden within this
constraint is the fact that the more categories the data may fall into, the larger the random sample
must be so that this constraint is met. The minimum number of participants to fit five categories
(as in the 5-point Likert-type questions in the evaluation exercise) is thus 21 (typically, withθE

being a permutation of{5, 5, 5, 5, 1}) such that not more than20% of the expected values are
less than5 (i.e., only one category can have an expected value of less than5 and that value must
at least be1).

One of the positives with employing theχ2 test for evaluation data analysis is that it does not
require a normally distributed population, which means that the manner with which the sample
was acquired, as will be explained in later sections, is adequate enough to analyse the resultant
data using theχ2 test.

5.2.3 Participants’ Background Analysis

This section presents the background information that was gathered from the participants. This
information is structured into four sections as in the questionnaire and is presented below.

Qualification Details

In the advertisement for participating in the evaluation exercise, it was mentioned that partici-
pants needed to be at least in their second year of study and be in either of the computer science
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or information systems fields. The reason behind this was to ensure that participants focus their
attention only to the evaluation exercise rather than on other factors, such as computer affor-
dances etc., which could have unnecessarily prolonged the evaluation exercise. Table 5.3 shows
a breakdown of the participants’ qualification/study details.

Question Responses

Total Number of Participants 25

Students: 24

Professionals: 1

Majors/Fields Computer Science: 24

Information Systems: 1

Study Levels B.Sc. 2nd Year: 6

B.Sc. 3rd Year: 13

B.Comm. 3rd Year: 1

B.Sc. (Hons): 2

M.Sc.: 2

Ph.D.: 1

Table 5.3: Qualification details of the evaluation exercise participants

Software Installations

The software installations part of the background section uncovered participants’ installation
patterns on the Microsoft Windows and GNU/Linux operating systems. Participants were asked
to indicate if they had installed any software packages on these two platforms. The results are
presented in Table 5.4.

Operating System Responses

Yes No Blank

Microsoft Windows 25 0 0

GNU/Linux 8 13 4

Table 5.4: Responses on the participants’ software installation background

In the case where participants responded with aYes, they were asked to mention a few examples
of the software packages they had installed. These user examples included installingMicrosoft
OfficeandWinampfor the Microsoft Windows operating system andOpen OfficeandDSpace
for GNU/Linux-based operating systems.

Software Management Tools

In this section, participants were asked to rate their ability to install, configure, manage and
uninstall software packages created with various packaging tools. Table 5.5 shows the partici-
pants’ responses.
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Tools Responses

Very Good Good Neutral Poor Very Poor No Response Blank

InstallShield 6 13 1 0 0 3 2

Wise/UnWise 4 6 4 0 0 7 4

RPM 1 8 2 0 0 10 4

Table 5.5: Responses on the participants’ familiarity with various packaging tools

This question was one of many that followed to be presented as a 5-point Likert-type ques-
tion. In addition, it had an option that participants respond with aNo Responsechoice, an
option which had initially been introduced in the introduction section of the questionnaire and
essentially meaning that, in this case, the participantdid not know or had not used the tool in
question. Users were requested to comment on any other packaging tools that they had encoun-
tered before. The Portage package management system was one of the tools mentioned.

Software Systems

The final part of the background section gathered users’ understandings of types of software sys-
tems from user and programmer perspectives. These types of software systems were: component-
based; Web-based; and online information management. Table 5.6 shows the participants’ re-
sponses from a user perspective.

Software Systems Responses

Very Good Good Neutral Poor Very Poor Blank

Component-based 7 5 8 4 0 1

Web-based 5 8 9 2 1 0

Information Management 4 8 9 3 1 0

Table 5.6: Participants’ user perspectives on certain types of software systems

Participants were further questioned if they are (or have ever been) computer programmers.
Those participants that fell in this category had to give their responses pertaining to their un-
derstanding of these software systems from a programmer’s point of view. Table 5.7 shows
responses from 22 programmers.

Software Systems Responses

Very Good Good Neutral Poor Very Poor Blank

Component-based 5 10 4 2 0 1

Web-based 5 8 5 1 2 1

Information Management 2 10 6 2 1 1

Table 5.7: Participants’ programmer perspectives on certain types of software systems
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The final question in this section asked participants if, prior to the evaluation exercise, they knew
what digital libraries were. 21 of the 25 participants responded positively (i.e., with aYes) to
this question and Table 5.8 shows how these participants were familiar with digital libraries.

Installed Used Heard About

3 11 7

Table 5.8: Participants’ familiarity with digital libraries

All this gathered background information played an important part in analysing and understand-
ing the results that were obtained from the remaining sections of the questionnaire. The next
section provides a detailed analysis of these results.

5.2.4 Results Analysis

Sections 3 through 5 (Sections B.2 through B.4 in Appendix B) of the questionnaire presented
exercises and surveys which participants undertook. This section presents an analysis of the
restricted-type questions’ responses to these sections. Theχ2 goodness-of-fit test as well as the
χ2 test of independence are partly employed in this analysis. Section 5.2.5 consolidates this
analysis with the qualitative responses gathered from the open-ended questions as well as with
participants’ background analysis.

Building and Installing a Digital Library Package

Building and installing a digital library package was one of the exercises that participants had to
carry out. This was split into two sub-exercises: building a digital library package and installing
the package once it had been built. Figure 5.3 shows this digital library composed of 3 ODL
components:DBUnion — which harvests (collects) data from one or more Open Archives and
keeps it in a local archive;IRDB — a search engine which searches specified Open Archives
and returns results; andBRSUI — a Web-based user interface through which various services,
including those provided byIRDB, can be accessed and utilised.

Figure 5.3: The component-based digital library used for the evaluation exercise

All participants managed to build the digital library package without any complications. Feed-
back questions on the exercise of building a digital library package requested users’ under-
standing of the package building process as well as their perspective with respect to the usabil-
ity associated with building a component-based digital library package. Table 5.9 shows these
results.
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Aspect Responses

Very Good Good Neutral Poor Very Poor Blank

Understanding 9 11 4 1 0 0

Usability 10 14 1 0 0 0

Table 5.9: Understanding and usability aspects of the package building process

Once the participants had successfully created the digital library package, the second part of
the exercise was to then install the package that they had built. TheDBUnion component
was configured to harvest a specific set of data fromHussein’s Photo Albumwith baseURL
http://www.husseinsspace.com/cgi-bin/VTOAI/hspics/hspics/oai.pl. 24 out of the 25 partici-
pants successfully installed the digital library. From passive observation, the only participant
who could not install the digital library successfully failed to configure the database as per the
instructions. Feedback questions on this exercise requested users’ understanding of the package
installation process as well as their perspective on the usability associated with installing the
component-based digital library as a package. Table 5.10 shows the participants’ responses.

Aspect Responses

Very Good Good Neutral Poor Very Poor Blank

Understanding 7 12 5 1 0 0

Usability 6 16 2 1 0 0

Table 5.10: Understanding and usability aspects of the package installation process

Besides knowing for instance that a majority of the users (201 out of the 25 users) at least
significantly understood2 the process of building a component-based digital library package,
there are other meaningful conclusions that can be drawn from the results in Tables 5.9 and 5.10.
The following section looks at the above results and analyses them using theχ2 goodness-of-fit
test.

1This is the sum of the responses from theVery Good andGood categories in Table 5.9 since theVery Good
category subsumes theGoodcategory.

2As defined in the questionnaire, categoryGoodmeant:Significantly agree with, significantly acquainted with,
or significantly accept the idea, concept or subject presented by the question at hand.See introduction section of
the questionnaire in Appendix B
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Statistics on the Understanding and Usability Results

By observing the results presented in Tables 5.9 and 5.10, it is clear that these results are any-
thing but uniformly distributed. However, as a way of introducing theχ2 goodness-of-fit test,
consider the following null hypothesis:

H0a = There is an equal chance that participants areevenly spread across
all categories in the context of understanding the process of building a
component-based digital library package.

This means that the expected frequency (E) across all categories is uniform when considering
the understanding aspect of building a component-based digital library package. Table 5.11
tabulates this comparison and shows calculations towards a respectiveχ2 value.

Expected (E) Observed (O) (E −O)2 (E−O)2

E

Very Good 5 9 16 3.2

Good 5 11 36 7.2

Neutral 5 4 1 0.2

Poor 5 1 16 3.2

Very Poor 5 0 25 5

Table 5.11: Chi-Square goodness-of-fit test for package building understanding

From Table 5.11, the following can be calculated:

χ2 = 18.8

In this case,DF = N−1 = 5−1 = 4, andχ2
0.05(4) = 9.49. Because the obtained value is18.8

and is clearly greater than9.49, null hypothesisH0a can be rejected. This means that the results
are statistically significant and it can be concluded that the participants areunevenlydistributed
across categories of understanding the component-based digital library package building pro-
cess.

This confirms that there is no uniform distribution of the observations across categories as as-
sumed above. Now consider the following null hypothesis:

H0b
= There is a normal distribution in the participants’ understanding of the

the process of building a component-based digital library package with
a mean centred onGood.

To theoretically assume expected frequencies to fit this null hypothesis, consider Figure 5.4.

This figure shows a bar chart of the observed frequencies for the aspect of understanding the
process of building a component-based digital library package. Superimposed over this bar
chart is a normal distribution curve with a mean centred onGood. From the curve, the following
set of expected frequencies can be estimated:
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Figure 5.4: A theoretical assumption of expected frequencies for package building understand-
ing

θE1 = {6, 12, 5, 1, 1}

Using setθE1 yields the following results:

χ2 = 2.78

However, the set of expected frequencies,θE1, does not meet the requirements to be used in a
χ2 test as explained earlier in Section 5.2.2. The following set of expected frequencies is the
closestχ2-safe expected frequencies set that can be used for this analysis:

θE2 = {6, 8, 5, 5, 1}

With this set of expected frequencies, calculating theχ2 value gives:

χ2 = 7.025

This means that null hypothesisH0b
cannot be rejected since the obtainedχ2 value (in both

cases) is smaller than the critical value (9.49) with DF = 4 andα = 0.05. Therefore, it is true
that there is a normal distribution in the participants’ understanding of the process of building a
digital library package. Furthermore, the participants’ mean response isGood.

For the understanding of the package installation process, consider the following null hypothe-
sis:

H0c = There is a normal distribution in the participants’ understanding of the
process of installing a component-based digital library package with a
mean centred onGood.
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To theoretically assume a set of expected frequencies to fit this null hypothesis, consider Figure
5.5.

Figure 5.5: A theoretical assumption of expected frequencies for package installation under-
standing

This figure shows a bar chart of the observed frequencies for the aspect of understanding the
process of installing a component-based digital library package. Superimposed over this bar
chart is a normal distribution curve with a mean centred onGood. From the curve, the following
set of expected frequencies can be estimated:

θE3 = {6, 12, 5, 1, 1}

Using setθE3 yields the following results:

χ2 = 1.17

With the same argument as above, the following set of expected frequencies is the closestχ2-
safe expected frequencies set that can be used for this analysis:

θE4 = {6, 8, 5, 5, 1}

With this set of expected frequencies, the followingχ2 value can be obtained:

χ2 = 6.37

This means that null hypothesisH0c cannot be rejected since the obtainedχ2 value (in both
cases) is smaller than the critical value (9.49) with DF = 4 andα = 0.05. Therefore, it is true
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that there is a normal distribution in the participants’ understanding of the process of installing
a component-based digital library package. Furthermore, the participants’ mean response is
Good.

In the analysis of the usability results, a similar approach to the above was taken. The following
null hypotheses were tested:

H0e = There is a normal distribution in the participants’ usability ratings of
the process of building a component-based digital library package with
a mean centred betweenVery Good andGood.

H0f
= There is a normal distribution in the participants’ usability ratings of

the process of installing a component-based digital library package with
a mean centred betweenVery Good andGood.

Table 5.12 summarises the results from these null hypotheses. Shown in this table are theoretical
estimations (from a normal distribution curve superimposed over each set of results and from
creating a closestχ2-safe set to the one obtained from the normal distribution curve) of the
expected frequencies sets as well as their respectiveχ2 value calculations.

Aspect Process Normal Distribution Estimation χ2-safe Estimation

Usability Building θE = {9, 12, 2, 1, 1} θE = {6, 8, 5, 5, 1}
χ2 = 2.95 χ2 = 16.37

Installing θE = {6, 14, 3, 1, 1} θE = {5, 9, 5, 5, 1}
χ2 = 1.62 χ2 = 11.65

Table 5.12: Chi-square analysis results of the usability aspect of the package building and
installation processes

From Table 5.12, if considering theχ2 values obtained from the normal distribution curve es-
timation, null hypothesesH0e andH0f

can be accepted since the obtainedχ2 values are both
smaller the than the critical value ofχ2 with DF = 4 andα = 0.05 (recallχ2

0.05(4) = 9.49).

If looking at theχ2-safe estimations however, it is clear that both the calculatedχ2 values are
greater than the critical value, which means that null hypothesesH0e andH0f

can be rejected
on these values. This means one of two possibilities:

• There is no normal distribution in the way that the participants rated the usability associ-
ated with building and installing a component-based digital library package. This further
means that there may be another type of distribution curve, such as a log-normal distri-
bution curve or a positively skewed distribution curve (since at least88% of the observed
frequencies in both usability cases are clustered on theGoodandVery Good categories)3,
which can be superimposed on each set of the observed usability results.

3For package building:14+10 = 24 out of25 participants (96%) occupy theGoodandVery Good categories.
For package installation:16 + 6 = 22 out of25 participants (88%) occupy theGoodandVery Good categories.
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• The size of the sample from which the results were obtained was not suitable for the
analysis test that was used for testing hypothesesH0e andH0f

and as such, incorrect
results may have been obtained (due to the limitations of theχ2 test). However, it is
interesting to note that if the significance level is reduced to (from0.05 to 0.001) both
null hypotheses can be accepted sinceχ2

0.001(4) = 18.47 and the calculatedχ2 values are
both smaller than this critical value.

In whichever case, more results per category are required in order to formulate more accurate
estimations. This ultimately means that a larger group of participants could be required (assum-
ing that this group of participants will distribute, in the same manner as in the observed results,
their responses across all categories).

Testing for Prior Understanding Effects

To establish if any two or more given variables depend on one another, theχ2 test of inde-
pendence can be used. The same formula as previously introduced applies for the test of in-
dependence but there are slight variations to some variables. The degrees of freedom are now
computed as:

DF = (R− 1)× (C − 1)

WhereR is the number of rows andC is the number of columns of the computation table. The
expected frequencies are computed as:

Eij = Ti×Tj

T

WhereEij is the expected value for the entry at rowi and columnj, Ti is the total of all entries
of row i, Tj is the total of all entries in columnj andT is the total number of participants in the
computation table.

Now consider the following null hypothesis:

H0g = The participants’ understanding of the component-based digital library
package installation process is independent of their previous under-
standing of component-based software systems from a user’s perspec-
tive.

Table 5.13 shows the computation table which tests this null hypothesis.

The expected frequencies have been calculated using the formula described above and the values
are shown in parentheses. In this table, the final category (Very Poor) has been omitted. This
is because there are no responses on this category in both sets of observed values. Calculating
theχ2 value from this table gives the following result:

χ2 = 11.86
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Prior Understanding

Very Good Good Neutral Poor TOTAL

Very Good 3 2 2 0 7

(2.04) (1.46) (2.33) (1.17)

Good 1 3 3 4 11

(3.21) (2.29) (3.67) (1.83)

Installation Understanding Neutral 2 0 3 0 5

(1.46) (1.04) (1.67) (0.83)

Poor 1 0 0 0 1

(0.29) (0.21) (0.33) (0.17)

TOTAL 7 5 8 4 24

Table 5.13: Chi-square test of independence for prior understanding of component-based soft-
ware systems and component-based digital library package installation process

In this case,DF = (R − 1) × (C − 1) = (4 − 1) × (4 − 1) = 9, andχ2
0.05(9) = 16.92.

Because the obtained value of11.86 is smaller than this critical value ofχ2, null hypothesis
H0g cannot be rejected. It can thus be concluded that the participants’ understanding of the
component-based digital library package installation process does not necessarily depend on
their prior understanding of component-based software systems from a user’s perspective.

Now consider the following null hypothesis:

H0h
= The participants’ understanding of the component-based digital library

package installation process is independent of their previous under-
standing of component-based software systems from a programmers’s
perspective.

In testing this null hypothesis, a similar test as detailed above results is aχ2 value of11.83.
Since this value is smaller than the critical value ofχ2 with DF = 9 andα = 0.05, this means
that null hypothesisH0h

can be accepted, implying that the participants’ understanding of the
process of installing a component-based digital library package does not necessarily depend
on their prior understanding of component-based digital library systems from a programmer’s
perspective.

Further tests of independence were conducted to test for the independence of the package build-
ing process. The following null hypotheses were tested and the obtained results are summarised
in Table 5.14.
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H0i
= The participants’ understanding of the component-based digital library

package building process is independent of their previous understand-
ing of component-based software systems from a user’s perspective.

H0j
= The participants’ understanding of the component-based digital library

package building process is independent of their previous understand-
ing of component-based software systems from a programmer’s per-
spective.

Aspect Perspective χ2 Value

Building Process Understanding User 6.79

Programmer 6.14

Table 5.14: Chi-square test of independence analysis results of the understanding aspect of the
package building processes

Both χ2 values shown in Table 5.14 are less than the critical value ofχ2 with DF = 9 and
α = 0.05. Therefore, null hypothesesH0i

and H0j
can be accepted. This means that the

participants’ understanding of the process of creating a component-based digital library package
does not necessarily depend on their prior understanding of component-based software systems
as either a user or a programmer.

To summarise the results from these tests, it can be concluded that, since the participants’ prior
understanding (from user and programmer perspectives) of component-based software systems
is independent of the participants’ understanding of the component-based digital library pack-
age building and installation processes, the packaging system as a whole is simple enough to
be understood and utilised satisfactorily without any prior knowledge or understanding of the
types of software systems that can be modeled with the packaging system.

Componentwise Digital Library Installation

This was another of the exercises that the participants had to carry out in which they had to
install a component-based digital library one component at a time. This was the same digital
library as depicted in Figure 5.3. To reduce the amount of effort and time required from the
users, theDBUnion component had already been configured on their behalf.24 out of the25
participants managed to successfully install the digital library componentwise. The only partic-
ipant who could not install the digital library successfully failed to configure the database as per
the provided instructions. However, this was a different participant to the one who could not
install the component-based digital library package. In a similar fashion as with the package
installation exercise, feedback questions on this exercise requested participants’ understanding
of the componentwise installation process as well as their perspective with respect to the us-
ability associated with installing the digital library componentwise. Table 5.15 shows the users’
responses to the feedback questions.

Section 5.2.5 comments further on the results presented in Table 5.15.
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Aspect Responses

Very Good Good Neutral Poor Very Poor Blank

Understanding 3 16 3 3 0 0

Usability 4 6 11 3 0 1

Table 5.15: Understanding and usability aspects of a componentwise installation

Survey

The survey section of the questionnaire gathered overall feedback on all the exercises that users
performed. This section was comprised of four questions, three of which were open-ended. The
only restricted-type question gathered the users’ views on the aesthetic design of the packaging
system tools (i.e., the package builder and installer tools). Table 5.16 shows the responses to
this question.

Very Good Good Neutral Poor Very Poor

6 17 2 0 0

Table 5.16: Responses on the aesthetic design of the packaging system

These responses show that a majority of the participants rate the packaging system as either
Goodor Very Good in terms of its aesthetic design. The other three questions are discussed in
Section 5.2.5 below.

5.2.5 Discussion

This section finalises the packaging system evaluation section by consolidating the responses
from Sections 2 through 5 (Sections B.1 through B.4 in Appendix B) of the questionnaire.
The analysis that has already been presented on Likert-type questions, the open-ended-type
questions as well as the users’ background details are taken into account in this discussion
which is presented in the following subsections.

Understandability

On an overall basis, the participants showed a significant level of understanding of all the con-
cepts and methods that were presented in each of the exercises that they had to carry out. This
can partly be attributed to their relative backgrounds in fields of study since these concepts and
methods are not totally foreign within these fields and the participants may have, directly or
indirectly, encountered similar ideas. The statistical analysis tests affirmed the significance of
the results which further shows that any random sample of users from a similar population will
have an eitherGood or Very Good understanding of all the ideas presented in the evaluation
exercise.
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Usability

It was not an unexpected outcome that users rated the componentwise installation process as
less usable than the package installation process (considering that a majority of the participants
(22) were concentrated on theGood andVery Good categories for the digital library package
installation process (see Table 5.10), while a majority of the participants (17) were concentrated
on theGood andNeutral categories for the digital library componentwise installation process
(see Table 5.15)). The main visible difference with these processes was that one was command-
line-based while the other was presented as a graphical user interface. Table 5.4 shows that all
users have, at some point, installed software on the Microsoft Windows operating system while
less than half of the participants previously installed software on the GNU/Linux operating
system. This said, it was not surprising that users preferred a graphically presented installation
process over the command-line-based. Software users in general tend to avoid cases where
they have to interact with systems at command-line level and this was evident from the users’
responses on the usability aspect. The test for independence also showed that there is a possible
link in the manner that users view these two processes.

Overall User Preference

From the survey section of the questionnaire, it can be inferred that an overwhelming percent-
age (92% – 23 out of 25) of participants preferred the package installation process over the
componentwise installation. Below is a summary of some of the comments that the participants
provided to motivate their selection:

• ”The package installation process is a lot faster and it is less likely that mistakes are
made during this process whereas with a componentwise installation process, one needs
to know a lot more about the components.”

• ”The interface presented by package installation process is a lot easier to use and is more
familiar while the componentwise approach presents a command-line-based installation
process which is more error-prone and confusing.”

• ”The package had a better looking interface and was easier to follow while the compo-
nentwise approach did not have a friendly interface and required lots of unnecessary user
input.”

Other user comments were some or other variation of these. As for the feedback from the
remaining participants,1 of them preferred the componentwise installation process while the
other was indifferent. Their motivating points were as follows:

• ”The componentwise approach is easier to work with and provides for a flexible configu-
ration process whereas with the package approach, most processes are abstracted.”

• ”For power users, componentwise is the best option and for novice users, the package is
a lot simpler.”

Common with these two participants was the fact that they were both in their final year of study
(3rd year), which means that they had a higher level of experience to reason about these two
processes adequately.
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In general, all users believed the packaging tools to be fairly similar to orthodox installers that
they have, at some point, come across. Most users offered suggestions as to how they could go
about improving on these tools. Some of these suggestions are incorporated in Chapter 7.

5.3 SUMMARY OF K EY POINTS

Digital library users’ needs were uncovered by periodically scanning the mailing lists of the
DSpace and EPrints digital library software systems and ranked according to popularity. Some
of these needs were addressed in the design of the packaging system that was described in
Chapter 4. This packaging system was subsequently evaluated across different criteria, in-
cluding understandability and usability of the packaging system tools. The evaluation analysis
process employed theχ2 goodness-of-fit and independence tests to statistically reason about the
results that were obtained since most of the collected data was categorical. The overall result
analysis process shows that there is an exceptional level of acceptance of the packaging systems
amongst most participants.
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CONCLUSION

This dissertation presented work towards simplifying the process of software deployment mainly
concentrating on packaging software systems for a better installation process. Software sys-
tems now come in various flavours thanks to advances in relevant fields, mainly software en-
gineering, responsible for software delivery. With current component-oriented developments
and Web-based solutions, it has become increasingly important that current software deploy-
ment procedures be substituted by simpler, better and faster methods that deal with software
deployment needs in the context of all the latest advances.

Although the reference point to this research was component-based digital library systems,
the findings of this research can apply to Web-based component-based software systems and
to component-based software systems at large. The remainder of this chapter presents some
concluding remarks with respect to the initial goals of this research.

Building Heterogeneously for Heterogeneous Platforms —It is possible to build a component-
based digital library package composed of different components. The designed packaging
system boasts a JavaTM implementation and a strong utilisation of XML for data presen-
tation and interoperability, all of which promote heterogeneity.

Effort in Installation Processes — Installing a digital library componentwise is more effort
than installing the same component-based digital library using the developed packaging
system. The evaluation study uncovered that in the context of understandability and us-
ability, a majority of the employed participants preferred the functionalities presented
by the packaging system over the componentwise installation. These findings can be
summarised as meaning that the packaging system simplifies the process of installing
component-based digital libraries.

Dealing with Dependencies —Software dependencies are a ’necessary evil’ when it comes
to software development — software is hardly usable if its dependency requirements are
not met but attending to these requirements can prove to be a rather daunting task. The
packaging system presented a manner with which to deal with managing dependencies in
its context. For this approach to be generalised across software systems, more factors may
need to be taken into consideration implying that more work may be required. In an ideal
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situation, a dependency specification standard which software developers can adhere to
can dismiss all the complications currently presented by software dependencies.

User’s Post-deployment Needs —In general, software systems have similar user needs. How-
ever, the priority of these needs is informed by the type of software system in question.
With digital library communities, it is more urgent to be able to migrate data or an entire
digital system or both while the need for a tightly secure digital library system is some-
what not as urgent. A common set of user needs in general covers: simple installation
procedures; addressing of heterogeneous operational platforms; adequate upgrade/update
methodologies; interoperability at various levels; software system security; and software
uninstallation.

An outcome of this research was identifying requirements for a generic component packaging
framework. There are four aspects that components or a component packaging framework must
adhere to. These are: components must be configurable automatically; each component must
possess a formal description of its dependency software; there must be formal descriptions that
describe individual components as well as systems that are composed of components; and there
must be a way whereby installation questions are formally encoded such that components are
able to correctly receive configuration information. These four aspects are the least that are
expected of a component packaging framework.

A consolidated outcome of this research was to show that flexible packaging methodologies for
Web-based component-based applications in general facilitate the management of these applica-
tions. It is hoped that with better management in place, it can be more likely that end users will
adopt Web tools based on components and that developers will create more Web-based software
components to be used in various contexts of composing software systems. Ultimately, this will
increase the quantity and quality of applications and services delivered over the Web.
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FUTURE WORK

This chapter presents alternative approaches and outstanding issues, an addressing of which
would speculatively have improved the results of this research.

A Web-based Packaging System

As it stands, the packaging system is a pair of desktop applications which is controlled by a
user and adheres to the environment in which this pair of tools exist. The packaging system
could have been implemented as a hybrid of a Web-based solution and a desktop application.
Although the main aim of this design strategy was that users gain full control of the package
building and package installing processes, the package building process is more of an adminis-
trative process than the package installation process. If the packaging process could be shifted
to be accessible over the Web, the following would be attained:

• The CCL specification could still be an input to the packaging process, but a Web interface
could be easily suited for building a digital library package from bottom up (i.e., without
a CCL specification file as input). This can be done in a similar manner as that presented
by von Thileet al. on Web-based IDEs [51].

• With a Web-based packaging process, all the components (together with all their available
versions and, if possible, all the necessary dependencies) could be located in a central
location. This can inform the manner in which users can issue update/upgrade requests
from their installed packages.

The output of this Web-based packaging process could still be a package as in the current
process. One of the disadvantages with this solution is that it requires the Internet to function
adequately. Furthermore, constant maintenance of this central location may be required to
ensure that all the available resources are up to date.

Specifying Dependencies

The main challenge during the design and implementation process was dealing with dependen-
cies. Admittedly, dependency related matters are often too complex to attend to since they too
are dependent on other factors. A serious question that can be raised in relation to the manner
in which dependencies were handled in the context of this research is: between the package
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composer and component creator who should be liable for building the dependency checking
procedures and scripts as well as for compiling a dependency specification for each compo-
nent? Ideally, this should be done by a person well acquainted with the component in order to
ensure correctness. In addition, there should be a common and well defined set of specifications
that all the dependency checking entities and dependency specifications adhere to. This set of
specifications should address issues such as dependencies going by multiple names amongst
other things. In this manner, this set of specifications can facilitate the way in which package
management software functions while improving the quality of component-oriented approaches
such as CBSE amongst other things.

Packaging and Installing the DSpace Digital Library

By the nature of the design of the packaging system, it may be possible that other types of
software can be packaged and installed using the packaging system provided that such a soft-
ware system can be described using the CCL specification. In the case of the DSpace digital
library system software, a CCL specification describing this system would consist of a single
component. This component would be represented by the DSpace main program, which could
subsequently describe as its dependencies, all the prerequisite software packages.

The following processes would need to be clarified before the DSpace system can be packaged
for a successful installation process: encoding configuration questions; relaying configuration
information from the packaging system interface at installation time to the DSpace system; and
automatically (silently) configuring and installing the DSpace system.

Addressing User Deployment Needs

From this research, it was evident that in certain types of software systems, certain user de-
ployment needs are more urgent than in other types of software systems. This makes it more
challenging to formulate a generalised approach for addressing users’ deployment needs. How-
ever, the process of packaging software was discovered to be the entry point to the process
of software deployment and as such, it is at this level that most (if not all) user needs can be
attended to. This means that current packaging solutions need to flex and generalise their func-
tionalities such that most software systems that employ them for software distribution are able
to address as much of their associated user needs as possible.

Evaluation Methodology

The evaluation exercise was composed of three different exercises: building a digital library
package; installing a digital library package; and installing a digital library componentwise.
The most important of these three processes were the last two exercises. A better approach to
the evaluation process would be to separate the whole process into two parts, part I concerned
with evaluating only the package building process and part II concerned with evaluating the two
installation processes, with both parts having two separate and different groups of participants.
A bottleneck to this approach would be the availability of participants to participate in this two-
part evaluation process. However, the participants would be focusing on either the building
or the installation process and not both (as was done in the evaluation exercise whereby the
participants’ responses may have been influenced by the other process).
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Another improvement to the evaluation process could be in the gathering of results. The evalu-
ation questionnaire could be structured in such a way that the data collectible from the partici-
pants accommodates more than one statistical analysis method. This would provide alternative
angles from which to view and analyse results.
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AP P E N D I X A

SPECIFICATIONS

A.1 COMPONENT CONNECTION L ANGUAGE

<?xml version="1.0" encoding="UTF-8"?>
<CCL xmlns:blox="http://nala.cs.uct.ac.za/blox">

<instance>
<instanceDescription>

<name>UI</name>
<description>

<blox:ui>
<uiname>ODL User Interface</uiname>
<adminEmail>smhlongo@cs.uct.ac.za</adminEmail>
<searchbaseurl>

<!--URL_TO_CGI_LOCATION-->/ODL-IRDB-1.3/IRDB/evaluation/search.pl
</searchbaseurl>
<titlebar>Digital Library User Interface</titlebar>
<bodytitle>Experimental Digital Library User Interface</bodytitle>
<message>

This is an experimental user interface that allows you to search,
browse and rate resources depending on the services and components
that have been installed and configured.

</message>
<footer>If there are queries, send them to the administrator.</footer>
<webservices>

<name/>
</webservices>

</blox:ui>
</description>

</instanceDescription>
</instance>
<instance>

<instanceDescription>
<name>Search</name>
<description>

<blox:irdb>
<repositoryName>ODL Search Engine</repositoryName>
<adminEmail>smhlongo@cs.uct.ac.za</adminEmail>
<database>DBI:mysql:test</database>
<dbusername>root</dbusername>
<dbpassword>root</dbpassword>
<table>search</table>
<archive>

<identifier>HUSPICS</identifier>
<url>

<!--URL_TO_CGI_LOCATION-->/ODL-DBUnion-1.2/DBUnion/evaluation/union.pl
</url>
<metadataPrefix>oai_dc</metadataPrefix>
<interval>86400</interval>
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<interrequestgap>10</interrequestgap>
<overlap>86401</overlap>
<granularity>second</granularity>

</archive>
</blox:irdb>

</description>
</instanceDescription>

</instance>
<instance>

<instanceDescription>
<name>Union</name>
<description>

<blox:dbunion>
<repositoryName>ODL Union Engine</repositoryName>
<adminEmail>smhlongo@cs.uct.ac.za</adminEmail>
<database>DBI:mysql:test</database>
<dbusername>root</dbusername>
<dbpassword>root</dbpassword>
<table>union</table>
<recordlimit>200</recordlimit>
<archive>

<identifier>HUSPICS</identifier>
<url>

http://www.husseinsspace.com/cgi-bin/VTOAI/hspics/hspics/oai.pl
</url>
<metadataPrefix>oai_dc</metadataPrefix>
<interval>86400</interval>
<interrequestgap>10</interrequestgap>
<set>200301ctcs</set>
<overlap>86400</overlap>
<granularity>day</granularity>

</archive>
</blox:dbunion>

</description>
</instanceDescription>

</instance>
<connection>

<from>UI</from>
<to>Search</to>

</connection>
<connection>

<from>Search</from>
<to>Union</to>

</connection>
<questions>

<question>
<description>

The administrator’s e-mail is that to which all correspondence about the
digital library will be directed.

</description>
<text>Please Input the Administrator’s e-mail Address</text>
<answer> </answer>
<default>administrator@domain.suffix</default>
<locations>

<location>/CCL/instance[0]/.../description/ui/adminEmail</location>
<location>/CCL/instance[1]/.../description/dbbrowse/adminEmail</location>
<location>/CCL/instance[2]/.../description/irdb/adminEmail</location>
<location>/CCL/instance[3]/.../description/dbunion/adminEmail</location>

</locations>
</question>
<question>

<description>
Some of the components need to use a database to store their internal data.
This database should already be created. If not, please create it before
continuing.

</description>
<text>Please Input the Database</text>
<answer> </answer>
<default>etds_db</default>
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<locations>
<location>/CCL/instance[1]/.../description/dbbrowse/database</location>
<location>/CCL/instance[2]/.../description/irdb/database</location>
<location>/CCL/instance[3]/.../description/dbunion/database</location>

</locations>
</question>
<question>

<description>
This is the username that will be used to connect to the database that has
been specified.

</description>
<text>Please Input the Database Username</text>
<answer> </answer>
<default>username</default>
<locations>

<location>/CCL/instance[1]/.../description/dbbrowse/dbusername</location>
<location>/CCL/instance[2]/.../description/irdb/dbusername</location>
<location>/CCL/instance[3]/.../description/dbunion/dbusername</location>

</locations>
</question>
<question>

<description>
This is the password that will be used in conjunction with the username that
has been specified to connect to the database.

</description>
<text>Please Input the Database Password</text>
<answer> </answer>
<default>password</default>
<locations>

<location>/CCL/instance[1]/.../description/dbbrowse/dbpassword</location>
<location>/CCL/instance[2]/.../description/irdb/dbpassword</location>
<location>/CCL/instance[3]/.../description/dbunion/dbpassword</location>

</locations>
</question>
<question>

<description>
This is the database table prefix that will be used within the database in
order to differentiate data that belongs to the Union [dbunion] component.

</description>
<text>Please Input the Database Table Prefix for the Union Component</text>
<answer> </answer>
<default>union_archive</default>
<locations>

<location>/CCL/instance[3]/instanceDescription/description/dbunion/table</location>
</locations>

</question>
</questions>

</CCL>
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A.2 COMPONENT NAME M APPINGS

<?xml version="1.0" encoding="UTF-8"?>
<components >

<component>
<name>irdb</name>
<description>An ODL resource searching component.</description>
<versions>

<version>IRDB-1.0.tar.gz</version>
<version>IRDB-1.1.tar.gz</version>
<version>IRDB-1.2.tar.gz</version>
<version>IRDB-1.3.tar.gz</version>

</versions>
</component>
<component>

<name>dbbrowse</name>
<description>An ODL resource browsing component.</description>
<versions>

<version>DBBrowse-1.0.tar.gz</version>
<version>DBBrowse-1.1.tar.gz</version>
<version>DBBrowse-1.2.tar.gz</version>

</versions>
</component>
<component>

<name>dbrate</name>
<description>An ODL resource rating component.</description>
<versions>

<version>DBRate-1.0.tar.gz</version>
</versions>

</component>
<component>

<name>ui</name>
<description>

A user interface that is designed to interact with, and deliver services offered
by ODL components.

</description>
<versions>

<version>BRSUI-1.0.tar.gz</version>
</versions>

</component>
<component>

<name>dbunion</name>
<description>

An ODL union archive component. Harvests several open archives and roles as a
service provider for other ODL components.

</description>
<versions>

<version>DBUnion-1.0.tar.gz</version>
<version>DBUnion-1.1.tar.gz</version>
<version>DBUnion-1.2.tar.gz</version>

</versions>
</component>

</components>
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A.3 DEPENDENCIES

<?xml version="1.0" encoding="UTF-8"?>
<dependencies>

<dependency>
<name>mysql</name>
<description>

An Open Source Software relational Database Management System (DBMS)
which uses a subset of ANSI SQL (Structured Query Language). This
DBMS is be used by various components for data storage and retrieval
purposes.

</description>
<version>

<atleast>4.1.1</atleast>
<atmost>5.0.15</atmost>

</version>
<platforms>

<platform>
<name>GNU/Linux</name>
<version>

<atleast>2.2.13</atleast>
<atmost>2.6.15</atmost>

</version>
<check>

<command>java checkmysql</command>
</check>
<source>

<url>http://www.mysql.com/downloads/mysql-5.0.15.tar.gz/</url>
</source>
<install>

<command>gzip -cd | tar -xf - mysql-5.0.15.tar.gz</command>
<command>mysql-5.0.15/install</command>

</install>
</platform>
<platform>

<name>Windows</name>
<version>

<atleast>98</atleast>
<atmost>XP</atmost>

</version>
<check>

<command>java checkmysql</command>
</check>
<source>

<url>http://www.mysql.com/downloads/mysql-5.0.15.exe/</url>
</source>
<install>

<command>mysql-5.0.15.exe</command>
</install>

</platform>
</platforms>
<rights/>
<dependencies/>

</dependency>
</dependencies>



– 92 – Chapter A — Specifications

A.4 I NSTALLATION SCRIPT

<?xml version="1.0" encoding="UTF-8"?>
<script>

<preamble>
<dlname>My First Digital Library</dlname>
<location>/installations/dls/</location>

</preamble>
<installation>

<question>
<description>

The administrator’s e-mail is that to which all correspondence about the
digital library will be directed.

</description>
<text>Please Input the Administrator’s e-mail Address</text>
<answer> </answer>
<default>administrator@domain.suffix</default>
<locations>

<location>/CCL/instance[0]/.../description/ui/adminEmail</location>
<location>/CCL/instance[1]/.../description/dbbrowse/adminEmail</location>
<location>/CCL/instance[2]/.../description/irdb/adminEmail</location>
<location>/CCL/instance[3]/.../description/dbunion/adminEmail</location>

</locations>
</question>
<question>

<description>
Some of the components need to use a database to store their internal data.
This database should already be created. If not, please create it before
continuing.

</description>
<text>Please Input the Database</text>
<answer> </answer>
<default>etds_db</default>
<locations>

<location>/CCL/instance[1]/.../description/dbbrowse/database</location>
<location>/CCL/instance[2]/.../description/irdb/database</location>
<location>/CCL/instance[3]/.../description/dbunion/database</location>

</locations>
</question>
<question>

<description>
This is the username that will be used to connect to the database that has
been specified.

</description>
<text>Please Input the Database Username</text>
<answer> </answer>
<default>username</default>
<locations>

<location>/CCL/instance[1]/.../description/dbbrowse/dbusername</location>
<location>/CCL/instance[2]/.../description/irdb/dbusername</location>
<location>/CCL/instance[3]/.../description/dbunion/dbusername</location>

</locations>
</question>
<question>

<description>
This is the password that will be used in conjunction with the username that
has been specified to connect to the database.

</description>
<text>Please Input the Database Password</text>
<answer> </answer>
<default>password</default>
<locations>

<location>/CCL/instance[1]/.../description/dbbrowse/dbpassword</location>
<location>/CCL/instance[2]/.../description/irdb/dbpassword</location>
<location>/CCL/instance[3]/.../description/dbunion/dbpassword</location>

</locations>
</question>
<question>

<description>
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This is the database table prefix that will be used within the database in
order to differentiate data that belongs to the Union [dbunion] component.

</description>
<text>Please Input the Database Table Prefix for the Union Component</text>
<answer> </answer>
<default>union_archive</default>
<locations>

<location>/CCL/instance[3]/instanceDescription/description/dbunion/table</location>
</locations>

</question>
<question>

<description>
This is the database table prefix that will be used within the database in
order to differentiate data that belongs to the Search [irdb] component.

</description>
<text>Please Input the Database Table Prefix for the Search Component</text>
<answer> </answer>
<default>search</default>
<locations>

<location>/CCL/instance[2]/instanceDescription/description/irdb/table</location>
</locations>

</question>
<question>

<description>
The URL to CGI location is that which grants access to the CGI location where this
Digital Library will be installed.

</description>
<text>Please Input URL to CGI Location</text>
<answer> </answer>
<default>http://localhost/cgi-bin/</default>
<locations>

<location> <!--URL_TO_CGI_LOCATION--> </location>
</locations>

</question>
</installation>

</script>
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I NTRODUCTION

Before commencing with the evaluation exercise, it is essential to paint a clear picture of what it is all
about, as well as introduce some unfamiliar terms that are used throughout this evaluation exercise. This
section introduces some background information relevant to this study, the tools that will be used in
various sections and used terminology, all of which will help in successfully completing the evaluation
exercise.

Digital Library

Simply put, a digital library is a managed and accessible electronic information management system.
This information can be any of, but not limited to, documents or multimedia items. Each information
item is associated with metadata — information about an information item, encoded in one or more
metadata encoding standards, like the Dublin Core Metadata Standard, and is used for describing that
particular information item. There are several services that a digital library can provide to access and
sometime alter its contents. These include the ability to search through an archive, browse through an
archive as well as record other high level annotations to each information item. There are various means
that can be used by digital libraries in sharing and passing information amongst themselves, the most
prominent being the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH).

Open Digital Libraries

The Open Digital Libraries (ODL) project was concerned with building digital libraries out of compo-
nents. The outcome of the ODL project was a suite of lightweight components, ODL components, which
can be connected together and can communicate with each other and with other OAI compliant digital
libraries using an extension of the OAI-PMH. The table below presents some ODL components that will
be used throughout this evaluation exercise, with their associated functions.

Component Function

DBUnion Harvests (collects) data from one or more Open
Archives — OAI compliant archives and keeps it in
a local archive

IRDB A search engine which searches a specified Open
Archive and returns results

BRSUI A user interface through which various services, in-
cluding those provided by IRDB, can be utilised
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The diagram below shows a component-based digital library composed of ODL components that have
been described above. For the remainder of this exercise, this system will be referred to as ”the digital
library. ”

baseURL

A baseURL is a Uniform Resource Locator (URL) that can be used in accessing an ODL component’s in-
formation or accessing any other OAI compliant digital library’s information over the Web. Considering
the digital library shown above, the BRSUI component connects to the IRDB component using IRDB’s
baseURL, the IRDB component connects to the DBUnion component using DBUnion’s baseURL and
so on.

Questions

Most of the questions that are asked throughout the exercise, are scaled questions. The table below
explains the vocabulary that is used in the scaled questions.

Phrase Explanation

Very Good Exceptionally agree with, exceptionally acquainted
with, or completely accept the idea, concept or sub-
ject presented by the question at hand

Good Significantly agree with, significantly acquainted
with, or significantly accept the idea, concept or
subject presented by the question at hand

Neutral Moderately agree with, moderately acquainted with,
or moderately accept the idea, concept or subject
presented by the question at hand

Poor Somewhat agree with, somewhat acquainted with,
or somewhat accept the idea, concept or subject pre-
sented by the question at hand

Very Poor Insufficiently agree with, insufficiently acquainted
with, or insufficiently accept the idea, concept or
subject presented by the question at hand

No Response Do not know or are not is a position to give a mean-
ingful or appropriate answer to the question at hand

For questions that present a choice box (�), use either a tick (
√

) or a cross (×) to indicate your preferred
answer. Other questions are open-ended and require written feedback. These will offer an opportunity
to express your views in an unconstrained manner.
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Tools and Exercises

The system that will be evaluated is composed of two tools, thePackagerand theInstaller tools. The first
exercise will involve using thePackagertool to build the digital library package. The second exercise
is divided into two sections; the first involving installing the digital library from the package created in
the first exercise and the second involving installing the digital library from loosely placed and partially
configured components. At the end of each exercise as well as in the final section, there are questions
aimed at gathering feedback.

PLEASE NOTE that you are taking part in this exercise on a voluntary basis, purely for academic pur-
poses, and the observations that will be recorded by means of pencil/pen and paper as well as the results
thereof, will be confidential. This analysis is strictly based on the tools provided, and at no point will the
focus of the analysis be on you or your computer literacy. Feel free to ask questions at any time while
performing the tasks and you are not obliged to complete any or all of the tasks, should there be a need
for you not to.



– 98 – Chapter B — Evaluation Exercise

B.1 BACKGROUND I NFORMATION

In this section, you are requested to provide some background details relating to yourQualifications,
Software Installations, Software Management Toolsas well as some aspects ofSoftware Systems.

B.1.1 Qualification Details

Please fill in appropriate fields below. If you are a student, fill in underStudentotherwise fill in under
Professional:

Student Professional

Programme : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Profession: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Year of Study : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qualification: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Major(s) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B.1.2 Software Installations

Have you installed any software packages on the following platforms? IfYes is selected, please supply
at least one example.

Windows: Yes� No � Example(s) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Linux: Yes� No � Example(s) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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B.1.3 Software Management Tools

How would you rate your ability to install, configure, manage and uninstall packages created with the
following tools?Recall: No Response = Do not know or have not used the tool in question.

InstallShield.

Very Good� Good� Neutral� Poor� Very Poor� No Response�

Wise/UnWise.

Very Good� Good� Neutral� Poor� Very Poor� No Response�

RedHat Package Manager (RPM).

Very Good� Good� Neutral� Poor� Very Poor� No Response�

Other: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Very Good� Good� Neutral� Poor� Very Poor�

Other: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Very Good� Good� Neutral� Poor� Very Poor�

B.1.4 Software Systems

As a user of software systems, how would you rate yourunderstandingof the following?

Component-based software system (E.g. JavaBeans, C++ Builder, ActiveX)

Very Good� Good� Neutral� Poor� Very Poor�

Web-based software systems (E.g. Online Guestbook, Online Photo Album, Online Store)

Very Good� Good� Neutral� Poor� Very Poor�

Online information management systems (E.g. Britannica Online, Wikipedia, ACM Digital Library)

Very Good� Good� Neutral� Poor� Very Poor�

Are you, or have you ever been a computer programmer?

Yes� No �
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If Yes, how would you rate yourunderstandingof the following from the perspective of using the tools
as a programmer?

Component-based software system (E.g. JavaBeans, C++ Builder, ActiveX)

Very Good� Good� Neutral� Poor� Very Poor�

Web-based software systems (E.g. Online Guestbook, Online Photo Album, Online Store)

Very Good� Good� Neutral� Poor� Very Poor�

Online information management systems (E.g. Britannica Online, Wikipedia, ACM Digital Library)

Very Good� Good� Neutral� Poor� Very Poor�

Prior to this exercise, did you know what Digital Libraries are?

Yes� No �

If Yes, how would you rate your knowledge about them?

Installed� Used� Heard About�
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B.2 DIGITAL L IBRARY COMPONENTWISE I NSTALLATION

In this exercise, you will be installing the digital library one component at a time. During the installation,
there are some cases where there will already be default values for some fields. It is therefore advisable
to read the question thoroughly, in order to decide whether to keep the default value or specify a more
meaningful answer. Guidelines on answers are given where relevant.

Aim

To install the digital library componentwise.

Method

The diagram below shows part of the installation process (the shaded area) which has already been per-
formed on your behalf. What this entailed was configuring the DBUnion component to gather data from
Husseins’ Photo Albumwith the baseURLhttp://www.husseinsspace.com/cgi-bin/VTOAI/hspics/hspics/oai.pl.
This data was then stored in a mySQL databaseevaluationdb. For this exercise, you are requested to
configure the remaining components — IRDB and BRSUI, using the methods and parameters given
below.

Configuring the IRDB Component

A terminal through which you will be able to configure the IRDB component has been opened for you.
To run the configuration script, type the following command:perl configure.pl evaluationfollowed by
<ENTER>. You will then be able to answer the questions that follow, with the following guidelines.

• Database Connection

– Driver — mysql

– Name —evaluationdb

– Username —root

– Password —root

– Table —irdb 2

• Repository Name —[accept default]

• Administrator E-Mail —fcp@cs.uct.ac.za

• Archive

– Identifier —Local DBUnion
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– URL — http://nala.cs.uct.ac.za/cgi-bin/evaluation2/ODL-DBUnion-1.2/DBUnion/evaluation2/union.pl

– Harvesting Interval —[accept default]

– Harvesting Overlap —[accept default]

– Harvesting Granularity —[accept default]

– Metadata Prefix —oai dc

– Sets —[accept default]

To verify if the configuration was successful, type the following commands in the terminal:

cd evaluation<ENTER> switching to the configured instance
perl harvest.pl<ENTER> gathering data from the DBUnion archive
perl testsearch.pl ’uct’ <ENTER> issuing a test query to verify that IRDB has

been properly configured

Configuring the BRSUI Component

A terminalthrough which you will be able to configure the BRSUI component has been opened for you.
To run the configuration script, type the following command:perl configure.pl evaluationfollowed by
<ENTER>. You will then be able to answer the questions that follow, with the following guidelines.

• User Interface Name —Evaluation Exercise User Interface

• Administrator E-Mail —fcp@cs.uct.ac.za

• Title Bar —BRSUI User Interface

• Body Title — [accept default]

• Message —[accept default]

• Footer —[accept default]

• Search baseURL —http://nala.cs.uct.ac.za/cgi-bin/evaluation2/ODL-IRDB-1.3/IRDB/evaluation/search.pl

• Browse baseURL —[leave blank]

• Rate baseURL —[leave blank]

To verify if the configuration was successful, point a browser at the the following URL:
http://nala.cs.uct.ac.za/cgi-bin/evaluation2/BRSUI/BRSUI/evaluation/index.pland issue a test search query
’uct’
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Feedback

Have you successfully installed the digital library?

Yes� No �

How would you rate yourunderstandingof the installation process?

Very Good� Good� Neutral� Poor� Very Poor�

How would you rate the overallusability associated with installing the digital library componentwise?

Very Good� Good� Neutral� Poor� Very Poor�

Comment on any other aspect of thecomponentwise installationprocess.
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B.3 DIGITAL L IBRARY PACKAGE BUILDING AND I NSTALLATION

This exercise is divided into two sections. The first section will be to build the digital library package
while the second section will be installing the digital package that will be built in the first section.

B.3.1 Building the Digital Library Package

The process of building the digital library package is concerned with specifying default values likename
andinstallation locationwhich will be used when the package is installed at a later point. Furthermore,
when building a package, additional questions to be asked at installation time which do not form part of
the initial digital library specification can be specified and any of the questions edited or removed. This
exercise will cover most of the aspects of creating a digital library package.

Aim

To build the digital library package described by the CCL file:evaluation.ccl

Method

1. Launch thePackagertool to begin building the package

2. Follow on-screen instructions to progress through the following stages of building a package

• Welcome:
Gives an overview of the package building process

• Load CCL File:
Load a specification file describing the digital library. Find the CCL file at this location:
Desktop

• Digital Library Components:
Shows all the components that make up the digital library

• Digital Library Name:
Specify the default name with which the digital library will be known. This can be any name
you wish it to be. For example:My First Digital Library, mylibor Library

• Installation Location:
Specify the default installation location for the digital library. For example:/dls/installations/

• Installation Questions:
Add, edit or remove questions to be asked during installation. Please perform the following
tasks:

– Edit the ’Please Input the Database’ question by changing the default value to
’DBI:mysql:evaluation db’

– Add a new question with the following fields:

Question: Please Input the Database Table Prefix for the Search Component
Description: This is the database table prefix that will be used within the database in order

to differentiate data that belongs to the Search [irdb] component
Default: irdb
Path: /CCL/instance[1]/instanceDescription/description/irdb/table
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• Save Package:
Specify the name of the package as well as the location where it should be saved. Use the
Desktop location

• Finalising Package:
Creates the package and removes unwanted data

• Verify by checking inDesktop if the package has been created and stored

Feedback

Have you successfully created the digital library package?

Yes� No �

How would you rate yourunderstandingof the package building process?

Very Good� Good� Neutral� Poor� Very Poor�

How would you rate the overallusability of thePackage Buildertool?

Very Good� Good� Neutral� Poor� Very Poor�

Comment on any other aspect of thepackage buildingprocess.
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B.3.2 Installing the Digital Library Package

The process of installing the digital library package has a similar feeling to that of building the digital
library package as in Section B.3.1. During the installation, there are some cases where there will already
be default values for some fields. It is therefore advisable to read the question thoroughly, in order to
decide whether to keep the default value or specify a more meaningful answer. Guidelines on answers
are given where relevant.

Aim

To install the digital library package from the previous exercise, Section B.3.1.

Method

1. Unzip the package created in Section B.3.1 and launch theInstaller tool.

2. Follow on-screen instructions to progress through the following stages of installing a package.

• Welcome:
Gives an overview of the package installation process

• Installation Location:
Specify a location to which the digital library will be installed. Specify the package instal-
lation location as:F:\Perl and Apache2\Apache2\cgi-bin\evaluation

• Extracting Files:
Extracts all the necessary files for installing the digital library

• Dependency Summary:
Shows a summary of components and their associated dependencies

• Questions:
All the questions that have been specified at build time will be asked here. Give appropriate
answers or accept the default values. For the question:Please Input URL to CGI Location
use the value:http://nala.cs.uct.ac.za/cgi-bin/evaluation

• Finalising Installation:
Completes the installation process by running automatic configuration scripts and removing
unwanted data

3. Launch the installed digital library on a browser. Use the URL given atFinalising Installation

4. Uninstall the digital library

Feedback

Have you successfully installed the digital library package?

Yes� No �
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How would you rate yourunderstandingof the package installation process?

Very Good� Good� Neutral� Poor� Very Poor�

How would you rate the overallusability of thePackage Installertool?

Very Good� Good� Neutral� Poor� Very Poor�

Comment on any other aspect of thepackage installationprocess.
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B.4 SURVEY

How would you rate the overallaesthetic designof both thePackage BuilderandPackage Installer
tools?

Very Good� Good� Neutral� Poor� Very Poor�

What would you omit, add or otherwise do if you were to design thePackage Builderand Package
Installer tools.

Did the Package BuilderandPackage Installertools strike you as something completely different to
what you are already acquainted with? Explain.

Which installation process, according to your experience, do you regard as better? Explain your choice
comparatively i.e., by listing the strengths and weaknesses of both processes.

� Package or
� Componentwise


