
Research Article — SACJ, Submission, 2005 1

A Component Assembly Approach to Digital Library Systems

Linda Eyambe, Hussein Suleman

University of Cape Town

ABSTRACT

With the advent of the Internet came the promise of global information access. In keeping with this promise, Digital

Libraries (DLs) began to emerge across the world as a method of providing structured information to their users. These

DLs are often created using proprietary monolithic software that is usually difficult to customise and extend. The Open

Digital Library (ODL) project was created to demonstrate that DLs can be built as a network of components instead of

as monolithic systems. Although the ODL approach has largely been embraced by the DL community, it is not without

a few shortcomings. This paper introduces a graphical user interface and its associated framework for creating DLs from

distributed components, consequently addressing a number of the limitations of ODL-like systems, as well as presenting

a novel and generic approach for creating component-based systems. This system was subject to a user-based evaluation

to confirm its utility and provide insights into possible extensions.

KEYWORDS: Digital Libraries, Open Digital Libraries, Components, Graphical User Interface

1 INTRODUCTION

Recent developments in information and communica-
tion technologies, especially the Internet and the Web,
have brought about significant changes in the ways we
generate, distribute, access and use information. One
of the most important contributions of Web technol-
ogy has been the creation of digital library systems,
which allow users to access high quality digital in-
formation resources from virtually anywhere in the
world.

Traditionally, Digital Libraries (DLs) were built
as monolithic and proprietary software systems that
were complex and difficult to manage. In recent years,
attempts have been made at decreasing the complex-
ity of software systems by moving towards a modular
approach. Several DL component models are now be-
ginning to emerge, such as the Open Digital Library
(ODL) [1] and OpenDLib [2] projects.

Despite these models to facilitate the creation and
extensibility of digital libraries and enhance inter-
component interaction, building digital library sys-
tems still involves a fair amount of complexity. Cur-
rent DL component models often rely on the manual
configuration of each individual component, in order
to produce a resulting DL.

This research investigates using a simple visual in-
terface and associated framework in order to create a
digital library system from, but not limited to, dis-
tributed ODL components, thereby enabling inexpe-
rienced users to create DLs simply and quickly.

Email: Linda Eyambe linda.eyambe@ericsson.com, Hussein

Suleman hussein@cs.uct.ac.za

2 BACKGROUND

2.1 The OAI and the OAI-PMH

Although digital libraries are ever growing in popular-
ity, Arms [3] explains one of the major problems they
are facing is the issue of interoperability – connecting
systems together in distributed digital libraries.

The Open Archives Initiative (OAI) was formed to
address this need in a standardised manner by launch-
ing its Protocol for Metadata Harvesting (OAI-PMH)
[4]. The OAI-PMH promised to provide a simple
mechanism for digital libraries to interoperate effec-
tively at the level of metadata exchange. While the
OAI-PMH can still be considered a nascent protocol,
a large number of digital library projects are already
working towards adding OAI capabilities to their sys-
tems [5].

Although the OAI has brought about interoper-
ability solutions to support interaction among already
existing digital libraries, simpler solutions are still
needed to create digital libraries in the first place. To
circumvent the pitfalls of monolithic systems, some re-
searchers have used some form of component model –
which is widely accepted as good software engineering
practice – in constructing their DLs. However, com-
ponent frameworks failed to be embraced by the DL
community because, in several projects that adopted
some form of component model, the components com-
municate using non-standard protocols, making mod-
ification a complex process.

2.2 DL Components and Systems

There is a large body of research dedicated to com-
ponents developed for experimental purposes and an
equally large amount for those developed for produc-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Research Article — SACJ, Submission, 2005

tion DL systems, such as Arc [6], which prides itself as
being one of the first searching services based on the
OAI protocol. There also are several pre-packaged DL
systems on the market such as DSpace [7], Archon [8]
and Greenstone [9]. The key to a successful digital
library is extensibility, but the above-named DL sys-
tems are all limited in that regard. With the frame-
work presented in this paper, a new service can be
easily added to the pool of components available to
the graphical user interface, thus presenting the DL
designer with more choice.

The Open Digital Library (ODL) project was ini-
tiated to create a lightweight framework based on the
hypothesis that DLs can be built as a network of ex-
tended Open Archives instead of monolithic systems
[1]. Because of the success of the OAI, the ODL ap-
proach is built upon the OAI-PMH. Suleman [10] de-
scribes the ODL project as an attempt to infuse inter-
operability into all aspects of the digital library, and
make the provision of services as simple as the provi-
sion of data, effectively facilitating the development,
management and interoperability of DLs.

Table 1 tabulates some ODL components, their
interface protocols as well as a brief description of the
function of each component [11].

Figure 1 illustrates how a digital library system
can be created by interconnecting a number of ODL
components. The sample DL consists of a DBUnion
component, which merges metadata originating from
a collection of XML files (XMLFile component) and
a simple database (Box component) into a single
archive. The search (IRDB) and browse (DBBrowse)
engines can then access this single archive to provide
their respective services. Each of these components
supports one of the ODL protocols in Table 1.

During user testing of the ODL components, Sule-
man [10] outlined a number of issues that arose. Men-
tioned below are those that this research attempts to
address with the introduction of a Graphical User In-
terface:

• Confusion over baseURLs: A baseURL is the
link that makes a component accessible via the
WWW. Some participants were confused regard-
ing which baseURL to use since all the URLs were
similar.

• Typographical errors: Entering URLs by hand
resulted in many typographical errors.

• Connectivity errors: The user interface was some-
times connected to the wrong component, as the
user interfaces were not in themselves compo-
nents.

ODL’s simplicity and uniform approach at apply-
ing its protocols to a wide range of components, im-
proving interoperability at component level, makes it
a suitable platform for experimentation. Furthermore,
the ODL components are extensions of the widely
accepted OAI-PMH standard for DL interoperabil-
ity while other component models interact using non-
standard protocols or resort to assembling components
in a disparate or ad-hoc manner, resulting in problems
of adaptability and interoperability.

In order for the ODL components to communicate,
they are configured by means of command-line config-
uration scripts, which suffices for DL researchers with
simple scenarios, but is inadequate for general and
widespread use. With the introduction of a visual in-
terface, a whole new group of potential digital library
designers, not part of the digital library research field
could adopt the technology and approach. Thus, a vi-
sual interface may address the problems discovered in
earlier ODL experiments by eliminating the need for
textual configuration information wherever possible.
In addition a visual interface may allow DL design-
ers to simultaneously configure multiple components,
thus enabling a degree of automation, especially where
one component depends on another. Lastly, by enforc-
ing a consistent strongly-typed model on components,
it prevents the connectivity error previously encoun-
tered.

The extent to which visual development environ-
ments have evolved makes it rather surprising that, as
of yet, very little research has gone into creating one
of such systems for digital library components. This
can probably be attributed to the fact that compo-
nent technology in the digital library discipline is still
fairly new and few standard components exist.

This research therefore arose in response to a need
for simplified digital library creation in order to en-
courage the development of digital libraries by inex-
perienced users, as well as to address some of the prob-
lems encountered during the command-line configura-
tion of ODL components.

3 APPROACH

3.1 Aims

The aims of this research were:

• To enable ordinary users (non-technologists or ex-
perts) to create a digital library system from a
suite of components. It will simplify the way dig-
ital libraries are created, effectively placing digital
libraries within the reach of non-technologists or
librarians.

• To aid in eradicating, or at least greatly reducing,
several problems (e.g., typographical errors) that
occur during manual configuration of DL systems.
This painstaking manual process seems superflu-
ous especially with the proliferation of visual de-
velopment environments within and beyond the
Web Services development community.

• To investigate the applicability of the visual com-
position environment to real-life digital libraries.

• Because the system is designed to be generic, it
can be applied to other development communi-
ties, for example Web Service development, with
little modification.

3.2 Architecture

A client-server architecture was used for several rea-
sons. Firstly, the components were created for a server
(nominally Linux) environment and in order for a



Research Article — SACJ, Submission, 2005 3

Table 1: ODL reference components, descriptions and protocols

Component Description of Functionality Interface Protocol

DBUnion To merge together the metadata from multiple sources ODL-Union

IRDB Search engine ODL-Search

DBBrowse To browse through metadata based on values of particular fields
within the metadata

ODL-Browse

WhatsNew To track and obtain, upon request, a sample of recent entries ODL-Recent

Box Dumb archive supporting submit and retrieve operations ODL-Submit

Thread Threaded annotation engine for discussion forums, guestbooks
and resource annotation

ODL-Annotate

Suggest Recommender system to make suggestions based on collaborative
filtering

ODL-Recommend

DBRate To manage the submission and access to ratings for individual
resources

ODL-Rate

DBReview Peer review workflow manager geared towards the review of jour-
nal and conference publications

ODL-Review

XMLFile Archive

Box Archive

DBUnion

IRDB Search Engine

DBBrowse Engine

Figure 1: A sample DL from ODL components



4 Research Article — SACJ, Submission, 2005

graphical user interface to be widely used, it would
need to work in a desktop (nominally MS-Windows)
environment and access the components remotely. Be-
cause the GUI (named Blox [12]) was developed in
wxPython, a Python port of wxWindows, it can be
run in either a Linux or MS-Windows environment.

Previously, to create a digital library system using
ODL components, one had to download and install all
of the desired components, then configure each one
individually. This process may not be so straightfor-
ward if one’s computer does not possess all the re-
quired software to run the components, such as a Web
server, Mysql and required Perl modules. But with a
client-server architecture, one can connect to one or
more servers hosting components without having to
worry about installing them.

Furthermore, with a client-server approach, one
can make use of component instances created by oth-
ers. It should therefore be possible to use an existing
DL comprising, for example, an archive and search en-
gine instantiated by someone else and augment that
DL with a different user interface.

Obviously there is a shift in initial effort from the
designer of the DL to the administrator of the server
where the components are located. This can be jus-
tified because it results in specialization of tasks –
administrators install software components while DL
designers design systems. The level of complexity of
components also varies widely. While ODL compo-
nents typically involve only unzipping, other families
of tools may require additional work. In all cases, the
designer of the system conceptualises the server as a
provider of services, without having to know the de-
tails thereof.

In this client-server model, three distinct elements
can be identified: a graphical user interface (the client)
that will be the only part of the system directly visible
to the user; a server daemon that handles all commu-
nication between the components and the GUI; and an
interface to those components that both parties (the
components and component server) understand. This
is illustrated in Figure 2.

3.2.1 The Graphical User Interface

A Graphical User Interface was created to allow users
to specify the components they would like to include
in the digital library and the details of their configura-
tion. The GUI initially communicates with the server
to determine what types and instances of components
are available (analogous to types and instances in ob-
ject oriented programming). Once the GUI has ob-
tained this information, the user is able to use exist-
ing instances or create new instances of existing types
by selecting options from a toolbar above the canvas.
This toolbar uses labels and icons to represent com-
ponent types – for example, all search engine compo-
nents have the same icon but are named differently
(irdb and Swish-E in Figure 3, an example of a GUI
session).

The user then interacts with these distributed
components by making use of point and click and drag

and drop capabilities. This method of interaction was
chosen to mimic an artist’s canvas where objects are
assembled to create a final product. Each component
(instance) is represented as a window. Arrows are
dragged between windows to represent the data flow
connections between components, and all the configu-
ration information is represented as a form within each
component window. Components are assembled on a
canvas in this manner and ultimately instantiated on
the server by clicking on a Publish button.

3.2.2 The Server Daemon

A Server was created to handle the interactions be-
tween the client and the components. The server is
configured with a list of the root directories of its lo-
cal components and interacts with a well-defined API
supported by each component to obtain component
information for the client, to create new instances of
components and to modify or delete existing instances.

The server contains two separate parts that inter-
face to provide the necessary functionality to the com-
ponents it manages and the GUI – the server side com-
munications component and component-specific han-
dlers. Handlers deal with the administration of the
types of components they were designed to manage.
Thus it is possible to support a different suite of com-
ponent, not necessarily related to DLs, using the same
GUI and server infrastructure.

The server was designed to accept XML docu-
ments from one or more GUI clients, destined for the
components, using SOAP over SMTP. This is achieved
by listening for messages from the server-side commu-
nications component, interpreting these messages and
forwarding them to the relevant handler.

Although HTTP is probably the most common
protocol for SOAP messaging, the request/response
nature of HTTP made it an unsuitable transport
mechanism due to its timeout restriction, which is
unsuitable for the configuration of certain DL com-
ponents. The server was implemented in Python.

3.2.3 Component interface (API)

Sometimes components have to be utilised in an envi-
ronment other than the one they were initially created
for. Such is the case with the ODL components. When
the components are being configured manually, a Perl
script is run and the user is prompted for configuration
information along the way.

This is clearly inappropriate for a visual environ-
ment. The matter is further complicated due to the
fact that the components are distributed and the call-
ing method may not possess the rights required to
modify a component’s interface remotely. To resolve
this problem a new component interface was devel-
oped, essentially wrapping components so that they
support a standard remote management API.

One element of this interface is the component’s
type description. A type description describes the
information required to successfully configure an in-
stance of a component. This is implemented as an



Research Article — SACJ, Submission, 2005 5

Component A

Client (GUI)Server daemon

Remote Component Interface

- type description

- list of instances

- etc.

Component C

Component B

SOAP over SMTP

Figure 2: The architecture of the system

Figure 3: Snapshot of the BLOX client



6 Research Article — SACJ, Submission, 2005

XML Schema. Each instantiated component has an
instance description. Since the type description is rep-
resented as an XML Schema, the instance description
is an instance conforming to that schema and is there-
fore an XML document.

In addition to the type description, the compo-
nent interface supports four service requests, outlined
in Table 2, to: list all instances; get configuration in-
formation for a single instance; set configuration in-
formation for a single instance; and remove a single
instance from the server.

The component management API was imple-
mented in Perl.

Non-ODL components can also be interfaced in
this way in order to communicate with the server.
This was demonstrated by interfacing the PHPBB
[13] bulletin board, which was originally designed to
receive its configuration information from an online
form, and the SWISH-E [14] search engine, which is
an executable that was designed to receive its configu-
ration information as command-line arguments. They
both now interact seamlessly with the server.

3.3 The Component Connection Language
(CCL)

A language was developed to represent the conceptual
model of a digital library. This language, referred to
as the Component Connection Language (CCL), con-
tains the instance descriptions of the connected com-
ponents, the server and port on which the components
were installed as well as information required to recon-
struct their graphical representation in the GUI. The
CCL is an XML document, so when a DL is created
with the GUI, the instance descriptions are stored in
the CCL, sent to the server, the individual instance
descriptions are retrieved by the server from the CCL
and each sent off to the relevant component for config-
uration. The CCL can be saved and reloaded at a later
date to continue creating the DL or for modification.

3.4 Additional Components
Adapted/Developed

Although this research focused mainly on ODL com-
ponents, to demonstrate its premise of extensibility,
four other components were included in the research.

3.4.1 PhpBB

PHPBB [13] is a popular PHP-driven bulletin board.
The purpose of including phpBB in the component
suite used in this experiment was not because it is
imperative for a digital library to contain a bulletin
board, but rather to demonstrate the possibility of
augmenting the component suite with virtually any
component that makes sense to include in a digital
library.

3.4.2 SWISH-E

The SWISH-E (Simple Web Indexing System for
Humans–Enhanced) search engine, a descendant of

SWISH, offers a unique combination of features that
make it attractive for this DL component assembly re-
search. Some of SWISH-E’s offerings include: a fast
and robust toolkit with which to build and query in-
dices; good documentation; active development and
bug fixes; and a Perl interface [14].

Constructing a digital library by integrating non-
OAI compliant components, such as the above two,
with ODL components using a graphical user interface
will enable a variety of complex and highly functional
DLs to be created quickly and simply.

3.4.3 The Digital Library User Interface

The original ODL component suite contains a sim-
ple user interface component designed to work with
the ODL-Search protocol. This component provides
an online textbox in which search keywords can be
entered. This suffices for trivially simple DLs, as de-
picted in Figure 1. However, users may wish to in-
corporate other services such as browsing and rating
into a single user interface. Therefore, the basic ODL
user interface was modified to accommodate other ser-
vices in a manner that requires no knowledge of the
OAI or HTML standards. This is consistent with the
aim of providing a simple way of creating DLs from
distributed components.

3.4.4 External Archives

When configuring certain ODL components, such as
the search or browse engines, using the command line,
one would normally have to supply the baseURL (the
OAI term for Web service endpoint) of the archive is
it trying to connect to. However, because the GUI
was designed to prevent the user from having to type
baseURLs, a new method was required to provide the
baseURLs of external archives, i.e., archives located
anywhere on the WWW. A new component called
OADP (Open Archives Data Provider) was created,
which contains the list of OAI-compliant archives
available on the OAI website. The user simply se-
lects the desired archive and links it to some other
component such as a search engine. The OADP can
be seen as a black box with exactly the same external
interfaces as the other ODL components.

While developing/wrapping each of these compo-
nents required some programming in the context of
this study, typical designers of DL systems expect
only to use what is available. Organisations such as
the OAI make sure that a variety of components are
available at any point in time for DL designers to in-
corporate into their systems.

4 USER EVALUATIONS

Testing the system with a sample of users – some of
whom had experience in DLs and software systems
and other who did not – was considered necessary to
validate the usefulness of the visual environment for
composing DLs.



Research Article — SACJ, Submission, 2005 7

Table 2: The interface of a component

Service endpoint Function

autoconfig Receives an Instance Description (XML document) and uses that data to con-
figure a component

getInstance Takes an instance name and returns its Instance Description

GetType Returns the Type Description of that component

listInstances Returns all Instance Descriptions of a particular component (i.e., all instances
of a component)

removeInstance Deletes a specified instance

4.1 Test Methodology

Users were required to fill out a questionnaire in order
to ascertain their background and knowledge of DLs,
Web Services, ODL components, XML and other re-
lated technologies. The users were briefed verbally on
what DLs are, the components used in the experiment
as well as a brief description of the functioning of the
DL visual composition system. The users were then
given the tasks of building a simple digital library sys-
tem and modifying an existing system to include one
additional service component. To have a control ex-
periment on which to base any comparison, the users
were instructed to build a simple digital library man-
ually in addition to using Blox to build the more com-
plex DL depicted in Figure 4. The task of creating
a DL manually was somewhat simplified as the users
were not required to install the components (noting
that installation equated to downloading and upzip-
ping in all cases). Finally the users were required to
fill out another questionnaire to obtain feedback on
their experience.

4.2 Pilot Study

For the initial tests, 5 users were selected at random
with 3 having no prior DL experiences, but all required
to have some basic computer literacy skills.

All the testers successfully completed all the tasks,
but they highlighted some recurring problems with the
system. The major disagreement came from the choice
of icons used to represent the different components. 2
of the users expressed that they did not always know
what the system was doing in response to their input,
in spite of the presence of the informational window
as shown in Figure 3. 1 user expressed a bit of con-
fusion as to what exactly they were doing, and they
said it only became apparent after viewing the result-
ing DL. These problems were addressed before a more
complete user study was conducted, largely through
the choice of more appropriate icons, better feedback
to the users during the process and more logical de-
fault values wherever possible. The final system was
appropriately renamed Blox+.

4.3 Population and Survey

34 students participated in the final experiment and
the time it took them to complete it ranged from 25
minutes to over an hour. 33 of the 34 participants were
undergraduates from various faculties, with a third of
the students not having computer science as one of
their majors. Half of the users had never used mod-
elling software before, and a third had never used a
Linux command prompt. Hence the stage was set to
test the level of skill required to successfully use the
visual component composition system.

Table 3 summarises the results obtained from the
final questionnaire. This questionnaire required that
users indicate the extent to which they agreed or dis-
agreed with the statements presented according to a
5-point scale. The last four questions were free-form
questions to obtain further comments from the users.

4.4 Results

On a qualitative level, all users succeeded in creating
the digital library systems required of the test. In gen-
eral, the overall feedback was positive since most users
agreed that not only would they use Blox+ to create
their digital library should they need one, but would
also consider using Blox+ to create other component-
based systems if it had support for them. After as-
sembling the three-component digital library with the
command-line and then with the GUI, users were able
to better appreciate the differences between the two
approaches, with the vast majority indicating that
they thought it was a good idea to be able to assemble
component-based systems with a graphical user inter-
face. However, it must be noted that the results may
have been different if the users were required to create
highly complex DL systems – though such systems are
rarely found in practice.

In terms of understanding, the distinction between
types and instances affected the way some users were
able to create the DL, as they were not sure when
to select a component/instance from the types panel
or from the instances panel. Most of the users who
could not make this differentiation were not computer
science students. This is an indication that the mod-
els well understood within one community for design-
ing visual environments might not transpose to other



8 Research Article — SACJ, Submission, 2005

Table 3: Summary of responses from user survey

Questions Responses

Strongly Agree Agree Neutral Disagree Strongly Disagree

I understand how the Blox system func-
tions.

2 16 12 4

I understand the concept of types and
instances.

3 19 9 3

Based on previous knowledge, and the
knowledge gained from conducting this
experiment, I think it is a good idea to
be able to graphically assemble systems
from distributed components.

18 13 2 1

I found the interface consistent with my
previous experiences with Visual IDEs.

5 11 13 4 1

I would consider using ODL and OAI
components if I need to build a system
with requirements similar to the exer-
cise.

13 13 4 4

I would use a system such as Blox to
create digital libraries if I had the need
to create one.

12 16 6

I would use a system such as Blox to
connect and configure other types of
components (e.g. other Web Services,
or COM or CORBA objects) if it had
support for them.

9 18 7

Modifying an existing digital library
was easy with the Blox system.

13 15 6

When I created a digital library using
Blox, it produced the digital library I
expected it to produce.

19 10 5

The interface responded as I expected
it to.

14 13 6 1

I found it easy to use Blox to accom-
plish the tasks.

11 17 6

I found it easy to apply my previous
GUI experiences with Blox.

16 8 7 2 1

I like the idea of representing a compo-
nent as a window.

19 10 5

I found using Blox to create a digi-
tal library easier than manually using
OAI/ODL Components.

19 7 8

I found using Blox to create a digi-
tal library faster than manually using
OAI/ODL Components.

21 10 3



Research Article — SACJ, Submission, 2005 9

SWISH-E

DBBrowse

UI

PHPBB

DBRate

OADP

Figure 4: DL users were required to build during tests

communities of users.
When compared to the traditional textual config-

uration method, most of the users agreed that Blox+
was easy to use in accomplishing the tasks, with none
disagreeing and 8 of the users choosing to remain neu-
tral. When considered in isolation, most users once
again agreed that Blox+ was easy to use and that the
tasks were easily accomplished.

A number of users expressed their appreciation for
the Blox+ system as is, with comments such as:

• “This is the new system to use in future.”

• “I think that the Blox program is very good, per-
sonally I knew nothing about components and
stuff before but with this program it has made
me understand.”

Also, a number of useful suggestions were made, in-
cluding:

• “A built-in preview of the digital library as it ap-
pears in the browser”.

• “A help button for troubleshooting, guidelines
and stuff.”

• “People should be told to create ui → irdb →

xmlfile i.e., work from left to right (it’s more in-
tuitive).”

5 CONCLUSION

This paper introduced the reader to the ODL com-
ponents and presented a new framework for configur-
ing remote distributed components using a Graphical
User Interface. The results of user tests suggest the
viability of a system such as Blox+ for creating dig-
ital libraries. The test users, some with no prior DL
knowledge, were able to get fully functional DL sys-
tems up and running with little effort. However, more
extensive tests have to be carried out as digital library
systems evolve into more complex interrelated infor-
mation management systems.

Though the focus of this research was building a
digital library from components using a GUI, the ap-
proach discussed in this paper can be applied to other
types of systems as well, and thus can be regarded as
a generic method for creating component-based data-
flow-driven systems.

6 FUTURE WORK

A security infrastructure must be put in place in or-
der to prevent malicious or inadvertent tampering of
created instances. Furthermore, the host of a compo-
nent may wish to limit the number of instances stored
on their server. Currently, all users have equal access

to all the component instances – should only the cre-
ator of an instance have modification rights on that
instance? More research needs to be conducted in or-
der to ascertain the security implications of using this
framework.

DLs generally interact with users by means of a
user interface accessible via the WWW. For this re-
search, a user interface was created that accommo-
dates the components being used during the experi-
ment. However, if a new component was to be added
to the component suite, the UI’s source code will
have to be modified to accommodate that component.
What is needed is a more flexible user interface that
can be fully configured to accommodate new compo-
nents and different workflows, possibly using a portal
approach.

Ultimately, production DLs such as Greenstone
are gradually moving towards a component model [15]
– in the ideal case they also will eventually incorpo-
rate the ideas of visual design environments into their
products.

ACKNOWLEDGMENTS

Thanks are due to David Moore and Stephen Emslie,
who developed the first version of the Blox tool in
2003. Further, this project was made possible by fund-
ing from UCT and NRF (Grant number: 2054030).

REFERENCES

[1] H. Suleman and E. A. Fox. “A Framework
for Building Open Digital Libraries”. D-
Lib Magazine, vol. 7, no. 12, 2001. URL
http://www.dlib.org/dlib/december01/suleman/

12suleman.html.

[2] D. Castelli and P. Pagano. “OpenDLib: A Digital Li-
brary Service System”. In M. Agosti and C. Thanos
(editors), Proceedings of the 6th European Conference
on Research and Advanced Technology for Digital Li-
braries, pp. 292–308. Springer, September 2002.

[3] W. Arms. Digital Libraries. MIT Press, 2000.

[4] C. Lagoze, H. V. de Sompel, M. Nelson and
S. Warner. The Open Archives Initiative Protocol
for Metadata Harvesting. Open Archives Initiative,
2001. URL http://www.openarchives.org/OAI/

openarchivesprotocol.html.

[5] M. Breeding. “Understanding the Protocol for Meta-
data Harvesting of the Open Archives Initiative”.
Computers in Libraries, vol. 22, no. 8, pp. 24–30,
2002.

[6] “ARC - A Cross-Archive Search Service”, 2004. URL
http://arc.cs.odu.edu.



10 Research Article — SACJ, Submission, 2005

[7] M. Smith, M. Bass, G. McClellan, R. Tansley, M. Bar-
ton, M. Branschofsky, D. Stuve and J. H. Walker.
“DSpace: An Open Source Dynamic Digital Repos-
itory”. D-Lib Magazine, vol. 9, no. 1, 2003. URL
http://www.dlib.org/dlib/january03/smith/

01smith.html.

[8] K. Maly, M. Zubair, M. Nelson, X. Liu, H. Anan,
J. Gao, J. Tang and Y. Zhao. “Archon - A Digi-
tal Library that Federates Physics Collections”. In
Proceedings of the 6th International Conference on
Dublin Core and Metadata for e-Communities (DC-
2002: Metadata for e-Communities: Supporting Di-
versity and Convergence), pp. 27–34. Firenze Univer-
sity Press, October 2002.

[9] I. Witten. “Examples of Practical Digital Libraries
Collections: Built Internationally Using Green-
stone”. D-Lib Magazine, vol. 9, no. 3, 2003. URL
http://dlib.org/dlib/march03/witten.

[10] H. Suleman. Open Digital Libraries.
Ph.D. thesis, Virginia Tech, 2002. URL
http://www.husseinsspace.com/publications/

odl.pdf.

[11] H. Suleman, E. A. Fox, R. Kelapure, A. Krowne
and M. Luo. “Building Digital Libraries from Simple
Building Blocks”. Online Information Review, vol. 27,
no. 5, pp. 301–310, 2003.

[12] D. Moore, S. Emslie and H. Suleman. “BLOX:
Visual Digital Library Building”. Tech. Rep.
CS03-20-00, Department of Computer Sci-
ence, University of Cape Town, 2003. URL
http://pubs.cs.uct.ac.za/archive/00000075/.

[13] “phpBB – Creating Communities”, 2004. URL
http://www.phpbb.com.

[14] J. Rabinowitz. “SWISH-Enhanced”, 2004. URL
http://swish-e.org/.

[15] D. Bainbridge, K. J. Don, G. R. Buchanan, I. Witten,
S. Jones, M. Jones and M. I. Barr. “Dynamic Digital
Library Construction and Configuration”. In Proceed-
ings of Research and Advanced Technology for Digi-
tal Libraries: 8th European Conference (ECDL2004),
vol. 3232 of LNCS. Springer, September 2004.


