
Wavelets for Multi-resolution Analysis
of Triangular Surface Meshes

Richard Southern, Patrick Marais, Edwin Blake

CS00-11-00

Collaborative Visual Computing Laboratory
Department of Computer Science

University of Cape Town
Private Bag, RONDEBOSCH

7701 South Africa

e-mail:
�
rsouther,patrick,edwin � @cs.uct.ac.za

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The application of Wavelets to the Multi-resolution Analysis of surfaces provides an ele-
gant, mathematically rigorous framework for the implementation of subdivision surfaces.
We present a method similar to [Lou95] for multiresolution analysis of surfaces with sub-
division connectivity. However, due to error incurred during surface remeshing (as with
[EDD

�
95, LSS

�
98]) we find Wavelets an unsuitable technique for feature preservation

during surface compression.

1 Theory

As in Lounsbery et. al [Lou95], the technique implemented makes use of a semi-regular
multi-resolution framework with biorthogonal surface wavelets. The underlying theory
of wavelets and multi-resolution analysis will not be detailed here. For more information
regarding terminology and theory the reader is referred to [Mal89, Dau92].

The underlying algorithm is relatively simple: Given a base-mesh / final-mesh pair
(
���������

respectively), the algorithm generates 	 hierarchical levels of resolution such
that

����
����
�������
��������
����
. Note that in order to generate mesh

���
each

triangle ��� � ����
is split into 4 by introducing new points at the midpoints of each of the

edges of � (as in Figure 1).

Splitting Step

Splitting Step

Figure 1: Examples of quadrisection. Vertices at consecutive levels introduce vertices at
the midpoints of the edges at previous levels.

1.1 Refinable Basis Functions

We define � � � �"!$# to be the % th scaling function at resolution & , while
!

represents a point
over the domain. ')(�*!$# is hence defined as the matrix consisting of the % functions � � � �"!$# .
From previous work [Lou95] these functions have been proven to be refinable, and hence
� � � �"!$# can be written as a linear combination of the functions � � � � �*!$#

.

1

We now write the matrix ' (!$# as

' (�"!$# � ��� (�"!$#�� (�"! #�� �
where

� (�"! # consists of the scaling functions � � � � �"!$#
associated with the old vertices of� �

, while
� (�*!$# refers to the scaling functions associated with vertices added to the last

mesh.
The refinability of the scaling functions allows us to define a matrix � (such that

' (�"! # � ' (�
	 �"!$# � (�� (1)

1.2 Wavelet Construction

The biorthogonal surface wavelet construction scheme of [SDS96] uses lifting to con-
struct wavelets which are “nearly orthogonal” to the scaling functions. The strategy
employed is to construct “lazy wavelets” (� 	������� �"!$# consisting of the scaling functions
associated with the midpoints of the edges of

� � ��
.

These wavelets are far from orthogonal to the scaling functions. To make them “more
orthogonal” we subtract a linear combination of nearby coarse scaling functions, and
define the improved wavelet as:� � ��� �"!$# � � (��� � �*!$#������! �" (� � � � (� 	� �*!$#�#

(2)

where $ is restricted to a few values corresponding to the vertices in
� ����

in the neigh-
bourhood of � � % � � �"! # . To find the values of & � ' � � we take the inner product of each of the
terms in 2 with the scaling function � � ���)(�*!$#

for all %+* such that the support of
� ����� �"!$#

overlaps with � � ���)(�*!$#
, and then set , � ����� - � �����.(0/ �21 . This results in� ' & � ' � � , � � ��' - � �����.(0/ # � , � � % � � - � � ���.(0/ � (3)

It is convenient to write the inner product of 354 - 687 in matrix form. Due to the bilin-
earity of the inner product: 394 - 687 �2:<;>= (�?
where f and g are column matrices consisting of the coefficients of f and g respectively,
and = (is the square matrix whose % � %5* -th entry is

� = (# �@� � (� , � (� - � (� (/ .
It can be shown using equation 1 that the following recurrence relation exists:= (� � � (# ;>= (�
	 � (�� (4)

We write the equation of 3 in matrix form, and using the recurrence relationship de-
scribed in 4 we derive � , ' (- ' (/ �BA (� � � (# ; � , ' (�
	C- � (�
	 / � (5)

where
� , ' (- ' (/ � is simply = (, A (is the matrix of the coefficients & � ' � � and

� , ' (�
	 - � (�
	D/ �
is the submatrix of = (�
	 that consists only of the columns that correspond to the members
of E � �

.

2

1.3 A Filterbank algorithm

Let
� �� �*!$#

denote the % th locally supported wavelet approximation, and let
� � �"!$#

be the
row matrix of these functions. Define the analysis and synthesis filters by� ' (�*!$# (�"!$#�� � ' (�
	 �"!$# � � (�� (� � (6)

and ��� ((�
 � � � (�� (� �� (7)

respectively.
For lazy wavelet construction, we simply define

� � (������� � (� ����� � �
��

� 1 ����� 11
...

...
. 11 ����� 1 � �
� (�

� 1 ����� 11
...

...
. 11 ����� 1 �

�������������������
(8)

where � (� is merely the matrix of connectivity information of the new vertices at step
& . In order to construct what is referred to in [SDS96] as “k-disk” wavelets the above
matrices are modified by the matrix

A (defined in equation 5 in the following fashion:� � (
��� - � (

��� � � � � (������� - � (������� � � (������� A (� (9)� � (
���	 (
���
 � � � (� ������� A ((�������	 (�������
 (10)

Let � (denote the column vector of vertices of
���

, and � (denote the corresponding
matrix of wavelet coefficients. Analysis can be defined by� (� � (� (�
	 (11)� (� 	 (� (�
	 (12)

while synthesis is defined by � (�
	 � � (� (� � (� (�� (13)

2 Implementation

For the implementation of this wavelet scheme, it was decided to stay as close to the
theoretical basis as possible, using optimisations such as sparse matrix structures and
numerical solutions where possible. It can be divided into different sections.

3

2.1 Inner Product Matrix Calculation

Thanks to equation 5 it is not necessary to calculate the coefficients of the matrix = (� (�
	 ,
(i.e.

� , ' (- ' (�
	 / �) - it is sufficient to calculate only the inner product of the function with
itself. The calculation of the matrix depends on the extent of the k-disk required - in this
implementation a 1-disk wavelet will be described. Figure 2 shows the two dimensional
inner product calculation of a 1-disk wavelet.

, � � ' - � � ' / , � � ' - � � ' � /

���

���

��

��

Figure 2: The inner product in 2 dimensions - the shaded region represents the overlap
and hence represents the shape of the region created by the product of the two functions.

When translated into three dimensions, the problem is harder to visualise, as it does
not actually correspond to logical three dimensional structures. However, the two cases
of overlap of the functions are shown in Figure 4. Only a single wedge is depicted of the
hat function in each case. Other than at vertices on the base mesh, there would be six such
wedges surrounding each vertex - vertices on the base mesh must have fewer wedges in
order to define structure. The values of the areas in each case can easily be precomputed,
and numerical methods were used to generate a good approximation to the solution.

���
	 ����
	 ��� ���
	 �
���	 �������

Figure 3: The two possible overlap cases of the 1-disk wavelet inner product. The high-
lighted region indicates the overlap of the two functions

2.2 Analysis / Synthesis Matrix Calculation

Initially it is necessary to generate the matrices ��� ������� , ��� ������� , !� ������� and "�� ������� for the
desired level # from the base mesh $&% . Each of these matrices is sparse, so a sparse matrix
structure was used to allow for efficient storage. These matrices are defined by Equation 8

4

Case 1 Case 2

Figure 4: Two cases of overlap for individual segments of a 1-disk wavelet. Case 1
indicates an overlap of the same function, and hence the region of the product of the two
functions is represented by the tetrahedron. Case 2 represents a case when � � ' overlaps
with � � ' � . Each of these cases represents a single triangle as shown in Figure 3.

and Equation 7. � 	� ����� is generated from the connectivity information of
� �

, whereafter it

is possible to generate the remaining � (� ����� using only the connectivity information stored

in � (� 	� ����� .

The connectivity information stored in � (� ����� is then used, along with the constants
generated above in section 2.1 to generate the sparse matrices = (. It is necessary to find= � �
	 for equation 5, so � � �
	������� must be found. Once = � �
	 has been found the remaining= (��� � � � � ��� are found using the recurrence relation in Equation 4. The matrix

A (is
then determined by the formula (derived from equation 5),A (� � = (# � 	 � (� (�
	
where

� (�
	 is the submatrix of = (�
	 where the columns correspond to the new vertices.
Note that at this step the inverse of the matrix = (must be found - a potentially ex-

pensive operation to perform at each level & . A numerical solution was generated using
Gauss-Seidel iteration. The solution is not sparse, making it extremely expensive to store.
This problem can be tackled in two ways, as is described in [Lou95], but we chose merely
to truncate the coefficients which were within a certain tolerance, restricting the support
to be local.

The matrices
A (��� � � � � ��� are then used to calculate the matrices � (

���
, � (

���
,
� (
���

and
	 (
���

by Equations 9 and Equation 10.

2.3 Multi-resolution Analysis

Given a base mesh / final mesh pair
� ����� �

and the value 	 , the matrices � (
���

, � (
���

,� (
���

and
	 (
���

are calculated as above. The matrices � (and � (are calculated according
to equations 11 and 12.

Once all the � (have been found, the � (can be discarded - ��� is simply the vertex
information of the base mesh

� �
, and the remaining levels � (are determined using the

synthesis Equation 13.

5

The
���

error incurred by each vertex is represented by the value of the detail coeffi-
cient associated with each vertex. By setting individual elements in the filter bank � (to
zero the vertex is removed from the reconstructed model. Compression is possible using
simple stopping criteria:

� a global error tolerance � could be defined indicating the sum of the detail coeffi-
cients which can be set to zero or

� the model could be compressed to a specified number of faces or vertices.

3 Implications

Wavelets for multi-resolution analysis provide a useful tool for the generation of multi-
resolution models, progressive refinement and compression [SDS96] in a mathematically
rigorous fashion. However, such structured solutions require equally structured input.

The calculation of matrices is a slow, mathematically intensive procedure, requiring a
number of matrices to be preprocessed or processed at run-time (depending on whether
time or space is to be preserved respectively). Although the computationally intensive
matrix operations, such as inversion and multiplication, can be addressed in a number
of ways (in this case the inversion was solved numerically, while the multiplication is a
linear operation due to the implementation of a sparse matrix structure) there is a large
amount of resource overhead at each level. At the very least, the matrices ��(, � (, � (

���
and � (

���
must be easily accessible at each level & � 1 � �D� 	 .

Subdivision connectivity (the restriction requiring all vertices to have a valence of six,
except those on the base mesh) occurs very seldom in practice (except perhaps in models
generated by hand). To address this issue techniques [LSS

�
98, EDD

�
95, WDSB00] can

guarantee that models have this property. However these algorithms have a number of
penalties.

3.1 Creating Subdivision Connectivity

Eck et. al [EDD
�

95] describe a strategy for generating a base mesh / final mesh pair
with subdivision connectivity. They derive a base domain through a Voronoi tiling of the
original mesh. Using a sequence of local harmonic maps, a parametrisation is constructed
which is smooth over each triangle and is continuous at the base domain edges. The
model is then re-meshed with subdivision connectivity within a certain error tolerance.

Runtime of this algorithm can be long, due to the many harmonic map computations
[LSS

�
98]. This problem has been addressed more recently by improving the speed of

these calculations, and applying heuristics to the Voronoi tile construction. However, the
overall algorithm is fragile, and there is no explicit control over the number of triangles
in the base domain (i.e. if the base domain patch is small, there will be an explosion of
triangles within that patch at a high level of subdivision).

The re-meshing process also introduces error into the model, which can affect the
highest level of detail [HG97] (if error is introduced at a low level of resolution, then the
all subsequent levels of resolution will be affected). Another feature is that the topology

6

must remain fixed at all levels of detail, introducing the possibility for a high variation in
the sizes of patches on the base mesh

� �
, resulting in the triangle explosion on higher

levels of subdivision, described above.
Lee et. al [LSS

�
98] perform a fine to coarse decimation of the input model to derive

the base mesh. Conformal maps are used during the coarsification to immediately produce
a global parameterisation of the original mesh. A hierarchical Loop smoothing filter
[Loo87] is used to ensure a smooth reconstruction.

This strategy addresses most of the issues raised above - using decimation to generate
the base mesh

� �
is an operation with considerably less complexity than the harmonic

maps and Voronoi diagrams used above. The Loop smoothed parameterisation also en-
sures that the triangles on the base mesh are all similar in size, preventing a complexity
explosion at higher levels of subdivision.

This technique does however require a certain measure of user control. The user is
able to constrain the parameterisation to align with selected features by applying vertex
and edge tags, but is not required to specify the entire patch network. Also, the mapping
used to recreate the points on the final mesh may not always be a convex region, so it is
possible that triangles end up on top of each other, or facing the wrong direction.

More recently, Wood et. al [WDSB00] introduce a technique of semi-regular mesh
extraction from volume data sets. Assuming that data is in volume form, this would
produce surfaces with subdivision connectivity without requiring a post-process of a mesh
extracted with the marching cubes algorithm.

3.2 Improvements

Of importance is the preservation of particular detail features on the surface. The effec-
tiveness of describing a surface by a wavelet scheme could be determined by the magni-
tude of the wavelet coefficients in the resulting filter bank � (. A wavelet scheme may not
efficiently describe the entire model - certain regions of the filter may have small detail
coefficients, while others may have large values (a spike on a flat surface is an example).
This problem could be addressed in a number of ways:

� Several wavelet schemes could be used to analyse the same model - the scheme
with the smallest coefficients could be used as the best representation of the surface.
Given the limited number of wavelet construction strategies applicable to surfaces,
there would unfortunately be a limited search space. This technique would prob-
ably not be feasible in practice, given the large amount of additional computation
required.

� An adaptive, or non-linear wavelet scheme could be designed to segment the surface
into separate regions, each of which could be best represented by different wavelets.
This technique would incur new computational overhead due to the surface segmen-
tation. We are not aware of any “adaptive” wavelet construction schemes at present.

7

4 Conclusion

This multi-resolution analysis scheme is not suitable for feature restoration. The tech-
nique incurs error and does not adequately deal with material and normal attributes.

References

[Dau92] Ingrid Daubechies. Ten lectures on wavelets. Technical report, SIAM,
Philadelphia, 1992.

[EDD
�

95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael
Lounsbery, and Werner Stuetzle. Multiresolution analysis of arbitrary
meshes. SIGGRAPH, pages 173 – 182, 1995.

[HG97] P. S. Heckbert and M. Garland. Survey of polygonal surface simplification
algorithms. Technical report, Carnegie Mellon University, 1997.

[Loo87] Charles T. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, Department of Mathematics, University of Utah, 1987.

[Lou95] John Michael Lounsbery. Multiresolution Analysis for Surfaces of Arbitrary
Topological Type. PhD thesis, University of Washington, 1995.

[LSS
�

98] Aaron Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David
Dobkin. Maps: Multiresolution adaptive parameterization of surfaces. SIG-
GRAPH, pages 95 – 104, 1998.

[Mal89] Stephane Mallat. A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1989.

[SDS96] Eric J. Stollnitz, Tony Derose, and David Salesin. Wavelets for Computer
Graphics. Morgan Kaufmann Publishers, 1996.

[WDSB00] Zoë Wood, Mathieu Desbrun, Peter Schröder, and David Breen. Semi-regular
mesh extraction from volumes. SIGGRAPH, 2000.

8

