
A Meta-Authoring Tool for Specifying Interactions in Virtual
Reality Environments

Zayd Hendricks, Gary Marsden, Edwin Blake
Collaborative Visual Computing Laboratory

Department of Computer Science
University of Cape Town

{zhendric, gaz, edwin}@cs.uct.ac.za

ABSTRACT
When creating virtual reality environments a large amount
of the interaction needs to be programmed. The problem
with this is that non-computer expert users lack the pro-
gramming skills necessary to create useful applications. Spec-
ifying interactions remains in the domain of the program-
mer. Creating a single, generic authoring tool for every
different kind of application would be an impossible task
– more so if the authors are non-programmers. A more re-
alistic solution to the problem would be to think of every
environment as having a particular context such as a vir-
tual museum or gallery. Creating authoring tools specific
to these types of environment contexts greatly reduces the
problem. We have produced a progressive meta-authoring
system that allows both novice and advanced users to create
useful virtual reality applications, allowing the smooth mi-
gration of novice users to becoming more experienced. We
believe that our system overcomes problems in architecture
and support for novice users found in previous systems.

Categories and Subject Descriptors
H.5.2 [Information Systems]: User Intefaces—interaction
styles; I.3.7 [Computing Methodologies]: Computer Gra-
phics—virtual reality

General Terms
Human Factors

Keywords
Virtual reality, virtual reality authoring, migrating user sup-
port, behavior, interaction, scripting languages

1. INTRODUCTION
Virtual reality (VR) is a concept that has developed rapidly
over the past few years. This growth is being stimulated
by research into the field, as well as entry-level technology

being more readily available. VRML, described as a three-
dimensional analogy to HTML [4], is one such technology
that has contributed to this growth. Such modelling lan-
guages have greatly increased the spread and usage of virtual
reality environments since they provide an easy mechanism
for describing VR worlds over the web.

The problem for novice users1 trying to create useful VR
applications arise when they need to specify the behavior
and interactions of the objects in their environments. This
task, to be made flexible, requires the user to program.

What is still lacking is the serious consideration that these
novice users, who require these technologies the most, more
often than not, lack the skills necessary to create them – VR
authoring remains largely in the domain of the programmer.
(A parallel problem exists for users wanting to create graph-
ical user interfaces (GUIs), although there is currently more
research into GUI authoring techniques than into VR.)

VR authoring systems fall into two general categories: those
that support novice users and those that support a more
advanced user. Systems that have been created for novice
users are normally too simplistic and lack the sophistication
necessary to develop the specific VR solution they need. On
the other hand, those systems that provide the necessary
sophistication are too general to provide the solution; they
are difficult to use and take too long to create a useful ap-
plication.

We describe a VR authoring system that overcomes some
of the problems associated with current authoring systems.
One way in which we do this is by providing both novice
and advanced users a single system on which to develop,
with the opportunity for novice users to smoothly migrate
to creating more complex applications.

Please note that our work does not deal with user interfaces,
instead we define a framework and architecture on which
such user interfaces may be built. As such, it defines the
functionality those interfaces may possess.

2. GENERAL CONCEPTS
2.1 Creating Virtual Worlds
1We refer to novice users as having little to no programming
skills but are, however, experts in their own fields.

Copyright © 2003 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2003 ACM 1-58113-643-9/03/0002 $5.00

171

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Creating a virtual world generally consists of two distin-
guishable steps – modelling the environment and specifying
interactions and behavior (althrough some research is being
done into merging these two steps [21]).

Environment Modelling: Environment modelling is the
process of populating an environment through object cre-
ation and placement. It is the creation of the static environ-
ment.

Three-dimensional modelling packages are normally used for
object creation. Although this is the process of creating the
static environment, object animations are considered part of
this modelling process (we refer to this as static animation as
it describes changes in the object that are not defined by its
interactions or the system). Objects in the environment are
also not restricted to being visible entities – many systems
include sound as being objects in a world.

There are many packages and languages that can be used
for modelling a virtual world (essentially the placement of
modelled objects). A modelling language such as VRML can
be used to specify objects and models within a virtual world.
A common hierarchical specification for object positioning
in a three-dimensional world is the scene graph [16].

Interaction and behavior specification: Interactions
are used to describe the dynamic operations of the user,
the objects and the environment. They define how the user
interacts with the environment and with the objects in the
environment. It also includes how objects interact with each
other as well as defining the general behavior of the environ-
ment (gravity, kinematics, etc.).

Specifying interactions typically requires some form of pro-
gramming for them to be useful. Novice users wishing to
create VR applications therefore find two main problems
with specifying interactions:

• they are difficult to program: Authoring virtual en-
vironments still remains largely in the domain of the
programmer [13]. Current systems require that devel-
opers possess some degree of programming skills before
they can create an environment that contains a signif-
icant amount of interaction.

• they take a long time to create: Tools for creating VR
applications exist mainly as a set of interface libraries,
for example Sense8’s WorldToolKit [6]. Even expert
users find that it takes a long time to build a fully in-
teractive environment. Overall, developing useful vir-
tual environments still takes too long.

Those systems that provide for a more rapid environ-
ment development are usually specific to a type of en-
vironment (for example the automotive industry [7])
or they do not provide the flexibility novice users need
to create their worlds. Extending these environments
requires that advanced users program at an API level.

2.2 Interactions and Behavior
Interactions and behavior in VR systems have been imple-
mented in two general ways [3][22]:

• Behavior-based systems. In behavior-based sys-
tems, the interactions of the objects in the world are
implemented as ‘attributes’ of the objects. The ob-
jects run according to the behavior that has been pro-
grammed for it; each object knows what it must do
and how it responds to users and other objects. The
objects take inputs from the environment, make deci-
sions and act accordingly [3][14]. The objects may also
be restricted by rules the environment imposes.

• Event-based systems. Interactions are based on sets
of events that occur in the environment. These events
are generated by user interactions or are generated by
a change in the state of objects. (These events are
not different from the events used in graphical user
interfaces where events are generated, for example, by
the user clicking on a button.)

RhoVer [2], and more recently CoRgi [19], are systems for
rapidly developing virtual environments and are used pri-
marily as test beds for investigating virtual reality. Appli-
cations on the system are implementations in Java [18] and
are natively compiled for optimization. Interactions that are
created are behavior-based. Objects in the environments are
created as object instances in Java, each object defining its
behaviors in the world. The RhoVer system provides only a
framework of a system. Creating a VR application requires
that the user learn and understand some of the concepts
of VR; the user is required to program the graphics of the
environment.

Avango [17] is a framework for building interactive virtual
environment applications. It uses an event-based interaction
system by providing sensors in the environment. All high-
level Avango objects can be created and manipulated with
an interpreted Scheme script [15] (a functional scripting lan-
guage). Complex and performance critical parts are written
in C++ which is then called from the Scheme scripts.

DIVE [10] is a “multi-user, scalable network architecture for
distributed virtual environments”. The system is used as a
platform for collaborative VR experimentation. As such,
some of its main aims have been that environments be built
quickly. As a collaborative system, they have concentrated
their works on it being a transparently networked applica-
tion.

Interactions within the system are both behavior- and event-
based. Each object in the environment may contain Tcl
[9][11] scripts that are executed wherever the object is repli-
cated (defining the behavior-based interactions). Tcl scripts
can also be triggered by events defined by the system (defin-
ing the event-based interactions). There are pre-made events
for interaction: signals, timers, collisions, etc.

The DIVE system contains no support for novice users.
Their focus has been on the intermediate type users (pro-
viding these with the scripting facilities), and on advanced
users, by providing a low-level API that can be compiled to
create a DIVE client system. The DIVE system has tried to
improve creation time, and is an advantage of the RhoVer
system, in that they have provided scripting routines to, on
a high-level, manipulate the graphics.

172

experienced
users

novice

users

users

intermediate

(a)

experiencednovice

usage

(b)

Figure 1: (a) A static model describing the types of users of a system, novice users making up the majority.
This model shows the usually inaccurate perception about the types of users of a system. (b) A dynamic model
that more realistically models the dynamic progression of users. Users of a system spend only a short time as
‘novices’ of a system.

Alice [13] is a “rapid prototyping system for virtual reality”.
It was created to overcome the problem that writing virtual
reality software is a difficult process.

They have created a set of pre-made functions to create
events that novice users can use to specify their interactions.
There are, however, a limited amount of these.

The Alice system provides a set of Python [20] classes for
manipulating the objects in its environments. These classes
include methods for testing object-based events (events gen-
erated through objects). The system also provides some
basic user interaction events which can be used to spawn
scripts (it does not allow new events of these types to be
created).

For the advanced programmers, Alice allows the user to cre-
ate Python extensions and modules and add them to the
system. These extensions are created with a low-level lan-
guage.

Each of the above systems caters for a different set of users.
In the next section we discuss the concept of migrating user
support and how this concept applies to each of these sys-
tems.

3. MIGRATING USER SUPPORT
Most systems base their user support on the perceived model
for the types of users of a system, depicted in Figure 1(a). In
reality, we find that this is inaccurate as it describes a static
model for a dynamic system. The graph shown in Figure
1(b) gives a more realistic model – it describes the dynamic
progress of novice users to advancing their expertise in a
system [1]. We therefore find that system implementations
do not take this ‘migration’ of users into account.

The figure shows that a user on a system spends a short
time as a novice of that system as compared to the amount
of time they will spend using the system. This implies that

applications should be made to support novice users, but
more importantly, be made for optimal use by experienced
users at the same time. Sacrificing the complexity of a sys-
tem for the sake of novice users only serves to frustrate the
immensely larger audience of experienced users.

With respect to VR systems we find that authoring tools for
VR applications provide sophistication support for usually
only a certain type of user. The progress of users can be
modelled by the graph shown in Figure 2(a) [12]. There is
a rapid learning curve attributed to the user’s initial work-
ing with the system. As they use more of the system, their
knowledge and ability to use the system increases. Once
the user has reached a ‘comfort’ phase (the maximum so-
phistication level they can get out of the system), the curve
straightens. This occurs as they reach the sophistication
limit of either themselves or the system – the system allows
them to progress no further.

In our experience, the RhoVer system gives an example of
the kind of graph that can be shown in Figure 2(a). It is
a single rapid learning curve where the user is required to
learn everything: the system, programming, low-level graph-
ics concepts, etc. before they can create an application.

Systems such as Avango and Dive represent a two-phase
learning system. The first is that the user requires learn-
ing the scripting language. Learning the API is required to
become an expert with the system – normally for advanced
programmers only, programming with a low-level language.

Alice represents a three-phase learning system: novice users
can use the event system to create a particular set of inter-
actions. If they wish to create more complex interactions,
they are required to learn the Python scripting language.
Conway [5] justifies this by claiming that users wishing to
accomplish anything useful will learn to program. Finally,
for more advanced users, they provide the low-level Python
extensions. This multi-phase learning can be depicted in

173

sophistication
output

sophistication
output

(a) (b)

time time

Figure 2: (a) The graph shows a user’s progress with respect to the sophistication of the types of applications
they can create. There is an initial steepness in the curve associated with the user first learning the system.
As they become more experienced, they reach the maximum sophistication the system can support. (b) Some
systems provide multiple stages of development for a user. The graph reflects this by showing multiple stages
of learning, each stage effecting a change in the learning curve.

Figure 2(b).

4. AN IDEAL VR AUTHORING SYSTEM
Through our experience, we have considered what features
we would most like in a VR authoring system that are lack-
ing in many systems. These features present an ideal system
that is useful, not only to advanced programmers, but to
novice users as well.

1. Smooth migrating user support.

It is important that users with differing levels of skills
be able to use a system. As such, novice users gaining
experience should be able to advance to using the more
complex features of the system.

This implies that novice users should be able to use
it without sacrificing the sophistication of the environ-
ments it can output. Similarly, advanced users should
be able to use the system without it being so simple
that it lacks the sophistication necessary to create the
environments they need.

There is the added constraint that this migration be
smooth. In some systems, provision might be made
for multiple stages of progression. An example of this
is a system that provides a user interface for use by
novice users, a scripting language for more intermedi-
ate users, and a API for experienced users. At each
stage, however, the user is required to learn something
new. The ideal system should give a smooth migra-
tion, as shown in Figure 3.

2. Support VR applications of any complexity.

Irrespective of the types of users, the system should
be able to produce VR applications of any complexity.
We have found that VR systems tend to restrict the
types of environments they can produce to their target
user types.

sophistication
output

migration
multi−progressive

time

smooth migration

Figure 3: The graphs shows two different types of
user migrations. The solid line represents the types
of systems that provide multiple types of progression.
The dotted line represents an ideal system that pro-
vides the user with a linear learning curve.

Relative to the graphs in Figure 2, this would imply
that no asymptote to the complexity of a system exists,
and that there is no limit to the complexity it supports,
such as is shown by the smooth migration line in Figure
3.

3. Much shortened development time.

Currently in systems, developing a useful VR applica-
tion stills takes a long time, even for an experienced
user. The time taken to develop an application should
be reduced to a fraction of what it takes today (cur-
rently ranging from several weeks to months).

The time taken to create a VR application should be
comparable to the time it takes to create a GUI appli-
cation.

4. Completely configurable.

The system should be able to cope with new hardware

174

and emerging technologies with minimal changes to
the architecture of the system. Anything that is new or
added on should not change the way that they are used
for defining interactions – the system should remain
consistent in the way it is used.

5. SYSTEM OVERVIEW
Our system is divided into three main modules communicat-
ing with each other in different ways (see Figure 4). Each
module presents a simple front-end with which it may com-
municate with another via an IMC (inter-module commu-
nication) module. The front-end is used to hide the more
complex implementation details. The method in which they
communicate (the IMC module) may be easily changed if it
is decided that the method used is inefficient or inflexible.
Presenting this front-end provides an easy way for different
implementations of a particular module to be rewritten: a
newly written module need only present the same front-end.

The Graphics Module

The Graphics Module is comprised of two simple parts: a
World component and several Objects stored in the Object
Database. The World component is responsible for control-
ling the rendering of the database (the outputs of the VR
system), and for receiving inputs, keyboard, mouse or other,
via its input handler.

In order to have the World as a ‘tangible’ entity in the envi-
ronment, we virtually represent it as an object stored in the
Object Database. In doing this, we allow all its attributes
to be accessible to objects and events.

The Scripting Module

In order to provide a quick turn-around time for specifying
the interactions, it was decided that the interactions should
be scripted. The biggest advantage to this is that no com-
pilations are required and changes can be made while the
environment is running.

The Scripting Module is again just an interface on which the
scripting language chosen to be used is hooked. This allows
the system to be uniquely scripting language independent
which provides the system with several advantages, which
will be discussed later.

The Events Module

We have focused on using event-based interactions and be-
haviors in our system; it is easier specifying events for object
interactions in a world and can be achieved without the user
programming. Even with only a few events available to a
user, complex interactions can be created.

The Events Module is responsible for handling the inter-
actions in the environment. It contains the structures for
storing attribute variables, conditions and actions discussed
below. Executing the scripts for the events is handled by
the Event Module. The following sections provide a more
in-depth discussion, as this forms the most important mod-
ule in the system.

6. EVENT-ACTION PAIRS
A virtual environment is composed of several static nodes
and models – these are typically placed in some type of scene
graph. Animations and scripts transform the environment
into a dynamic world by changing the static configurations
of the nodes and models; moving or rotating an object is
merely a change in a transform node associated with the
object in the scene graph.

We define an event-action pair as something that happens
at a certain time in the environment. Events are composed
of one or more conditions that determine whether or not an
event has occurred. Consequently, an event-action pair can
be decomposed into two distinct parts: an action (‘some-
thing that happens’) and a set of one or more conditions,
which determine the circumstances under which the action
should be executed.

A condition can be satisfied by user interactions, or by a
change in the property of an object. User events are typ-
ically in the form of the user clicking on some object or
triggered by the position of the user. An example would be
either the user clicking on some virtual light switch or just
walking into a room to activate the light.

There are therefore several components that describe a vir-
tual world: the objects and their static animations (describ-
ing the modelling process), conditions and actions (describ-
ing the dynamic behavior). We have found that when build-
ing environments, it is cumbersome to have all these ele-
ments described in a single file as many systems do. For
this reason, we have split some of these elements and have
stored them separately. This not only keeps things tidier, it
promotes the re-use of each element.

The separation of files also suitably describes the separa-
tion of objects, conditions and actions. Each one is inde-
pendently defined of the other, although associations may
exist. If some object has a set of conditions that are associ-
ated with it, they are simply hooked on by named reference
to the file they are contained in. For example, we would
define a set of ‘light conditions’ that would apply to any
light object; they all maintain a state defining whether they
are on or off, behaviors describing what to do if switched
on, etc. All objects representing a light would then use the
same set of ‘light conditions’.

Zachmann [22] lists a set of requirements for event conditions
and actions that, through their experience, allows them to
be ‘most flexible’:

1. Any action can be triggered by any condition.

2. Several conditions can trigger the same action. Ac-
tions can be triggered simultaneously.

3. Conditions can be combined by boolean expressions.

4. Conditions can be configured such that they start or
stop an action when a certain condition holds for its
input.

5. The status of an action can be the input of another
condition.

175

IMC

IMC

Events Module

Interface
IMC

Events Handler

Scripting Engine
Python

Tcl

Scripting Module

Graphics Module

Events Module

World

Object Database

States

Conditions

Actions

Graphics Module

Interface

Graphics Engine

Scripting Module

Interface

Figure 4: The Modular System Overview. Each of the modules is connected via an IMC module. The modules
present a front-end with which they may transparently communicate with each other.

6.1 Attribute Variables
Many of the simple behaviors that are created in virtual
environments are based on finite state machines (FSM). Of
these, many of them require only two states: a light is on
or off ; an object is selected or not selected.

Attribute variables are defined in the environment and are
used to describe the properties of an object or the envi-
ronment. Their values (or changes in them) are used in
generating events.

Since attribute variables represent an interface whereby a
user authoring an environment may cause change in an en-
vironment, we decided that everything in the environment
should be an attribute variable. The objects, their proper-
ties, the avatar and the environment can all be manipulated
through the attribute variables that represent them.

6.2 Conditions
Many of the systems that use an event-based system for de-
scribing their interactions usually provide only a limited set
of conditions on which to test events. What these systems do
not provide is a means to create new or custom made condi-
tions. In our system, conditions in the system are scripted;
users can then create new conditions or modify existing ones
to suite their needs.

Conditions are tested with the use of scripts – the decision
made is usually based on the values of attribute variables.
They work similarly to programming functions – they take
in parameters and return whether or not the condition has
been satisfied. The condition script signals a ‘condition ac-
cepted ’ to the system to indicate an affirmative – no signal
received would be considered a condition failed. Since a
condition may sometimes be met on several ground, a ‘con-
dition accepted ’ signal may be emitted at anytime during
the execution of a condition script.

Since conditions return a boolean value specifying whether
or not that condition has been satisfied, conditions may be

logically combined into more complex conditions when defin-
ing events.

Conditions are also declared similarly to the way functions
are created with three main parts:

Header : conditionName (conditionParameters)
Variables: conditionVariables
Script : conditionScript

The condition name is used to reference the condition. The
condition parameters are created as sentence functions: they
are written functions that use ‘redundancy’ to describe the
parameters. An example of this would be:

objectClick: “When the object (object) has been clicked
on (number) times ...”

The type of the parameter is described in the parenthesis
of the sentence function. There are two main advantages
to using sentence functions that we have found useful: they
give a meaningful description of what the function does and
they provide a context for the types of the parameters that
the function accepts. Sentence functions have provided us
with a novel method for describing function parameters that
allow novice users to easily specify functions.

The conditionVariables section is used to define attribute
variables that may be used as ‘local variables’ within the
condition.

Conditions are associated with objects in a many-to-many
relationship. A particular object that has a condition asso-
ciated with it defines the types of events that can be gener-
ated with that object – these objects can be seen as offering
‘services’ in the form of conditions. We attach certain con-
ditions to certain objects – not all objects would offer the
same ‘services’.

176

An example using time conditions
Frequently when creating a virtual environment, we need
to create an event that occurs at a particular time or that
would perform some action for a specified amount of time.
The time that is specified is usually based on a ‘wall clock’
time and is not dependant on the speed of the system or any
external factors.

An example of this is a simulated animation that would need
to run for an exact amount of time. This would need to
be independent on the speed of the environment, processor,
etc. Time in an environment is represented as a single global
attribute variable that is maintained by the World object.
The value of the time-variable reflects the number of seconds
since the start of the environment. Objects wishing to use
time in some way take snapshots of the time-variable and
use it to calculate their progress relative to the global time.
In this way, a virtual world can be orchestrated using time
orientated events.

dt = snapshot − timeSnapshot

if (dt >= wt)

return "Condition_Accepted"

wt = parameter1 * 60 + parameter2

conditionEvery

Condition

"Every (number) minutes and (number) seconds ..."

Script

int timeSnapshot

timeSnapshot = timeSnapshot + wt

snapshot = World.getAttrVariable ("time")

Attribute Variables

Figure 5: An example of a timer condition. The
structure for defining a new condition is divided into
three main sections: the declaration header informa-
tion, attribute variables and a script. In this example
a pseudo-script is used to show how the condition is
programmed.

An example of using the time-variable to create a condi-
tion is shown in Figure 5. The figure shows that condi-
tions are made of three main parts: declaration header in-
formation, attribute variables, and a script. The declara-
tion information contains the name and sentence function.
Each condition may define attribute variables that can be
used. In this example, we define an attribute variable called
timeSnapshot that represents the ‘wall-clock’ time at the
creation of the event.

Any object that would need to use a timer to define its
behavior in a world would simply reference this condition.
An instance of the condition would be created for it.

6.3 Actions
Actions are executed by the environment once it has re-
ceived a ‘condition accepted ’ by the associated event. As
was mentioned earlier, conditions are associated with ob-
jects. Actions on the other hand are completely separate

from the objects and their conditions. In other words, the
action that is executed on a condition is not related to that
condition.

Events form a many-to-many relationship with actions; the
same event may trigger many actions and different events
may trigger the same action. The same event-action pairs
may be defined multiple times – with or without the same
parameters.

Actions are defined in a similar way to conditions. They
are comprised of: an action name and the parameters to
the action (given again as a sentence function), the local
definitions of any attribute variables and an action script.

Header: actionName (actionParameters)
Variables: actionVariables
Script: actionScript

Some simple examples of actions are those that manipulate
the transformations of objects in the world. An action to
rotate an object could be defined as:

turnObject: “... turn the object (object) by (number)
degrees.”

Action scripts influence the behavior of an environment by
changing the environment’s static aspects. Actions can be
used to start and stop static object animations or change
attribute variable values that could lead to event conditions
being accepted.

Since both conditions and actions use scripts to define their
functionality, the entire functionality of an event-action pair
is said to be scripted. This allows the run-time changing of
event-action pairs to occur. So within action scripts, changes
may be made to the event-action pairs – they may add,
change parameters of, or remove pairs from the environment.

7. SPECIFYING BEHAVIOR AND INTER-
ACTION

Interactions in our system are specified through event-action
pairs. The conditions and actions above describe functions
that can be used to create these pairs. Specifying a pair
is therefore an instantiation of both a set of one or more
conditions and an action.

7.1 Specifying Action-Event Pairs
On a lower level, event-action pairs are specified by instanti-
ating their condition and action functions with the required
parameters. From the example of the timer condition, an
instantiation could be made as follows:

conditionEvery (2, 30)

This then describes a condition that would occur every two
and half minutes.

For the more novice user, the sentence functions may be
used as guidelines as to the type of values that can be used

177

as parameters. An example is given in Figure 6 where the
sentence function is presented to the user. Text boxes are
used where the user may enter the values for the parameters.

Figure 6: The sentence functions presented in a
graphical user interface (GUI). Text boxes are used
for the user to enter the parameters for the functions.
The top box represents the sentence function for the
condition, the bottom for the action. This GUI dialog
would represent the user statically creating or editing
a condition.

The same process can be used for actions. The function

turnObject ("Box", 90)

would describe an action that rotates an object name “Box”
by 90 degrees (around the y-axis). In our system, all objects
are named as strings. This ensures a compatibility with the
scripting language being used.

To emphasise that a condition or an action is an incomplete
part, we use an elipses (‘...’) at the end of a condition’s and
the beginning of an action’s sentence function. We can then
represent an event-action pair in a readable format to the
user as the sentence functions with the appropriate param-
eter values inserted:

Condition: “Every 2 minutes and 30 seconds ...”
Action: “... turn the object Box by 90 degrees.”

or simply as a single sentence:

Event: “Every 2 minutes and 30 seconds, turn the
object Box by 90 degrees.”

The technique above of instantiating event-action pairs is
the static method that the user specifies (this is usually the
initializing pairs created at the start of an environment). As
mentioned earlier, pairs may also be dynamically created or
changed through the action scripts.

7.2 Grouping Conditions
In a library of conditions and actions, users should easily be
able to find the condition and action they require to spec-
ify an event-action pair. We have created the ability for
the author to categories and group (and subgroup, etc., if
necessary) conditions.

Creating a new event-action pair starts with specifying the
condition functions and then specifying the action function
that together make up the pair. Since conditions are as-
sociated with the objects they are used with, the process
of creating a new event starts with specifying the object.

From there, a selection of the condition groups (and sub-
groups, etc.) that is associated may be selected. Finally,
the condition is selected.

In this way, the task of searching for a particular condition
in a large library is made easier through the grouping of the
conditions. Those conditions not object-related are grouped
and connected as part of the World object.

As an example, specifying a condition to check for a mouse
click would follow the path shown in Figure 7.

7.3 User Interaction and Object Selection
A user interacts with an environment through some form of
interaction device. These devices can range from anything
from a mouse to a data-glove to a set of trackers. The author
of a world would need to define how the environment reacts
to input from these devices.

In the case of object selection, behaviors need to be defined
for when a user selects an object. In order to keep everything
consistent, all input data that are received through the de-
vices are stored in attribute variables. Interactions can then
be created through changes in these attribute variables.

For the example of a mouse, the World defines attribute vari-
ables for the pressing and the release of the mouse buttons.
For each object in the world, an associated attribute variable
is created to indicate whether, given a set of screen coord-
ingtes, it is currently being selected. This may include many
objects at once as in an example of hierarchies of objects.

These associated attribute variables may be defined for any
type of input device. The values of these attribute variables
can then be used to generate events.

7.4 Non-Programmers Specifying Event-
Action Pairs

An event-action pair is instantiated through first specifying
a set of one or more conditions and an action (through a
‘browsing’ process shown in Figure 7), and then inserting
the require parameters for the functions (as in Figure 6).

Through the use of this instantiation method, interactions
can be created that do not require programming and is thus
ideal for novice users.

The condition and actions that have been provided are pow-
erful enough to create a diverse set of applications – all FSM-
based environments can be created without programming in
our system (for example a game of tic-tac-toe with a single
player versus a computer).

8. DISCUSSION
Having looked at the good and the bad features of many dif-
ferent systems, we have extracted those features that were
useful and combined them into a system that overcomes
their limitations as compared to an ‘ideal VR authoring
system’. We give a brief discussion analyzing our system
against the criteria that has been laid down for the ideal.

8.1 Why a Meta-Authoring Tool?

178

Object 2

Object 3

Object 1

World Position

Orientation

Collision

Interactions

Objects Groups Subgroups Sub−subgroups

Keyboard

Mouse

Timer

Data−glove

User Clicked

Double clicked

Clicked x times

Conditions

Figure 7: Specifying a new condition. The first step involved is to select the object associated with the condition.
The selection is refined through the groups and the subgroups, etc. in which the condition belongs. The last step
is to select the condition from the list of conditions in the group.

Creating a single generic authoring tool for every different
kind of VR application is an impossible task – more so if
non-programmers are to do the authoring. A more realistic
solution is to think of every application as having a context
or theme, such as a shopping mall of museum. Creating
an authoring tool specific to these applications reduces this
problem.

The authoring tool in this sense refers to the tool that novice
and non-programming users would use to create interactions
by specifying event-action pairs in the system. A criterion
for creating these authoring tools would be that they be
quick to develop. With this in mind, the Meta-Authoring
Tool would be used to create (through script programming)
the necessary conditions and actions novice users would use
in the context specific authoring tool.

The Meta-Authoring Tool is then, in this sense, a tool for
designing and creating context specific VR authoring tools.

8.2 Migrating User Support
Most system target at a particular type of user. They pro-
vide either support for novice users only, or for those users
that can program. Our system provides the support for
novice users, without losing the support for more advanced
users. In this way, novice user may migrate to using the
more advanced features of the system. Although the gap
that exists between the authoring tool and meta-authoring
tool can only be bridged by a user learning to program, the
users may gradually do so. What this system uniquely al-
lows for is the progressive development of a user.

Novice users may use the provided event libraries that al-
low them to create interactions – with the help of the sen-
tence functions provided with each condition and action,
these may be specified without their needing to program.
More advanced users may attempt to combine conditions
into more complex events. Since the system is scripting lan-
guage independent, an inexperienced user may start with,
for example, a VR scripting language developed for non-
programmers [22]. The more experience they gain, the more
complex scripting languages they can use to develop com-
plex interactions in their worlds. Finally, since the scripts
for all the conditions and actions are given, the user may
advance by learning through the examples of scripts that
are provided. This method provides a more smooth migra-
tion of users – the way in which users use the system always
remains the same and all types of users with differing levels
of experience remain within the same system.

8.3 VR Complexity Support
Dive and Avango provide a scripting language to minimally
manipulate objects in the environment. They also provide a
low-level API for creating more complex interactions. These
are then linked into the system and can be called through
the scripts.

In a system such as Alice, the focus has been on overcoming
the problem that creating VR software is a difficult process.
With such systems, the solution is to provide a set of auto-
mated ‘functions’ that will allow the user to easily specify
the interactions of their world.

A short-coming to this approach is that they provide the
pre-created and automated functions, sacrificing the ability
to extend and expand the system: to allow for the creation
of new functions. If systems do provide the feature, to do so
is usually difficult and goes against overcoming the concept
of “VR software is difficult to create”.

In our system, since everything in the system is represented
as an attribute variable accessible through the scripts, and
the entire environment behavior functionality scripted, it
allows for extending the use of functions for the creation of
new events. Only at a low-level, such as adding a new type
of user interface hardware, or changing the Graphics Module
for a better rendering engine, would it be necessary to go
past using the scripts.

8.4 Shortened Development Time
Shortening the time for creating VR applications has been
achieved in different ways. The most perceivable of these
is the move from compiling and from API code towards
scripted behavior. Even still, systems such as Dive and Alice
bind the scripting language being used to the environment.
In doing so, they provide a set functions and methods ac-
cessible through the scripting language to manipulate the
environments. These functions and methods are similar in
nature to providing a set of API. Dive, for example, gives
a reference manual for their more than 300 Tcl/C interface
functions [8].

Our system provides a minimal set of language independent
functions for manipulating the attribute variables in the en-
vironment. In doing so, a user does not need to learn, on
top of the scripting language, the API provided with it in
order to create interactions. For non-programmers, speci-
fying interactions can be simulated with a point-and-click
interface system.

179

8.5 Configurability
Most systems do not provide the ability to easily change
any of their components. Users are usually stuck with the
implementation provided by the creators of the system. To
overcome this problem, some have implemented a modular-
ized system for some components that allow them to, for
example, add new hardware devices.

Our modularized system allows for different implementa-
tions of a module to be used. It is possible to have two
of the modules with different implementations running si-
multaneously. For example, both Python and Tcl at the
same time as depicted in Figure 4, or use different graphics
libraries, such as OpenGL or Direct3D.

9. CONCLUSION
VR authoring systems have grown, although in the past,
few systems have been targeted to novice users. With its
increased use, this is becoming a more important require-
ment.

We have presented a meta-authoring system that, both on
an architectural level and on a user-end level, tries to over-
come some of the problems present in systems today. These
problems we presented as a list of ideals we found lacking in
many systems.

While producing a single authoring system that would be
able to create any type of VR application would be impossi-
ble, we have proposed a more progressive system – a meta-
authoring tool that would rapidly generate a VR authoring
system for a particular VR solution.

The system we have created allows for smoother progres-
sive migration of novice users to more advanced users: the
meta-authoring tool being used by more advanced users to
produce the authoring tools that can be driven by non-
programming, novice users.

10. REFERENCES
[1] Cooper A. The Inmates Are Running the Asylum:

Why High Tech Products Drive Us Crazy and How To
Restore The Sanity. Sams, 1999.

[2] Bangay S., Gain J., Watknis G., Watkins K. RhoVeR:
Building the Second Generation of
Parallel/Distributed Virtual Reality Systems. In A. G.
Chalmers and F. W. Jansen, editors, First
Eurographics Workshop of Parallel Graphics and
Visualization, pages 277–289, 1996.

[3] Blumberg B.M., Gaylean T.A. Multi-level direction of
autonomous creatures for real-time virtual
environments. In R. Cook, editor, SIGGRAPH 1995,
pages 47–54, August 1995.

[4] Carey R., Bell G. The Annotated VRML Reference
Manual. Addison-Wesley Pub Co., 1997.

[5] Conway M.J. Alice:Easy-to-Learn 3D Scripting for
Novices. PhD thesis, Faculty of the School of
Engineering and Applied Science at the University of
Virginia, December 1997.

[6] Sense8 Corporation. Worldtoolkit: Virtual reality
support software. Bridgeway, Suite 101, Sausalito, CA
94965, telephone : (415)331-6318.

[7] de Sa A., Zachmann G. Virtual reality as a tool for
verification of assembly and maintenance processes.
Computers and Graphics, 23(3):389–403, 1999.

[8] Frecon E. The Dive/Tcl Reference Manual.

[9] Frecon E., Hagsand O. The Dive/Tcl behaviour
interface reference document.

[10] Frecon E., Stenius M. DIVE: A Scalable network
architecture for distributed virtual environments.
Distributed Systems Engineering Journal (special issue
on Distributed Virtual Environments), pages 91–100,
February 1998.

[11] Ousterhout J.K. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[12] Marsden G. Designing Graphical Interface
Programming Languages for the End User. PhD
thesis, Department of Computer Science, Stirling
University, January 1998.

[13] Pausch R., Burnette T., Capehart A.C., Conway M.,
Cosgrove D., DeLine R., Durbin J., Gossweiler R.,
Koga S., White J. A Brief Architectural Overview of
Alice, a Rapid Prototyping System for Virtual
Reality. IEEE Computer Graphics, May 1995.

[14] Perlin K., Goldberg A. Improv: A system for scripting
interactive actors in virtual worlds. Computer
Graphics, 30(Annual Conference Series):205–216,
1996.

[15] Dybvig R.K. The Sceme Programming Language:
ANSI Scheme. P T R Prentice-Hall, 1996.

[16] Strauss P., Carey R. An Object-Orientated 3D
Graphics Toolkit. Computer Graphics, 26:341–349,
July 1992.

[17] Tramberend H. Avocado: A distributed virtual reality
framework. In IEEE Virtual Reality, 1998.

[18] Website. Java. [http://java.sun.com] Last accessed
22/07/2002.

[19] Website. Rhodes University VRSIG.
[http://www.cs.ru.ac.za/vrsig/] Last accessed
23/08/2002.

[20] Website. The Python Home Page.
[http://www.python.org] Last accessed 22/07/2002.

[21] Yang S., Marsden G. Using programming tools in
virtual environments. Technical Report CS02-04-00,
Department Of Computer Science, University of Cape
Town, 2002.
[http://www.cs.uct.ac.za/Research/CVC/Techrep/
CS02-04-00.pdf] Last accessed 06/11/2002.

[22] Zachmann G. A language for describing behavior of
and interaction with virtual worlds. In VRST ’96,
pages 143–150, 1996.

180

