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Abstract  
In a peer to peer database sharing network users query data from all peers using one 

query as if they are querying data from one database. Implementing such a facility 

requires solutions to the problems of schema conflicts and query translation. Query 

translation is the problem of rewriting a query posed in terms of one schema to the query 

in terms of the other schema. Schema conflicts refer to the problems which come as the 

results of integrating data from databases which were designed independently. This paper 

proposes the architecture for integrating and querying databases in the peer to peer (P2P) 

network. 
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1 Introduction and 
Motivation 

Query translation in a file sharing P2P 

network is easier than in database 

sharing [9]. This is because data is 

semantically rich in database sharing and 

this gives users the capability to make 

rich queries. The problems which come 

as the result of sharing semantically rich 

and heterogeneous data are structural, 

naming and semantic conflicts [13]. 

  

Query translation in the peer to peer 

system is the problem of querying data 

stored in different peers using one query. 

This problem can be related to the 

problem of data integration. The data 

integration systems integrate data from 

different data sources and users query 

this mediated data as if they were 

querying data from one database. The 

advantage of implementing data 

integration systems is that data can be 

administered and updated locally but 

still be shared.  

 

The proposed solution to the problem of 

query translation is based on capturing 

enough metadata about the data stored 

by each peer. This metadata is captured 

as the peer is introduced to the system. 

The metadata is about attributes and 

relations in the schema of a peer. The 

metadata about relations is about 

restrictions posed on the definition of 

tuples the administrator is willing to 

share with other peers. Metadata about 

attributes is about their data types and 

general knowledge about attributes. All 

this metadata is used to define the kind 

of queries a peer is able to answer. 

Knowing the kind of queries the peer is 

able to answer can help to reduce 

avoidable connections to peers. The 
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proposed solution to the queries which 

involve aggregate and grouping 

functions has two steps. The first step 

writes queries to get data from peers and 

storing them in the temporary results 

table. The second step queries the results 

table to compute and format the final 

response (s). 

  

 

The rest of this paper is organized as 

follows. Section 2 gives background 

theory. Section 3 describes the proposed 

architecture. Section 4 gives the 

summary of the results. Section 5 

summaries the paper and makes 

conclusions. Section 6 gives refernces. 

2 Background 
 

2.1 Schema Mediation 
 

The problem of sharing pre existing 

heterogeneous data is applicable in many 

areas in databases. These areas are 

information integration, peer-to-peer 

data management, data exchange and 

data warehousing [19, 20]. All these 

problems need schema mappings. 

Schema mapping [18, 19] is the problem 

of describing the relationship between 

database schemas. Schema mappings 

only describe the relationship between 

schemas without considering structural 

and representation conflicts [19, 13]. 

 

Data integration [6, 18] is the problem of 

relating data stored in different databases 

using a global schema. There are 

differences and similarities between the 

problem of data exchange and data 

integration. The difference is that in data 

integration data is not moved from one 

schema to the other but it is queried as if 

it was in one database. In data exchange 

data is migrated from the source schema 

to the target schema. One of the 

similarities is that they both need schema 

mapping to associate data from one 

schema to the other [18]. 

2.1.1 Schema Mapping 

 

The problem of schema mapping is 

applicable when querying data from 

different sources. The traditional 

approach is to start by defining 

mappings between schemas of data 

sources. The architecture designed in 

[13] suggests using XML to map 

database schemas from different sources. 

In this architecture all local schemas are 

transformed to XML and the global 

schema is formed by integrating local 

schemas. 

 

The architecture in [2] suggests using 

mapping tables. Mapping tables [2, 19] 

define the relationship between shared 

data. These tables list pairs of matching 

data values [19]. Their purpose is to 

come up with the way of sharing data 

from pre existing data sources in which 

there was no prior agreement during the 

design of data [19]. Mapping tables can 

also be used to map not only the 

schemas but also the relationship 

between the actual data stored in 

databases [2]. This is more appropriate if 

data is from the same domain. This is 

illustrated with sharing biological data in 

[2]. 

2.1.2 Schema Mediation 
architecture 

The problem faced with when 

integrating data from different sources is 

that sources have different data models, 

query languages [23] and the 

heterogeneity of database schemas. The 

traditional approach is to have mediator 

and wrapper components. The mediator 
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defines a common data model in which 

all the local schemas are translated to. 

The advantage of the common data 

model is that it is much easier to write 

queries using one model. 

 

 The query translator is part of the 

mediator component. The query 

translator is responsible for writing 

queries which are ready to be passed to 

different data sources. A query is 

answerable by the mediator if it is 

answerable by at least one of the data 

sources participating in the connection 

[17]. The translator translates all queries 

using a common data manipulation 

language which is used together with the 

common data model. 

 

 The wrapper component is source 

specific. It is responsible for translating 

queries from the common data model 

back to the query language in which the 

wrapper belongs to. The mediator 

component can be extended to include a 

lot of subcomponents which optimize 

the performance of the architecture. 

 

2.2 Defining the global 

schema 
 

There are two main approaches of 

modeling the global schema; global as 

view (gave) and local as view (lave) [6].  

The Global as view approach requires 

that the global schema be expressed as a 

view in local sources. The lave approach 

defines the global schema by keeping 

local schemas as views over the global 

schema; this makes it to define the 

global schema independently from the 

sources.  

 

The disadvantage of the gav approach is 

that adding a new source is complicated 

because the new source can have an 

impact on the definition of some terms 

of the global schema as the results the 

global schema can be revised. The 

advantage of it is that query processing 

is easily achieved [6]. This is because 

gav keeps information on how to access 

the data stored in sources. The advantage 

of the las approach is that it is easy to 

add a new source; it only means adding 

more mappings to the global schema. 

The drawback of lav is that query 

processing is more difficult compared to 

the gav approach. An approach which 

combines the strengths of the two 

approaches is called BGLaV and is 

discussed in more details in [12]. 

 

The next section gives more details on 

traditional architecture of mediating and 

querying data from different sources. 

2.2.1 Context Mediation  

This section describes the mediator sub 

component which can be used to change 

data stored in different contexts. This 

architecture is discussed in more details 

in [1]. 

When organizations share data which 

was independently designed face the 

problem of ensuring semantic 

interoperability of the data. This is 

achieved by storing the information 

together with its context information. 

Context information can be seen as the 

metadata about its meaning. The 

proposed query language which suites 

this architecture is context SQL (C-

SQL). C-SQL enables the attribute to be 

stored and queried together with its 

context called the meta attribute. The 

meta attribute has context information 

about the base attribute. An example to 

this is storing salaries together with their 

currency. In this case salary is the base 

attribute and currency is the meta 

attribute. The meta attribute defines the 
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context of the salary. It is possible for a 

base attribute to have more than one 

meta attributes. The salary can be in 

rands, dollars or yeans.  

 

 

2.3 Query Translation 
 

The aim of query translation in the peer 

to peer system is to use one query to 

query multiple databases. These 

databases are physically distributed and 

have heterogeneous schemas. The fact 

that schemas are heterogeneous relates 

the problem of query translation to the 

problem of data integration.  

 

The problem of data integration is the 

problem of integrating data from 

different sources and querying them with 

one query. The problem of query 

rewriting using views is the problem of 

rewriting a given query using only the 

relations and attributes in the given set 

of views. Query rewriting using views is 

applicable to many areas of databases; 

data integration, query optimization and 

data warehousing [4, 5, 10]. In query 

optimization query rewriting is used to 

get an equivalent query with efficient 

query plans. In data integration it is 

applied in query translation [4, 10]. 

  

2.3.1 Query processing 
abilities 

Data sources answer queries depending 

on the data stored in them and the kind 

of restrictions on the data. Query 

processing capability of a data source is 

the information which specifies the kind 

of queries a data source is able to 

answer. Yerneni et al [17] describes a 

possible architecture for keeping query 

processing capability records of data 

sources. This information can be stored 

as query templates, capability-

description grammars or capability 

records. The mediator system keeps 

capability records as views.  

 

The capability record specifies attributes 

and relations together with restrictions 

posed on them. Restrictions can even be 

on the kind of answers a data source 

returns. An example in which this is 

illustrated is with the amazon.com 

search engine. This search engine can be 

queried by using keywords author, title 

or subject but it never returns a subject 

as the response to the query. This means 

that a query to this data source can have 

the subject attribute in the where 

statement but not in the select statement. 

 

Data sources submit their query 

processing capabilities in terms of 

templates. Queries to a data source are 

then submitted by filling a template 

which was submitted during integration. 

The query processing capability of the 

integration system can be defined based 

on the query processing capabilities of 

individual data sources in the system. 

The query processing capability of the 

integration system is displayed to the 

user so that the user will pose queries 

which are answerable by the system. The 

query processing capability of the 

integration system can also be given to 

other integration systems which use it as 

a source. 

 

3 The Proposed 
Architecture 

The architecture aims to capture as much  

metadata about the schema of the new 

peer as possible. This metadata is used to 

rewrite a query written in terms of one 

peer’s schema to the query written in 

terms of the schema of the other peer. 
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The kind of queries a peer is able to 

answer is defined by the attributes and 

relations in the peer’s schema and the 

nature of data stored by the peer. This 

architecture is based on defining query 

processing capability records discussed 

in [17].  

 

Adding the new peer means revising the 

existing global schema to accommodate 

the relations and attributes coming with 

the schema of the new peer. Revising the 

global schema can either mean adding 

more attributes in one or more relations, 

adding new relations or adding more 

tuples in existing relations. New 

relations and attributes are added if they 

do not exist in the global schema 

already. New tuples are added if the 

schema is not revised; this happens if all 

attributes and relations of the new 

schema already exist in the global 

schema 

 

We start by matching the new peer’s 

schema with the global schema. We 

therefore need to capture the metadata 

about the schema of the new peer and 

define rules to relate it to the global 

schema.  

 

The aim is to keep schemas of peers as a 

set of views in the global schema. This 

way of integrating schemas is called 

local as view. The advantage of using 

this approach is that adding a new peer 

only means adding more views in the 

global schema. The problem of query 

translation can then be related to the 

problem of query rewriting using views. 

 

3.1 Metadata about the new 

peer  
The set of views representing the schema 

of each peer is composed of relations 

and attributes, restrictions posed by the 

administrator, relationship between 

tables of the local schema, general 

knowledge about data and rules for 

converting data from the local context to 

the global context. 

 

The required metadata about attributes 

includes their data types, scale or units 

(if applicable) and general knowledge 

about them.  

 

It is important to keep metadata about 

data types of attributes because other 

queries impose restrictions on data types. 

An example is with the sum aggregate 

function of the standard SQL. This 

function takes only attributes of type 

number (float, double or integer) as a 

parameter. Calling this function with a 

clashing data type makes the query to be 

invalid. 

 

General knowledge can be any known 

information about attributes. An 

example of general knowledge about the 

attribute is when it is known that the 

salary attribute of the relation 

“Employee” can not be less than R5000. 

This can be possible if a peer stores 

information about employees who get 

more than R5000. 

 

This knowledge contributes to the query 

processing capability because a peer will 

not answer queries with conditions 

which do not comply with this 

knowledge. The query processor can 

then prune such conditions or decide not 

to send the query to the peer at all. This 

can reduce the number of connections 

which will not return any results.  

 

Restrictions are imposed by the 

administrator who wants to share some 

of the information stored in a relation. 

An example scenario is sharing 
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information about full time employees 

(identified with employee_level > 3) and 

not about part time employees 

(employee level <3). These restrictions 

also form part of the conditions in the 

views which represent the local schema.  

 

There are attributes which one needs to 

know about their scale, rate or units to 

make full meaning about them. Peers 

can store data in different scale and 

units. For example one peer can store 

salaries in rand/week while the other 

stores the in dollars/month.  It is 

necessary to convert the data from units 

and scale of the peer’s schema to the 

scale of the global schema. Converting 

data from the context of the local 

schema to the global context 

automatically relates it to the context of 

other peers.    

 

3.2 Query Translation 

A peer can pose a query which other 

peers will not be able to answer because 

they do not have enough attributes and 

relations. Aggregate and grouping 

functions require to be processed twice. 

First for getting responses from all peers 

and second to compute the final response 

based on the responses from peers. The 

rest of this section explores these further.    

3.2.1 Missing Attributes 

 

Missing attributes are attributes in the 

sender’s query but not in any of the 

views which make up the schema of the 

receiver.  

 

Database servers often return a null 

value if the required attribute in the 

select statement has no value. In data 

integration we try to query all databases 

as if we were querying one database. 

There are attributes in the sender’s 

schema but not in the receiver’s schema.  

The sender can pose a query whose 

rewriting makes missing attributes in 

queries sent to other peers. This means 

that peers will answer a query depending 

on whether they do have all or some of 

the significant attributes in the query. A 

significant attribute in the query changes 

the meaning of the query if it is missing. 

 

We send a query to the peer even if 

some of the attributes in the select 

statement are missing. A query like this 

gives an approximate answer to the 

original query. A query is not sent to the 

peer if all attributes in the select 

statement are missing. 

 

Missing attributes in the where statement 

can change the meaning of the query. 

We strive to get as many correct or 

approximate answers as possible but still 

get only tuples required by the query. 

This makes a need of trying to find out if 

a missing attribute or condition changes 

the meaning of a query. The definition of 

query containment helps in making this 

decision. 

 

Query containment [4, 10]: a rewriting 

Q1 of the query Q2 is contained in Q2 if 

the set of tuples return by Q1 is a subset 

of tuples which would be returned by 

executing Q2 [10]. 

 

When doing a rewriting of the global 

query using the schema of the local 

schema we strive to get a contained 

rewriting. This makes sure that we do 

not send a query which can return 

answers which are not expected by the 

user. At the same time we want to get as 

many correct or approximate answers as 

possible. We therefore do not include 

missing attributes in the where statement 
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and check if the rewriting is contained in 

the original query. The query is sent to 

the peer if the rewriting is contained. 

3.2.2 Aggregate and Grouping 
Functions 

 

Aggregate functions take a set of values 

and produce a single value as the result. 

We explore the usage of min, max, 

count, sum and avg in SQL. The SQL 

standard requires that the parameter to 

the avg or sum functions be numbers. 

We only consider aggregate functions in 

the select clause which is where they 

commonly appear.  

 

To compute an answer to the query with 

aggregate functions requires getting 

responses from all peers and processing 

them further to get the correct answer.    

 

The summary of rules used to process 

the queries with aggregate functions are 

as follows.   

o If the aggregate function is sum, 

min or max then send the 

rewritings to peers, keep the 

responses in the results table and 

query the results table to 

compute the sum, maximum or 

the minimum. 

o If the function is count then send 

the rewritings to peers and put 

responses in the results table. The 

answer to be displayed to the 

user is calculated by computing 

the sum of the responses from 

peers. 

o If the function is sum or avg then 

the data type of the parameter 

should be of type number. 

Examples of type number are 

float, double and integer. If a 

peer stores the parameter not as 

of type number then the 

translator does not send the query 

to it. 

o The avg function requires getting 

the sum and the number of tuples 

with the aggregated attribute. 

This is done by sending the query 

to peers with the sum and count 

functions replacing the aggregate 

function. This is illustrated with 

an example. 

 

Example 1:  Suppose that all peers 

have the relation employee which 

has the salary attribute. If the source 

peer asks a query Q1 then the query 

to be sent to peers is Q2. 

 

Q1: a query from the source peer is 

select avg (salary) from employee; 

 

Q2: query to be sent to each peer 

becomes : 

select sum (salary) as sums, count 

(salary) as counts  

from employee; 

 

The average is then computed by 

putting responses from peers into a 

temporary results table and querying 

it using Q3. 

 

Q3: Select sum (sums)/sum (counts) 

From TemporaryResultsTable; 

 

Queries with grouping functions also 

require special processing before 

displaying the answer to the user. 

The approach is similar to the 

aggregate functions. The queries sent 

to peers do not have the part with a 

grouping function. The responses 

from peers are put in the temporary 

results table. The results table is then 

queried with these grouping 

functions. 
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4 Results 
Schema matching in a peer to peer 

network can be done by mapping all the 

schemas to the global schema and 

defining rules for converting data from 

the peer’s context to the global context. 

 

The kind of queries a peer is able to 

answer depends on the data types of 

attributes, the available attributes and 

relations, restrictions on shared data and 

general knowledge about data.  

 

In a P2P network we can not always find 

the equivalent rewriting of the sender’s 

query. This is because peers have 

different schemas. We therefore send 

queries which return some of the 

answers or approximate answers to other 

peers.  

 

A rewriting of the original query may 

not be sent to the respective peers if it 

becomes invalid, there are clashing data 

types and the query has restrictions on 

data types, a peer does no have enough 

significant attributes to answer a given 

query or general knowledge about data 

proves that the peer will not be able to 

answer a query. 

 

A rewriting of the peer can be sent to 

other peers if it is equivalent to the 

original query or it is a simplified query. 

A peer answers an equivalent query if it 

has all the attributes in the original 

query. A simplified query does not have 

some of the attributes in the where 

statement of the sender’s query but will 

not return responses which do not 

comply to the conditions in the original 

query or it does not have some of the out 

put attributes. 

 

It is therefore possible to predict if the 

peer will be able to answer the query 

before sending it to it. Predicting if the 

peer is able to answer the query can 

improve the performance of the system 

because a query is sent to the peer if 

there is no evidence that it will not be 

able to answer it.  

 

Data types usually do not have an impact 

in determining the kind of queries a peer 

is able to answer. This problem was only 

encountered with parameters to the sum 

and average aggregate functions of SQL. 

This means that data can be stored in 

different formats but still be queried in 

the same way. The problem is that the 

responses will be in different formats. 

The user might not like to get answers in 

this format.  

5 Conclusion 
The problem of schema conflicts in the 

P2P network can be solved by 

transforming data from the local 

representation to the global reference. 

Peers answer different queries depending 

on their schema and the way in which 

data is represented. Like in all data 

integration systems, a peer to peer 

system also gets approximate answers to 

the user’s query. Peers can answer the 

same query even if the data is stored in 

different formats. The differences in data 

types do not have too much influence in 

rewriting queries to be sent to peers. But 

differences in data types can return 

results in different formats. 

 

Defining the kind of queries a peer is 

able to answer can improve the 

performance of the system because a 

query will be sent to the peer if there is 

no evidence that it will not be able to 

answer. This reduces avoidable 

connections to peers. Queries with 

aggregate and grouping functions need 

to be rewritten twice. The first step 
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gathers information required to answer 

the peer’s query. The last step is to 

compute the answer to be displayed to 

the user using the results from peers. 
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