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ABSTRACT 

Estimates of plankton primary production are 
essential to understanding the functioning of the 
marine ecosystem and the possible impacts of climate 
change of the marine food web. Sub-surface 
chlorophyll is an excellent predictor plankton 
production, but collection of sub-surface chlorophyll 
data is slow. Surface data, however, can quickly be 
obtained via satellite. A method is therefore needed to 
predict sub-surface data using only surface 
information. Previous research in this field involved 
the use of self-organising maps (SOMS) to predict 
plankton-profiles. These SOMS are, however, hard to 
interpret and not very precise. The system proposed 
used Bayesian networks to predict sub-surface 
chlorophyll based on satellite data and other 
environmental factors. Bayesian Networks are 
comprised of two parts: a learning engine and 
inference engine. The learning engine finds patterns 
in historical data and the inference engine takes these 
patterns as input and predicts likely trends. An 
Investigation was undertaken to determine the use of 
topic maps for representing Bayesian network 
structure and beliefs. These topic maps needed to be 
visualised in an intuitive manner. A hyperbolic tree 
visualization was investigated as an alternative to 
static visualizations.   

The accuracy of predictions was limited by the use of 
Gaussian approximations to define the predicted 
profile, but the use of EM to create new profiles 
should give far better results in future. It was found 
that the topic maps provided a useful mechanism for 
passing the Bayesian network information between 
the inference engine and the interface. The hyperbolic 
visualisation of Bayesian networks was at least as 
easy to use as static representations. 

1. INTRODUCTION 
This project aims to find a new method to predict 
sub-surface chlorophyll information, based on 
Bayesian networks. Because chlorophyll is present in 
plankton, it provides an excellent indication of the     

amount of plankton present. The predictions will be 
based on a number of environmental factors that are 
known at a point in the ocean for a given time and 
space (depth of ocean floor, season, and region) and 
also data obtained from satellite (surface chlorophyll 
and temperature).   

Collection of sub-surface data can only be achieved 
through the use of shipboard measurements. This 
process is time-consuming and provides poor 
coverage. There is, however, an archive of 10 years 
worth of sub-surface ship readings. By combining the 
environmental and satellite data with the archive of 
ships sub-surface readings, a single training set can 
be created in order to train a Bayesian network. Once 
the training has taken place, the Bayesian network 
can be supplied with environmental data, as well as 
the satellite data for a given day, and the sub-surface 
chlorophyll information predicted. This can be done 
on a per-pixel basis, providing large-scale sub-surface 
information in real-time.  

The sub-surface chlorophyll information is predicted 
in the form of a chlorophyll profile, which is simply a 
continuous function of chlorophyll with respect to 
depth. This profile gives an indication of what depth 
the sub-surface peak occurs. While this peak often 
occurs near the surface, currents (called upwellings) 
can cause peaks to occur below the surface over time. 
This has been well researched in areas such as the 
Agulhas bank and off the west coast of South Africa. 
[1] When an upwelling of cold water occurs, it often 
brings lots of nutrients to the surface. The surface 
layer is well lit, and therefore a plankton bloom (a 
very high concentration) develops at the surface. The 
density of the plankton at the surface blocks light to 
lower layers, preventing sub-surface plankton growth. 
As the surface bloom diminishes (due to nutrient 
depletion), more light is let through to the lower 
layers, and so a sub-surface peak occurs.   
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Figure 1: Integrated chlorophyll  

Once a chlorophyll profile has been predicted, it can 
be used to estimate plankton primary production at a 
given point in the ocean. This is done by integrating 
the profile, and combining it with light field satellite 
images. (Result shown in Figure 1)  

Estimates of primary production are essential to 
understanding the functioning of the marine 
ecosystem and the possible impacts of climate change 
of the marine food web. [1]  

2. BACKGROUND 

2.1. Related Work 
Other artificial intelligence techniques have been 
used to classify both satellite data, and sub-surface 
ship readings. [2] This involved the use of self-
organizing maps (SOM), a type of artificial neural 
network, to extract inter-annual and seasonal 
variations observed in both thermal and chlorophyll 
satellite images. The SOMs were also used to classify 
the archive of ships sub-surface readings into 15 
categories   

Another technique involved fitting each sub-surface 
ship reading to four-parameter shifted Gaussian 
curve. [1] A generalised linear model was used to 
generate correct parameters for the Gaussian curve, 
hence predicting the chlorophyll profile. The linear 
model made use of environmental and satellite 
images much like those used in this project. 

2.2 Bayesian Networks 
A Bayesian network is defined by Murphy [3] as a 
directed graphical model, where a graphical model is 
defined by Jordan [4] as a Marriage between 
probability theory and graph theory , providing a 
natural tool for dealing with uncertainty and 
complexity.   

Using this representation, Bayesian networks provide 
an intuitive interface through which humans can 
easily model interacting sets of variables.   

The following example outlines the basic principles 
behind Bayesian representation and probabilistic 
inference. 

 

Figure 2: Basic Bayesian network  

Each node has the following associated conditional 
probability tables (CPTs):  

Cloudy 

  

Sprinkler 

  

Rain 

  

Wet Grass 

  

The joint probability of each node can be calculated 
using the chain rule, combined with the conditional 
independence relationships in the Bayesian network. 
This formula is: 

R)S,C,|P(W * S)C,|P(R * C)|P(S * P(C)   W)R, S, P(C,

  

Now assume evidence is obtained: the sprinkler is 
known to be on. The sprinkler node can now be 
instantiated to the true state. Conditional queries, 
such as the probability of the sprinkler (S=t) is on, 
given that the grass is wet (WG = t), can be calculated 
by using the following formula: 
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There is therefore a 42.98% probability of the 
sprinkler being on, given that the grass is wet.   

The CPTs used by the Bayesian network are created 
by learning algorithms. There are a number of 
different algorithms that can be used, depending on 
whether there are hidden variables. These are 
discussed in detail later.  

2.3 Topic Maps 
Topic maps are an ISO standard for describing 
knowledge structures, and link these structures to the 
underlying resources that they represent [7].  They 
provide a means of connecting the realms of 
knowledge representation and information 
management [8].  

2.4 Hyperbolic Trees 
Hyperbolic trees are a distortion based (focus and 
context) technique for visualising large graph 
structures. They utilise hyperbolic geometry to attain 
focus and context. This is achieved by laying the 
graph onto a hyperbolic plane and then mapping that 
plane to a circular display region. Hyperbolic 
geometry is a non-Euclidian geometry. In non-
Euclidian space, parallel lines diverge. This is an 
important property because it means that the 
circumference of a circle grows exponentially with 
increasing size of radius. This results in exponentially 
more space as one moves away from the centre of the 
circle. Therefore, nodes at the centre of the circle 
appear larger (and are in focus) and nodes at the 
edges appear smaller. This allows the viewer to 
always see at least 3 child nodes ahead of the current 
centred node. [10], [9].    

3. SYSTEM OVERVIEW 

 

Figure 3: Overall system design 

3.1. SQL Database 
The database contains final training set for the 
learning engine. A large part of the project involved 
the creation of this data set, as many years of sub-
surface data needed to be combined with satellite 
chlorophyll and temperature data. 

3.2 Learning Engine 
The learning engine runs through the database and 
creates the conditional probability tables required by 
the inference engine. Two Learning algorithms were 
implemented. These were the Maximum Likelihood 
Estimation algorithm and the Expectation 
Maximisation algorithm. Each of these will be 
explained in the section 4.     

3.2 Inference Engine 
The inference engine loads the CPTs generated by the 
learning engine and performs inference for the dates 
provided by the interface. This results in an image of 
profiles being generated, and a topic map 
representing the state of the network at a particular 
point.  

3.3 Bayesian Structure 
Before any learning or inference can take place, the 
network structure needs to be modelled. This 
determines how the various variables are incorporated 
into the Bayesian network. The following structure 
was used for the MLE algorithm: 
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Figure 4: Structure used for MLE  

When using MLE, the predicted profile is 1 of 10 
clustered 4-parameter, shifted Gaussian curves. 
(Mentioned in the related work section) These 
clusters were created using the EM algorithm.  

The EM algorithm needs to cluster using the sub-
surface information, and therefore needs this 
additional information. The associated structure is as 
follows: 

 

Figure 5: Structure for EM  

Each of the variables has the following meaning: 

 

Sur_Chl 

 

The surface chlorophyll obtained 
from the satellite image 

 

Sur_Temp 

 

The surface temperature 
obtained from the satellite image 

 

Region 

 

The ocean area was divided into 
four regions, each with slightly different 
chlorophyll behaviour patterns 

 

Season  May October: Winter, 
November Februrary: Summer 

 

Sounding  The depth of the ocean floor 

 

Depth  The depth of the reading 

 

Chlorophyll 

 

The amount of chlorophyll at 
a given depth 

3.4 Interface 
The interface loads the images and generated by the 
inference engine, and also displays the generated 
topic map as a hyperbolic tree.  

4. LEARNING ENGINE 

4.1 MAXIMUM LIKELIHOOD ESTIMATE 
The Maximum Likelihood Estimation (MLE) 
algorithm can be used when the structure of the 
Bayesian Network is already known and the dataset is 
complete.   

The following description of the MLE is adapted 
from the example in [5].  

Assume we buy a bag of chocolate. The chocolates in 
the bag are mixture of either Cadbury or Nestle. The 
Bayesian network for this structure is shown in 
Figure 6. 

 

Figure 6: Basic network  

The proportions of each producer s chocolate in the 
bag are completely unknown. If we wanted to 
calculate the proportion of Nestle chocolates in the 
bag, the MLE algorithm would be used.  

Let the proportion of Nestle be denoted by . Now, 
suppose we select N chocolates from the bag where n 
is the number of Nestle chocolates selected and c = N 

 

n is the number of Cadbury chocolates selected. 
Under the assumption that all observations are 
independent and identically distributed, the likelihood 
of the dataset is given by: 

N

j

cn
j hdPhd

1

)1()|()|(

 

Where h

 

is a non-observed hypothesis about the data 
and d represents the dataset.   

We can simplify it by taking the logarithm of the 
equation. This breaks the equation up into the sum of 
three terms, where each of the terms contains a single 
parameter. The equation then looks as follows:  

)]1log(log)|(log)|( cnhdPhdL 
In order to obtain , we take the derivative with 
respect to the parameter of interest (in this case the 
parameter is n) and set it to zero:  

N

n

cn

ncnL
0

1

  

It can now be seen that the solution for 

 

is simply 
the number of Nestle chocolates taken from the Bag, 
divided by the total number of chocolates taken from 
the bag.   

4.2 Expectation Maximisation Algorithm  

The EM algorithm is an iterative algorithm used 
when the Network structure is known, but the data is 
only partially observable (i.e. not all nodes are 
evidence nodes). This happens in many real world 
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problems that have hidden variables (nodes that are 
not observable in the data).   

The EM algorithm is also best explained with an 
example. Consider the example used for the MLE 
algorithm, but this time assume that 2 bags (Bag1 and 
Bag2) of chocolates have been bought and mixed 
together so that we no longer know which bag each 
chocolate comes from.  

It can be seen that the Bag node is now a hidden 
variable because once the chocolates have been 
mixed together; we no longer know which bag each 
chocolate came from. Assume that we want to find 
the probability, , of a selected chocolate coming 
from bag1.  

In the fully observable case we would be able to 
estimate 

 

directly from the observed counts of the 
number of chocolates from bag1. Because the Bag 
node is hidden, we need to calculate the expected 
counts instead.  

The expected count of the number of chocolates that 
come from Bag 1 can be calculated as the sum, over 
all the chocolates, of the probability that the 
chocolate came from bag 1 [5]. The notation for the 
expected count is:  N(Bag = 1).   

Therefore: 

1

j)1(
)Producer|1()1(

j N

BagP

N

BagN

 

At first, we do not know the probability of a selected 
chocolate coming from each bag. We therefore start 
by randomly assigning probabilities.  

For each iteration of the algorithm, we recalculate the 
probabilities using an inference algorithm. This 
example uses Bayes rule :   

N

j i j

j
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For each iteration, the probabilities will tend closer 
and closer to the best fit for the data. 

5. INFERENCE ENGINE 
The inference engine implemented was Judea Pearl s 
message passing algorithm, also known as Pearl s 
belief propagation algorithm. While this is an 
efficient algorithm for probabilistic inference 
(polynomial time), it assumes that the network is 
singly-connected (a polytree). However, accurate 
approximate results have been obtained in multiply-
connected networks [6].  

The algorithm is based on the notion of propagating 
evidence1 through the network. These messages travel 
both up and down (in order to accommodate both top-
down and bottom-up inference) and are labeled  and  

messages respectively. The following figure gives 
some details with regards to notation.  

 

Figure 7: Notation used for belief propagation  

Using the conditional independence relationships of a 
polytree, the following recursive expressions for 
computing messages can be derived:  

(1) The equation to calculate the belief array of a 
certain node (used after calculating local  and  
messages after a round of message passing): 

(x)  (x)  )|( exP        

(2) The equation used to calculate the local  value of 
a node, after receiving all  messages from a round of 
message passing: 

unu
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(3) As with equation (2), only this is for  value: 
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(4) The equation used to calculate the 

 

value a node 
sends to its child: 
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(5) The equation used to calculate the  value a child 
node sends to its parents: 

                                                

 

1 Knowing that a certain variable (or a number of 
variables) is in a certain state. It is often said a node is 
instantiated with evidence. 
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Where V1..Vp are causes of Yj other than X, and  is a 
normalizing factor, which is calculated after finding 

(x) (x).   

Every node contains an associated CPT, and belief, , 
and  array. The CPTs are generated by the learning 
engine, and loaded from text files at runtime. When 
the network is first created, the following boundary 
conditions can be applied: 

 

Root node s  values are set to the same 
values found in the CPT 

 

All2 node s  arrays are set to all (1,1, ,1,1)   

When the interface provides a date, the inference 
engine loads the appropriate satellite images. For 
every pixel, each node is instantiated to the 
appropriate state, and  and  messages passed 
(equations 4, 5). The Profile node can then calculate 
its local ,  and then belief values (equations 3, 2 
and 1 respectively). The profile with the greatest 
associated belief is then the profile predicted for that 
point.  

6. INTERFACE 

6.1. Overview 
Designing an interface for the plankton prediction 
system involved a user-centred design approach.   

An alternative mechanism to the static graph 
visualisation technique used by most other Bayesian 
prediction programs was needed. This mechanism 
was required to provide the user with an intuitive and 
easy-to-use mechanism for viewing the Bayesian 
network.   

The Bayesian network structure needed to be passed 
between the inference engine and the interface in 
order for it to be visualised. For this purpose, topic 
maps are used to represent and store the Bayesian 
network structure and beliefs.   

Given that the Bayesian network is stored in topic 
map, the problem of visualizing the Bayesian 
networks is extended to visualizing topic maps, given 
that the networks are stored in topic maps.  

Based on research about visualizing large graphs, the 
technique that was chosen to visualise the topic maps 

                                                

 

2 The boundary condition is actually only leaf nodes, 
but if all nodes are un-initialised, all  values are can 
be set to (1,1, ,1,1) 

(and in turn the Bayesian network) is a hyperbolic 
tree visualisation.  

6.2 Testing and Evaluation 

6.2.1 Plankton Prediction Interface 
The study to deduce the usability and functionality of 
the plankton prediction interface was a qualitative 
study based on interviews and pluralistic 
walkthroughs of the system.   

Participants 
The sample consisted of 5 people (n=5, 1 stakeholder, 
4 students).  

Equipment 

 

A computer with the plankton prediction software 
installed.  

 

Notepad and pen  

Method 
Each participant was interviewed individually. Given 
that the system is mainly used to visualise the 
information predicted, the users were asked questions 
about where they thought they would find  and access 
certain information. The users were asked to run the 
system for a particular date and then answer 
questions/tasks about the interface. Having completed 
tasks, the users were asked questions about how easy 
the interface was to use and what they would like 
changed. 

6.2.2 Hyperbolic Tree Representation of 
Bayesian Networks 
In order to evaluate the usability of the hyperbolic 
tree representation of Bayesian networks, a 
comparative study between the hyperbolic 
representation and the static representation (used in 
BayesiaLab) of Bayesian networks was performed. A 
combination of qualitative and quantitative methods 
was used to test the usability of each of the system.   

Participants 
The sample consisted of 16 science students (n=16, 
11 males, 5 females). The 
age of the participants ranged from 20 to 28.  

Equipment  
Computer with BayesiaLab program and hyperbolic 

tree representation program.  
Notepad and pen  
Stopwatch  

Method 
The participants were tested individually. The 16 
participants were sampled into 2 different groups of 
equal size (8 participants in each group). 
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Group 1 was required to use BayesiaLab first and 
then use hyperbolic tree representation. Group 2 first 
used hyperbolic tree representation and then 
BayesiaLab. The advantage to this approach is that all 
the participants used each interface. Therefore, the 
participants could make meaningful comparisons 
between the interfaces.   

The same Bayesian network was used for each 
interface.   

The experiment was split into 4 sections as follows:  

1. The users were given a basic description of 
Bayesian networks.  
2. Conceptual model extraction of each interface. 
Once the users had developed a basic understanding 
of Bayesian networks, the users were asked questions 
about what they thought represented cause and effect 
relationships and what represented states. This was 
used to determine users understanding of the 
Bayesian network visualisation. 
3. Recording performance time on tasks. The users 
were given a set of tasks to perform. The tasks 
involved finding the percentage chance of a state of a 
node occurring (task type 2), and which nodes 
affected or were affected by a particular node (task 
type 1). This was used to determine which interface 
was easier to use, based on time. 
4. A post task interview. An interview was conducted 
to deduce how the participants felt about each 
interface. This qualitative measure is used to 
determine which interface was easier to use. 

7. RESULTS 

7.1 Accuracy of Predictions (MLE) 
In order to test the correctness of the final prediction, 
data from the actual training set was used to 
instantiate each node. Inference was then used to 
predict a profile, which was compared to the actual 
profile listed in the training set. If these values 
matched, the predicted profile was correct. 
Additionally, by using different combinations of 
variables, one can determine what effect each variable 
has on the accuracy of the prediction. The results 
from these tests have been shown below.  

 

Table 1: Accuracy using results from MLE 
algorithm, with different variables  

The predictions when using all variables is less than 
50%, which is fairly disappointing. Also, the 
prediction is more accurate by removing the SST and 
sounding variables, which is fairly unexpected.   

The key reason for these results is the use of 
clustering on parameters that define a Gaussian 
approximation to an actual profile. The fact that 
additional variables can reduce the accuracy of the 
solution probably means the clusters generated were 
not significantly related.   

Although results above are worse than expected, the 
images resulting from inference over an entire map 
appear fairly promising. (Figure 8) 

 

Figure 8: Predicted profiles  

While it is fairly difficult to know if a predicted 
profile at one point on a given day is correct, the 
general results do agree with previous research: areas 
with a combination of high surface chlorophyll, and 
temperature of 12-15 C, show plankton profiles with 
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large integral values. Note that areas which do not fall 
in the training regions can not be expected to return 
accurate results. This can be seen by the large red 
areas that occur far away from the coast.  

7.2 EM Clusters 
The EM algorithm was intended to create new 
clusters, each with an associated profile. The aim was 
to infer a profile for each class, by instantiating the 
class node, and predicting a sub-surface amount for 
each depth interval. However, this could not be done 
because both depth and sub-surface chlorophyll is 
dependant on the class. The clusters obtained are 
therefore difficult to interpret. It was decided that 
forward-inference would be used on each class to 
determine patterns in the clusters. A subset of the 
resulting table is shown below. 

 

Table 2: Some results from EM algorithm, each 
cell contains: State (Probability)  

The most significant pattern mined is that all the low 
sub-surface chlorophyll values have been placed into 
clusters in summer and higher values in winter. The 
season also appears to be a highly significant variable 
when clustering, shown by the high probabilities.  

7.3 Hyperbolic Tree Visualisation Evaluation 

7.3.1 Conceptual Model Extraction 
Both the static and hyperbolic interfaces were easily 
interpreted by the participants. The hyperbolic 
interface was neither better nor worse to understand.  

7.3.2 Performance 
The results from the experiment on performance 
show that the hyperbolic representation allowed for 
faster access/ viewing/ retrieval of probabilities 
associated with states.   

Using the hyperbolic interface did not improve 
participants ability to find connected nodes. 

However the participants performed equally well, 
using each of the interfaces for this task.   

7.3.3 Interface Preference and Ease of Use 
The results from the post task interviews indicated 
that the users predominantly found the hyperbolic 
interface easier to use and preferred it. However, this 
result is questionable, given that experimenter effect 
may have confounded this result.  

It was found that the hyperbolic interface was at least 
as easy to use as the static representation used in 
BaysiaLab. However, it could not be conclusively 
proven that it was indeed significantly easier to use.   

Given that the participants were science students, the 
results cannot be generalised to the general 
population. Furthermore, the interfaces were only 
tested on using one contrived Bayesian network and it 
is uncertain whether the same results would be 
achieved using a different network.  

7.4 Interface Evaluation 
In terms of ease of use, all the participants found the 
system relatively straightforward. The primary 
stakeholder, who had been involved in the design 
process found it easy to use. Furthermore, the primary 
stakeholder was able to interpret the information 
represented in the hyperbolic representation of the 
Bayesian network. 

8. CONCLUSION 
It has been shown that Bayesian networks can be used 
to predict chlorophyll profiles. Unfortunately, due to 
the use of Gaussian approximations, the accuracy of 
results was slightly less than 50%.   

While these results are somewhat disappointing, the 
scope for future work in this field is immense. 
Regardless of accuracy, results for inference on a map 
revealed the prediction patterns which agreed with 
current research in the field. Furthermore, the EM 
algorithm did find some patterns in the data, such as 
different sub-surface chlorophyll amounts occurring 
in different seasons.  

With the inclusion of more variables, and further use 
of the EM algorithm to generate profiles, the future of 
Bayesian networks appears promising in this field of 
research.    

Topic maps are used to represent and store the 
Bayesian network structure and beliefs. The topic 
maps serve as a mechanism for passing information 
between the Bayesian network component of the 
system and the interface. If the system were to be 
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expanded, topic maps could provide a useful 
mechanism for representing the Bayesian network to 
be passed between prediction systems.  

9. FUTURE WORK  

 
The EM algorithm could be extended to check 
for overfitting . At the moment, the EM 
algorithm uses parametric learning . This is 
where the number of probability distributions 
across the hidden node are predefined. 
Nonparametric learning

 

is where the number of 
these distributions are not predefined. While this 
makes the algorithm more complex, it allows the 
fitting of the data to an optimal number of 

distributions. 

 

The structure of the network could be changed to 
show the causal relationship between the sub-
surface data. At the moment it is assumed that 
this data is all conditionally independent. This is 
not entirely correct as sub-surface chlorophyll 
and temperature vary with regards to depth. 

 

There are other factors that influence the 
production of plankton. These include light, 
currents and wind. All of this data could be 
obtained from satellite data. Unfortunately we 
were unable to obtain this data in time, but if it is 
added to the dataset in the future, and the 
network is updated, the quality of the prediction 
will improve 

 

The coastal waters around South Africa were 
divided up into 4 regions when discretizing the 
data. These four regions could be further 
subdivided into known areas where there are 
noticeable differences in the characteristics of the 
environment variables. This would make the 
prediction for a given area more precise 

 

No discretization algorithm was used when 
discretizing the data. In the future, implementing 
a mathematical discretization algorithm would 
improve the ranges that the data is divided up 
into. 

 

Due to the fact that the dataset that we received 
did not represent every month of the year, we 
were unable to create a Dynamic Bayesian 
network. With time, as the amount of historical 
data increases, it will be possible to convert from 
a Static Bayesian Network, to a Dynamic one. 

 

In the future, this project could be extended to 
represent parts of the ocean, other than just off 
the coast of South Africa. This could be useful in 
discovering global trends.  

 

Replicate the comparative study between the 
hyperbolic visualisation and static visualisation 
of the Bayesian network. However, the study 
should be conducted with a larger and more 

representative sample, as well as with different 
Bayesian networks.  

 
Investigate the notion of information scent (as 
researched by Pirolli [11]) in Bayesian networks, 
to further investigate the applicability of 
visualising Bayesian networks in hyperbolic 
trees.  

 

Representing Bayesian networks in topic maps in 
conjunction with conditional probability tables 
and beliefs.    
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