

 1

DOCKside An Interactive system for manual docking of molecules into Cryo-
Electron Microscopy Maps

Technical Paper CS400
Department of Computer Science

University of Cape Town

Guy Stern Andrew Snowden Dr. Michelle Kuttel Dr. James Gain
gstern@cs.uct.ac.za asnowden@cs.uct.ac.za mkuttel@cs.uct.ac.za jgain@cs.uct.ac.za

Abstract

The process of cryo-electron microscopy allows
scientists to view the complex structures of
proteins as they bind and interact with one
another. This process however, outputs low
resolution noisy density maps which in their
initial form are of little use. Through a process
called docking, high resolution models of each of
the interacting components can be fitted into these
low resolution maps so that further study can
occur.

DOCKside allows users to interact with 3D
representations of the proteins and of the electron
density maps. Design was an initial concern.
Related work was studied to better create a
efficient solution to the problem. Different
techniques for visualising the various components
are implemented and discussed. Docking can also
be performed manually using interactive graphics
or automatically using a range of mathematically
intensive algorithms. These too are detailed and
discussed. Through user testing, a review is made
as to how efficient the docking process is in
producing meaningful and accurate data when
compared to the automatically docked solutions.

1. Introduction
One of the most important components of our
physical world is the arrangements of chemical
structures. There are many molecules such as
proteins which are known to science but whose
molecular conformation is not known. Without
knowledge of the exact three-dimensional
structures, scientists cannot fully understand the
way molecules bind and interact with one another.
For example, knowledge of the 3D structure of a
virus helps in finding out how it interacts with
molecular receptors on cells in the body. On the
basis of this knowledge, drugs can be designed to
interact with these viruses or cells to possibly
prevent infection.

The problem is as follows: For many large
molecules and molecular assemblies it is only
possible to capture limited 3D shape information
using electron microscopy techniques. The data
comes in the form of electron density maps, which
provide some structural information as to the
different densities at different parts of the
molecule/protein. However, these images are
typically of a low resolution and suffer from
noise. They have no fine detail and therefore do
not give enough information about the, location of
the atoms and hence, real structure of the artifact
in question.

One method of finding a more exact image of a
protein is via crystallography. By focusing an X-
ray through protein crystals, the refraction
patterns can be used to determine a much higher
resolution picture of the protein. The problem
with this method, however, is that the crystal
environment often changes the structure of the
proteins. In addition, crystallography is often not
applicable where more complex structures need to
be analyzed. Large structures become unstable
and often their form is different under
crystallization .

Figure 1.1 Change in atomic structure

The solution is therefore to combine the two
methods. Through electron microscopy (EM), a
low resolution image of a molecular complex is
found, giving a rough outline of the structure.
And through crystallography, high resolution

In Crystal

In Solution

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

images of the different molecular components can
be elucidated. Now the task that remains is fitting
the smaller components into the bigger
compound. This is the undertaking of this project.

Figure 1.2 Docking process

1.1 The files used
Computer technology is widely used in every-day
chemical sciences. Standard protocols are in
place for storing the empirical data collected.
This project will use to two files types, produced
through laboratory investigation, common to the
field. The first of the files represents the System
for Processing Image Data in Electron
Microscopy and Related fields (SPIDER).
SPIDER files are used to store volumetric data
recorded during the EM phase.

The program will also takes in Protein Data Bank
(PDB) files which will represent the higher
resolution components. The Protein Data Bank is
an online repository for files containing atomic
information about different chemical structures.
Most important of these are proteins. As with
SPIDER files, PDB s follow a strict code of
formatting. They have many uses and can be
opened by many different applications. Proteins
are substances made of a chain of amino acids.
The amino acids form a long chain often referred
to as to polypeptide backbone. PDB files store
the amino acids in the order in which they appear
in this chain. Within these amino acids, the files
store the names and 3D locations of each of the
atoms making up the residue.

1.3 Project Structure
The program then has two main functions that
allow the user to visualize the final protein. The
first function is manual docking. Through manual
docking, the user will move the PDB components
around and attempt to fit them into the EM-image.
This is similar to the way someone might attempt
to complete a puzzle given the pieces. The result
is not be exact and is, in many cases quite difficult
for a user. Therefore a second method of molding
the images will be an automated one. Here the
program will use complex mathematical
procedures to find the best fit of the components
to the EM. The two components are usable by
means of a shared graphical user interface.

Figure 1.3.1 High level project structure

1.4 Success factors
Whilst it may not have been possible to create a
perfectly functional docking suite, there were
some key success factors agreed upon at the
outset of the project. The first of these was that
there had to be a working graphical user interface
in place. This required that both the PDBs and the
SPIDER needed to be in some way visualized.

The second success factor with regards to the
interface was that it be usable. Working with and
manipulating complex shapes in a three-
dimensional environment is a skill, which does
not come naturally to all computer users.
Training books and tutorials are often needed to
familiarize one with the environment. In this
project, however, the tasks that are required to be
performed by the user are relatively simple.

The last of the key success factors, was that there
needed to be a system in place for checking the
validity of results. This meant that the results of

Molecule A

Molecule B

Electron Density Map

Docked Molecules in Density Map

+

+

=

Molecule A and B are
rotated and moved around in
such a way that they form a
best fit within the electron
density map. Once docked,
it can be determined how the
two molecules interact with
each other and which atoms
are closest to one another.

 3

the docking needed to be saved in such a way that
they could be checked against an existing
solution. In addition, this meant that results of the
automatic docking process needed to be
visualized in the same interface as the automatic
docking system.

With respect to the automatic docking itself, the
goals in mind were that, we achieved a correct
implementation of two automatic docking
techniques. Since there are many available
docking techniques, the first design decision was
which techniques to implement. While vector
quantization offers near real time docking, its
scope of application is severely limited. Contour
based docking [3] produces highly accurate
results and with modern computer hardware can
be accomplished in a relatively short time. Similar
to contour based docking is the principle of
standard correlation fitting. Correlation fitting is
one of the first techniques to be used and provides
an interesting technique to compare against.

It was also thought important that the automatic
docking module interface with the graphical
interface in such a way that it was easily
extendable to future work. In other words,
developers should be able to code new automatic
docking modules without needing to change the
graphical system.

2 Related Work
2.1 Automatic Docking
The majority of automatic docking methods
follow the same principle: low resolution density
maps are generated from the atomic structure
(high level data) [1], the algorithm then attempts
to match a generated map with the map obtained
from cryoEM techniques. This density map is
usually calculated estimated using a Gaussian
kernel to interpolate data from the atomic
structure. Once we have these two comparable
maps the problem is to find the correct rotation
and translation in order to superimpose the two.
Several complications arise from the differences
in EM and crystallography techniques [1].

1) EM maps are often noisy and can be
distorted by a number of factors

2) Some molecules may change structure
when in crystalline form

3) The magnification obtained when using
electron microscopes is not precise and
as such the size of molecules in density
maps may not be accurate [4]. If there is

a large variation then this inappropriate
scaling may fault the docking process.

Despite these problems, it has been shown that, in
most cases, electron microscopy and
crystallography produce nearly identical images
[4]. In addition, electron microscopy has the
advantage over many techniques in the fact that it
can image the entire structure and not just the
surface of a molecule [1]. The successful
combination of these techniques can result in
models with an accuracy of 4-5Å from a 20Å
density map.

2.1 Molecular Visualisation
In order to visualise the surfaces of the proteins
and of the density map, an iso-surface needs to be
generated. Here the input is volumetric data and
the output should be in the form of a surface
mesh.

In [5] an algorithm, called marching cubes,

for
visualising 3D volumes is detailed. The process
works by splitting up the volume into cubes.
Each cube can be inspected and each of the eight
corners can be seen as being either inside or
outside of the object. The result is a mesh of
triangles which is easy to manipulate, scale and
rotate. In [6] a method is detailed regarding
reducing the number of triangles created from the
marching cubes algorithm. It proposes using
octrees to store the cells and cells which are part
of a relatively flat area are merged so long as the
error caused by merging is less than a user-
specified ratio. Many cells can be merged with
neighbours without affecting the shape of the
resulting mesh in any way.

Programs such as [7] are designed to visualize the
PDB files in 3D so that the atoms are seen as
small spheres and the bonds between them as
lines. This is commonly referred to as the ball
and stick model. In [8] it is explained that volume
rendering, iso-surface extraction and virtual
reality each do not work properly in successfully
visualizing microscopy data. But by combining
the three approaches, users can get a good
understanding of the data. To prove this
hypothesis, they use a process called
immunofluoresecence microscopy to establish
locality of proteins during cell - cell interactions.
They fluorescently tag antibodies of a particular
protein and then this protein lights up under the
cover slip of a cell interaction and the protein s
exact location can be seen.

 4

The images, obtained using a digital camera, are
deconvolved before use. The reason that
deconvolution is needed is that light creeps into
the image from many sources and these all need to
be physically modeled. Using a complex
algorithm the exact light contributions are found
so that they can be subtracted from the raw data.

3. Design
3.1 The Open Source nature of the project
One of the requirements of this project was that it
be extendable to an Open Source framework.
This meant that in addition to the application
needing to be functional by the end of the project,
it would also have to be easily extendable.
Therefore, early on in the design phase, care
needed to be taken to create objects in such a way
that they would be modular, reusable and
replaceable. Interfaces between the classes
needed to be structured and limited to the function
of the program itself. The code also needed to be
written in a way that it would be easily understood
so as to be modifiable by future developers. This
meant that care needed to be taken to create
meaningful variable names and comment code.
Being Open Source meant that all libraries and
classes used by the project needed to be non-
commercial.

3.2 Molecular structure

One of the initial design decisions was to have the
molecular classes, work in a similar way to the
atomic structure of the proteins themselves. It
was therefore sensible to start the design by
creating the simple atom objects and working
outwards building complexity.

Figure 3.2.1 Molecular class association
structure

3.3 The Solution Set approach
Once design of the basic components, namely the
molecules, was in place, we needed to have a
system in place for storing results from docking.
Through manual and automatic docking, the sub

units would be rotated and moved into a
configuration and this configuration needed to be
continuously updated. The image below
illustrates how sub units values are transformed
before output.

Figure 3.3.1 Solution set class structure

4. Implementation
4.1 Visualisation
Effort was taken to find methods which would
execute in real time and adapt to the input
provided. For this reason, we decided that
openGL would be the perfect platform on which
to write the code. OpenGL is a highly portable
graphics based language, developed by the Open
Source community. It is widely used and is
therefore readable and understandable to many
computer scientists. In the following section we
will outline the process taken to accomplish the
visualisations found in the final version of the
application.

4.1.1 Visualising the PDB
4.1.1.1 The ball model
Most PDB viewing applications have an option to
represent the atoms as spheres. By doing so, one
begins to see the molecule not as a collection of
joining lines, but as a single object. We
accomplished this using the glSphere primitive.
For each sphere, the program had to translate to
the relevant place in world coordinates to draw
the object and then return to its previous place.
This required the use of many push and pop
matrix operations, which made the ball drawing
procedure somewhat inefficient. Level of detail
of the spheres was a performance consideration.

Sub Unit

Solution

Sub Unit Sub Unit

Solution Solution

Screen view or file output

 5

Figure 4.1.1.1.1

Comparison of level of detail
for spheres in molecular model

4.1.2 Atom Colouring
Atoms were coloured according to a conventional
atom colouring system. Each atom object had an
integer colour value ranging from 1 to 7. This
number was stored in the atom object. At the time
of drawing, the atoms were coloured according to
their colour value. A table of these colours is
show below:

1) Carbon Green

2) Oxygen Red

3) Nitrogen Blue

4) Sulphur Yellow

5) Hydrogen White

6) Phosphorus Purple

7) All others Grey

Figure 4.1.2.1 Atom colour reference table and
example coloured molecule

4.1.3 Iso-surface visualisation
Docking entails that the one object fits into the
space of the other object. As such, it was decided
that it was most useful that the PDB look as
similar to the SPIDER as possible during docking.
The final visualisation which was created for the
molecule was therefore, an iso-surface.

In order to convert the molecule into an iso-
surface, an interpolation method was used
whereby a 3D array representing the atoms was
created. Depending on an atom s proximity to
each corner of the voxel, each of the 8 positions in
the array surrounding the particular atom was
incremented by the relevant amount.

Figure 4.1.3.1 Atoms are interpolated in a grid

This is a basic model of the density distribution of
the atoms which does of course not take all factors
into account. This array was then passed to the
marching cubes method for iso-surface
visualisation. Iso-surface representation allows
the user to see the shape of the molecule whilst
hiding the atomic complexity. Below is the
resulting iso-surface visualisation for a protein.
This can be compared to its coloured ball model
equivalent. The first image shows the iso-surface
itself and the second, the same protein in ball
representation. The third image shows the ball
model overlaid by the iso-surface.

Figure 4.2.1.6.1 Different visualizations of a
complex molecule

4.1.4 Visualising the SPIDER
4.1.4.1 Iso-surface visualisation
The solution to the problem of visualising the
density map as a volume was similar to the
approach taken in visualising the PDB. The
density map in its entirety was sent into the
marching cubes class as an argument. A further
argument was the cut-off value for the density. A
cut-off value (or iso-value) is particularly
important in marching cubes, as it dictates which
vertices are inside and which vertices are outside
of the view volume.

4.1.5 Marching Cubes
The bulk of the work of the marching cubes class
is done when the runMarchingCubes method is

Level of detail:
Time to create:
Refresh rate:

5 x 5
0.5 Seconds
6 per Second

9 x 9
6 Seconds
4 per Second

Appropriate for
graphical user
interfaces such as
manual docking

Appropriate for
high quality
images and
publication

Low quality

High quality

 6

called. This method samples the array at a user
defined amount to produce the isosurface.

Figure 4.1.5.1

Iso-surface of the same SPIDER
at different dataset sizes

At user-defined target value is also used. All
values lower than this value are outside and all
values greater than or equal to this value are in the
view volume. A cube is creates and each of its 8
vertices are inspected defined as being in or out of
the view volume. The configuration of the
vertices is indexed in an edge table. This edge
table contains the 256 intersection cases is an
array common to almost all marching cubes
implementations. In each case where an edge is
found, the position along that edge where a vertex
will lie is calculated with the fGetOffset method
which interpolates between the end points of the
edge. Finally, the edges are looked up in a
predefined triangle table and the mesh is
constructed with normals calculated. The mesh is
drawn as a collection of openGL triangles.

4.1.6 Transparency
To dock the PDB components within the SPIDER
volume, it was initially decide that the volume
should be drawn as semi transparent. By
rendering it in this way, the user could see where
in the volume, the sub unit appeared. .

4.1.6.1 Using back and forward face
culling
A problem exists in OpenGL that when blending
multiple levels of transparency, the layers are not
always properly ordered. Whilst OpenGL does
not compute an order of polygons, it does
calculate back and forward facing polygons.
There exists an elegant solution for the alpha
blending problem when drawing perfectly convex
objects. It works by first rendering all the back
faces and then all the front faces. The following
pseudo code illustrates the method:

GlCullFace (front faces); // tells openGL to
ignore all front faces when drawing
Draw the object // draws only back faces
GlCullFace (GL_BACK); // tells openGL to
ignore all front faces when drawing
Draw the object again // draws only back faces

Figure 4.16.1.1 - This method produced best results
however, some artefacts remain

4.2. Fourier Accelerated Docking
The two docking techniques that have been
implemented rely highly on the notion of
correlation. Correlation is a method to determine
how closely two data patterns are related. In our
case, it is used to determine how similar two
density fields are.

If we have two density fields then the simplest
way to calculate their similarity is to loop through
each point and compare the voxel values from
each density field. The common method of
comparing these points is to simply multiply
them. The larger and closer the values are then the
higher the correlation will be. The correlation
coefficient can thus be expressed as the following
formula:

x y z
zyxzyx BAc ,,,,

Equation 4.2.1. Correlation Coefficient

In order to find our best fit, we need to calculate
this correlation coefficient at every possible
translation. Here we notice that this process can
be achieved through convolution. If we convolve
the one dataset with the other we are left with a
dataset of the same size containing the correlation
coefficients for all possible translations.

Now unfortunately this calculation is extremely
expensive when dealing with 3D spaces and a
large number of Euler angles. We can decrease
the number of calculations we must perform by
using the fact that that a convolution in Real space
is the equivalent of a multiplication in Fourier
space[2].

10 x 10 x 10
Inadequate for
docking.

30 x 30 x 30
Shape of density
field can be seen.

80 x 80 x 80
Number of
samples is exactly
equal to array size.
Best
representation.

175 x 175 x 175
The effects of over-
sampling can be
seen here.

 7

The advantage of this approach is that Fourier
transforms have been heavily optimized and can
execute dramatically faster than convolutions. In
our specific case, a Fast Fourier Transform
implementation is of the order N3logN3 compared
to the N6 required for the convolution case. To
implement this we calculate each correlation
using equation 4.2.2.

A B =)()(BFFTAFFTIFFT

Equation 4.2.2. Cross-Correlation

4.3 Laplacian and Gaussian Filtering
In order to transform our PDB into a comparable
data type, we use trilinear interpolation to project
it onto a regular grid. When we initially
interpolate our PDB we are left with a somewhat
grainy representation of the density field (Figure
4.3.1a).

This representation can be improved by
approximating the decaying density around an
atoms center by applying a simple Gaussian filter
(Figure 4.3.1b).
A Gaussian filter averages pixel values according
to the values around it. As such, any pixel next to
a shaded one will receive some of its shading

hence the effect of extending the density between
atoms. This method is only a simple
approximation of density, but is sufficient for our
comparisons and is computationally efficient.

 (a) (b) (c)
Figure 4.3.1. Interpolated, Gaussian smoothed
and Laplacian Filtered representations of a slice
of a molecule

In our system, a standard 3x3x3 Gaussian kernel
is order to smooth the interpolated map. Laplacian
filtering is achieved through the following
equation (Where np is the new pixel value and p
is the original value):

1,,1,,,1,,1,

,1,,,1,,1,,,, 6

zyxzyxzyxzyx

zyxzyxzyxzyxzyx

pppp

ppppnp

Equation 4.3.2. Laplacian Filtering

The equation stated above simply uses the values
of the orthogonally adjacent pixel values and the

original value to generate the new value. The
result of applying this filter can be seen in Figure
4.3.1c. All contour (or edge) values result in a
positive value while interior points result in
positive values (or values close to 0). The
rationalization behind this is the following:

A contour point (outside the object) will
have its own pixel (representing density)
value set as 0 (or close to it). As such the
negative factor will be small while the
adjacent points (which are inside the
object) will contribute positive factors.
The result is a positive value for any
point which is partially or fully
surrounded by points with greater
densities.

An interior point will have a high density
and as such the effect of the -6 factor will
be large. The points surrounding it will
generally be of the same magnitude (or
less) and as such the 6 additions will not
balance off the negative influence thus
resulting in a negative value.

The effect on correlation is primarily due to the
introduction of contour information. The edges of
our molecule are now positive and the interior
points are mostly negative. This means that our
correlation will score higher in places where the
edges of the two density maps coincide. This
counters the negative result of high correlation in
high density areas (regardless of actual
corresponding data). In addition, the Laplacian
filter converts the representation from displaying
density information to showing the relationship
between each density and its neighboring
densities. After Laplacian filtering, a high density
area will not remain as such. The Laplacian image
shows fluctuation in densities rather than the
actual density itself.

4.4. 6D FFT Accelerated Search
Now that we have established the processes
required to implement our Contour Docking [3],
we can examine how each of these processes
interacts to form the complete system. Figure
4.4.1. shows an overview of the interaction and
flow between each of these processes. Each
process and their implementation will be briefly
explained to further understanding. The following
discussion covers the process involved in contour-
based docking. The implementation of standard
correlation is identical except for the removal of
all Laplacian filtering.

 8

Figure 4.4.1. 6D FFT Accelerated Search Process

When the docking module is called it is initially
passed wrapper objects for both the PDB and
Spider files. The density field is then normalized
so that the values range from 0 to 1 (inclusive).
This normalization step is also performed on the
PDB data in order to standardize the densities
from each data type.

The density field is then Laplacian filtered and
finally Fourier transformed .Fourier transforms
were implemented by the use of an external FFT
library named FFTW (Fastest Fourier Transform
in the West). FFTW accomplishes optimized
Fourier transforms through the generation of an
optimal transform plan and then the execution of
this plan on multiple datasets.

The combination of these steps leaves our Spider
file in the format necessary to perform our
correlation. The preparation of our PDB file is
slightly more complicated with the addition of
rotation, interpolation and Gaussian filtering.

Before the start of our 6D search, we generate a
set of Euler angles [9] by which the PDB must be
rotated. For each iteration, the original PDB must
be rotated by the next Euler angle set (Phi, Theta
and Psi).

In order to achieve the correct rotations we center
our object according to the mass weighted mean
co-ordinates. This assures us that the molecule
will essentially rotate around its center of gravity
and not an arbitrary point. In order to actually
rotate the object, we generate a rotation matrix
from our Euler set and then simply apply this
matrix to each point in our point set.

Once the molecule it can then be interpolated onto
a regular grid. We then apply a Gaussian followed
by a Laplacian filter. The combination of these

filters is commonly known as a Mexican Hat
filter. At this stage, we then Fourier transform this
data in the same way as the Spider data.

We then calculate the inverse Fourier Transform
given in Equation 4.4.2. This inverse Fourier
Transform gives us the correlation coefficients for
the given rotation. At this stage we check our
correlation coefficients against the best fits found
previously. If a correlation coefficient exceeds the
maximum coefficient found for any rotation, then
it is saved along with the rotation that resulted in
the correlation.

A B =)()(BFFTAFFTIFFT

Equation 4.4.2. Fourier Correlation

5. Results
5.1 The User Test
In order to evaluate the usability of the different
docking methods, a test was designed which
would have the users run the program in various
ways. In the translation test, users would move
the PDBs into place and in the rotation test, they
would rotate the objects into the density field.

5.1.2 Extraction of result data
The results of the user test were the docked PDB
files. A program was written to extract the results
from raw experimental data. It would compare
each test file against the model solution . When
run with the model solution as an input file, the
answer outputted was zero. During testing each
file was given a meaningful name based on the
subject number and the test type.

Figure 5.1.2.1 Sample data from the result file
for input box translation

5.1.3 Statistical results

Through analysis of the resulting test data, it was
found that translation was significantly faster than
rotation. This is attributed to the fact that
translation is perhaps more intuitive than rotation.

file: S1boxtrans.pdb
ans: 0.116653
 file: S2boxtrans.pdb
ans: 0.118034
file: S3boxtrans.pdb
ans: 0.218211
file: S4boxtrans.pdb

 9

Within the rotation and translation tests, neither
method was significantly faster or more accurate.

5.1.4 Qualitative Test Results
During the test, suggestions and comments were
raised by the subjects. One issue found, was that
users often pressed buttons and moved sliders that
they were not supposed to use. Sometimes this
was out of curiosity and other times this was by
mistake. A solution to this problem was the
change the entire look of the interface. Tabs were
added in such a way that all viewing options for
the SPIDER and PDB appear separately from the
docking buttons, themselves. As such, users only
had access to the required buttons shown in the
tutorial. This had the added effect of clearing the
interface of complexity improving on the general
look and feel of the application.

5.2 Automatic Docking Testing

Both automatic docking techniques were run on
test data provided by Trevor Sewell.
Unfortunately the original placement of the
molecule will have an effect on the quality of the
docked solution. The reason for this is that the
Euler angles are sampled with regular spacing.
The sampling may introduce an error up to half
the sampling step. Decreasing the sampling step
reduces this error but is extremely time
consuming due to the exponential nature of the
angle generation and long running time of the
searching algorithm. Decreasing the sampling step
from 30° to 15° increases the number of angles
from 1038 to over 7000.

Figure 5.2.1. shows the best fit solution returned
by the contour based docking algorithm. A full
search spanning the entire rotational spectrum was
performed with a 15° (0.261 radians) sampling
step. A detailed examination of the best fit
showed a near perfect dock with only a slight
displacement of the PDB file. This can be
attributed to the fact that translations are
constrained by the resolution of the Spider file.

 (a) (b)
Figure 5.2.1 Contour based docking result from
two angles

In order to compare our two docking techniques,
the molecule was then docked using standard
correlation (with the same parameters). The best
fit solution returned by this procedure was not
identical to that obtained through contour based
fitting. The molecule was shifted slightly
backwards in the Y-axis. This gave a slightly less
perfect fit as can be seen in Figure 5.2.2b. The
solution obtained through contour docking was
presented as one of the possible fits but did not
obtain the highest correlation score.

 (a) (b)
Figure 5.2.2. Standard correlation docking result

The most noticeable difference between the
results produced by the two different docking
procedures was the number of possible fits. The
contour based docking presented four possible
results all scoring a normalized coefficient of
above 0.9. Alternatively, the standard correlation
returned over 30 results with very similar
correlation scores. The reason for this discrepancy
is that contour based fitting penalizes fits when
the edges of the shapes do not overlap. This
causes a sharp drop in correlation coefficients
when the molecule moves outside the density
map. This effect is not present in standard
correlation and as such the possible results are not
as clearly defined.

6. Future Work
In this application, it would be useful, if the user
could see the protein as an iso-surface and also
see the atom colouring in one visualisation. This
could be accomplished by using some variation of
the marching cubes algorithm which was
extended to interpolate colours in a similar way
that it currently interpolates density values.

Due to the nature of the proteins used, it would be
ideal, if the SPIDER could be viewed in a way
that the inner sub units were a different surface to
the outer ones. This would be possible simply by
creating multiple meshes, but would only be
useful if polygon depth test ordering was
implemented. Without this testing, transparency

 10

issues mentioned above would cause further
problems.

The field of automatic docking is extensive and as
such there are many possible extensions to the
project. The component architecture was designed
so that additional docking techniques could be
easily added. As such, the implementation of any
of these techniques (Vector Quantization etc.)
could provide future work. A genetic algorithm
solution seems plausible for both Vector
Quantization or as an optional mechanism for
contour-based docking.

Vector quantization generates a number of code-
vectors for both high and low resolution data. The
pairing of these code-vectors is an O(N!)
calculation and thus severely limits the number of
code-vectors that can be used. A genetic
algorithm could be used to pair these code-vectors
thus allowing for a much larger number of code-
vectors. While it is not apparent if this genetic
algorithm would provide more accurate solutions,
its implementation could possibly yield more
accurate results while still maintaining near real-
time computation.

A full 6D search (as required for many docking
techniques) is an extremely computationally
expensive operation. The distribution of the best
results usually lie at local maxima on a reasonably
smooth gradient. This indicates that a genetic
algorithm could possibly be used to focus
searches on areas where the best fit is more likely
to occur. This reduction in the search space would
allow for much finer angle increments and should
yield highly accurate results.

8. Conclusion

By researching the field of bio-informatics and
molecular docking, we were able to get a grasp on
the exact requirement of the project. These
requirements were then translated into a design
which was used to implement a working docking
application. Different methods of visualization
and automatic docking were attempted and
documented up to the point that adequate
solutions were found to the various challenges.
The application is successful in being able to dock
molecules both through mathematical automatic
docking and by means of manual docking. It is
also able to save all results in a way that makes
them useful in many applications. The project has
been designed in a way that makes it extensible

and future work has been suggested so that this
project can be taken beyond its current state.

References:
 [1] TS Baker, JE Johnson. Low resolution meets
high: towards a resolution continuum from cells
to atoms. Curr. Opin. Struct. Biol, 1996
[2] Ted Schlicke. Breaking Waves and the
Dispersion of Surface Films.
http://www.ph.ed.ac.uk/~ted/thesis/node42.html

[3] P Chacon, W Wriggers. Multi-resolution
contour-based fitting of macromolecular
structures. J. Mol. Biol, 2002 - biomachina.org
[4] DM Belnap, A Kumar, JT Folk, TJ Smith, TS
Baker. Low-Resolution density maps from atomic
models: how stepping back can be a step

forward . J. Struct. Biol, 1999
[5] W.Lorensen, H.Cline. Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm. Computer Graphics, 21 (4): 163-169,
July 1987
[6] Raj Shekharly, Elias Fayyad, Roni Yage, J.
Fredrick Cornhill, Octree-Based Decimation of
Marching Cubes Surfaces, IEEE Visualization,
1996
[7] Tolga Can, Yujun Wang, Yuan-Fang Wang,
Jianwen Su. Bioinformatics: FPV: fast protein
visualization using Java 3D . ACM SAC: 88-
95, 2003
[8] Colin R. F. Monks, Patricia J. Crossno,
Constantine Pavlakos, George Davidson,
Abraham Kupfer, Cliudio Silva, Brian Wylie:
Three Dimensional Visualization Of Proteins In
Cellular Interactions. Proceedings of the 7th

conference on Visualization: 363 - ff, October
1996
[9] E.E. Lattman. Optimal Sampling of the
Rotation Function, pp 179-185. The Molecular
Replacement Method (Ed. M.G. Rossmann),
Gordon and Breach, Science Publishers Inc., New
York, 1972.

http://www.ph.ed.ac.uk/~ted/thesis/node42.html

