
Holistic Programming Environments

Gary Marsdena Harold Thimblebyb

aDepartment of Computer Scince, University of Cape Town, South Africa,gaz@cs.uct.ac.za
bSchool of Computer Science, Middlesex University, London,UK, harold@mdx.ac.uk

Abstract

As a result of the popularity of graphical user interfaces, it is now almost impossible to buy a programming language
compiler – instead, one purchases a development environment. Of course, we can scoff at the distinction and say that a
development environment is nothing more than a programminglanguage with visual (as opposed to syntactic) sugar.
We believe, however, that this view must change if safer and more responsible programming languages are to be created
for the next generation of programmer. Within this paper, wewill argue that a more theoretical approach should be taken
to the development of programming environments and suggestways in which this may be achieved.

Keywords: Programming languages, GUI programming, Interface design
Computing Review Categories:D.1.5; D.1.7, D.2.6, H.1.2

1 Development environments

In the early days of graphic user interfaces, toolkits (or
API’s) were created which allowed programmers to access
code libraries that could be used to create basic interface
elements (widgets). The success of early toolkits such as
X-Motif[2] was immense, and it has been estimated that
these toolkits provided a ten-fold increase in the productiv-
ity of interface programmers[8]. However, the real power
of these toolkits was only realised when they were cou-
pled to an interface development environment. Rather than
having to set visual attributes (such as position and colour)
using textual commands, the visual environment allowed
programmers to use direct manipulation of widgets to set
these visual properties.

Consequently, current development environments are
usually comprised of three main elements: a language
compiler, a visual toolkit and an interactive environment
(usually with a text and visual editor). Currently, each of
these components is developed separately by the manufac-
turer. This may be on purpose (to reduce costs as with
Microsoft’s Visual Studio set of tools) or it represents a
throwback to historical development strategies, where the
editor was supplied independently of the compiler. Whilst
tools in current development environments are integrated
at some level (e.g. the editor knows how to colour the syn-
tax of the source code) the development of the environment
and toolkit is still largely separate from the development of
the language.

We believe that the power of development environ-
ments can be greatly improved through the deliberate in-
tegration of editor, language and toolkit.

This idea is not new, and the importance of integrating
a language to its environment has been realised in projects
such as Oberon[10] and Smalltalk[3]. When these systems

were released, however, it was unusual to have a language
supplied with its own environment. Also, the processing
demands of such a system were greater than those which
were readily accessible to most programmers. This is no
longer the case. It is therefore time to look at the prob-
lems caused by maintaining the separation between lan-
guage and environment and also to investigate the potential
benefits of integrating them.

2 State of play

Visual Basic[6] is a typical example of a third generation
programming language supported by a visual environment.
As such, we shall use it as an exemplar to investigate the
issues arising from combining a text based language with
a visual environment. Although the comments in this sec-
tion are specific to Visual Basic, the same questions can be
applied to any other programming language and environ-
ment.

The provision of a widget toolkit and a graphical ed-
itor greatly increases the utility of BASIC. Programmers
can use these facilities to rapidly develop new applica-
tions which would have been impossible before. Like ev-
ery other language, however, BASIC has it weaknesses,
which are well understood and documented[1]. However,
by adding the toolkit and the environment, have we have
removed some weaknesses but have we added some more?
Consider the following example:
A variant variable is used within the Visual Basic program-
ming language to hold data of any type. Similarly, a text
box is a widget which can be used to hold data of any
type. Imagine a program with two variant variables (vv1
andvv2) and two text boxes (tb1 andtb2). Into all the
text boxes and variables we insert the value five. Perform-

SART / SACJ, No 21, 1998 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Inconsistent coercion in Visual Basic

ing the calculationvv1 * vv2 gives the same result astb1
* tb2, namely 25. Performing the calculationvv1 + vv2
gives the result 10. The calculationtb1 + tb2 results in
the answer 55! Text boxes are coerced to a string for the
’+’ operator, whilst variant variables are coerced to inte-
gers. Whether or not you regard automatic type coercion as
a good thing, one might at least expect that the coercion is
performed identically for semantically identical concepts!
(Of course, the problem really lies with the overloading
of the ’+’ operator and could be solved by using different
symbols for concatenation and addition.) This process is
sumarised in Figure 1.

At this point, we can throw up our hands in indigna-
tion and blame the Visual Basic programmers for their in-
competence. However, this does little to further computer
science and it is worth considering how other errors of this
type could be spotted.

One way to do improve visual language design is to
change our attitude to the “visual”part of the language.
Rather than treat it as some sort of add-on, we could under-
take to examine the semantics of toolkits and editors and
see how those relate to the semantics of the underlying lan-
guage. By treating the environment as being as important
as the language it supports, we can perhaps shed some light
on how to design more effective environments which com-
pliment the language more appropriately. Furthermore, by
investigating the environment’s semantics, we can go on to
use studies in third generation languages which have given
us well founded design principles – something which does
not yet exists for language environments. These design
principles from text based languages turn out to be just as
applicable to the environment which encompases the lan-
guage. We shall investigate how some of these principles
could be used to create more responsible environments.

2.1 Principle of Correspondence

The principle of correspondence[9] when applied to pro-
gramming languages, enables the programmer to treat se-
mantically identical items in a syntactically identical man-
ner, without having to be directly concerned with small,
inessential details. The principle could be extended to ap-
ply to semantically identical items in the language, toolkit
or environment.

Returning to the problem outlined above, we can see
that text boxes are semantically equivalent to variant vari-
ables. Therefore, the principle of correspondence would
have told us that values held in text boxes and variant vari-
ables should be treated in the same way. The fact that text
box values are visible to the user, and variant values are
not, should have no impact on how those values are used
in calculations.

2.2 Principle of Generality

The principle of generality[5] states that there should be no
special cases within a language. Setting aside any inconsis-
tencies within BASIC, there are special rules to remember
when accessing the toolkit from the Visual Basic language
or the Visual Basic environment. Most common among
these is setting attributes of widgets – some attributes can
only be set in the environment and not from the language.
This might have made sense had the attributes only been
accessible at run-time, but for some widgets, certain at-
tributes are never accessible from the language. Clearly, by
considering language and environment together, this type
of error could have been spotted at the design stage.

2.3 Universe of discourse

Traditionally the term “Universe of discourse”[7] refers to
the different data types a language can process. General
purpose languages, therefore, included types permitting
the processing of data held by the host operating system
and machine hardware. At the time when most third gener-
ation languages were designed, this would include strings,
characters and numbers.

Considering the integration of toolkit to language, it
would seem sensible to extend languages so that they could
include bitmaps and sounds as first class data types. With-
out the inclusion of these types, the universe of discourse is
incomplete. Few languages treat multimedia types as first
class.

It is interesting to make a comparison of the difference
between the universe of discourse for the language and the
universe of discourse for the graphical environment of a
given environment. For example, the interface builder in
Visual Basic is able to create and destroy widgets; but this
is not possible to achieve using Visual Basic programming
constructs. Furthermore, there are some development envi-
ronments which use widgets in the environment which are
not available in the language. This results in an internal
inconsistency, presenting a tool which appears to provide a

2 SACJ / SART, No 21, 1998

Figure 2: Fields and labels visualised from variables and
constants

certain functionality, yet that functionality is not available
from the programming language.

One way the universe of discourse (and indeed other
attributes) of third generation languages was tested was
to implement the language compiler in the language it-
self (meta-circularity). This became a fairly standard test
and languages which did not pass it were, in the words of
Levey[4] “beneath contempt.”

The equivalent check for a visual development tool
would then be to implement its interface builder using the
language component of the tool. This would not only en-
sure an appropriate universe of discourse, but it would
make the tool more flexible and freely customisable to
those wishing to change it. This would also be a concep-
tually optimal way to integrate the language and environ-
ment.

3 Integration

In the previous section, it was shown that problems within
current development environments could be spotted using
well understood principles, provided the environment was
considered to be part of the language. The problem then
remains of bringing the semantic concepts of the environ-
ment into the language, allowing this integration to take
place. In order to determine if such integration is possible,
the semantics and roles of common interface widgets were
examined and suggestions made as to how they could be
represented in a programming language. A selection of the
target widgets is presented beneath.

3.1 Fields and labels

Perhaps the simplest place to begin is with text boxes and
labels as these are essentially strings displayed on the in-
terface – assuming that the language has string types and
string constants. Thepresentedversion of a string constant
is a label and thepresentedversion of a string variable is a
text box. (See Figure 2).

Figure 3: Fields and labels visualised from variables and
constants

3.2 Radio buttons

Radio buttons, like text boxes, already have a di-
rectly equivalent concept within programming languages,
namely the enumerated type. Variables of a particular enu-
merated type can only hold one value from the set declared
in the type definition. For example, in Pascal, the type day
can be declared as:

TYPE day =(Mon,Tue,Wed,Thur,Fri,Sat,Sun);

Obviously, as radio buttons provide a mutually exclu-
sive choice, they are semantically equivalent to the enu-
merated type. Furthermore, enumerated types are also
semantically equivalent to pop-up menus, permitting a
choice of visualisations as in Figure 3.

3.3 Check boxes

The check box is a close relative of the radio button, but
provides selection from a non-exclusive list. When the list
contains only one item, then the check box becomes a vi-
sualisation of a Boolean variable. If the list is longer, then
it becomes necessary to introduce a new concept which we
shall term theVariant Enumerated(VE) type. Similar to
the enumerated variables, variables declared of VE type
can hold a list of values taken from the defined set, rather
than the single value of the enumerated variable. For ex-
ample, to implement a variable to hold the style of text in a
word processor, the variable could take one or more values
from the list (bold, italic, underline), as in Figure 4.

SART / SACJ, No 21, 1998 3

Figure 4: Style menu showing inclusive choice

Figure 5: Exclusive and inclusive choices

Whilst it so happens that these values are compatible,
it can also be the case that selection of a particular value
excludes other values. Again, taking font style as an ex-
ample, the value “plain” would exclude other values. The
declaration of a VE variable should therefore permit the
exclusivity and inclusivity between values. The notation
adopted uses boolean connectors, thus making the declara-
tion of this style menu:

style = (plain | (
italic,bold,underline,outline));

In this notation, the vertical bar is used to represent
an exclusive conjunction, and the comma used to represent
an inclusive conjunction. This can then be presented as in
Figure 5.

3.4 Extending the process

This process can be continued to the point where most wid-
gets can be represented as data types in a programming lan-
guage which would be familiar to programmers working

with current development environments. In fact, it is not
even necessary to create an entirely new language, as the
flexibility of an OO language like Java allows us to create
a class of visual variables to replace the standard types of
“Integer”, “String” etc. Varaibles from the visual varaible
class could have a “display” method which caused the vari-
able to be rendered as part of the interface. Subsequent
changes in the value of the variable are then automatically
reflected in the interface. Such a scheme was implemented
as a trial in Java. (See Figure 6).

4 Benefits

If language-environment integration was pursued in way
similar to that presented above, we believe it would create
a number of benefits, beyond the removal of errors� Improved interface design: By encoding the semantics

of a particular interface widget within the language,
the programmer is forced to think about widgets at a
higher level. This makes the purpose of each widget
more apparent to the programmer and should allow
them to choose the most appropriate representation for
any given concept.� Improved learnability: By removing the distinction
between language and environment, the programmer
need only learn one set of concepts; not the different
abstractions found in separate toolkit and language.� Programmer support: Formerly, languages such as
C++ required that the programmer understand some
advanced concepts (e.g. pointers and object hierar-
chies) before they could create even the simplest in-
terfaces. By making the interface a visualisation of
the concepts already learnt as part of the language, the
programmer can create interfaces for programs written
at the level of their proficiency.� Consistency of GUI: By allowing the system to select
widgets, more coherent interfaces will be produced.
This can be further improved by customising the sys-
tem to adhere to a desired interface style guide.

5 Conclusions

We have presented how treating a language and its environ-
ment as separate entities can lead to problems when using
the two elements together. We have shown that these prob-
lems can be removed, and other benefits created, by blur-
ring the distinction between language and environment. In
an effort to show how this blurring might occur, we sug-
gested how a small subset of widgets could be more closely
integrated with a programming language. If this work is to
be completed, however, then it will be necessary to show
how more widgets can be integrated into a language.

4 SACJ / SART, No 21, 1998

Figure 6: Sample Java implementation

References

[1] E. Dijkstra. Selected Writings in Computing, chap-
ter How do we tell truths that might hurt? Springer
Verlag, 1975.

[2] Open Software Foundation.OSF/Motif Program-
mer’s Reference Release 1.1. Prentice Hall, 1990.

[3] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[4] S. Levey.Hackers. Penguin, 1984.

[5] K. Louden. Programming Languages: Principles
and Practice. PWS-Kent, 1993.

[6] Microsoft. Visual basic product description. Techni-
cal report, www.Microsoft.com/vbasic/, Last visited
July 2000.

[7] R. Morrison. Towards simpler programming lan-
guages: S-algol. Technical report, St. Andrews Uni-
versity, 1983.

[8] B. Myers.Languages for developing User Interfaces,
chapter 1. Jones and Bartlett, 1994.

[9] R.D. Tennent. Language design methods based on
semantic principles.Acta Informatica, 8:337–349,
1977.

[10] N. Wirth. The programming language oberon.Soft-
ware - Practice and Experience, 18(7):671–690,
1988.

SART / SACJ, No 21, 1998 5

