
Data structures in the design of interfaces

Gary Marsden*
Computing Science

University of Cape Town
Rondebosch 7701, South Africa

+27 21 650 2666
gaz@cs.uct.ac.za

Harold Thimbleby, Matt Jones
& Paul Gillary

Computing Science
Middlesex University

London, N11 2NQ, UK
+44 208 362 6061
harold@mdx.ac.uk

*Author for correspondence

Abstract
Computer science algorithms can be used to improve user interfaces. Using data structures as a
source of design ideas, a new interface was constructed for a cellular telephone handset. Once
implemented, a user experiment was conducted which showed that predicted improvements in
usability were confirmed with real users doing realistic tasks.

Motivation
Around eighty percent of cellular telephone users only use their handsets to receive calls and make
calls dialled directly on the keypad [1] – in other words, they do not use any facilities other than
those provided on the most basic of land based telephones. One might speculate that users may not
want any more functionality, but the nature of a cellular telephone almost demands that the user
investigate configuration options (for example, because the handset will move from noisy to quiet
environments, the user will need to adjust the ringing tone to an appropriate level). It is also clear
from the calls received by help-lines set up by the cellular service providers that users do want to
access features of their handset, but are hindered by the handset’s interface.

The work presented in this paper was initiated by a cellular service provider who was not only
concerned about how much the help-lines were costing the company, but was also concerned over
lost earnings because users were not bothering to access premium rate services (e.g. voice mail,
traffic reports). Both problems are primarily due to overly complicated configuration options on their
handsets. These same concerns are also echoed by [2], another cellular service provider who have
also become concerned about the handsets they are supplying to their customers.

The original aim of the work described in this paper was to design a new interface to cellular handset
features which users could access more easily than existing interface designs. The paper reports
several design alternatives and the results of user testing the final design.

The problem
The interface for most cellular handsets is a hierarchical tree of menu choices. Features are grouped
logically by operation and the overall structure is navigated by providing parent, child and closest-
sibling navigation at each node. (See Figure 1).

Figure 1
Interface menu hierarchy.
Scrolling right from the
third child returns to the
first child. Scrolling left
from the first child moves
to the third child.

Root

Child 1 Child 2 Child 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Whilst menus are effective in overcoming command recall problems on a typical computer monitor,
it is not clear that they are an effective solution for structuring interaction on a cellular handset,
which has a greatly reduced screen size. Typical handset screens can display only one menu option at
a time, forcing users to remember the other options in each menu. As the menus are nested
(sometimes to a depth of four levels) it is little wonder that users become confused about their
location in the menu structure and where to find the command they want. This is often compounded
by the classifications and ordering used in the menus, which may not agree with how the user would
choose to classify functions.

We agree with Alexander that hierarchical tree type classifications are not a natural way of
organising structures for humans [3]. (Alexander’s main argument is that trees are good for
designing, because the designers know the classification system, but they are not good for users who
do not know the classification, or perhaps even the names and relations of the commands). The user
of a cellular handset must guess how the handset’s designer would classify a particular function – for
example, does a function to set the ringing volume belong in the “Tones” menu or the “Phone
Settings” menu.1

Besides problems of menu structure awareness, displaying one menu option at a time means that the
user must perform many key presses in order to navigate to the desired option. Increasing the number
of key presses required will obviously increase the likely hood of making an error in input.

To solve these sorts of problems of interaction with cellular telephone handsets, it is necessary to
develop a solution which was not based on traditional hierarchical menus but employed an alternate
interaction paradigm.

Where to look for a solution
Although there are handsets coming on to the market which have large, touch screen displays, small
screens are likely to remain dominant in the handheld market for a long time. Even if higher
resolution screens are made available, aging populations (with poor eyesight) or usage requirements
in harsh environments – bad lighting, or for use while driving – all suggest that solving small screen
interaction will remain an important problem. The present work was only concerned with standard
handsets with small screens and push button style interaction. There are many comments we could
make on the physical design of the handsets (such as better affordances on volume buttons) but in the
interests of brevity, we shall only concern ourselves with the software of the interface rather than the
hardware. Our comments and general results (if not the absolute timings) therefore apply even if the
hardware is changed radically; for instance, if it was pen based or even speech operated.

What then can be said of the interface software? Although working at institutions which employ
human computer interaction researchers from a diversity of backgrounds, the authors of this
particular paper are all computer scientists (albeit, ones experienced in HCI). It seemed logical,
therefore, to start investigating the interaction problems by considering the characteristics of the
menu as a data structure. To start our investigation, we first of all conducted an analysis of an
existing handset.

Existing handset
To serve as an illustration of our analysis, we present the example of a Nokia 5110 handset. The
results of the analysis are in no way unique to this handset or manufacturer, but 5110 is interesting as
it is a very popular handset. Other people reading this paper and wishing to repeat our work will find
the Nokia 5110 readily available. Furthermore, the Nokia 5110 is marketed on its ease of use; the
following is taken from 5110 promotional material [4]:

“Use your phone as you want. Send short messages, save names and numbers, select a new
ringing tone - all with the press of a single key, the Nokia Navi™ Key.”

1 On the Nokia 5110, it belongs in the “Tones” menu.

The Nokia handset has 74 functions which are of interest to us. The handset provides other functions
which are not accessible from the menu (such as keypad locking and ear-piece volume adjust)
placing them outside the scope of our study.

In this analysis we were interested in the cognitive overhead imposed on a user trying to access a
menu function. There is a distinction between accessing a function and activating a function –
activation requires the user to enter some data, which will be different for different functions;
accessing a function is the act of locating the desired function in the menu structure without
activating it. Relative costs of function accessibility can be easily calculated by counting key presses
– keys being the only way to navigate the menu structure. The navigation keys consist of:

Navi

Select the currently displayed function, or if it
is a menu item, display that menu

Up

 Scroll up the currently displayed menu

Down

Scroll down the currently displayed menu

Cancel

Go back to the previous selection

We shall assume a naïve user, who has not memorised the positions of every function in the memory
structure and must therefore scroll to find the required function (this is likely to be the case for most
users). Therefore, the menu structure should support both direct function access (where the user
knows what function they are looking for) and browse style accessing (where the user wishes browse
through all the functions provided by the handset).

Although the menu structure was organised to favour breadth over depth, as recommended by
Miller[12], the user must perform 8.2 key presses on average to access a function. To access the most
nested function in the menu, a maximum of 15 key presses required. For a browsing interaction, the
user would need to perform a minimum of 110 key presses to access every function! (A distribution
of key presses is given in Figure 2 below.)

Figure 2 – Shows distribution of key presses required to access functions.
E.g. there are 16 functions which can be accessed with five key presses

Number of Key Presses Required

to Access Different Functions

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of key presses

N
u

m
b

e
r

o
f

fu
n

c
ti

o
n

s

These calculations represent a best case scenario, where the user makes no errors in input and is able
to recognise the correct menu option when it appears on the screen. If the user makes errors, they
will take longer; and of course, if they do not recognise the function they want, it could take forever!
Indeed, users may not be sure that the first time they see a function that it is the actual one they want,
so they would then scan the rest of the function names and eventually try to come back. Such usage
is very slow. In any case, as our experiments show, optimal use is unachievable in practice – in fact,
many subjects in our study became caught in loops within the menu structure, never finding the
target function.

The brief analysis of the 5110, above, depends on other assumptions, such as the distribution of
function access. For simplicity we assumed all functions were used equally often, but if an easily
accessed function was used more often, then the average would decrease. A more thorough
discussion of function weighting can be found in [9].

Alternate Design
A data structure which requires an average of 8.2 key presses to access a given function seems
somewhat sub-optimal. Treating this as a computing science problem, one way to improve the menu
tree is to re-structure it as a balanced binary tree. Users searching for a menu item would navigate on
the alphabetic order of the function name they were searching for. At each node in the tree, users
would either select the function name at that node, or choose to navigate down the node’s left or right
branch. This scheme uses the four navigation buttons slightly differently:

Navi

Access the currently displayed function

Up

 Display a function earlier in the alphabet

Down

Display a function later in the alphabet

Cancel

Go back to the previous selection

This solution would reduce the average cost of selection from 8.2 key presses to 5.4 key presses (see
box below)

There are 74 functions, and as they have different alphabetic names, a balanced tree
gives them unique position. A binary tree with 6 levels can accommodate 63
functions, with seven levels it can accommodate 127 functions. 74 functions
therefore require 6 full levels and a 7th level only 15% ((74-63)/64) full. The way
binary trees work, one command (e.g. the most popular) can be accessed
immediately by pressing Navi; two commands can be access be pressing either Up or
Down and then Navi; four commands can be access by pressing either Up or Down
twice and then Navi … and so on. The average number of key presses required to
access a function (rather than activate it) is calculated as (1x1 + 2x2 + 4x3 + 8x4 +
16x5 + 32x6 + 11x7)/74, which is 5.4

Furthermore, the worst case search path is reduced from 15 presses to 7 presses. However, by
maintaining the hierarchical tree structure, the task of visiting every node in the structure is still
daunting, requiring the user to make 148 key presses.

Of course, to remove the navigational difficulties of a tree structure, we could flatten the structure to
a linear list. This would allow users to visit every function with only 74 key presses; what is more,
the key being pressed would be the same every time. However, with a list, the average search time is
37.5 key presses and the worst case search requires 74 key presses.

It was clear from these preliminary design investigations that an alternative solution would need to
be sought which supported both directed and browsing style access.

Final Design Solution

The final design solution was based on the technique of hashing[8]. Hashing usually involves
calculating a memory, or storage location from a key value. For cellular handsets, we developed a
hashing function based around the fact that each numeric key on the keypad is also used to represent
alphabetic characters – for example, the “1” key also has the letters “abc” printed on it. Therefore, it
was possible to build a hash table where the names of the functions were represented as numerical
strings. For example, the word call would be encoded as “2255” – the “2” key contains the letters “a”
and “c”; the “5” key contains the letter “l”

To retrieve a function, the user merely spells out the name of the target function using the numeric
keys. Whilst the input may be ambiguous (each key represents between three and four distinct
letters), the input can be disambiguated by the hash table in 2.7 key presses (on average).

Previously, other systems have attempted to exploit the letters on a telephone keypad. Rau and Skiena
[10] give an excellent review of keyboard text entry using numeric keys, though their aim was to
reconstruct English text without any interaction. They achieved 99% correct identification of
characters. The T9 system [11], again intended for natural language text entry ensures accuracy by
interactively asking the user to select from ambiguous choices. More commonly, systems such as
SRS from IBM [5] require the user to enter unambiguous input in the first place. This inevitably
results in many more key presses – for example, to enter the letter “c”, would require the user to press
the “2” key three times (once for “a”, twice for “b” and three times for “c”).

In the situation presented here (namely, using the keypad to access menus) the user is not inputting
novel data. Therefore, any input can be unambiguously mapped to one of 74 possible function names.
Selection occurs as follows.

Let us imagine a user wishing to select the “Limit Call Cost” function (a full list of functions can be
found in appendix A). The user presses the “5” key (as it contains the letter “L”) and the screen
presents all menu options starting with “J” or “K” or “L”. In this case there are three matches as
shown below:

The user now presses the “4” key which, in this case, unambiguously selects the “Limit Call Cost”
function – this is the only function whose first letter is “J” or “K” or “L” and whose second letter is
“G” or “H” or “I”.

This algorithm was first prototyped in Bongo and then implemented as a full Java 1.1 applet. The
Java version can be seen in Figure 3 below.

5
Keypad Tones
Language of Menu
Limit Call Cost

5

Keypad Tones

4 +

J K L

J K L G H I

Combining function access with dialling

Most handsets are normally in ‘dial’ mode, when pressing
any digit key starts entering a telephone number. Menu
selection of functions is achieved in a separate mode,
which on the Nokia 5110 is first entered by pressing the
Navi key. When in ‘menu’ mode, the numeric keys cannot
be used for entering a telephone number – indeed, the
numeric keys now function as a short cut, a faster way of
navigating the function menu.

Since our approach uses the numeric keys naturally to
navigate the function menu, it is important to reduce this
mode confusion. We achieved a modeless design as
follows.

Users use the keys to enter a telephone number or to spell
a function name. If the user wished to place a call, then
they would simply press the call button. If they wish to
select a function, they can press the selection button (in
our implementation, the button to the right of the scroll
keys). What may not be clear from the diagram (figure 3)
is that the top menu item is in bold which, in conjunction
with the line down the right hand side of the screen,
indicates that this function will be selected when the
selection button is pressed.

As well as spelling the name, the user is free to use the
scroll buttons to move the function they require into the
selection position. Therefore, if the user, whose screen we
see in Figure 3, had been looking for “Limit Call Cost”
they need not spell the rest of the name, but merely press
the ‘Down’ key twice. When searching for a particular
function, it is the use of the scroll key which allows us to
reduce the maximum key presses from nine (using hashing
only) to a maximum of six (with combined hashing and
scrolling). It is also the scroll keys which allow the
functions to be searched in a linear fashion, requiring 74
key presses to access every function.

It should be noted that this is an experimental prototype
and issues of button placement were not considered.

In summary, the use of hash tables provides a solution
which blends the best attributes of trees and linear lists, to
build a structure similar to a B+Tree (similar in the fact that
a node can be accessed by an indexing technique – like
hashing – or accessed linearly as part of a linked list). The
users of these data structures are not computers however,
but ordinary – emotional and inconsistent – humans. In
order to test the effectiveness of this new interface
paradigm, it was necessary to conduct usability tests.

Experiment design
The aim of the experiments was to test the following hypotheses:

1. The hash based interface would require fewer key presses for function access than an interface
based on a traditional menu structure.

Figure 3

2. The users of a hash based interface would require less time to access a function than an interface
based on a traditional menu structure.

Subjects

Thirty subjects in total took part in the test – subjects consisted of students, academics and
administrative staff from a variety of university departments. Two distinct groups were required for
the experiment. Subjects were rated on their experience with using cellular telephone handsets to
ensure that each group consisted of equal numbers of novices (who had never used a mobile
telephone) and experts (who were able to change at least one setting on their handset). An even
gender and age mix was also ensured in each group.

Simulations

Two handset simulations were created for the experiment. One used the menu structure of the Nokia
5110; the other used the hashing algorithm. Both simulations provided access to exactly the same
function list, however, the hash phone also had some synonyms for function names. Providing too
many synonyms would bias the experiment toward the hash handset, so each function name was
allowed a maximum of one synonym to compensate for noun-verb and verb-noun transpositioning –
e.g. “Ringing volume” was also replicated as “Volume of ring”. These simulations can be found on-
line at [6].

Procedure

Each subject was given a brief (approximately five minute) explanation of how each handset worked
and a demonstration of the type of task they would be expected to perform during the actual
experiment. The main purpose of the explanation and demonstration was to ensure familiarity with
the computer simulation which required the mouse to press the on-screen buttons.

Instruction sheets were also left for the subjects to refer to, should they need reminding of how either
simulation worked.

Each subject was then given a set of twenty four tasks to complete, twelve with each handset. A
typical task is as follows:

“Your phone’s capacity to store numbers is almost at its limit. Check to see how much space
you have left.”

The subject would then search for the function which they felt would be used to complete the task. A
subject’s interaction with the simulation was observed by means of a video splitting cable, which
allowed the experimenter to unobtrusively view on their own monitor what was happening on the
subject’s screen. The output to this second screen was also recorded to aid in the post experiment
interviews.

Subjects were told that they would be given a maximum of two minutes to complete the task or they
could choose to give up before the two minutes had elapsed. The idea of self-retirement from a task
came from some pre-experiments, where it was clear that users could become locked in a loop within
the menu structure and would never find the function they sought.

The order in which the tasks were presented to subjects was randomly re-allocated after each subject
had completed the experiment. Any given task could have occurred with either the hash-based
handset or the menu-based handset. By changing the tasks to be performed on each handset, we
ensure that the difficulty experienced in using a given handset is due to the handset itself, not the
difficulty of the tasks allocated to that handset.

Furthermore, by having two groups of subjects, it was possible to remove ordering effects by having
one group complete their first twelve tasks with the standard simulation and the other group start with
the new design simulation. Subjects then swapped and completed the last twelve tasks using the
alternative simulation.

The wording of the tasks was carefully chosen so as not to prime subjects and bias them in favour of
one particular simulation. For example, the sample task given above does not use the word
“Memory” anywhere as this may favour the hashing simulation which relies on the user entering

(Nokia’s) key words. By removing these key words from the task description, subjects were required
to guess what words they should search for.

After completing the experiment, subjects were given a brief interview which was intended to extract
the subjective opinion about using each handset. Subjects were also ask to supply the words they
searched for when using the hash handset. (Rather than attempting a disruptive technique such as
think aloud, or interrupting subjects after each task, the video recording of the interaction was used to
remind subjects in the post-experiment interviews).

Results

The experimental scenarios completed on the new design took, on average, 9.54 key presses to
complete, in comparison to the standard design where 16.52 key presses were required. This is a
strongly significant result (repeated measures one tailed t test, t=3.4, df=29, p<0.001) with users
requiring approximately 7 fewer key presses, on average, to access the functions. (See Figure 4)

Non-Outlier Max
Non-Outlier Min

75%
25%

Median

Outliers

Distribution of Key-presses Box Plot (Hash vs. Menu)

2

6

10

14

18

22

26

30

HASH MENU

We discovered a significant difference in mean times between phone types (repeated measures one
tailed t test, t=1.95, df=29, p<0.03). The overall mean time for the hash phone is 33.42 secs as
compared to 42.02 secs for the normal handset. This means that regularly phone use is taking a
quarter of the time that hash phone use. This is a considerable improvement for hash phone users.

Non-Outlier Max
Non-Outlier Min

75%
25%

Median

Outliers

Distribution of Time Box Plot (Hash vs. Menu)

0

10

20

30

40

50

60

70

80

HASH MENU

Observations
From the subjects’ feedback, and from analysing the video recordings we also made the following
observations:
• Almost every subject preferred the modified design. This may be due to the fact that it was novel,

but many subjects gave convincing reasons such as “I was able to see all the items in the list —
nothing was hidden.”

• The frustration of subjects when using the standard design was obvious. They would repeatedly
become lost as they could not memorize, or visualize, the menu structure. Many subjects became
caught in cycles within the menu structure (connections between menu siblings are in a
continuous loop) from which they could not escape.

• The ability of the hash handset to scroll through all the functions as a linear list proved very
popular with users. In fact, our key press and time scores suffered because three users on the trial
ignored the hash based access to the functions and simply scrolled each time to the function they
wanted. These users felt that this was a ‘safer,’ or guaranteed way to find they function they
needed. So whilst scrolling may be a slower way to interact, these users willingly sacrificed speed
in order to improve their likelihood of finding the function they sought. This ‘fail-safe’ method of
accessing functions is not possible on most current handsets.

• First time users were confused by having to enter the menu system on the regular handsets. Quite
often they would start to scroll without pressing the “Menu” soft key and become frustrated when
they did not see the menu options appearing. Because the hash handset is modeless, these
problems were avoided.

Design Implications

The results from the experiment supports our original decision to base the interface on an optimal
data structure. This is not a new idea, having been expressed by Thimbleby as early as 1990 [7], but it
is, to our knowledge at least, the first interface that has been created in this way.

Besides giving a quantitative insight into issues such as reductions in key presses, there are side
effects from using an algorithmic approach.

• The idea of providing access to data both sequentially and randomly is well understood in
computer science, and it seems the same is true for users. In effect, this parallels the notion
of providing different interfaces for expert and novice users, something which is not easy to
achieve (especially when users migrate from novice to expert). Our solution provides both
hash-based and linear access to the function set in a mutually supporting way!

• The interface behaves in a very consistent way – after all, the interface is generated from a
tightly defined source (a computer algorithm).

• It is possible to create shorter user manuals which concentrate on the functionality of the
device, not how to access functions. Access to functions is reduced to describing the
algorithm used to create the interface, not the menu structure resulting from a designer’s
thought process.

It is our belief that other interfaces design could benefit greatly from our result. Books such as [8]
which list many different data structures and data access algorithms can be used as sources of ideas
for interface design. These ideas also provide the designer with analyses and quantitative information
about design trade-offs in terms of cost of interaction to access desired functions – this is useful but
unusual in user interface design!

Future Work
The cellular telephone handsets we examined permitted only key-based interaction. We are now
interested in discovering if our results hold true for other embedded computer systems with different
physical characteristics. New handsets have new interaction devices, such as scrolling wheels, which
are faster than scrolling by key pressing. We are currently building a design tool which will allow
interface designers to specify the physical constraints of the device they wish to model and trade off
different design solutions to reduce the cost of interaction to its theoretical minimum.

Conclusions
A novel interface for cellular telephone handsets based on data structure research was presented. Our
analysis showed that our interface should greatly reduce the number of keystrokes required to access
a given function. User experiments confirmed this result and also gave us valuable qualitative
information: users expressed strongly in favor of the new user interfaces.

Acknowledgements
This work was originally supported by EPSRC grant GR/M14548. Handsets were donated by Orange
plc.

References
1. Weaver, B. – Enhancing Ergonomic Design for Greater Appeal at Point of Sale, Proceedings of

User Interface Design for Mobile Terminals, Section 2, 1998.
2. Youngs, E. – Evaluating the Impact of Application, Ergonomic and Process Design on Handset

Success, Proceedings of User Interface Design for Mobile Terminals, Section 1, 1998.
3. Alexander, C. – A city is not a tree, DESIGN 206, pp46-55, 1965.
4. Nokia – http://www.nokia.com/phones/5110/index.html, last visited 4th May 2000.
5. Miller, D. P. The Depth/Breadth Tradeoff in Hierarchical Computer Menus (1981) Proceedings of the Human

Factors Society 25th Annual Meeting (pp. 296-300)
6. Cormen, T.H., Leiserson, C.E. and Rivest, R.L. Introduction to Algorithms, MIT Press, 1990.
7. Gould J.D. and Boies, S.J. Speech Filing – An Office System for Principals, Readings in Human

Computer Interaction (Baecker, R. and Buxton, W. eds), 8–24, 1987.
8. Marsden, G. Java Handset Implementation. http://www.cs.uct.ac.za/~gaz/ 1999.
9. Timbleby, H. User Interface Design, Addison Wesley, 1990.
10. Thimbleby, H. Analysis and Simulation of User Interfaces Proceedings HCI 2000, in press, 2000.
11. Rau, H. and Skiena, S. Dialing for Documents : An Experiment in Information Theory Journal of

Visual Languages and Computing 7 , pp79 – 95, 1996.
12. Tegic – http://www.tegic.com/, last visited 6th June 2000.

Appendix A.
Here are the menu options used in the study. Those not in bold are branch nodes and do not represent
an actual function.

Phone Book
 Search
 Add Entry
 Erase
 Edit
 Send Entry
 Options
 Type of View
 Memory Status
 Speed dials

Messages
 Inbox
 Outbox
 Write
 Message Settings
 Message centre number
 Message sent as
 Message validity
 Common
 Delivery report
 Reply via same centre
 Info Service
 Off
 Topics index
 Topics
 Select
 Add
 Edit
 Erase
 Language
 On
 Voice mailbox number

Call Register
 Missed Calls
 Received calls
 Dialled numbers
 Erase recent call lists
 Show call duration
 Last call
 All calls
 Received calls
 Dialled
 Clear Timer
 Show call costs
 Last call
 All calls
 Clear Counter
 Call cost settings
 Call cost limit
 Show costs in

Settings
 Call Settings
 Auto redial
 Speed dialling
 Call waiting option
 Own number sending
 Phone Settings
 Language
 Cell info display
 Welcome note
 Network selection
 Security settings
 PIN code request
 Fixed dialling
 Closed user group
 Security level
 Change access codes
 Change PIN code
 Change PIN2 code
 Change security code
 Restore factory settings

Call Divert
 Divert all
 Divert when busy
 Divert when not answered
 Divert when phone off
 Cancel all diverts

Games
 Memory
 Snake
 Logic

Calculator

Clock
 Alarm
 Settings
 Hide
 Set time
 Time format

Tones
 Incoming alert
 Ring tone
 Volume
 Message alert
 Keypad tones
 Warning and game tones

