

1

Service Oriented Architecture for a Software Traceability

System
Ntheye Lungu

Department of Computer Science

University of Cape Town

Cape Town, South Africa

ntheye@cs.uct.ac.za

Fadzai Muvuti
Department of Computer Science

University of Cape Town

Cape Town, South Africa

fmuvuti@cs.uct.ac.za

ABSTRACT
In order to improve software development and keep up with the
fast pace of business, standards and methodologies for
determining and endorsing effective software development
processes have been introduced and put into effect on software
projects. Accordingly, many tools that interpret these standards
and methodologies have been developed and employed.
Although there is active development and research in the area of
requirements traceability, the desired level of acceptance has not
been achieved, and the most widely reported reason for this in the
industry, is that of: ‘poor and immature integration technology’.
This has resulted in existing tools often suffering problems due to
poor integration and inflexibility with other technologies, which
undermines the usefulness, usability and longevity of the
Requirements Traceability provided by these tools. The panacea,
at least in the confines of this project, is to employ a new
technology: ’Web Services’ as the underlying framework, to
address these problems. The motivation for employing the web
services architecture for this project is to allow personalized
customization of a traceability solution, hence providing a
ubiquitous software development process that incorporates
standards as well as software engineering industry best practices.

General Terms
Management, Documentation, Standardization, Verification.

Keywords
Requirement, Traceability, Web Services, Requirements’
Traceability

1. INTRODUCTION
1.1 Problem Description
The extent of project failure is well documented. A study from the
Standish group (The Chaos Report) indicates that on average,
over eighty-three percent of software development projects fail.
(Projects considered to have failed are those that are either
cancelled before completion, exceed budgeted costs, or overrun
project deadlines). In addition to this, given that only 61% of the
originally specified requirements ever make it to the final release
of the project [1]; to keep up with the fast pace of business,
projects must be able to handle the frequently changing goals and
needs of the customer through the effective management of

requirements. Although this increased awareness to the
importance of effective requirements’ management has caused a
boom in the market for traceability tools [2],most of these tools
basically employ the same techniques, and differ mainly in
‘cosmetics’, time, effort and manual intervention required to
achieve their purpose. One of the key shortcomings that these
tools all have in common, is that they often suffer problems due to
poor integration and inflexibility with other tools and
technologies [3][4]. Therefore, despite the growth in the industry,
or the advancement in the functionality of the tools, their
applicability and widespread adoption will always be undermined
for as long as these integration problems exist [5].

1.2 Project Goals
The development and implementation of a complete software
traceability solution:

1) Housing industry best practice traceability
methodologies, processes, and solution sets;

2) Based on the Web Services’ framework;
in response to the existing problems of inflexibility and poor
integration, being faced by existing tools. The functionality of
this solution can be discovered as a web service; thereby
providing an accessible and ubiquitous traceability solution which
will allow project stakeholders (project managers in particular) to
produce tailor made traceability solutions fitted to the
requirements engineering efforts necessary for a particular
project.

2. BACKGROUND
2.1 Requirements’ Management
To appreciate the concept of ‘Requirements Management’, it is
important to understand what a requirement is. Sommerville [6]
defines a requirement as “a statement, in a natural language of
what user services the system is expected to provide…”. ‘Change’
is a key characteristic of requirements, and since the fulfilment of
requirements constitutes the process of software development, one
can conclude that change in software development is inevitable.
In fact, “No matter where you are in the software development
process, the system will change! [7]” The primary measure of
success of a software system is the degree to which it meets the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

purpose for which it was intended [8]. Given that only 61% of
the originally specified requirements ever make it to the final
release of the project [9]; it is vitally important that ‘change’ is
managed and controlled throughout the development process so
that the project is delivered on time, within budget, and according
to the requirements. ‘Requirements Management’ is the field in
software development responsible for managing this change, and
research by Hofman and Lehner suggest that ‘Requirements
Management’ constitutes the most important part of any software
development project [10], and therefore should not be taken
lightly.

2.2 Requirements’ Management: Challenges
‘Rrequirements’ Management’ may seem fairly straightforward,
however, defining and recognising a requirement is an arduous
task; hence, many projects experience requirement-related
problems during software development. The problems may be
categorized as follows [11]:

1. Difficulty to track changes in requirements.
2. The numerous sources from which requirements

originate render them naturally inconsistent, and hence
not so understandable.

3. Requirements are not always eloquently expressed in
words. This lack of clarity makes it difficult to
understand requirements statements.

4. There are different types of requirements at different
levels of complexity within the software development
lifecycle, and

5. Typically, a software project may have a large number
of requirements. The more requirements there are, the
more arduous the task of managing them.

The challenges identified here can be overcome by ‘Requirements
traceability’.

2.3 Requirements’ Traceability
To address the challenges of requirements management, project
managers need to implement the following measures:

Indicate through identifiers the origins of a requirement,
how it is specified and subsequently created, tested and
delivered.

Indicate for each work artifact the requirement(s) this
work artifact satisfies.

Facilitate communications, and customer commitment
throughout the software project lifecycle.

The steps identified here constitute Requirements’ Traceability,
which has been defined by Gotel and Finkelstein [12] as: “The
ability to describe and follow the life of a requirement in both
forwards and backwards directions (i.e. from its origins, through
its development and specification, to its subsequent deployment
and uses, and through all periods of on-going refinement and
iteration in any of these planes)”

2.3 Requirements’ Traceability: Purpose
The purpose of requirements traceability is:

Demonstrate to the customer that the developed product
conforms to the requested features, and that all changes
arising throughout the development phases have been
accounted for.

Ensure that the test plan, test cases and test procedures
in general are relevant to the requirements [13].

Ensure that developers are not creating features that no
one has requested – avoid creeping featurism.

From the above-mentioned points, it is clear to see that software
development projects, must from inception, accommodate
requirements traceability and retain the capacity to handle the
frequently changing goals and needs of the user.

2.4 Requirements’ Traceability: Techniques
Traceability is achieved through the creation of ‘traceability
relations’. These are links which define and describe the
relationships that exist between the different artefacts (e.g.
requirements, designs, assumptions, rationale, system concepts,
source code etc [14]) involved in software development. {Gotel,
Finkelstein} [15] have proposed several techniques for achieving
Requirements Traceability including: ‘Traceability Matrices’ (a
graphical description of which is given below in Figure 1),
Hypertext, Matrix Sequences, Assumption-Based Truth and
Constraint Networks, just to mention a few*.

Figure 1: Traceability Matrix

(In a traceability matrix, each requirement is required to have a
unique identifier that distinguishes it from all the other
requirements in the system. The matrix is constructed by the
developer by associating a requirement with any other
requirement(s) with which it interacts with [16]. This graphical
visualization makes it easier for one see which requirement(s) will
be affected by a change in the other requirement(s)).

3. WEB SERVICES
In the introductory chapter of this report, it was mentioned that a
major requirement of this project is to deploy a web service with
traceability capability. This section serves to provide an insight
into the web services architecture and web services in particular.

* Due to space limitations, a detailed description of each
technique cannot be given.

3

By definition, “A Web Service is a software system identified by a
URI, whose public interfaces and bindings are defined and
described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the Web
service in a manner prescribed by its definition, using XML based
messages conveyed by internet protocols.”[W3C]. In essence,
Web Services are autonomous constructs whose development,
deployment, and operation all vary independently depending on
specifics of intended consumption. The functional details of a
Service are concealed within that Service; however the
functionality is exposed. Moreover, because Web Services are
message oriented, the Web Service consumer is significantly
insulated from the implementation alternatives available to the
developer. This murkiness is critical to service autonomy, and
facilitates transparency to programming models, operating
systems, and implementation specific details. It may seem that
web services are obscure constructs; however, they expose their
functionality in machine readable descriptions of the messages a
service sends or receives. This functionality is based on the
interactions of three roles: service provider, service registry and
service requestor. Figure 2 illustrates how the three roles actually
interact.

Figure 2: Service Oriented Architecture [17]

The individual responsibilities of each of the roles are as follows
[18]:

1. Service provider: this is either the platform or owner
that publishes the service. The latter applies particularly
in the business context.

2. Service Requestor: in the framework of this paper,
applies to the project team that desires to develop its
traceability solution tailored for a particular product
development. The service requestor, through an
application interface, performs a find operation that
retrieves the web service description, and hence
functionality. To invoke the web service, the service
requestor issues a bind operation.

3. Service Registry: this is a searchable registry of service
descriptions where service providers publish their
service descriptions.

3.1 Web Services: Protocol Stack

Figure 3: Protocol Stack [19]

The three protocols constitute the web services architecture in the
following manner [20]:

SOAP: A lightweight, high level XML-based
messaging protocol that defines how Web Services
exchange messages with each other. One of the main
advantages of SOAP is that it is completely independent
of the underlying transport protocol.

WSDL: An XML document that describes a Web
Service by providing all the relevant information on
how the service communicates, and where it resides.

UDDI: This is essentially the ‘yellow pages’ of Web
Services. It is a public registry in which Web Services
and their descriptions (in WSDL) can be registered and
retrieved. Through UDDI, one can discover available
Web Services.

3.2 Web Services: Message
Interactions[21]

Service
Discovery

Service
Description

XML Based
Messaging

Network

UDDI

SOAP

HTTP

4

Figure 4: Message Interactions

Figure 4, above illustrates the conceptual interaction between the
web service provider of a traceability solution and the consuming
application.

1. The service requestor creates a SOAP message that
invokes the desired web service operation. The SOAP
message has to be consistent with the service
description made available for discovery by the web
service provider.

2. The initial SOAP message is transported, via the
network infrastructure, to the service providers SOAP
runtime environment. Typically, the SOAP runtime
converts the XML message into programming language
specific constructs (objects and types).

3. The web service processes the request and produces a
response, which is itself a SOAP message.

4. The response is then routed through the SOAP runtime
where the XML message can be converted, yet again,
into programming language specific objects, consistent
with the application. The application can now use the
web services generated response.

4. IMPLEMENTATION
The focus of the whole project i.e. ‘Service Oriented Architecture
for a Software Traceability System’, is the development of a
system whose functionality is based on the 6 modules contained
within the boundary ‘Traceability Web Services’ as illustrated in
Fig x above. Each of these 6 modules will be developed and
deployed as independent Web Services, and will therefore be able
to communicate with each other through the Web Services’-
defined message-passing mechanism; the successful collaboration
of which will result in the provision of a complete traceability
solution. The overall system was divided into 2 separate sub-
systems, responsible for the implementation of 3 modules each.
(The subsystem implemented by Fadzai will be called
’SubSystem1’ and the subsystem implemented by Ntheye will be
called ‘SubSystem2’ for the remainder of this document).

The development of this project was done using C# (.NET).

Figure 5: Creation of Web Services in .NET

As shown in Fig 5 above, .NET provides a predefined template
that makes it easy to create Web Services. A Web Service
consumer can be any one of the .NET types of applications (i.e.
Console, Window Form, Web Form, or another Web Service).
However, for this project, the consumer was implemented as a
‘Window Form’. Below is a description of the overall
implementation of the overall project according to the 2
subsystems:

4.1 SubSystem1

Figure 6:Screenshot of Fadzai’s System

Figure 6 illustrates the functionality corresponding to the
following modules:

1. Integration with RequisitePro: A user can create and
manipulate requirements in RequsitePro, and can then export
these requirements into .CSV format file. By clicking ‘File -
>Import CSV File ->Create New Requirements’ the user opens
up a ‘File Upload’ dialogue box which allows the user to select
the location of the file to be uploaded. The system does the first
checks which to ensure that the file is in the correct format (i.e.
CSV). If it is not, an error is indicated through a message box, and
if it is, they system goes into the ‘File Process()’ method which
does a second check on the file. This second check checks that
they contents of the file follow the format: line1->attribute
attributes; following lines->attributes and corresponding values’.
If not, another error is indicated else the file is process, and the
requirements are uploaded into the database after first truncating
the table. ‘Append to Existing Requirements’ allows the user to
upload several files into the repository at once. The same

5

procedure as in ‘Create New Requirements’, only that in this case
the database is not truncated, it is appended.

2. Impact Analysis: shown on the right side of the figure is the
section of the system that implements the traceability aspect of
the tool. Traceability is implemented as a Traceability Tree. All
roots are hypothetically attached to a ROOT node which
‘maintains’ the tree structure, but does not participate in the
traceability as it is not an actual requirement. A user clicks on a
requirement, and selects the second requirement to which the
trace should go from the list box below. Various traceability
algorithms are done to check for the validity of the trace before
the link is created (e.g. duplicate traces: A->B when the trace has
already been created, similar traces: A->A; circular traces: A->B
and B-A at a later stage. This gets more complex as the height of
the tree deepens). On the extreme right-hand-side of the screen,
the user can view the attributes and attribute values associated
with each requirement clicked on in the list box below. The
tree-like structure gives the user a graphical representation of
what requirements can be affected by a change in the affected
requirement.

ii) Relationship Generation: Shown on the left-hand side of the
GUI, the user can select a requirement from the Tree Hierarchy in
the tree in the top list box, and then select the child requirement
from the bottom list box. This feature makes it easy for the user to
manage a requirement because the child requirements are more
detailed specifications of the parent (e.g. the requirement ‘Plan
project’ could have as its children: Planning, Requirements’
Gathering, etc)

4.2 SubSystem2

Figure 7: Screenshot of Sub-System2

Consistent with the aims of SubSystem2, figure 7 is a depiction of
the main functionalities which are listed as follows:

RUP Harvest

Artefacts, activities, and stakeholder roles typical in a project are
harvested from the Rational Unified Process framework (RUP).
Depicted in figure 7 is a dialog box showing the link between
stakeholder roles and artefacts such that a selected role constructs
a list of artefacts that are either produced or consumed by that
role. Thus, for example, the Business Designer role is associated
with the following artefacts; Business Use-Case, Business Use-
Case Realisation, Business Event, among others. The stakeholder
role-to-artefact links are derived from RUP.

In reality, projects differ in their detail. Therefore, the tool
provides functionality that allows the project initiator (the user),
to determine which particular artefacts will be produced, and
hence consumed. The artefacts and roles not essential to a
particular project may be left out from that project.

Project Setup

Once the stakeholder role-to-artefact relationships have been
harvested and the project initiator determines what is essential for
the project, the rest of the project properties can be setup. The
properties referred to here include all phases essential for project;
pre-study, feasibility, execution, test, First Office Application
(FOA), and conclusion. Within these phases, milestones as well as
the deliverables within those milestones are set.

The project setup information is written to a database, allowing
the project initiator and all stakeholders to view the project
details. This view is depicted in figure 7 by the thick horizontal
lines running through the view.

5. TESTING
5.1 SubSystem1
The following tests were conducted on the system in order to
verify and validate the system:

5.1.1 Desk Checking
This type of testing involved the actual matching of each of the
test cases that had been specified, against the requirements, in
order to ensure that the system not only met the requirements, but
that it also fulfilled them in the way in which it was expected to.

5.1.2 Unit Testing
The ‘Unit Tests’ were based on the results obtained from ‘Desk
Checking’. The modules were tested separately to ensure that
they all met the specified requirements according to the
specifications given at the start of the project. It is only after a
module had passed all the tests specified by its corresponding
Desk Check, was it deemed to have ‘passed’.

5.1.3 Integration Testing
The power of Web Service is drawn from the fact that they do not
suffer from integration as they use a message-passing framework
(this forms the basis of the choice to implement this project upon
a Web Services technology framework). Therefore no integration
testing was done.

5.1.4 User Testing
A mixed sample of 10 candidates was chosen to come and test the
system. The main aspects which were being test for were
usability of the system, and applicability to the relevant market.
The sample consisted of 3 individuals who are currently working
in the I.T industry, 3 ordinary PC users, and 4 students from the
Honours class.

6

5.2 SubSystem2
Two main factors influenced the testing of subsystem 2.

Factor 1: An appropriate test case for the web services is for an
application that consumes the web services to be created. This in
fact was achieved, however, because the testing application was
built and designed by the authors of the web service, testing
presented a challenge. To mitigate this challenge, the application
was designed to test all the available web services. This was the
basis of the unit tests where all web service method calls where
tested by the developed application.

Factor 2: Because the tool was designed to perform specific user
tasks, the most appropriate usability testing was the cognitive
walkthrough. The cognitive walkthrough requires an analyst
acting as a user and performing a set of obligatory listed tasks, a
persona or user profile, and a cognitive walkthrough checklist. As
the analyst walks through the designated tasks, the following
questions are addressed as a requirement for the test:

1) Can the user reasonably perform each task in this set?
2) Are there enough clues on the interface to provide

guidance on how the user should go about conducting a
task?

3) Once an action is performed, does the interface provide
reasonable feedback?

The above test questions were invariably answered by the
cognitive walk through.

Other than the aforementioned factors, and the mitigation
techniques thereof, user testing was conducted. Considering the
domain of the application being used and the intended user, user
testing was confined to technology aware individuals who are
well versed with software development. To evaluate the intended
benefits of the system, the sample of users included (in
categories):

1) Users unfamiliar with traceability tools and have been
part of small (less than 5) software development teams
only

2) Users unfamiliar with traceability tools and have
managed development teams with at least 20 different
roles.

3) Users familiar with traceability tools and have been part
of small (less than 5) software development teams only

4) Users familiar with traceability tools and have managed
development teams with at least 20 different roles

6. RESULTS
6.1 SubSystem1
The results below are in relation to the user testing that was done
on the system:

User Test Results

0 5 10 15

1

2

3

4

5

Q
u
es

ti
o
n

 N
u
m
b
er

Responses

Series2

Figure 8: Results from User Testing

The table above graphically depicts the following results: only 1
individual (one of the 3 working in industry), could fully explain
what ‘Traceability’ was. The rest of the candidates either did not
know, or managed to give vague descriptions. 6/10 of the
candidates said that they preferred free software (in the
questionnaire, open source is assumed to be also free). With
regards to the interface itself, all 10 candidates arrived at the
general consensus that the green and pink colors used for the
buttons on the interface were too ‘flashy’ and rendered the system
‘unprofessional’. None of the candidates agreed to buy
application if it was sold in its present state, but gave the view
that if more features and functionalities were added, then perhaps,
this opinion would change.

6.2 SubSystem2
The results are listed below according to test category described
under testing in section 5.2.

Unit testing: The developed application successfully invoked all
the implemented web services.

Cognitive walkthrough: The iterative cognitive walkthrough tests
identified a number of improvement areas, not much with the
interface, but more so with the functionality. In particular, it was
identified that the project setup ought to support flexibility, hence
the final prototype had this functionality incorporated.

User Testing: The results of table 1 are illustrated in table 1
below. Out of a total of 16 individuals that tested the tool, 11
found the user interface easy to use. The same number identified
with the relevance of the application, whereas just over half felt
that they would apply such a tool to a familiar project. The
number of those that would actually apply the tool to a project
was significantly smaller compared to the other sets of results.

Table 1: user testing results

1

2

3

4

Total

7

The application was
easy to use

2 2 4 3 11

The relevance of the
application was
clear

1 3 3 4 11

The application
could be applied to
a familiar project

0 4 1 4 9

I could apply the
application for a
project

0 1 1 3 5

7. EVALUATION OF RESULTS

7.1 SubSystem1
A worrying result was that only 1 person knew what traceability
was and neither of the other 2 candidates in the industry had an
idea. Although one might argue that the sample size was far to
insignificant to reach a conclusion it can still be drawn from this
that is clear to see that although Traceability is still a relatively
new concept, there is still a lot of ground to be covered before it
permeates through all facets of life. A second observation was
that people will not easily part with their money, and if they can
get something for free, then they will. Although it was obvious
that no one would want to pay for the tool, a point that stands out
here is that in the development of any commercial tools, several
aspects of the tool have to be taken into consideration in order to
not only convince the user to part with their money, but to also
beat the competition, thus increasing market share and return on
investment.

7.2 SubSystem2
An interpretation of the results for subsystem 2 is classified
below:

Unit testing: The web service were consumed as was intended

Cognitive Walkthrough:

1) The user was able to perform the set out tasks with
reasonable ease and within acceptable time.

2) A majority of the icons and menus provided sufficient
clues as to their functionality (affordance). Thus, users
where able to navigate the application and recognize
functionality afforded by the application interface.

3) The view provided feedback on the actions performed
by the user. However, feedback in this area suggests
that the view ought to be a continuous improvement
area.

8. RELATED WORK
8.1 TraceM [22]
Tool Category: Research-Based

Key Researchers: Susanne A. Sherba, Kenneth M. Anderson,
Maha. Faisal

Research Lab: Department of Computer Science, University of
Colorado

Contact Details: {sherba, kena, faisal}@cs.colorado.edu

Problem Definition: There are many different types of
relationships that can exist between artefacts (e.g. requirements ->
design, design -> code etc). In isolation, these traces are easy to
capture, however they provide limited information with regards to
how these artefacts interact within the overall system, leaving the
developer with the burden of having to manually follow each of
these relationships in order to get the overall picture.

Description of Solution: TraceM is based on the theory that a
requirements traceability tool should be able to derive implicit
relationships already represented in the system (i.e. using the
above example, TraceM would allow the developer to see which
part of the code the requirement actually traces to). TraceM uses 2
tools to achieve its purpose:

1.Open Hypermedia Systems: these enable the creation and
viewing of relationships in heterogeneous applications, as well as
the traversal of those relationships within and between
applications.
2. Information Integration Systems: these are systems which
provide the services to automate the process of discovering,
creating, maintaining and evolving these relationships [23].

8.2 Generation of Traceability Based on the
‘Dempster-Shafer Theory’ [24]
Tool Category: Research –Based

Key Researchers: Andrea Zisman, George Spanoudakis; Elena
Minana, Paul Krause

Research Labs: Software Engineering Group, Department of
Computing, City University; Software Engineering Applications
Group, Phillips Research Laboratories, UK

Contact Details: {a.zisman | gespan} @ soi.city.ac.uk

{Elena.perez-minana | krause}@phillips.com

Problem Definition: Motivated by the realisation that existing
traceability tools expect developers to create and maintain
relations manually, making this process error-prone and time-
consuming; this is a tool which was developed to automatically
generate and maintain traceability relations between any artefacts
expressed in structured forms of natural language (e.g.
requirements statements, use-cases, UML-based object models
etc). This tool builds on the functionality presented by a tool
previously developed by Zisman et al [25]. Zisman’s tool
generates traceability relations based on heuristic traceability
rules which specify ways of matching syntactically related terms
in the textual parts of the artefacts, with the related elements in
the corresponding object model, and then automatically creates
traceability relations of different types when a match is found.
Although this approach has generally high precision in terms of

8

creating correct relations, one of the flaws discovered is that,
since the rules it uses are based on syntactic and grammatical
relations in the text, ambiguities will arise from time to time, and
since the tool was not developed to resolve these, the result is that
some traces are either insufficiently defined, or left out all
together.

Proposed Solution: To overcome this problem, {Spanoudakis,
Garcez and Zisman} [26] [27] have introduced ‘belief’ functions
based on the ‘Dempster Shafer Theory of Evidence’† to Zisman’s
tool. These measure the extent to which it may be believed that a
rule is correct (given all the ambiguities) and then updates the
measures that these functions generate, to reflect the confirmation
or disconfirmation of the traceability relations. Not only does this
tool confirm and disconfirm the existence of the relations, extra
functions have been defined to measure the correctness of the
relations based on the extent to which a rule is satisfied by its
artefacts [28].

Although this approach has been shown to work, Alexender [29]
believes that because the whole process is fully automated, this
introduces the possibility of machine-made errors which reduce
the quality of the resulting traceability model. In his paper, he
postulates the theory of ‘Semi-Automatic Traceability’, in which
a balance should be found between human intervention and
automation, whereby human skill and experience should be used
to ensure complete correctness of the automatically generated
relations.

8.3 TOOR [30]
Tool Category: Research -Based

Key Researchers: Bashar Nuseibeh;Steve Easterbrook

Research Labs: Software Engineering Laboratory Department of
Computing, Imperial College London;

Department of Computer Science, University of Toronto

Contact Details: ban@doc.ic.ac.uk; sme@cs.toronto.edu

Pinheiro and Goguen have developed a system – TOOR, for
tracing requirements through-out the project development
lifecycle. Within the TOOR framework, all artefacts that are
produced or consumed during the software development lifecycle
are considered as objects. Thus, vision documents, use case
diagrams, test cases, along with many other artefacts, are
recognized as objects. Moreover, relationships between these
objects are themselves considered objects, and form the basis of
requirements tracing. As an inherent requirement, TOOR uses the
Functional Object-Oriented Programming System (FOOPS)‡ to
specify requirement classes from the identified objects, and the
entire system as well. Thus, where a vision document is identified
as an object, its specification is formulated by FOOPS. TOOR
provides traceability setup when initiating a project. The first
steps involve defining templates (automatically) for either objects,

† More information on the Dempster-Shafer Theory can be found
at: http://www.glennshafer.com/assets/downloads/article48.pdf

‡ Even though TOOR is built on top of FOOPS, the specifications
of FOOPS are beyond the scope of this text.

or relations between objects. These templates are forms
containing fields for class and attribute name. Verification of
whether the attribute value entered conforms to the stipulated
axioms (of traceability) is performed by FOOPS. This verification
requires a means by which TOOR should communicate with
FOOPS, and this is achieved through UNIX sockets. Like
TraceM, TOOR also has hyper-media capabilities to allow both
forwards and backwards tracing. In addition, requirements are
modularized allowing for both formal and informal axioms – an
advantage for integration between phases through out the project
development lifecycle. The study identified a number of
disadvantages with TOOR:

1. Using UNIX sockets as a means of communication
between TOOR and FOOPS renders the solution
platform dependent (UNIX base). This presents major
portability challenges.

2. FOOPS, the basis of TOORS, is not a widely available
programming language. This makes it difficult to tailor
TOORS to address a specific traceability problem
unique to a particular project.

Future work on TOOR involves the representation of objects in
two independent windows, one graphical, and the other
employing a host of other visual criteria.

8.4 DOORS [31]
Tool Category: Commercial

Company Name: Telelogic

Contact Details:

http://www.telelogic.com

The Dynamic Object Oriented Requirements System (DOORS) is
a requirements management tool developed by Telelogic. It
provides document-like modules (typically Microsoft Word and
Excel) containing objects (artefacts) that can be linked. Three
main features are supported; Use Case Modelling, Project
Dictionary Construction, and an Exporter module. Also
incorporated within the tool is a programming language DXL
which facilitates modelling and full access to the available data
structures. Traceability is a built in feature of DOORS. The
Project Dictionary Construction feature searches through text in a
selected module for phrases that match with terms in the project
dictionary, if it exists, and links these. If there are no matches, a
new dictionary may be created with stakeholder specified terms
and definitions. The links produced are modelled into use cases
depending on the context specified within the DOORS
framework. After dictionary construction and modelling, a
specialised exporter feature traverses a module to produce a series
of web pages. The pages contain generated list of actors,
associated with the use cases in which they act. Traces in
between artefacts are represented as hyperlinks within a web
page. These are bidirectional, thus, two hyperlinks are required
for any single trace. Standard point-and-click controls are used to
navigate within the DOORS environment and to follow through
traces. The traceability capabilities of DOORS notwithstanding,
the tool itself does not provide a structured way of representing
traces into groups such as by Goals or Use Cases. Traces are seen
as belonging purely to atomic artefacts – individual requirements

http://www.glennshafer.com/assets/downloads/article48.pdf
http://www.telelogic.com

9

or test cases. The manual creation of structure and later export to
web pages are not only time consuming, but render traceability
unintuitive.

9. CONCLUSIONS
Thus far, it is apparent that commercial tools and ongoing
research offer a suitable platform for the aims of this project. In
fact, academic tools are continually addressing the pitfalls of the
commercial tools, predominantly by providing automated
traceability. Whereas, work in improving efficiency of
traceability relationship management is vital, contemporary work
on traceability does not particularly take into account particular
traceability needs of individual software projects.

From the related works, with both advantages and disadvantages,
it is apparent that a unique opportunity exists in this domain. The
current tools lack of focus on an overall traceability solution, and
more so the challenge of platform independence, requires new
approaches. Therefore, rather than continually defining
traceability albeit make traceability elaboration “more capable”,
this project proposes made available, through the web services
architecture, the programmatic interface of a traceability solution,
such that individual project teams account for their unique project
details when defining a traceability solution. The intended
consequence is the ability of all project teams to discover and
implement a traceability solution specific to a project and its
development lifecycle.

10. REFERENCES
[1] http://www.projectsmart.co.uk/docs/chaos_report.pdf

[2] Ramesh, B., “Towards Reference Models for Requirements
Traceability”, IEEE Transactions on Software Engineering, 2001,
Vol. 27, No. 1
[3] Nuseibeh, B., Easterbrook, S.: “Requirements Engineering: A
Roadmap,” International Conference on Software Engineering
Proceedings of the conference on The future of Software
engineering, Limerick, Ireland, 2000, pp. 35 - 46

[4] Gotel, O., Finkelstein, A.: “Analysis of the Requirements
Traceability Problem,” Proc. Of st Int. Conf. On Requirements
Engineering, April 1994, pp. 94 - 101.
[5] Gotel, O., Finkelstein, A.: “Analysis of the Requirements
Traceability Problem,” Proc. Of st Int. Conf. On Requirements
Engineering, April 1994, pp. 94 - 101.
[6] Sommerville

[7] http://www.kellen.net/SysDev.htm

[8] Nuseibeh, B., Easterbrook, S.: “Requirements Engineering: A
Roadmap,” International Conference on Software Engineering
Proceedings of the conference on The future of Software
engineering, Limerick, Ireland, 2000, pp. 35 - 46

[9] http://www.projectsmart.co.uk/docs/chaos_report.pdf

[10] Hubert F. Hofmann, Franz Lehner
[11] Pinheiro, F., TOOR: A System for Tracing Object-Oriented

Requirements

http://www.cs.ucsd.edu/users/goguen/sys/toor.html#tstat

[12] Gotel, O., Finkelstein, A.: “An Analysis of the Requirements
Traceability Problem,” 1st International Conference on
Requirements Engineering (ICRE’94), Colorado Springs, April
1994, pp. 94-101

[13] Ramesh, B., Jarke, M.,

“ Towards Reference Models for

Requirements Traceability”, IEEE Transactions on Software
Engineering, Vol. 27, No. 1, 2001.

[14] Egeyd, A.,Grunbacher,P.: "Towards Understanding
Implications of Trace Dependencies among Quality
Requirements",2nd International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE '2003),
Montreal, Canada, 10-2003

[15] Gotel, O., Finkelstein, A.: “An Analysis of the
Requirements Traceability Problem,” 1st International
Conference on Requirements Engineering (ICRE’94),
Colorado Springs, April 1994, pp. 94-101
[16]http://www.jiludwig.com/Traceability_Matrix_Structure.htm

[17] IBM Web Services Conceptual Architecture

[18] Schmelzer, R., Vanderspyn, T., Bloomberg, J.,
Siddalingaiah, M., Hunting, S., Qualls, M., Houlding, D., Darby,
C., Kennedy, D.: “XML and Web Services” SAMS Publishing
[19] IBM Web Services Conceptual Architecture

[20] Schmelzer, R., Vanderspyn, T., Bloomberg, J.,
Siddalingaiah, M., Hunting, S., Qualls, M., Houlding, D., Darby,
C., Kennedy, D.: “XML and Web Services” SAMS Publishing
[21] IBM Web Services Conceptual Architecture

[22] Sherba, S., Anderson, K., Faisal, M.: “A Framework for
Mapping Traceability Relationships,” Proceedings of the 2nd
International Workshop on Traceability in Emerging Forms of
Software Engineering, Montreal, CA, Oct. 7th, 2003, pp. 32-39
[23] Sherba, S., Anderson, K., Faisal, M.: “A Framework for
Mapping Traceability Relationships,” Proceedings of the 2nd
International Workshop on Traceability in Emerging Forms of
Software Engineering, Montreal, CA, Oct. 7th, 2003, pp. 32-39
[24] Zisman, A., Spanoudakis, G., Perez-Minana E., Krause P.:
“Towards a Traceability Approach for Product Families
Requirements,” Proc. Of 3rd ICSE Workshop on Software Product
Lines: Economics, Architectures and Implications, 2002
[25] Zisman, A., Spanoudakis, G., Perez-Minana E., Krause P.:
“Towards a Traceability Approach for Product Families
Requirements,” Proc. Of 3rd ICSE Workshop on Software Product
Lines: Economics, Architectures and Implications, 2002
[26] Spanoudakis, G., d’Avila, G., Zisman, A.: “Revising Rules
to Capture Requirements Traceability Relations: A Machine
Learning Approach,” 15th International Conference in Software
Engineering and Knowledge Engineering (SEKE 2003), San
Francisco, CA, USA, 1-3 July 2003
[27] Spanoudakis, G.: “Plausible and Adaptive Requirement
Traceability Structures,” ACM International Conference
Proceeding Series Proceedings of the 14th international
conference on Software engineering and knowledge engineering,
Ischia, Italy, 2002, pp.135 - 142
[28] Spanoudakis, G.: “Plausible and Adaptive Requirement
Traceability Structures,” ACM International Conference
Proceeding Series Proceedings of the 14th international

http://www.projectsmart.co.uk/docs/chaos_report.pdf
http://www.kellen.net/SysDev.htm
http://www.projectsmart.co.uk/docs/chaos_report.pdf
http://www.cs.ucsd.edu/users/goguen/sys/toor.html#tstat
http://www.jiludwig.com/Traceability_Matrix_Structure.htm

10

conference on Software engineering and knowledge engineering,
Ischia, Italy, 2002, pp.135 - 142
[29] Alexander, I.: “SemiAutomatic Tracing of
Requirement Versions to Use Cases,” Second International
Workshop on Traceability, Montreal, October 2003
[30] Pinheiro, F., TOOR: A System for Tracing Object-Oriented
Requirements

http://www.cs.ucsd.edu/users/goguen/sys/toor.html#tstat

[31]www.telelogic.com/

[25] Zisman, A., Spanoudakis, G., Perez-Minana E., Krause

P.: “Towards a Traceability Approach for Product Families

Requirements,” Proc. Of 3rd ICSE Workshop on Software

Product Lines: Economics, Architectures and Implications,

2002

[26] Spanoudakis, G., d’Avila, G., Zisman, A.: “Revising

Rules to Capture Requirements Traceability Relations: A

Machine Learning Approach,” 15th International

Conference in Software Engineering and Knowledge

Engineering (SEKE 2003), San Francisco, CA, USA, 1-3

July 2003

[27] Spanoudakis, G.: “Plausible and Adaptive Requirement

Traceability Structures,” ACM

http://www.cs.ucsd.edu/users/goguen/sys/toor.html#tstat
http://www.telelogic.com/

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

