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ABSTRACT 
We propose a method for tetrahedrizing a polyhedral volume 
containing polyhedral holes. We use the resulting tetrahedrization 
to produce from-point visibility algorithms that can be either 
exact, conservative or aggressive. We also discuss the 
applications of such from-point and from-region visibility 
techniques, including their use in lighting and in simulating vision 
of artificial intelligence agents.  

1. INTRODUCTION 
In typical 3D scenes most primitives are not visible from a given 
viewpoint. Thus it would be desirable to determine which 
primitives are invisible during rendering so as to save rendering 
calculations. Algorithms that eliminate invisible primitives are 
known as visibility culling algorithms.  

We propose tetrahedrising the viewpoint space (filling the space 
between objects with pyramid-like structures). It is assumed that 
the 3D scene is defined by a number of triangular meshes. The 
tetrahedrisation will be performed such that the face of each 
tetrahedron is either the face of a triangle that is part of one of the 
triangular meshes that make up the scene, or co-incident with the 
face of an adjacent tetrahedron. This will occur as a pre-procces. 
The resulting tetrahedrisation will then be used in conjunction 
with a from-point visibility algorithm that can be tuned to be 
exact, conservative or aggressive. The tetrahedrisation could also 
be used as the basis for from-region visibility techniques.  

2. BACKGROUND 
The approach is divided into two sections, namely tetrahedrisation 
and the from-point visibility culling algorithm. Thus the 
background and related work will be discussed separately for each 
of the two sections.          

2.1 Tetrahedrisation 
There is a large amount of literature describing tetrahedrisation, 
mostly regarding its application in mesh generation. Bern [3] 
provides a detailed surver of mesh generation techniques and 
Owen [19] provides a survey focused on unstructed mesh 
generation. Bern and Eppstein [4] provide a more detailed 
discussion on mesh generation that focuses on approaches using 
triangulation. They address many aspects of triangulation in both 
two dimensions and three dimensions as well as specifying open 
problems.  

In structured mesh generation generation, interiour vertices are 
topologically alike whereas in unstructured mesh, vertices can 
have arbitrarily varying local neighbourhoods (Bern [3]). It is far 
simpler to respect object boundaries when using unstructured 
mesh generation and thus it is more applicable to this project.  

There are two sub-goals of the tetrahedrisation component. The 
first is to attempt to minimise the number of tetrahedral and the 
second is to produce good quality tetrahedra. It is desirable to 
produce tetrahedra that are of high quality under all measures 
because in other applications of tetrahedrisation, particularly 
those involving finite element analysis, quality is important in 
minimising numerical errors [7].  

There are several quality measures for tetrahedra. These include 
aspect ratio, minimum dihedral angle, maximum dihedral angle 
and radius-edge ratio [12].   

Regular tetrahedra are of the highest quality under all measures, 
thus it would be desirable to tile the viewpoint space with regular 
tetrahedra. This is impossible however, as shown by Eppstein et 
al [12].  Tetrahedral shapes that can be used to tile three- 
dimensional space do exist. However, none of these tetrahedra are 
acute, though some are nonobtuse [12].  

Although tetrahedrisation is effectively the triangulation problem 
in three dimensions, it is more complicated than the two 
dimensional case. This is due to the fact that many properties of 
two-dimensional triangulation break down in three dimensions. 
Different triangulations of the same input may contain different 
numbers of tetrahedra. A generalisation of Euler’s formula shows 
that the tetrahedrisation of an n-vertex polygon has at most 

2

2n 
tetrahedra. However, tetrahedrisation can often be 

accomplished using far fewer tetrahedra, especially if the polygon 
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is strictly convex where tetrahedrisations that are linear in the 
number of polygon vertices can be performed (Bern and Eppstein) 
[4]   

An additional complication that arises in three dimensions is that 
not all polyhedra can be tetrahedrised without the addition of 
Steiner points. Schönhardt provided an example of a polygon of 
this type [22].  

These two issues then raise the question as to the number of 
tetrahedra and the number of Steiner points required to 
tetrahedrise an arbitrary polyhedron. Bern and Eppstein show that 
an polyhedron can be tetrahedrised with O(n2) tetrahedra and 
O(n2) Steiner points. These two measures form an upper bound 
and convex polyhedra often require fewer Steiner points and 
fewer tetrahedra (as mentioned earlier).   

Unfortunately, it has been shown that testing to determine 
whether or not Steiner points are required to tetrahedrise a 
polyhedron is NP-complete. (Rupert and Seidel) [21]. They also 
prove that for any k, it is NP-hard to test whether or not k Steiner 
points will suffice.   

Apart for their being required in the tetrahedrisation of certain 
polygons, Steiner points may also be used to improve the quality 
of the tetrahedra obtained. In fact, Steiner points can also reduce 
the complexity of the tetrahedrisation and Bern, Eppstein and 
Gilbert prove that their technique for two dimensional 
triangulation (based on quadtrees) can be extended to any fixed 
dimension, giving a triangulation of that is of size O(n), where n 
is the number of input vertices [5].  However, they do not provide 
the extension of their algorithm. It is still an open problem to 
triangulate an arbitrary convex polygon with the minimum 
number of tetrahedral in polynomial time [3].   

Acute triangulation in three dimensions has not been addressed 
literature until recently by Eppstein et al [12]. Eppstein et al [12] 
provide a method for the acute triangulation of a slab of three- 
dimensional space. However, although the tiling fits between two 
parallel planes, it has “dimples” on the outer surfaces, making it 
unsuitable for tetrahedrisation of arbitrary polyhedra as it stands. 
They state that finding an acute tetrahedrisation of a given shape, 
such as a cube is still an open problem. Additionally, acuteness 
alone is not a guarantee of quality of tetrahedra. Three types of 
bad quality tetrahedra can have all their interior angles acute [12].  

Typical approaches to tetrahedrisation are Delaunay based or 
octree based. Delaunay based methods use the three-dimensional 
extension of the two dimensional Delaunay triangulation. Octree 
based methods recursively divide space into cubes and then 
triangulate these cubes while taking into account the input 
polyhedra. The Delaunay triangulation in two dimensions has the 
property of minimising maximum radius over all triangles’ 
circumcircles. The Delaunay triangulation can be extended to 
three dimensions; however certain properties of the triangulation 
that hold in two dimensions, such as acuteness, no longer hold in 

three dimensions [19]. However, the Delaunay triangulation does 
maintain useful properties in three dimensions such as it 
minimizing the maximum radius of a min-containment sphere 
(Rajan) [20]. Delaunay based approaches do not eliminate all 
types of poor quality tetrehedra, such as, slivers may still be 
present and the mesh must be improved as a post process (S. 
Cheng, K. Dey, H. Edelsbrunner, M. Facello, S. Teng [8]).  

There is no analogue of the constrained Delaunay triangulation 
(CDT) in three dimensions. Typical approaches thus find the 
Delaunay triangulation of the given object’s point-set, forming the 
convex hull of those points. The object boundary is then 
recovered. Cavalcanti and Mello [7] provide the outline details for 
an approach to three-dimensional constrained Delaunay 
triangulation suitable for industrial applications. Their main 
emphasis is on recovery of constraining faces and edges while 
minimising the use of geometric operations such as intersections.   

Du and Wang [11] also propose a constrained boundary recovery 
technique.  In fact they build on their previous technique that 
performs a conforming boundary recovery. An attempt is made to 
minimise the number of Steiner points required. The technique 
does rely on heuristics unlike the approach used by Cavalcanti 
and Mello that uses an heuristic for Steiner point insertion for face 
recovery.  

Mitchell and Vavasis [16] extend the technique for two 
dimensional triangulation with bounded aspect ratio, described by 
Eppstein et al [5], to tetrahedrisation in three-dimensions. Their 
approach produces tetrahedra that have aspect ratio within a 
constant factor of optimal. The number of tetrahedra is also within 
a constant factor optimal for a bounded aspect ratio 
tetrahedrisation.  

2.2 From-point Visibility Culling 
The area of visibility in computer graphics has been around since 
the early days of the field (In March 1974, Sutherland, Sproull 
and Schumaker [23] surveyed ten hidden surface algorithms 
available at the time). There have been many algorithms designed 
to solve this problem. In general, these can be divided into two 
categories; from-point and from-region. 

The from-point algorithms perform just as the name implies, 
determining what is visible from a specified viewpoint. The from-
region techniques are aimed at determining what is visible from 
all points in a certain area or region in a scene. From-region 
techniques also occur largely as a pre-process (occurring before 
the actual running of programs which would use the visibility 
information), while from-point approaches are more run-time 
oriented. 

The various approaches for from-point methods may also be 
divided according to their accuracy. Nirenstein [18] provides the 
following classifications: 

 

Exact: such an algorithm returns exactly that which is 
visible from a point. 



 
Conservative: provides an overestimate of what is 
visible from a point. This means primitives that should 
be invisible are marked as visible. 

 
Aggressive: provides only that which should be drawn 
but may occasionally falsely mark some visible 
primitives as invisible. 

 
Approximate: suffers from both false visibility and 
invisibility errors. 

The algorithms may also be categorised according to the way in 
which they operate. The large majority of techniques can be 
grouped into two categories: 

 

Object precision: Visibility computations are performed 
using the raw models or information representing an 
object 

 

Image precision: operate on discrete representations of 
objects broken into fragments during the rasterisation 
(conversion to pixels) process.  

Our proposed algorithm can be classified as an exact method, and 
as an object precision method because it works with the 3-D 
representations of the tetrahedrisation.  

A brief examination of some object precision and image precision 
methods follows. The methods below are considered to be 
conservative approaches to visibility (unless stated otherwise).  

3.2.1 Object precision methods 

 

Cells and portals 
The scene under consideration is divided into separate 
cells, which are joined by portals, and moving from one 
cell to another can only be accomplished by moving 
through portals (it is useful to think of cells as rooms, 
and portals as the doors joining them).  It is a 
conservative method. 
To begin with, the visible primitives in the current cell 
are determined, and then rays cast into other cells to 
determine what is visible in them. It is useful to note, 
that cell contents will only need to be considered if one 
of the portals to that cell is visible (since it is only 
possible to move into cells through portals). If all 
portals to a certain cell are not visible, then anything 
contained in that cell is also not visible. 

 

Large convex occluders 

Coorg and Teller [10] present a method whereby they 
characterise the occlusion of a single convex occluder 
using the separating and supporting planes between 
them, and the position of the viewer with respect to 
those planes. (see Figure 1 for a graphical view of such 
a situation). The basic idea is that if an observer is 
between the supporting planes and behind an object (the 
occluder), then it is not possible to see the other object 
(the occludee). If an observer is between separating and 
supporting planes, then it is possible to see part of an 
object (the object is only partially occluded).  Finally, if 
the observer is outside both separating and supporting 
lines, then it is possible to completely see the occludee 
object. 

 

Culling using shadow frustra 

This idea was proposed by Hudson et al. [14], and 
makes use of the fact that if an object lies completely 
within the “shadow” of another object (with respect to 
the view-point) then that object is not visible. Care 
needs to be taken to accommodate partially 
“shadowing” of objects. 

 

BSP (Binary Space Partitioning) tree culling 
The shadow-frustra culling of Hudson et al. [14] can be 
improved by using BSP trees. Bittner, Havran, and 
Slavik [6] combine the shadow frustra of various 
occluders into an occlusion tree, which is then used to 
compare against the scene hierarchy.  

Figure 1: An example of visibility determination 
using convex occluders (figure was obtained from 
Cohen-Or et al. [9]).  

Weiler and Atherton [25] also present a noteworthy method. They 
provided both a system for hidden surface removal in scenes as 
well as a polygon clipping technique. The system primarily uses 
depth and area sorting to determine the ordering and visibility of 
polygons. The polygons are then clipped against closer polygons 
to determine their visible portions (this is an exact method).  

3.2.2 Image precision methods: 

 

Ray casting 
This involves casting a ray from the “eye” through 
every pixel of the screen. The pixel value is determined 
by the intersection with the closest object. This can be 
expensive because of tests against every object in the 
scene, but when a back to front ordering of rendering is 
used it performs natural occlusion culling (this can be 
fast as demonstrated in Bala, Dorsey, and Teller [1]). 

 

Hierarchical Z-buffer (HZB) 
An extension to the Z-buffer proposed by Greene, Kass, 
and Miller [13], this method makes use of octrees (a 
way of subdividing/partitioning 3-Dimensional space) 
and a Z-pyramid (layered buffer with different 
resolutions at each level). The scene is first arranged 
into an octree, and traversed top-down, front to back, 
with each node being tested for occlusion. If a node is 
found to be occluded then it is skipped, otherwise its 
children are tested. The Z-pyramid is updated during 
scan-conversion of the primitives, and any z-buffer 
changes are propagated up the pyramid. To determine 



visibility of a node, each face is hierarchically tested 
against the z-pyramid. 

 
Hierarchical occlusion buffer 
Proposed by Zhang et al. [26], it is similar to the HZB, 
the occlusion is arranged hierarchically into a structure 
known as the Hierarchical Occlusion Map (HOM), and 
the bounding volume hierarchy of the scene is tested 
against it. However, the HOM stores only opacity 
information, with distance values being kept elsewhere. 
This may also be an aggressive method. 

 

Approximate Volumetric Visibility 
This is an approach that does not use geometric 
visibility computations, but instead relies on the 
creation of volumes/regions that have certain properties. 
Klosowski and Silva [15] developed such an approach 
in their prioritised layered projection (PLP) system. It 
estimates the visible primitives in a scene, using a pre-
assigned probability that a cell is visible from a given 
viewpoint.  

There is also a method described by Bartz, Meiner, and Httner 
[2], which uses OpenGL calls to perform the testing.  Hardware 
implementations of culling approaches have also been explored, 
with some being incorporated into modern graphics hardware 
(ATI’s Hyper-Z technology [17], for example).  

4. APPROACH 
The tetrahedrisation program reads in the coordinates and facets 
from a VRML 2.0 file. From this it constructs indexed lists of 
coordinates, edges and facets. The tetrahedrisation is computed 
and written out in a simple format to be read in by the visibility 
culling algorithm.   

4.1 Tetrahedrisation 

The approach used is that proposed by Mitchell and Vavasis [16].  
The input is given as a connected polyhedral region P in R3. P is 
specified by mutually linked lists of vertices, edges and facets. 
The main data structure used by the algorithm is an octree. An 
octree is a rooted tree, where each node is either a leaf node or 
has exactly eight children. Each node of the octree is referred to 
as a box. Each box represents a polyhedral region called its 
embedding that is denoted I(b). During octree generation, the 
embedding of each box is a cube. In later stages of the algorithm, 
when boxes are warped and triangulated, their shape is modified.   

The embeddings of the eight children of a box are obtained by 
dividing the embedding of the box into eight equal cubes. This is 
accomplished by dividing the embedding in half in each of the 
three dimensions. All boxes that are not leaf nodes are referred to 
as split. Thus the processing of dividing a box into its eight 
children is called splitting.  

There are a number of terms that must be defined in order to 
explain the algorithm. 

Duplicate: When the intersection of a given box with P, denoted 
by Pn I(b), is found to have more than one connected component, 

the box is duplicated into the original box and a number of new 
nodes called duplicate boxes. Each cube represents the same 
region in R3, but each is associated with one connected 
component of Pn I(b). P?b is used to denote the component of 
Pn I(b) associated with a given box. Note that if P?b is non-
convex, a child box of b may have more than one component, 
even though P?b does not. Thus, whenever any box is split, each 
of its child boxes must be examined and duplicate boxes created 
for each child where necessary.   

Extended Box: Given a box b, its extended box, denoted by 
ex(b), is defined such that I(ex(b)) is a cube concentric with I(b) 
but expanded by a factor of five in each dimension. P?ex(b) is 
used to denote the component of Pn I(ex(b)) that contains P?b. 
ex(b) Is not stored explicitly in the octree but the P faces it 
contains can be deduced from boxes higher up the tree than b.  

Adjacent: Two boxes are defined as neighbours if their 
embeddings intersect non-trivially and they are not duplicates of 
one another. Two boxes that are neighbours are said to be 
adjacent if there is a point of P common to both of them. Two 
boxes are balance-adjacent if they are neighbours and there is a 
point of P common to one of the boxes and the extended box of 
the other.   

Balance Condition: For the purposes of this algorithm, the size 
of a box is defined to be the length of an edge of the box. The 
balance condition that is maintained is as follows: no box may be 
balance adjacent to another box that is more than twice its size. 
Thus whenever a box is split, the boxes balance adjacent to its 
children must be examined and split if necessary to maintain the 
balance condition. These splits may necessitate the splitting of 
other boxes to propagate the balance condition. Note that certain 
boxes are protected during the octree generation and thus these 
boxes are exempt from splitting due to the balance condition.  

4.1.1 Generating the Octree  

The octree generation begins with the embedding of the root box 
set to a size that is a constant multiplied a bounding cube of the 
scene. Boxes are then selectively split and duplicated. The 
objective of this process is to make the intersection of P with the 
embedding of any box as simple as possible, such that it can be 
easily tetrahedrised. However, unnecessary splitting should be 
avoided as it would increase the number of tetrahedra produced. 
Octree generation consists of three main phases: the vertex phase, 
the edge phase and the facet phase.  

The Vertex Phase: A vertex cone of a box b is defined as a set of 
P faces F1, F2, ..., Fk that satisfy the following: 

1. The set consists of only one vertex and all of its 
superfaces. The vertex itself is known as the apex of the 
vertex cone. 

2. The vertex is contained in b. 



3. The faces F1, F2, ..., Fk are exactly the faces incident 
upon P?ex(b).

 
A box is defined to be vertex crowded if the following conditions 
are true: 

1. There is a P vertex v in b. 
2. The superfaces of v are not the only faces of P incident 

upon P?ex(b).

 

Equivalently, a box is vertex crowded if it contains a vertex that is 
not the apex of a vertex cone.  

Boxes that are vertex crowded are split recursively, with the 
balance condition being propagated after each split, until no boxes 
that are vertex crowded remain. The process will terminate when 
the box size becomes a constant factor smaller than the distance 
between a given vertex and the P face that is not a superface of 
that vertex. Thus, when determining whether or not a box b is to 
be split, it is necessary to know which P faces bound P?ex(b).

  

Vertex Centring: Vertex centring is a one-time reorganisation of 
the boxes that is intended to increase the distance from a given 
vertex to the boundary of the box that contains it. Boxes whose 
embeddings contain a P vertex will be called vertex boxes. It can 
be shown (S. Mitchell, S. Vavasis [16]) that after the vertex 
phase, every box that is balance adjacent to a vertex box is either 
equal in size to the vertex box, or double its size. The vertex-
centring step proceeds as follows for every vertex box b 
containing vertex v: 

1. Split the boxes balance adjacent to b that are twice its 
size. 

2. Merge b with the seven other boxes that share the 
corner of b that is closest to v to form the vertex box B. 

Note that after the first step, b is balance adjacent to 26 boxes of 
equal size and b and its balance adjacent boxes are arranged in a 
3x3x3 group. 

B is then marked as protected and will never be split again. The 
merging process may violate the balance condition but this factor 
is ignored because the aspect ratio of the tetrahedra that are 
generated will still be bounded.  

The Edge Phase: The edge phase proceeds as if the protected 
vertex boxes do not exist. Thus the extended box of a box in this 
phase does not extend into a protected box and the vertices of P 
are ignored.   

An edge cone of a box b is defined as a set of P faces F1, F2, F3 

that satisfy the following: 

1. The set consists of one edge and its two superfaces. The 
edge itself is known as the apex of the edge cone. 

2. The edge is contained in b. 
3. The faces F1, F2,  F3 are exactly the faces incident upon 

P?ex(b).

 

A box is defined to be edge crowded if it contains an edge but that 
edge and its superfacets are not the only faces incident upon 
P?ex(b). Equivalently, a box is edge crowded if it contains an 
edge that is not the apex of an edge cone.  

As in the vertex phase, boxes that are edge crowded are split 
recursively, with the balance condition being propagated after 
each split, until no boxes that are edge crowded remain. To 
determine whether or not a box is edge crowded, a list of P faces 
that bound P?ex(b) is required.

  

It is desirable to increase the distance from a given edge to the 
boundary of the box containing it. However, an analogue of 
vertex centring cannot be applied at this stage because the edge 
box may be balance adjacent to a vertex box. Instead every 
unprotected box containing an edge as well as its unprotected 
balance adjacent boxes is split. The balance condition is 
propagated and then the edge box and the boxes balance adjacent 
to it are marked as protected. The distance mentioned above has 
to be increased at a later stage in the algorithm by warping the 
boxes.  

The Facet Phase: The facet phase proceeds as if the boxes that 
were protected during the vertex and edge phase do not exist. 
Thus the extended box of a box during this phase does not extend 
into a protected box and the edges and vertices of P are ignored. 
In order to maintain consistency in terminology, facet cones and 
the concept of facet crowded are defined.    

An facet cone of a box b is defined as the single face F1 that 
satisfies the following: 

1. F1 is contained in b. 
2. F1 is the only face incident upon P?ex(b).

 

A box is defined to be facet crowded if it contains a facet but that 
facet is not the only face incident upon P?ex(b). Equivalently, a 
box is facet crowded if it contains a facet that is not the apex of a 
facet cone.  

As in the edge and vertex phases, boxes that are facet crowded are 
recursively split until no facet crowded boxes remain. The 
balance condition is maintained after each split.   

The facet boxes and the boxes balance adjacent to facet boxes are 
split, with the balance condition being maintained. For 
consistency facet boxes and boxes balance adjacent to them are 
protected, although the octree generation is complete after this 
phase and thus no more splitting will occur.  

4.1.2 Triangulation  

At this point there is deviation from the approach of Mitchel and 
Vavasis [16]. Due to implementation time constraints, the 
algorithm was shortened, thus the program proceeds directly to 
tetrahedrisation of empty boxes. Thus the tetrahedrisation no 
longer conforms to the object boundaries. There is now a space 
between object boundaries and their nearest tetrahedra. This space 
corresponds to boxes containing the boundary components. 
However, no object boundaries are intersected. Only leaf boxes 
need to be considered from this point onwards. Note that if a box 
is adjacent to boxes that are smaller, faces of the large box are 
replaced with the faces of the smaller box.  



 
Two Dimensional Triangulation: Each facet of every empty box 
is triangulated by adding a central vertex. This vertex is then 
joined to every segment along the boundary of the facet. 

Three Dimensional Triangulation: The centroid of each empty 
box is found. Tetrahedra are formed by taking the convex hull of 
the centroid with each of the surface triangles.  

4.1.3 File Output 

The tertahedra produced in the previous stage are written out to 
file, using indexed lists of vertices, edges and faces to represent 
the tetrahedra. The indices of the neighbours of each tetrahedra as 
well as the face through which that neighbour can be reached are 
also stored for each tetrahedron.  

4.2 From-point Visibility 

The from-point visibility algorithm uses a recursive method to 
traverse the tetrahedrisation. This will occur until a face of a mesh 
is encountered, the edge of the tetrahedrisation is reached, or a 
face is determined not to be projected through.  

4.2.1 N-Sided Polygon Clipping 

During each projection into a tetrahedron, a method is needed for 
determining if a projected polygon intersects a face. The clipping 
of polygons is such a technique, and due to the nature of the 
problem, a method is needed for dealing with an arbitrary N-sided 
clipping region. In order to achieve this, an approach similar to 
the Sutherland-Hodgeman clipping algorithm [24] is used.  

The clipping planes are defined using the convention of the plane 
normal, and a point on the plane. A frustum is a collection of 
planes that a polygon will be clipped against. A polygon is simply 
an ordered list of points.  

Any convex polygon can be used generate a view frustum. This is 
done, by walking the points of the polygon in order, using point 
pairs and the viewpoint to generate the plane normals (all planes 
in the viewing frustum will use the viewpoint as their ‘point on 
plane’). This is done using the cross-product of the vectors from 
the viewpoint to both points.  

Once the clipping planes are defined, in order to clip a polygon 
against the frustum, we simply clip the polygon against each 
plane making up the frustum. After the polygon has been clipped 
against a plane, this clipped polygon serves as input for the next 
clipping iteration. This is done until the polygon has been clipped 
against all planes in the frustum (it should be noted that the order 
of clipping does not matter).  

4.2.2 Visibility Algorithm 
The recursive method for visibility determination was 
implemented as follows:  

Given a specified viewpoint, determine which tetrahedron you 
currently occupy (this is at worst case a linear search of the list of 
tetrahedra).  

Once the occupied tetrahedron has been found, the algorithm 
projects recursively as follows: 

For each face of the initial tetrahedron:  
If there is a neighbour present, then create a polygon   
representation of the face, and recursively call the  
function, passing the polygon, and viewpoint.   

If no neighbour is present, determine if it is part of a  
mesh. If so, mark it as visible.  

When the function is called in a tetrahedron that is not the initial 
tetrahedron, the following takes place: 

For each face of the tetrahedron:  
If the face doesn’t return to the previous/calling  
tetrahedron:  
If a neighbour exists through the face, then create a  
frustum based upon the incoming polygon and  
viewpoint. It is then used it to clip against the face  
under consideration, and if it returns a polygon of at  
least 3 points, a recursive projection is made into the  
neighbouring tetrahedron, using the clipped  
polygon as input.   

If no neighbour exists: 
If face is part of a mesh, perform a clipping of the face 
against the incoming polygon. If the output contains at 
least 3 points, then the mesh is visible from the 
viewpoint, and should be marked as such.  

This is done until recursion terminates, yielding a marking of all 
visible mesh faces. 

Once this has been done, all that remains is to traverse the list of 
visible mesh faces and send them for rendering.  

5 RESULTS 
5.1 Tetrahedrisation 

Figure 2 below shows the visualisation of an example test scene 
that has been loaded in, prior to tetrahedrisation. 

 

Figure 2: An example scene.  



 
Figure 3 shows the octree generated for the test scene in figure 2, 
after the vertex phase but before vertex centring. 

 

Figure 3: Side view of Octree generated for example scene. 

Figure 4 shows the tetrahedrisation of the test scene in figure 2. 
The image on the left shows the same view as in figure 3. The 
image on the right shows the scene from a rotated view. There are 
an excessive number of tetrahedra, even for this simple scene. 

Figure 4: Tetrahedrisation of a test scene.  

5.2 From-point Visibility 

The from-point visibility algorithm was tested on a simple test 
scene (shown below in Figure 5). It comprises an ‘I- shaped’ 
region comprised of 30 tetrahedra. One side of the region was 
marked as an object mesh for testing purposes (shown in blue).  

 

Figure 5: Simple test scene. 

 

Figure 6: Visibility results.  

After the visibility algorithm has been run, the visible object mesh 
faces are marked, and drawn in light blue (as shown in Figure 6). 

The results demonstrate that the from-point algorithm is able to 
generate the correct visibility information using the 
tetrahedrisation.  

6. CONCLUSIONS  

Two requirements of the tetrahedrisation are not met. The 
tetrahedrisation does not conform to the object boundaries. Space 
is left between the tetrahedrisation and the object boundary. Due 
to this fact, although there is no space between neighbouring 
tetrahedra, the viewpoint space is not fully tetrahedrised. 
Considering desirable characteristics, the tetrahedra are of good 
quality. This is trivial however because the likelihood of poor 
quality tetrahedra is far greater where the tetrahedra would meet 
the object boundaries.   

Despite the shortcomings of the implementation, it was sufficient 
to be used for testing the visibility culling algorithm as intended. 
In order to do this, the faces of tetrahedra that do not have 
neighbouring faces are marked as object faces.   

The from-point visibility technique has achieved the desired result 
of being able to identify visible primitives in a scene. The tuning 
of the algorithm for conservative and aggressive performance is, 
however, still not implemented. It will be much easier to 
implement the aggressive performance within the current 
framework, as this requires only a testing of the angles between 
points on the polygon being projected.  

The ability of the system to perform quickly for small scenes is 
encouraging, but the system performance will degrade as the 
number of tetrahedral increases. This however, still leaves open 
the possibility of using the approach as a pre-process, or during 
rendering of high quality images from 3-D scenes. 



6 FUTURE WORK 
6.1 Tetrahedrisation 

There are many ways in which this projected can be expanded 
and improved. The main focus would be to fully complete the 
implementation of the design, which would remove many of the 
deficiencies of this specific implementation.  Additionally, the 
suggested techniques to reduce the number of tetrahedra, at the 
expense of aspect ratio, could be implemented. It has been shown 
theoretically, that if the constraint of bounded aspect ratio is 
ignored, the number of tetrahedra produced is linear in the 
number of vertices (M. Bern, D.Eppstein, J. Gilbert [4]).   

The following improvements could be made to the face in box 
tests: The cube – edge intersection test that is used is prone to 
floating point round-off errors, thus the edge may slip through the 
“crack” between adjacent cube faces. A more robust approach is 
suggested by A.Pateth [30] that involves testing whether the 
origin is contained in the convex solid obtained by sweeping a 
unit cube being centred at one edge endpoint to the other. A case 
analysis, such as that used by the three dimensional Cohen – 
Sutherland polygon clipping algorithm could also be incorporated 
to remove the need to perform any such testing for many cases.   

In order to reduce the memory requirements of the program, at the 
expense of performance, less information could be stored for each 
box of the octree. For example, the coordinates of each box as 
well as the pointers to the faces its embedding contains could be 
calculated when required as the octree is traversed. 

Over and above the techniques that were to be considered in this 
project, there are further techniques to reduce the number of 
tetrahedra. Heuristics can be used to achieve significant 
reductions. M. Bern et al [4] provide a convincing graphical 
example of their effectiveness in two dimensions.  

6.2 From-Point Visibility 

Shadows and Lighting 

The system currently generates projections of polygons onto 
visible surfaces in the scene. In future, it could be advantageous to 
use these to generate more realistic lighting and shadow effects in 
the scenes. 

Space division techniques for improved searching of tetrahedra 

Techniques such as the BSP-Tree could be used to improve search 
times for finding the tetrahedron currently occupied by the 
viewpoint. 
AI-Agent Vision 
The visibility information generated for the purposes of rendering 
could instead be used to provide an artificial agent with 
information about the artificial/modelled world in which it is 
present.  
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