
An Application of Tetrahedrisation to From-point Visibility
Technical Report CS04-12-00

Department of Computer Science
University of Cape Town

B. Miszka, G. Ryan, J. Gain and C. Hultquist

ABSTRACT
We propose a method for tetrahedrizing a polyhedral volume
containing polyhedral holes. We use the resulting tetrahedrization
to produce from-point visibility algorithms that can be either
exact, conservative or aggressive. We also discuss the
applications of such from-point and from-region visibility
techniques, including their use in lighting and in simulating vision
of artificial intelligence agents.

1. INTRODUCTION
In typical 3D scenes most primitives are not visible from a given
viewpoint. Thus it would be desirable to determine which
primitives are invisible during rendering so as to save rendering
calculations. Algorithms that eliminate invisible primitives are
known as visibility culling algorithms.

We propose tetrahedrising the viewpoint space (filling the space
between objects with pyramid-like structures). It is assumed that
the 3D scene is defined by a number of triangular meshes. The
tetrahedrisation will be performed such that the face of each
tetrahedron is either the face of a triangle that is part of one of the
triangular meshes that make up the scene, or co-incident with the
face of an adjacent tetrahedron. This will occur as a pre-procces.
The resulting tetrahedrisation will then be used in conjunction
with a from-point visibility algorithm that can be tuned to be
exact, conservative or aggressive. The tetrahedrisation could also
be used as the basis for from-region visibility techniques.

2. BACKGROUND
The approach is divided into two sections, namely tetrahedrisation
and the from-point visibility culling algorithm. Thus the
background and related work will be discussed separately for each
of the two sections.

2.1 Tetrahedrisation
There is a large amount of literature describing tetrahedrisation,
mostly regarding its application in mesh generation. Bern [3]
provides a detailed surver of mesh generation techniques and
Owen [19] provides a survey focused on unstructed mesh
generation. Bern and Eppstein [4] provide a more detailed
discussion on mesh generation that focuses on approaches using
triangulation. They address many aspects of triangulation in both
two dimensions and three dimensions as well as specifying open
problems.

In structured mesh generation generation, interiour vertices are
topologically alike whereas in unstructured mesh, vertices can
have arbitrarily varying local neighbourhoods (Bern [3]). It is far
simpler to respect object boundaries when using unstructured
mesh generation and thus it is more applicable to this project.

There are two sub-goals of the tetrahedrisation component. The
first is to attempt to minimise the number of tetrahedral and the
second is to produce good quality tetrahedra. It is desirable to
produce tetrahedra that are of high quality under all measures
because in other applications of tetrahedrisation, particularly
those involving finite element analysis, quality is important in
minimising numerical errors [7].

There are several quality measures for tetrahedra. These include
aspect ratio, minimum dihedral angle, maximum dihedral angle
and radius-edge ratio [12].

Regular tetrahedra are of the highest quality under all measures,
thus it would be desirable to tile the viewpoint space with regular
tetrahedra. This is impossible however, as shown by Eppstein et
al [12]. Tetrahedral shapes that can be used to tile three-
dimensional space do exist. However, none of these tetrahedra are
acute, though some are nonobtuse [12].

Although tetrahedrisation is effectively the triangulation problem
in three dimensions, it is more complicated than the two
dimensional case. This is due to the fact that many properties of
two-dimensional triangulation break down in three dimensions.
Different triangulations of the same input may contain different
numbers of tetrahedra. A generalisation of Euler’s formula shows
that the tetrahedrisation of an n-vertex polygon has at most

2

2n
tetrahedra. However, tetrahedrisation can often be

accomplished using far fewer tetrahedra, especially if the polygon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is strictly convex where tetrahedrisations that are linear in the
number of polygon vertices can be performed (Bern and Eppstein)
[4]

An additional complication that arises in three dimensions is that
not all polyhedra can be tetrahedrised without the addition of
Steiner points. Schönhardt provided an example of a polygon of
this type [22].

These two issues then raise the question as to the number of
tetrahedra and the number of Steiner points required to
tetrahedrise an arbitrary polyhedron. Bern and Eppstein show that
an polyhedron can be tetrahedrised with O(n2) tetrahedra and
O(n2) Steiner points. These two measures form an upper bound
and convex polyhedra often require fewer Steiner points and
fewer tetrahedra (as mentioned earlier).

Unfortunately, it has been shown that testing to determine
whether or not Steiner points are required to tetrahedrise a
polyhedron is NP-complete. (Rupert and Seidel) [21]. They also
prove that for any k, it is NP-hard to test whether or not k Steiner
points will suffice.

Apart for their being required in the tetrahedrisation of certain
polygons, Steiner points may also be used to improve the quality
of the tetrahedra obtained. In fact, Steiner points can also reduce
the complexity of the tetrahedrisation and Bern, Eppstein and
Gilbert prove that their technique for two dimensional
triangulation (based on quadtrees) can be extended to any fixed
dimension, giving a triangulation of that is of size O(n), where n
is the number of input vertices [5]. However, they do not provide
the extension of their algorithm. It is still an open problem to
triangulate an arbitrary convex polygon with the minimum
number of tetrahedral in polynomial time [3].

Acute triangulation in three dimensions has not been addressed
literature until recently by Eppstein et al [12]. Eppstein et al [12]
provide a method for the acute triangulation of a slab of three-
dimensional space. However, although the tiling fits between two
parallel planes, it has “dimples” on the outer surfaces, making it
unsuitable for tetrahedrisation of arbitrary polyhedra as it stands.
They state that finding an acute tetrahedrisation of a given shape,
such as a cube is still an open problem. Additionally, acuteness
alone is not a guarantee of quality of tetrahedra. Three types of
bad quality tetrahedra can have all their interior angles acute [12].

Typical approaches to tetrahedrisation are Delaunay based or
octree based. Delaunay based methods use the three-dimensional
extension of the two dimensional Delaunay triangulation. Octree
based methods recursively divide space into cubes and then
triangulate these cubes while taking into account the input
polyhedra. The Delaunay triangulation in two dimensions has the
property of minimising maximum radius over all triangles’
circumcircles. The Delaunay triangulation can be extended to
three dimensions; however certain properties of the triangulation
that hold in two dimensions, such as acuteness, no longer hold in

three dimensions [19]. However, the Delaunay triangulation does
maintain useful properties in three dimensions such as it
minimizing the maximum radius of a min-containment sphere
(Rajan) [20]. Delaunay based approaches do not eliminate all
types of poor quality tetrehedra, such as, slivers may still be
present and the mesh must be improved as a post process (S.
Cheng, K. Dey, H. Edelsbrunner, M. Facello, S. Teng [8]).

There is no analogue of the constrained Delaunay triangulation
(CDT) in three dimensions. Typical approaches thus find the
Delaunay triangulation of the given object’s point-set, forming the
convex hull of those points. The object boundary is then
recovered. Cavalcanti and Mello [7] provide the outline details for
an approach to three-dimensional constrained Delaunay
triangulation suitable for industrial applications. Their main
emphasis is on recovery of constraining faces and edges while
minimising the use of geometric operations such as intersections.

Du and Wang [11] also propose a constrained boundary recovery
technique. In fact they build on their previous technique that
performs a conforming boundary recovery. An attempt is made to
minimise the number of Steiner points required. The technique
does rely on heuristics unlike the approach used by Cavalcanti
and Mello that uses an heuristic for Steiner point insertion for face
recovery.

Mitchell and Vavasis [16] extend the technique for two
dimensional triangulation with bounded aspect ratio, described by
Eppstein et al [5], to tetrahedrisation in three-dimensions. Their
approach produces tetrahedra that have aspect ratio within a
constant factor of optimal. The number of tetrahedra is also within
a constant factor optimal for a bounded aspect ratio
tetrahedrisation.

2.2 From-point Visibility Culling
The area of visibility in computer graphics has been around since
the early days of the field (In March 1974, Sutherland, Sproull
and Schumaker [23] surveyed ten hidden surface algorithms
available at the time). There have been many algorithms designed
to solve this problem. In general, these can be divided into two
categories; from-point and from-region.

The from-point algorithms perform just as the name implies,
determining what is visible from a specified viewpoint. The from-
region techniques are aimed at determining what is visible from
all points in a certain area or region in a scene. From-region
techniques also occur largely as a pre-process (occurring before
the actual running of programs which would use the visibility
information), while from-point approaches are more run-time
oriented.

The various approaches for from-point methods may also be
divided according to their accuracy. Nirenstein [18] provides the
following classifications:

Exact: such an algorithm returns exactly that which is
visible from a point.

Conservative: provides an overestimate of what is
visible from a point. This means primitives that should
be invisible are marked as visible.

Aggressive: provides only that which should be drawn
but may occasionally falsely mark some visible
primitives as invisible.

Approximate: suffers from both false visibility and
invisibility errors.

The algorithms may also be categorised according to the way in
which they operate. The large majority of techniques can be
grouped into two categories:

Object precision: Visibility computations are performed
using the raw models or information representing an
object

Image precision: operate on discrete representations of
objects broken into fragments during the rasterisation
(conversion to pixels) process.

Our proposed algorithm can be classified as an exact method, and
as an object precision method because it works with the 3-D
representations of the tetrahedrisation.

A brief examination of some object precision and image precision
methods follows. The methods below are considered to be
conservative approaches to visibility (unless stated otherwise).

3.2.1 Object precision methods

Cells and portals
The scene under consideration is divided into separate
cells, which are joined by portals, and moving from one
cell to another can only be accomplished by moving
through portals (it is useful to think of cells as rooms,
and portals as the doors joining them). It is a
conservative method.
To begin with, the visible primitives in the current cell
are determined, and then rays cast into other cells to
determine what is visible in them. It is useful to note,
that cell contents will only need to be considered if one
of the portals to that cell is visible (since it is only
possible to move into cells through portals). If all
portals to a certain cell are not visible, then anything
contained in that cell is also not visible.

Large convex occluders

Coorg and Teller [10] present a method whereby they
characterise the occlusion of a single convex occluder
using the separating and supporting planes between
them, and the position of the viewer with respect to
those planes. (see Figure 1 for a graphical view of such
a situation). The basic idea is that if an observer is
between the supporting planes and behind an object (the
occluder), then it is not possible to see the other object
(the occludee). If an observer is between separating and
supporting planes, then it is possible to see part of an
object (the object is only partially occluded). Finally, if
the observer is outside both separating and supporting
lines, then it is possible to completely see the occludee
object.

Culling using shadow frustra

This idea was proposed by Hudson et al. [14], and
makes use of the fact that if an object lies completely
within the “shadow” of another object (with respect to
the view-point) then that object is not visible. Care
needs to be taken to accommodate partially
“shadowing” of objects.

BSP (Binary Space Partitioning) tree culling
The shadow-frustra culling of Hudson et al. [14] can be
improved by using BSP trees. Bittner, Havran, and
Slavik [6] combine the shadow frustra of various
occluders into an occlusion tree, which is then used to
compare against the scene hierarchy.

Figure 1: An example of visibility determination
using convex occluders (figure was obtained from
Cohen-Or et al. [9]).

Weiler and Atherton [25] also present a noteworthy method. They
provided both a system for hidden surface removal in scenes as
well as a polygon clipping technique. The system primarily uses
depth and area sorting to determine the ordering and visibility of
polygons. The polygons are then clipped against closer polygons
to determine their visible portions (this is an exact method).

3.2.2 Image precision methods:

Ray casting
This involves casting a ray from the “eye” through
every pixel of the screen. The pixel value is determined
by the intersection with the closest object. This can be
expensive because of tests against every object in the
scene, but when a back to front ordering of rendering is
used it performs natural occlusion culling (this can be
fast as demonstrated in Bala, Dorsey, and Teller [1]).

Hierarchical Z-buffer (HZB)
An extension to the Z-buffer proposed by Greene, Kass,
and Miller [13], this method makes use of octrees (a
way of subdividing/partitioning 3-Dimensional space)
and a Z-pyramid (layered buffer with different
resolutions at each level). The scene is first arranged
into an octree, and traversed top-down, front to back,
with each node being tested for occlusion. If a node is
found to be occluded then it is skipped, otherwise its
children are tested. The Z-pyramid is updated during
scan-conversion of the primitives, and any z-buffer
changes are propagated up the pyramid. To determine

visibility of a node, each face is hierarchically tested
against the z-pyramid.

Hierarchical occlusion buffer
Proposed by Zhang et al. [26], it is similar to the HZB,
the occlusion is arranged hierarchically into a structure
known as the Hierarchical Occlusion Map (HOM), and
the bounding volume hierarchy of the scene is tested
against it. However, the HOM stores only opacity
information, with distance values being kept elsewhere.
This may also be an aggressive method.

Approximate Volumetric Visibility
This is an approach that does not use geometric
visibility computations, but instead relies on the
creation of volumes/regions that have certain properties.
Klosowski and Silva [15] developed such an approach
in their prioritised layered projection (PLP) system. It
estimates the visible primitives in a scene, using a pre-
assigned probability that a cell is visible from a given
viewpoint.

There is also a method described by Bartz, Meiner, and Httner
[2], which uses OpenGL calls to perform the testing. Hardware
implementations of culling approaches have also been explored,
with some being incorporated into modern graphics hardware
(ATI’s Hyper-Z technology [17], for example).

4. APPROACH
The tetrahedrisation program reads in the coordinates and facets
from a VRML 2.0 file. From this it constructs indexed lists of
coordinates, edges and facets. The tetrahedrisation is computed
and written out in a simple format to be read in by the visibility
culling algorithm.

4.1 Tetrahedrisation

The approach used is that proposed by Mitchell and Vavasis [16].
The input is given as a connected polyhedral region P in R3. P is
specified by mutually linked lists of vertices, edges and facets.
The main data structure used by the algorithm is an octree. An
octree is a rooted tree, where each node is either a leaf node or
has exactly eight children. Each node of the octree is referred to
as a box. Each box represents a polyhedral region called its
embedding that is denoted I(b). During octree generation, the
embedding of each box is a cube. In later stages of the algorithm,
when boxes are warped and triangulated, their shape is modified.

The embeddings of the eight children of a box are obtained by
dividing the embedding of the box into eight equal cubes. This is
accomplished by dividing the embedding in half in each of the
three dimensions. All boxes that are not leaf nodes are referred to
as split. Thus the processing of dividing a box into its eight
children is called splitting.

There are a number of terms that must be defined in order to
explain the algorithm.

Duplicate: When the intersection of a given box with P, denoted
by Pn I(b), is found to have more than one connected component,

the box is duplicated into the original box and a number of new
nodes called duplicate boxes. Each cube represents the same
region in R3, but each is associated with one connected
component of Pn I(b). P?b is used to denote the component of
Pn I(b) associated with a given box. Note that if P?b is non-
convex, a child box of b may have more than one component,
even though P?b does not. Thus, whenever any box is split, each
of its child boxes must be examined and duplicate boxes created
for each child where necessary.

Extended Box: Given a box b, its extended box, denoted by
ex(b), is defined such that I(ex(b)) is a cube concentric with I(b)
but expanded by a factor of five in each dimension. P?ex(b) is
used to denote the component of Pn I(ex(b)) that contains P?b.
ex(b) Is not stored explicitly in the octree but the P faces it
contains can be deduced from boxes higher up the tree than b.

Adjacent: Two boxes are defined as neighbours if their
embeddings intersect non-trivially and they are not duplicates of
one another. Two boxes that are neighbours are said to be
adjacent if there is a point of P common to both of them. Two
boxes are balance-adjacent if they are neighbours and there is a
point of P common to one of the boxes and the extended box of
the other.

Balance Condition: For the purposes of this algorithm, the size
of a box is defined to be the length of an edge of the box. The
balance condition that is maintained is as follows: no box may be
balance adjacent to another box that is more than twice its size.
Thus whenever a box is split, the boxes balance adjacent to its
children must be examined and split if necessary to maintain the
balance condition. These splits may necessitate the splitting of
other boxes to propagate the balance condition. Note that certain
boxes are protected during the octree generation and thus these
boxes are exempt from splitting due to the balance condition.

4.1.1 Generating the Octree

The octree generation begins with the embedding of the root box
set to a size that is a constant multiplied a bounding cube of the
scene. Boxes are then selectively split and duplicated. The
objective of this process is to make the intersection of P with the
embedding of any box as simple as possible, such that it can be
easily tetrahedrised. However, unnecessary splitting should be
avoided as it would increase the number of tetrahedra produced.
Octree generation consists of three main phases: the vertex phase,
the edge phase and the facet phase.

The Vertex Phase: A vertex cone of a box b is defined as a set of
P faces F1, F2, ..., Fk that satisfy the following:

1. The set consists of only one vertex and all of its
superfaces. The vertex itself is known as the apex of the
vertex cone.

2. The vertex is contained in b.

3. The faces F1, F2, ..., Fk are exactly the faces incident
upon P?ex(b).

A box is defined to be vertex crowded if the following conditions
are true:

1. There is a P vertex v in b.
2. The superfaces of v are not the only faces of P incident

upon P?ex(b).

Equivalently, a box is vertex crowded if it contains a vertex that is
not the apex of a vertex cone.

Boxes that are vertex crowded are split recursively, with the
balance condition being propagated after each split, until no boxes
that are vertex crowded remain. The process will terminate when
the box size becomes a constant factor smaller than the distance
between a given vertex and the P face that is not a superface of
that vertex. Thus, when determining whether or not a box b is to
be split, it is necessary to know which P faces bound P?ex(b).

Vertex Centring: Vertex centring is a one-time reorganisation of
the boxes that is intended to increase the distance from a given
vertex to the boundary of the box that contains it. Boxes whose
embeddings contain a P vertex will be called vertex boxes. It can
be shown (S. Mitchell, S. Vavasis [16]) that after the vertex
phase, every box that is balance adjacent to a vertex box is either
equal in size to the vertex box, or double its size. The vertex-
centring step proceeds as follows for every vertex box b
containing vertex v:

1. Split the boxes balance adjacent to b that are twice its
size.

2. Merge b with the seven other boxes that share the
corner of b that is closest to v to form the vertex box B.

Note that after the first step, b is balance adjacent to 26 boxes of
equal size and b and its balance adjacent boxes are arranged in a
3x3x3 group.

B is then marked as protected and will never be split again. The
merging process may violate the balance condition but this factor
is ignored because the aspect ratio of the tetrahedra that are
generated will still be bounded.

The Edge Phase: The edge phase proceeds as if the protected
vertex boxes do not exist. Thus the extended box of a box in this
phase does not extend into a protected box and the vertices of P
are ignored.

An edge cone of a box b is defined as a set of P faces F1, F2, F3

that satisfy the following:

1. The set consists of one edge and its two superfaces. The
edge itself is known as the apex of the edge cone.

2. The edge is contained in b.
3. The faces F1, F2, F3 are exactly the faces incident upon

P?ex(b).

A box is defined to be edge crowded if it contains an edge but that
edge and its superfacets are not the only faces incident upon
P?ex(b). Equivalently, a box is edge crowded if it contains an
edge that is not the apex of an edge cone.

As in the vertex phase, boxes that are edge crowded are split
recursively, with the balance condition being propagated after
each split, until no boxes that are edge crowded remain. To
determine whether or not a box is edge crowded, a list of P faces
that bound P?ex(b) is required.

It is desirable to increase the distance from a given edge to the
boundary of the box containing it. However, an analogue of
vertex centring cannot be applied at this stage because the edge
box may be balance adjacent to a vertex box. Instead every
unprotected box containing an edge as well as its unprotected
balance adjacent boxes is split. The balance condition is
propagated and then the edge box and the boxes balance adjacent
to it are marked as protected. The distance mentioned above has
to be increased at a later stage in the algorithm by warping the
boxes.

The Facet Phase: The facet phase proceeds as if the boxes that
were protected during the vertex and edge phase do not exist.
Thus the extended box of a box during this phase does not extend
into a protected box and the edges and vertices of P are ignored.
In order to maintain consistency in terminology, facet cones and
the concept of facet crowded are defined.

An facet cone of a box b is defined as the single face F1 that
satisfies the following:

1. F1 is contained in b.
2. F1 is the only face incident upon P?ex(b).

A box is defined to be facet crowded if it contains a facet but that
facet is not the only face incident upon P?ex(b). Equivalently, a
box is facet crowded if it contains a facet that is not the apex of a
facet cone.

As in the edge and vertex phases, boxes that are facet crowded are
recursively split until no facet crowded boxes remain. The
balance condition is maintained after each split.

The facet boxes and the boxes balance adjacent to facet boxes are
split, with the balance condition being maintained. For
consistency facet boxes and boxes balance adjacent to them are
protected, although the octree generation is complete after this
phase and thus no more splitting will occur.

4.1.2 Triangulation

At this point there is deviation from the approach of Mitchel and
Vavasis [16]. Due to implementation time constraints, the
algorithm was shortened, thus the program proceeds directly to
tetrahedrisation of empty boxes. Thus the tetrahedrisation no
longer conforms to the object boundaries. There is now a space
between object boundaries and their nearest tetrahedra. This space
corresponds to boxes containing the boundary components.
However, no object boundaries are intersected. Only leaf boxes
need to be considered from this point onwards. Note that if a box
is adjacent to boxes that are smaller, faces of the large box are
replaced with the faces of the smaller box.

Two Dimensional Triangulation: Each facet of every empty box
is triangulated by adding a central vertex. This vertex is then
joined to every segment along the boundary of the facet.

Three Dimensional Triangulation: The centroid of each empty
box is found. Tetrahedra are formed by taking the convex hull of
the centroid with each of the surface triangles.

4.1.3 File Output

The tertahedra produced in the previous stage are written out to
file, using indexed lists of vertices, edges and faces to represent
the tetrahedra. The indices of the neighbours of each tetrahedra as
well as the face through which that neighbour can be reached are
also stored for each tetrahedron.

4.2 From-point Visibility

The from-point visibility algorithm uses a recursive method to
traverse the tetrahedrisation. This will occur until a face of a mesh
is encountered, the edge of the tetrahedrisation is reached, or a
face is determined not to be projected through.

4.2.1 N-Sided Polygon Clipping

During each projection into a tetrahedron, a method is needed for
determining if a projected polygon intersects a face. The clipping
of polygons is such a technique, and due to the nature of the
problem, a method is needed for dealing with an arbitrary N-sided
clipping region. In order to achieve this, an approach similar to
the Sutherland-Hodgeman clipping algorithm [24] is used.

The clipping planes are defined using the convention of the plane
normal, and a point on the plane. A frustum is a collection of
planes that a polygon will be clipped against. A polygon is simply
an ordered list of points.

Any convex polygon can be used generate a view frustum. This is
done, by walking the points of the polygon in order, using point
pairs and the viewpoint to generate the plane normals (all planes
in the viewing frustum will use the viewpoint as their ‘point on
plane’). This is done using the cross-product of the vectors from
the viewpoint to both points.

Once the clipping planes are defined, in order to clip a polygon
against the frustum, we simply clip the polygon against each
plane making up the frustum. After the polygon has been clipped
against a plane, this clipped polygon serves as input for the next
clipping iteration. This is done until the polygon has been clipped
against all planes in the frustum (it should be noted that the order
of clipping does not matter).

4.2.2 Visibility Algorithm
The recursive method for visibility determination was
implemented as follows:

Given a specified viewpoint, determine which tetrahedron you
currently occupy (this is at worst case a linear search of the list of
tetrahedra).

Once the occupied tetrahedron has been found, the algorithm
projects recursively as follows:

For each face of the initial tetrahedron:
If there is a neighbour present, then create a polygon
representation of the face, and recursively call the
function, passing the polygon, and viewpoint.

If no neighbour is present, determine if it is part of a
mesh. If so, mark it as visible.

When the function is called in a tetrahedron that is not the initial
tetrahedron, the following takes place:

For each face of the tetrahedron:
If the face doesn’t return to the previous/calling
tetrahedron:
If a neighbour exists through the face, then create a
frustum based upon the incoming polygon and
viewpoint. It is then used it to clip against the face
under consideration, and if it returns a polygon of at
least 3 points, a recursive projection is made into the
neighbouring tetrahedron, using the clipped
polygon as input.

If no neighbour exists:
If face is part of a mesh, perform a clipping of the face
against the incoming polygon. If the output contains at
least 3 points, then the mesh is visible from the
viewpoint, and should be marked as such.

This is done until recursion terminates, yielding a marking of all
visible mesh faces.

Once this has been done, all that remains is to traverse the list of
visible mesh faces and send them for rendering.

5 RESULTS
5.1 Tetrahedrisation

Figure 2 below shows the visualisation of an example test scene
that has been loaded in, prior to tetrahedrisation.

Figure 2: An example scene.

Figure 3 shows the octree generated for the test scene in figure 2,
after the vertex phase but before vertex centring.

Figure 3: Side view of Octree generated for example scene.

Figure 4 shows the tetrahedrisation of the test scene in figure 2.
The image on the left shows the same view as in figure 3. The
image on the right shows the scene from a rotated view. There are
an excessive number of tetrahedra, even for this simple scene.

Figure 4: Tetrahedrisation of a test scene.

5.2 From-point Visibility

The from-point visibility algorithm was tested on a simple test
scene (shown below in Figure 5). It comprises an ‘I- shaped’
region comprised of 30 tetrahedra. One side of the region was
marked as an object mesh for testing purposes (shown in blue).

Figure 5: Simple test scene.

Figure 6: Visibility results.

After the visibility algorithm has been run, the visible object mesh
faces are marked, and drawn in light blue (as shown in Figure 6).

The results demonstrate that the from-point algorithm is able to
generate the correct visibility information using the
tetrahedrisation.

6. CONCLUSIONS

Two requirements of the tetrahedrisation are not met. The
tetrahedrisation does not conform to the object boundaries. Space
is left between the tetrahedrisation and the object boundary. Due
to this fact, although there is no space between neighbouring
tetrahedra, the viewpoint space is not fully tetrahedrised.
Considering desirable characteristics, the tetrahedra are of good
quality. This is trivial however because the likelihood of poor
quality tetrahedra is far greater where the tetrahedra would meet
the object boundaries.

Despite the shortcomings of the implementation, it was sufficient
to be used for testing the visibility culling algorithm as intended.
In order to do this, the faces of tetrahedra that do not have
neighbouring faces are marked as object faces.

The from-point visibility technique has achieved the desired result
of being able to identify visible primitives in a scene. The tuning
of the algorithm for conservative and aggressive performance is,
however, still not implemented. It will be much easier to
implement the aggressive performance within the current
framework, as this requires only a testing of the angles between
points on the polygon being projected.

The ability of the system to perform quickly for small scenes is
encouraging, but the system performance will degrade as the
number of tetrahedral increases. This however, still leaves open
the possibility of using the approach as a pre-process, or during
rendering of high quality images from 3-D scenes.

6 FUTURE WORK
6.1 Tetrahedrisation

There are many ways in which this projected can be expanded
and improved. The main focus would be to fully complete the
implementation of the design, which would remove many of the
deficiencies of this specific implementation. Additionally, the
suggested techniques to reduce the number of tetrahedra, at the
expense of aspect ratio, could be implemented. It has been shown
theoretically, that if the constraint of bounded aspect ratio is
ignored, the number of tetrahedra produced is linear in the
number of vertices (M. Bern, D.Eppstein, J. Gilbert [4]).

The following improvements could be made to the face in box
tests: The cube – edge intersection test that is used is prone to
floating point round-off errors, thus the edge may slip through the
“crack” between adjacent cube faces. A more robust approach is
suggested by A.Pateth [30] that involves testing whether the
origin is contained in the convex solid obtained by sweeping a
unit cube being centred at one edge endpoint to the other. A case
analysis, such as that used by the three dimensional Cohen –
Sutherland polygon clipping algorithm could also be incorporated
to remove the need to perform any such testing for many cases.

In order to reduce the memory requirements of the program, at the
expense of performance, less information could be stored for each
box of the octree. For example, the coordinates of each box as
well as the pointers to the faces its embedding contains could be
calculated when required as the octree is traversed.

Over and above the techniques that were to be considered in this
project, there are further techniques to reduce the number of
tetrahedra. Heuristics can be used to achieve significant
reductions. M. Bern et al [4] provide a convincing graphical
example of their effectiveness in two dimensions.

6.2 From-Point Visibility

Shadows and Lighting

The system currently generates projections of polygons onto
visible surfaces in the scene. In future, it could be advantageous to
use these to generate more realistic lighting and shadow effects in
the scenes.

Space division techniques for improved searching of tetrahedra

Techniques such as the BSP-Tree could be used to improve search
times for finding the tetrahedron currently occupied by the
viewpoint.
AI-Agent Vision
The visibility information generated for the purposes of rendering
could instead be used to provide an artificial agent with
information about the artificial/modelled world in which it is
present.

REFERENCES
[1] K. Bala, J. Dorsey, and S. Teller. Ray-traced Interactive scene
editing using ray segment trees. Eurographics Rendering
Workshop, June 1999. Held in Granada, Spain.

[2] D. Bartz, M. Meiner, and T. Httner. OpenGL-assisted
occlusion culling for large polygonal models. Computer &
Graphics, 23(5):667-679, 1999.

[3] M. Bern and Paul Plassmann. “Mesh Generation”, Chapter 6
in Handbook of Computational Geometry, J.-R. Sack and J.
Urrutia, eds., Elsevier Science, 1999.

[4] M. Bern, D. Eppstein. “Mesh Generation And Optimal
Triangulation”. Computing in Euclidean Geometry, Edited by
Ding-Zhu Du and Frank Hwang, World Scientific, Lecture Notes
Series on Computing -- Vol. 1, 1995.

[5] M. Bern, D.Eppstein, J. Gilbert. “Provably Good Mesh
Generation” IEEE Symposium on Foundations of Computer
Science, 1990.

[6] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility
culling with occlusion trees. In Proc. of Computer Graphics
International, pgs 207-219, June 1998.

[7] P. Cavalcanti, U. Mello. “Three-dimensional Constrained
Delaunay Triangulation: A Minimalist Approach”. Proceedings
8th International Meshing Roundtable, 1999.

[8] S. Cheng, K. Dey, H. Edelsbrunner, M. Facello, S. Teng,
“Sliver Exudation”: Symposium on Computational Geometry,
1999.

[9]D. Cohen-Or, Y. Chrysanthou, C. T. Silva and F. Durand. A
Survey of Visibility for Walkthrough Applications. Course 30,
SIGGRAPH, August 2001.

[10] S. Coorg and S. Teller. Real-time occlusion culling for
models with large occluders. 1997 Symposium on Interactive
Computer Graphics, pages 83-90, April 1997.

[11] Q. Du, D. Wang. “Constrained Boundary Recovery For
Three Dimensional Delaunay Triangulations”. International
Journal For Numerical Methods In Engineering, 2004.

[12] D. Eppstein, J. Sullivan, A. Üngör. “Tiling Space And Slabs
With Acute Tetrahedra: “Computational Geometry: Theory and

Applications, Volume 27 Issue 3, 2003."
[13] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer
visibility. Proceedings of SIGGRAPH 93, pages 231-240, 1993.

[14] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H.
Zhang. Accelerated occlusion culling using shadow frustra. In
Proc. 13th Annual ACM Symposium on Computational Geometry,
pgs 1-10, 1997.

[15] J. T. Klosowski, and C. T. Silva. The prioritized-layered
projection algorithm for visible set estimation. IEEE Transactions
on Visualisation and Computer Graphics, 6(2):108-123, April-
June 2000, ISSN 1077-2626.

[16] S. Mitchell, S. Vavasis.“Quality Mesh Generation In
ThreeDimensions”. Symposium on Computational Geometry,
1992.

[17] S. Morien. ATI Radeon Hyper-Z technology. In presentation
at Hot3D Proceedings, part of Graphics Hardware Workshop,
2000.

[18] S. Nirenstein. Fast and Accurate Visibility Pre-processing.
PhD thesis, University of Cape Town, 2003

[19] S. Owen. “A Survey Of Unstructured Mesh Generation
Technology”. Proceedings 7th International Meshing Roundtable,
1998.

[20] V.Rajan. “Optimality Of The Delaunay Triangulation in Rd”.
Proceedings 7th ACM Symposium Of Computational Geometry,
1991.

[21] J. Ruppert (1995). “A Delaunay Refinement Algorithm For
Quality 2-Dimensional Mesh Generation”. J. Algorithms, 1995.

[22] E. Schönhardt: “Über Die Zerlegung Von Dreickspolyedern
in Tetraeder”. Math Annalen, 1928.

[23] I. E. Sutherland, R. F. Sproull, and R. A. Schumaker. A
characterisation of ten hidden surface algorithms. ACM Computer
Surveys, 6(1):1-55, March 1974.

[24] I. E. Sutherland, G. W. Hodgeman, “Reentrant Polygon
Clipping,” Communications of the ACM, 17, 32-42, 1974.

[25] K. Weiler, P. Atherton. Hidden surface removal using
polygon area clipping. ACM SIGGRAPH Computer Graphics,
Proceedings of the 4th Annual conference on Computer Graphics
and iterative techniques, Volume 11, Issue 2, July 1977.

[26] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff.
Visibility culling using hierarchical occlusion maps. In Turner
Whitted, editor, SIGGRAPH 97 Conference Proceeding, Annual
Conference Series, pgs 77-88. ACM SIGGRAPH, Addison
Wesley, August 1997.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

