
Virtual Window: A Peephole into another World 
Zaheer Hamza Gary Pnematicatos Nicholas Tip Patrick Marais Gary Marsden  

Technical Report CS04-19-00 
Department of Computer Science 

University of Cape Town     

ABSTRACT 
This project investigates an effective means of streaming and 
displaying complex 3D scenes over a low-bandwidth wireless 
network to a remote PDA device, which has limited graphical 
capabilities. The PDA is also made position-aware, allowing 
user interaction to occur with a new degree of freedom, mapping 
real world movements such as rotation to virtual environment 
changes. 

Rendering techniques such as silhouetting optimise PDA display 
rate, but slow PDA processing speed means image compression 
to reduce network latency is unfeasible. In spite of any technical 
limitations, however, preliminary user testing shows that the 
concept and methods of interaction developed are intuitive, with 
good potential for further system development. 

Categories and Subject Descriptors 
H.5.2 [INFORMATION INTERFACES AND 
PRESENTATION]: User Interfaces - Evaluation, GUI, Input 
devices and strategies. 

General Terms 
Performance, Design, Experimentation, Human Factors. 

Keywords 
Compression, Mobile, Rendering, Interaction. 

1. INTRODUCTION 
The integration of mobile devices with wireless connectivity 
provides an exciting opportunity for developing new interaction 
systems. With rapidly expanding technologies, such as IEEE 
802.11, connecting hand-held computers and conventional 
computers together will no longer be an occasional event. 
Instead, the devices will frequently be in close, interactive 
communication.  

Another important area of technology research and development 
is that of the development of virtual environments. These allow 

one to create any 3D environment, even those that are not 
physically realisable, to model interactions and assist in research 
at low cost.  

We attempt to merge these two concepts into a single model. 
This model will allow users to interact with a small viewing 
window, via a PDA, that is displaying some kind of complex 
virtual environment, which the user can manipulate in real time 
as they move around in physical space. 
Implementing this system required three discrete modules to be 
developed and interoperated:  

 

A graphics engine to generate and render the 3D 
world environment on the server and PDA. 

 

A compression and networking sub-system to provide 
a wireless transport medium to transmit images 
economically from the renderer to the device. 

 

A user interface and movement-tracking technique to 
allow users to interact with the device in a sensible 
manner.  

2. BACKGROUND  
2.1 Compression 
A common characteristic of most images is that the 
neighbouring pixels are correlated and therefore contain 
redundant information. The foremost task then is to find less 
correlated representation of the image. Two fundamental 
components of compression are redundancy and irrelevancy 
reduction. Redundancy reduction aims at removing duplication 
from the image. Irrelevancy reduction omits parts of the image 
that will not be noticed by the viewer.  

Images can be represented by a number of different colour 
spaces other than RGB, such as YIQ and YCC. These colour 
spaces represent the image data in another format, which 
separates the luminosity or brightness from the hue. The Human 
Visual System has a low dynamic range or acuity for spatial 
variation in colour than it does for luminance. In other words, 
we are more acutely aware of changes in the brightness of 
details than of small changes in hue. So rather than manipulating 
the image in RGB colour, it can be more efficient to encode the 
luminance in one channel and the chrominance in two other 
channels. This way, we can manipulate the image to reduce its 
size, while still maintaining image quality according the HVS.   

JPEG is the image compression standard developed by the Joint 
Photographic Experts Group. JPEG is a lossy compression 
algorithm that has been conceived to reduce the file size of  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
.Copyright 2004 Department of Computer Science University of Cape 
Town  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


images as much as possible without affecting the quality of the 
image. The JPEG algorithm is publicly available; this allows it 
to be tailored to suit different applications, such as the 
requirements of this project.  

2.2 Graphics Rendering 
Current graphics cards are specifically designed to remove the 
need for the CPU to render the scene: all the CPU needs do is 
pass the 3D scene information to the hardware which then 
produces a buffer for later display. Because processors 
themselves are more powerful, they are able to generate more 
complex scene information for the graphics card. This, 
combined with the abstraction provided by APIs such as 
OpenGL, makes it easier to create complex virtual worlds.  

Unfortunately, PDAs do not have the same graphic processing 
power as desktop computers. The lack of a dedicated  GPU 
(Graphics Processing Unit) means that the processor has to take 
on the work of rendering, and of course the limited processor 
speed adds its own constraints.  

Thus, the processing power of a server was used to calculate and 
generate 3D scene data, which can be captured directly from the 
buffer. This static image can then be displayed separately, 
without re-calculating the coordinate geometry. This is similar 
to work by Engel [2], who optimised distributed image viewing 
by limiting the responsibility of the PDA to simply displaying 
an image without any of the rendering overhead.  

3. RENDERING 
3.1 Overview 
Maintaining 10 fps on a distributed client, particularly one with 
limited processing abilities, can be difficult. Thus, it was 
necessary to first analyze the capabilities of the network and 
client when developing a solution.  

3.2 PDA Graphical APIs 
Although the rendering abilities of a PDA (such as the h4150 we 
used) are limited, there were two packages available that handle 
displaying images on screen. These two C# packages were 
tested for comparison before a choice was made, and were the 
Windows Graphical Device Interface Plus (GDI+) and 
Microsoft’s Game API (GAPI). GDI+ is the built-in library for 
Windows CE, which is the operating system that runs on the 
Pocket PC.  

In a Windows program, the output to an I/O device such as the 
display or printer requires going through an intermediate object 
known as the device context (DC). The purpose of the DC is to 
make the windows program device independent, so that the 
program will work with any type of display or printer without 
requiring a recompilation. In the Microsoft Foundation Classes 
(MFC), there is a detailed set of classes that deal with the DC. 
The general framework that deals with the DC is referred to as 
the GDI (Graphical Device Interface). In .Net, the GDI interface 
has been greatly refined and is referred to as GDI+ and deals 
with the DC in a similar manner. GDI+ needs to deal with a 
device context prior to performing any graphical operations and 
this lead to it performing poor performance. Furthermore, the 

GDI+ classes encapsulate some important Windows APIs to 
create graphical outputs. This library is un-optimized, and 
further contributed to the less-than-interactive frames rates 
GDI+ allowed.   

GAPI, the alternative examined, is a small API that makes 
directly reading to and writing from the device’s display 
memory possible, something which GDI+ presently lacks. GAPI 
consists of not much more than access to a pointer to the display 
memory as well as information about the display properties. It is 
a fast an efficient 2D graphics library and provides all the 
functionality needed to display complex scenes on PDA 
architectures, and thus was chosen for PDA image displaying.  

3.3 Rendering Techniques 
A number of optimizations were considered whilst developing 
the renderer. The first was frame coherency, where only the 
differences in frames are transmitted. However, according to 
SGI [5] there is minimal benefit in calculating and sending 
frame differences to the client when scenes are constantly and 
rapidly changing, therefore an alternative approach was needed. 
In order to answer the question as to how a PDAs capabilities 
could be exploited, entire compressed frames were sent to the 
device where its hardware performance was observed. To 
increase the frame rate on the client side, the following two 
techniques were investigated:  

1. We attempted a frame caching technique on the client 
side, where recently visited frames were stored on the 
PDA.  Whilst this technique showed improved long 
term results, it soon became clear that an alternative 
approach was necessary due to its short term 
performance problems, and memory-demanding 
nature. 

2. The amount of data was minimized by transmitting 
wire frames as opposed to textured views. This 
technique proved to have the best server compression 
times as well as low image processing and display 
times when combined with a silhouette technique.    

3.3.1 Frame Caching 
The reason behind implementing a caching technique was to 
avoid relying solely on the transmission of data over the 
network. Theoretically, this meant that we would decrease the 
amount of time spent sending, receiving and processing data. As 
there is a mapping of real and virtual world co-ordinates i.e. a 
users XYZ position in the real world should correspond to 
position XYZ in the virtual world, we thought it would be best 
to store these co-ordinates in a three dimensional lookup table. 
So as we move around the world, the client would first check 
the lookup table to see if we had visited this ‘region’. We use 
the word region as it is not always possible to be in the exact 
same position. If the lookup table had a recently visited entry, 
then the client would use these coordinates to extract the scene 
from memory and thus not find it necessary to send a network 
request to receive more data. If the table was empty, the 
previously described send and receive protocol would be 
initiated and an entry would then be added to the lookup chart.   

The problems with this technique included the following: 



1. Short term: The time it takes to check for and cache an 
image exceeds the time it takes to directly receive a 
frame. This adds to the delay in retrieving the next 
frame, reducing overall display rate. 

2. Long Term: While it is possible to achieve 6fps after 
most scenes have been cached, cache can become 
extremely large, causing the PDA to become unstable. 
Unused frames can be deleted, but then the short term 
slow down above comes into effect when the region is 
revisited. 

3. Directional combinations: Since the user has six 
degrees of freedom from any location, the number of 
frames visible from any point was potentially very 
large. Furthermore, if that region was not visited 
again, the lookup and cache time already spent would 
be wasted.  

Thus, the poor performance of this approach meant it was not 
considered for the final system. While there were some speed 
gains in the long run, there was still the computational overhead 
of ensuring a balance is struck between the amount of data to 
save, the size of the cache and the short term frame delays. It 
was thus decided that another approach needed to be 
investigated.  

3.3.2 Silhouetted Wire Framing 
The reason behind implementing a wire frame technique was to 
ensure that we minimise the amount of data sent to the client 
and at the same time reduce the amount of processing on the 
PDA. Theoretically, this simple technique meant that we would 
decrease the amount of time spent sending, receiving and 
processing data. When a wire frame view is created, we can 
exploit the property of the objects surface areas always being 
blank/black, these pixels are referred to as empty. On the client 
side, it made sense to only display those parts that make up the 
outlines of the object, and ignore the empty pixels. In terms of 
the display, the image would look no different to the original 
and in essence we end up getting the black for free.   

This technique has the equivalent compression ratios of 
transmitting flat shaded images. It also has the added benefit of 
decreasing the amount of data sent and the amount of time spent 
on computing pixel operations (as we throw away most of the 
data). After the RGB values are captured, it is possible for the 
server to determine the black pixels, i.e. zero valued RGB data, 
and ignore them yet still keep track of their position in the pixel 
buffer.   

Now that the PDA could ignore much of the image and only 
display essential sections, processing time decreased and display 
rate improved. Obviously, however, the wire frame image  is not 
ideal to view the world, so a combination of approaches was 
used:  

1. When the PDA started moving, only wire frame 
images were sent through so position can be seen. 

2. The moment the movement stopped, the full textured 
image of the last wire frame was then sent to the client 
for display.  

This approach seemed to solve many of the latency problems we 
were experiencing, whilst still providing a usable view to the 
client.  

From an HCI perspective, the wire frame view did not seem as 
if it would provide the best aesthetic appeal to the user, as back 
facing polygons were now visible. This tended to clutter scenes 
and make certain objects seem as if they were solids (as can be 
seen in the wire frame view). To address this, a hidden line 
removal technique was implemented that removes all lines but 
the silhouette edges. These are the boundaries between adjacent 
front facing and back facing surfaces, and are essentially just an 
outline to a shape. The procedure for this involves solving the 
partial visibility problem, so that only those parts of the 
silhouette edges, which are not occluded by the interior of any 
front facing surface, are rendered [4]. The basic method of 
achieving this effect is to render back facing polygons in wire 
frame mode and front facing polygons in a filled color, in this 
case black was used. A two pass rendering scheme was used, 
where the front faces were culled on the first iteration and the 
back faces are culled on the second iteration. On both passes, 
the width and colour of the back and front facing polygonal 
edges are adjusted to create silhouetted edges of constant 
thickness (in any colour).     

Incorporating this technique further optimized image 
transmission and display by reducing even further the amount of 
data to send and process.  

 

Figure 1: Wire frame vs. Silhouette vs. Texture Modes  

4. NETWORK COMPRESSION 
4.1 Compression Overview 
As a wirelessly enabled PDA uses the 802.11b Wireless 
Protocol, a maximum shared bit rate of 11Mbps is allowed; 
though a bit rate of 1Mbps is more likely. Based on previous 
research, a frame rate of 10 fps is necessary for interactive use 
of an image/video streaming application. Since 1Mb is 125KB 
the network’s bit rate will constrain the image sizes to 12.5 KB 
or less each to achieve the interactive frame rate. Based on these 
restrictions in bandwidth, a lossy image compression technique 
was required for the project to allow the frames to be 
transmitted at a suitable rate.   

Thus, the JPEG compression algorithm was chosen  based on 
two points. 

1. It is a transform coding technique and provides 
greater data compression compared to predictive 
methods, although at the expense of greater 
computational requirements.  



2. JPEG is a superior compression algorithm when full-
screen image compression is required, as is 
performed in this system.  

The algorithm developed for this project was slightly different 
to traditional JPEG, as it implements Discrete Wavelet 
Transforms (DWT) as opposed to Discrete Cosine Transforms 
(DCT). The reasoning behind this is that wavelet-based coding 
provides substantial improvements in picture quality at higher 
compression ratios than other techniques, which is a concern at 
high compression ratios, as well as performing fewer 
calculations in than DCTs, thus improving decompression time 
on the PDA.  

4.1.2 Compression Process 
Initially, the image data is separated into RGB colour space and 
then converted from RGB to YCC colour space. The 
chrominance components are then down sampled, in an attempt 
to take full advantage of the weaknesses of the Human Visual 
System, and to represent them with fewer bits [1]. Once the 
down sampling is complete, each YCC component is then 
transformed and quantised separately. This allows for each 
channel to be treated separately, and the properties of each to be 
exploited fully for improved compression ratios.   

Once the quantizing is completed, the separate image 
components are then rearranged into a single array for the 
encoding process. The components are rearranged into a single 
array to improve the encoding and compression ratio, as 
encoding performs better on larger data sets. The compression 
library used was zlib, which uses Huffman coding and LZ77 
compression.  

  

Figure 2. Original image (left), uncompressed image (right).  

4.1.3 Decompression Process 
To improve the quality of the decompressed wire frame images, 
a simple and effective technique was implemented. As the wire 
frame image hold only extreme values for the pixels, e.g. for a 
red pixel the value will be 255,0,0 (RGB) and for black 0,0,0, 
etc., it allows one to manipulate the values to become close to 
the original pixel values. When the image is converted from 
YCC to RGB, any pixel values below 127 can be zeroed (made 
black) and any above 126 can be set to the extreme value for 
that pixel, i.e. set to 255. This technique results in any blurring 

of the pixels, due to the compression process, being greatly 
reduced and the lines in the decompressed image appearing 
sharper.  

4.2 Networking 
The TCP/IP was chosen for the wireless connection, since the 
guaranteed delivery of packets was essential. Discarding lost 
packets may result in a lost image if the user has only moved a 
small distance, such as a one frame change, and nothing would 
be displayed on the client.  

Both the client and server were developed asynchronously. The 
server, because it had to listen for PDA interface events whilst 
being able to send frames intermittently, and the PDA for the 
same reason: frames arrived in an unsolicited manner, whilst 
still allowing the user to interact with the device.  

5. INTERFACE & INTERACTION 
5.1 Overview 
Virtual Window provides the user with an unprecedented 
method of interaction with a virtual environment. The aim was 
to give real world movements a corresponding change in the 
virtual world. This was achieved by attaching a 3D wireless 
mouse to the PDA. Now, as one’s body was rotated in any 
direction, a gyroscope in the mouse picked up motion and 
generated a perspective change in the virtual environment. 
However, there also needed to be way to navigate around the 
world in lieu of real-time positional information. For this, 
comprehensive design and validation methods were undertaken 
to ensure the interface was intuitive and satisfactory to user 
requirements.  

5.2 Design 
As part of a holistic approach to system design, a good deal of 
emphasis was placed on the user requirements and interaction 
styles applicable to navigating around the world, that also 
allows user movement in a physical space when rotating. The 
Star Model [3] of user-centered design was followed, which 
combines design phases such as prototyping or evaluation in a 
multi-iterative approach that ensures a high degree of attention 
to system usability and efficiency.  

As a result of user interviews and testing, two methods of 
navigating around the world were decided upon. The first was a 
tilt method, where the user could offset the PDA from a starting 
point, and hold it in that position to begin walking forward in 
the world. Returning the PDA to its start position cancelled the 
walk movement. The second method was standard use of the 
PDA to generate a walk movement, in a similar method to 
interactive computer games.  

5.3 Validation 
Once the system, including its interface, was created, a full 
usability experiment was conducted on 10 participants. The 
participants were randomly assigned to two groups, who each 
tested the system and only one of the walking methods, to avoid 
learning effects and possible biasing.  



The format of the test for each user was as follows: 
1. The user spent at least five minutes using the system in 

whichever way s/he saw fit, to complete a task given at the 
start of the session. 

2. A short questionnaire was given to the participant, to 
record their opinion on various topics. 

3. A structured interview was conducted to elicit user opinion 
in more detail.  

The survey and interview provided qualitative data with which 
to judge the system. Quantitative data was provided by 
observing the users whilst they interacted with the system, and  
measuring their time to comfort (i.e. successfully navigating to a 
specified point), and the number of mistakes they made whilst 
getting to their destination.  

6. RESULTS 
6.1 PDA Display 
As mentioned in Chapter 4, the difference we found between 
GAPI and GDI+ is considerable. The following table represents 
the time for each package to perform the pixel operations 
required for display. Since GAPI has no Device Context to work 
through, it is roughly 25 times faster than GDI+ in textured 
mode, and 8 to 10 times faster in silhouetted mode.  

Table 1: GAPI vs. GDI: Time to perform pixel operations 
Mode GAPI (ms) GDI+ (ms) 

Textured 145.7333333 3601.833 

Wire frame 32.96666667 332.8065 

Silhouette 29.73333333 244.5 

 

Extensive testing was also performed using GAPI to determine 
the best frame size for transmission and display. 160x200 was 
decided on, since it provided a good balance between ease of 
viewing, and small image size.  

Table 2. PDA Display Rates 

Method 

Time for 
Single Frame 

(s) 
Max Frames 
Per Second 

Textured 0.1856663 5 

Wire framed 0.0713667 14 

Silhouetted 0.0680333 15 

 

The table above presents the average time to render a single 
frame, including pixel operations and screen update, and shows 
the maximum number of frames per second using the package.  

6.2 Compression Results 
The previous results represent images in their raw, i.e. 
uncompressed form. However, image display time is far 
exceeded by the time it takes to transmit an uncompressed 
image over the WiFi connection. Thus, compression was used in 
an attempt to reduce the waiting time on the PDA.  

A server was developed to compress frames as they were 
produced by the renderer, and achieved an on-the-fly 
compression speed of 24 frames per second, with a compression 
ratio of 19:1. This reduced image size from 93.5Kb, to around 
only 5Kb, meaning network transmission occurred in under 
5ms.   

However, the PDA proved to be fatally ineffective at 
decompressing the incoming images. A textured image took at 
least 1500ms to decompress, since the YCC has a number of 
passes which need to be executed. Attempting to use the 
standard RGB color space reduced decompression time to 
approximately 500ms, but this is still to slow to allow 
interactive frame rates.  

Because of this, our demonstrable implementation transmitted 
uncompressed frames, which provided only 4 frames per second 
due to network latency.   

6.3 User Testing 
The survey used to question test participants asked them to rate 
various aspects of the system, with a score of 1 representing 
strong approval, and 5 representing strong disapproval. The 
questions focused on the ability to walk or navigate in the 
world, look around the environment, and understand or easily 
view the images being displayed on screen.  

The mean value for ease of walking of the group that tested the 
tilt method, was 3.6, contrasted with a mean of 1.8 for the group 
that used the D-pad. There was also a correspondingly high 
number of mistakes in navigation by the tilt group, with a score 
of 12 versus 3.5 for D-padding. These differences can largely be 
attributed to network lag: a slow refresh speed meant tilt users 
were unsure of when their actions were initiated or completed, 
leading to overcompensation. However, there were other 
complaints unrelated to refresh rate, including a dislike of 
having PDA movements work in two different ways (looking 
and walking), requiring some sort of mode change.  

However, during interviews afterwards, all of the participants 
were excited by the Virtual Window concept, and found the 
move to dynamic interaction methods from traditionally static 
ones to be natural and intuitive.  

7. FUTURE WORK 
Because of the novelty of the Virtual Window concept, 
combined with the short time span over which the project ran, 
there is great potential for the project to be developed further. 

With the increase in mobile processing and rendering 
capabilities, it is becoming more and more likely that the 
graphics work can be shifted to the PDA, completely removing 
the middle networking and compression tier. Even if the 
graphical capabilities are not sufficient for remote rendering, the 
PDA may be able to handle decompression as processing power 
increases.  



The system can also be enhanced by adding position-relative 
information to the display. For example, at certain locations, or 
when looking at certain objects, an information text or audio 
message can load, giving relevant information about whatever is 
in focus. This has potential for use in the tourism or educational 
sectors, amongst others. 

Lastly, some sort of triangulation or other position-aware 
method can be implemented that gives the system constant 
positional information, removing the need for users to navigate 
through an environment manually, and opening up options on 
another plane of interaction.  

8. CONCLUSIONS 
This project found that developing for platforms that are limited 
in some respects requires the development and testing of a 
number of different solutions to find the optimal solution. For 
example, wire framing increases display rate more than cache 
coherency, even though the latter method has frames pre-loaded. 
It also found that techniques to reduce processor load on 
handheld devices is extremely important, since the limited 
display abilities and packages available do not provide a 
friendly environment for image display.  

The research also found that compressing images to try and 
obviate the network bottleneck fails to increase system speed, 
since even though the server is able handle transformation with 
ease, the same cannot be said for the PDA.  

Ultimately, any work done to optimize or further develop the 
system implemented can be done with confidence, since 

extensive user testing showed that the interaction methods 
attempted will be well received by users, and will have excellent 
real-world potential for expansion.  

9. ACKNOWLEDGMENTS 
We would like to thank our supervisors, Patrick Marais and 
Gary Marsden, for giving us the guidance and support needed to 
complete this project.  

10. REFERENCES 
[1] Deknuydt, B., Desmet, S., Van Eycken, L., and Oosterlinck, 

A. A Human Visual System based Block Classification 
Algorithm for Image Sequences Coders. Proceedings SPIE 
Conference on Visual Communications and Image 
Processing, 2308.2, (September 1994), 1401-1410. 

[2] Engel, K., Sommer, O., and Ertl, T. A Framework for 
Interactive Hardware Accelerated Remote 3D-Visualisation. 
Available at: http://www.vis.uni-
stuttgart.de/~engel/VisSym2000.pdf.  

[3] Hix, D., and Hartson, H. Developing user interfaces: 
ensuring usability through product & process. John Wiley 
& Sons, New York, 1993. 

[4] Raskar., R., and Cohen.,M. Image Precision Silhouette 
Edges. Proceedings of the Symposium on Interactive 3D 
Graphics (I3DG), (Atlanta GA, April 1999), ACM Press, 
135-140. 

[5] SGI. OpenGL Vizserver™ 3.1: Application-Transparent 
Remote Interactive Visualization and Collaboration. 
Available at: http://www.sgi.com/pdfs/3263.pdf  

http://www.vis.uni-
http://www.sgi.com/pdfs/3263.pdf

