
Universal Web Server
The X-Switch System

Technical Report #CS04-20-00

Andrew Maunder
University of Cape Town

Department of Computer Science
+27 21 650 2663

amaunder@cs.uct.ac.za

Reinhardt van Rooyen
University of Cape Town

Department of Computer Science
+27 21 650 2663

rvanrooy@cs.uct.ac.za
-

Supervisor:
Dr Hussein Suleman
University of Cape Town

Department of Computer Science
+27 21 650 2663

ABSTRACT
Web servers have become increasingly powerful since they were
created. The services they offer have changed as computer
hardware has improved, networks have sped up and people
demand more interaction for their Web browsers. Web servers
perform their function well. They are built purely for one purpose,
namely speed. Web servers have sacrificed some functionality by
prioritizing efficiency and security. Web servers take up a lot of
system resources and are so efficient that they can provide their
service to multiple users on the server. However, the only way
users can currently use a Web server to its full potential is to own
the process running the Web server. As users demand more
functionality from Web servers, there is growing interest in
providing additional capabilities to Web servers without affecting
the efficiency that they operate at. The X-Switch system is a
project dedicated to evaluating the feasibility of creating a Web
server capable of providing users with all the features they need
whilst maintaining the performance of current Web servers. The
X-Switch system will also investigate the possibility of creating
an extensible, modular system.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Multi-user, Multi-language, Context switching, Persistence, Web
Application server, Web server.

1. INTRODUCTION
The popularity of the Internet has increased the demand for
relevant content to be delivered to users. Running a website has
become a de facto business practice and many individuals also
choose to have a presence online. Web servers have the capacity
to process numerous requests on behalf of many users on the

server in an efficient manner. For the sake of efficiency and
security, comprehensive multi-user Web server systems have not
been developed to their full potential. A Web server can only be
run as one particular user and with that particular user’s
permissions and resources. This introduces artificial limitations on
users of the Web server. For example, scripts executed by the
Web server cannot create files on behalf of the user who owns the
script. The Web server can only create files on behalf of the user
who owns the Web server. Previous projects have tried to address
this lack of functionality in Web servers. These projects, while
successful, often suffered severe performance penalties and were
often too limited in scope. The solutions forced the user to alter
the way that scripts had to be written to make it compatible with
the application. The combination of some or all of these negative
side effects hampered the introduction of a Web server that could
offer multiple users the desired functionality.

The X-Switch project is an investigation into the feasibility of
creating a Web server that can provide the additional functionality
mentioned above, whilst retaining the performance benefits of
Web servers optimised for speed. It also investigates the
possibility of creating a general solution independent of a specific
implementation language.

2. BACKGROUND
The development of early Web server functionality was driven by
requirements of its users. Initially these requirements amounted to
displaying static content. As network speed and server
performance increased, users required Web servers to provide
additional services such as the generation of dynamic content by
server side applications. The Common Gateway Interface (CGI)
was one of the first standards that allowed server side applications
to service Web requests.

CGI initialised a new application instance for each request
received by the server. The overhead of repetitive process

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

initialisation severely hampered the performance of CGI. The
World Wide Web Consortium (W3C) requested a more efficient
alternative to the CGI standard. Open Market Inc. responded with
the development of FastCGI [6], a persistent implementation of
CGI that provided a mechanism for reusing existing application
instances to service future requests while retaining all the benefits
of CGI such as process isolation, language and architecture
independence. CGI is still used as an interface between a Web
server and an application or programming language. It thus serves
as a reliable measure of performance. Any system that can beat
CGI’s performance is applicable to the Web server industry.
Similarly, any system that cannot beat CGI’s performance will
not be accepted by anyone.

As multiple users used the same server to host their websites and
their Web applications, the need to isolate the users’ applications
from each other grew. Web servers were not capable of letting a
user’s application create files belonging to them, nor allowing the
applications the same permissions as their owners. Applications
such as Apache’s suEXEC [7] were developed to allow Web
applications to run with the permissions of the owner of the script

3. FRAMEWORK
3.1 Overview
The aim of the X-Switch system is to provide a general,
extensible solution to provide both persistence and context
switching to users, independent of a programming language or
application. The X-Switch system receives requests from the Web
server, and creates an environment in which the requests can be
processed. This environment incorporates both the persistence
required for efficient processing and context switching to allow
the processing engine to be executed with the same permissions as
the user who owns the requested script.

3.2 Architecture
The X-Switch architecture consists of three functional modules.

Figure 1. The X-Switch system’s architecture diagram.

The diagram above illustrates the system architecture of the X-
Switch system. Requests enter the Web server and are sent to the
X-Switch module. The module controls the processing engines
below it and once the process has been processed, sends the
results back to the Web server. A detailed explanation of the
various modules of the X-Switch system is given below.

The X-Switch system consists of:

• Apache Web server module: Mod_X is an Apache
module that utilises the Apache API to define the X-
Switch request handlers.

• X-Switch: The X-Switch system controls the creation
and utilisation of processing engines for different users
and different types of requests. It is responsible for
allocating the correct requests to the correct processing
engines and to control the system’s resource usage.

• Processing engines: The processing engines are the
modules that actually process a Web request. The
engine keeps the application or language persistent and
listens for requests sent by the X-Switch system.

4. IMPLEMENTATION
4.1 The Mod_X Apache Web server module
Mod-X is a functional module that is incorporated into the
Apache core during the Web server startup phase. This is done via
Apache’s DSO [3] interface which loads modules without having
to recompile Apache. The Mod-X module utilises two main
features of the Apache API: the Apache custom handlers and
configuration directives.
� Custom handlers

The Mod-X module contains a handler for each language
supported by the X-Switch system. Apache analyses the
request message to determine if any handler has been
registered to service a request of that particular type. If a
suitable handler is found, Apache passes it all the
information about the current transaction and server
configuration. These take the form of a reference to a request
object and a server object. The handler will then extract the
necessary data required for request processing.

� Configuration directives

The Apache API [3] allows a module to install its own
configuration directive in the main Apache configuration.
The configuration directive provides the filtering rules to
ensure that each request is sent to the appropriate handler. A
Mod-X handler registers ‘a per URI’ configuration directive
that matches string patterns that may occur in a given URI.
Apache will then match a request to an appropriate handler
based on the directive registered.

The Mod-X module is called if the Apache core encounters a
configuration directive that points to one of its handler
definitions. A separate handler is provided for each X-Switch
engine installed, thereby providing a mechanism for request
modification depending on engine type. The handler then applies

 2

for a new TCP/IP connection with the X-Switch module. If
successful, the modified request message is sent down the data
channel to the X-Switch module for redirection to an appropriate
engine. The handler then keeps the data channel open, sending
response data back to the requesting HTTP client as it arrives.
When the entire response message has been received, the data
channel is closed and the Mod-X module returns the OK message
to the Apache core, signalling that the request has been
successfully handled.

4.2 X-Switch component engines
A component engine can be written for any programming
language or processing application so that it can interact with the
X-Switch system. Essentially, a component engine wraps around
a processing application or language to make it compatible with
the X-Switch system. The goal of the engine is to provide a layer
of abstraction between the X-Switch system’s requirements and
scripts created by users. This abstraction allows scripts to interact
with the X-Switch system without having to be modified to make
the script compatible with the X-Switch system. This makes it
easy for users and Web server administrators to implement the X-
Switch system to benefit from its added functionality.

4.2.1 The X-Switch Servlet Engine
The X-Switch Servlet engine provides an environment for the
execution of Java Servlets. The X-Switch Servlet engine had to
meet the following set of requirements:

• Light-weight execution environment

• Efficient servicing of requests

• Minimal startup time

4.2.1.1 Light-weight execution environment
The X-Switch system requires multiple component engine
instances to exist simultaneously, therefore a single instance of
the X-Switch Servlet engine should consume a minimum amount
of system resources. The X-Switch Servlet engine achieves this
by providing a sub-set of the functionality provided by heavy-
weight industrial Java Web application servers.

4.2.1.2 Efficient servicing of requests
The X-Switch Servlet engine utilises two performance-enhancing
techniques, namely thread pooling [5] and class buffering.

Thread pooling optimises the engines’ efficiency by initialising
threads during its startup sequence and keeps them dormant until
they need to process a request. This reduces the overhead
associated with repetitive runtime thread initialisation.

The class buffering technique attempts to improve engine
performance by minimising disk I/O associated with loading a
Servlet class file. Once a Servlet is read, it is loaded into the class
buffer. Any subsequent call to the same Servlet will use the
Servlet stored in the class buffer, reducing the number of times

the file system has to be accessed. Disk I/O is a major factor in
the overall response time to process a request and class buffering
avoids this overhead.

4.2.1.3 Minimal startup time
The X-Switch Java Servlet engine is designed to minimise the
time it needs to be fully initialised. It needs to do so because the
engine is started up in a runtime environment. Traditional
containers preload all the deployed Servlets and create an
environment in which the Servlets can be executed efficiently.
The initialisation time of industrial containers is not critical
because no requests are waiting to be executed before the
container is started up. The X-Switch Java Servlet container is
started when no existing engine is available to service a request.
This means that there is a request waiting to be executed, which in
turn means that the amount of time spent initialising will directly
impact the delay before the request is processed.
The X-Switch Servlet engine decreases its initialisation time by
not preloading all the user’s scripts and by only pooling a small
amount of threads.

4.3 X-Switch module
The X-Switch module receives requests from a Web server
through a TCP/IP socket, analyses the requests and then sends it
to the appropriate processing engine. The engine that the request
is sent to is determined by the type of request and the owner of
the script being requested. The X-Switch system is responsible for
creating specific engines based on the scripts requested. If the
load for a particular user’s engine is high enough, the X-Switch
system will create a second instance of the processing engine.
Both will process requests from one request queue, thereby
increasing the throughput of scripts being executed. Each engine
has a thread in the X-Switch system to listen for output from the
engine. This multi-threading allows multiple requests to be
processed without having to serialize the output from the engines.

To perform the context switch, the X-Switch system relies on a
small application that is run as the root process. The program has
it “suid” bit set by the root user to allow any person to execute the
application and still have the process run as the root user. This
program is responsible for setting up a process belonging to the
user whose script was executed and for starting up an engine of
the correct type. The small “suid” application is run each time an
engine needs to be created so that there is no persistent root
process running that can be exploited. The application only
accepts predefined commands in order to increase the security of
the application.

The X-Switch system sets up an environment in which a
processing engine can easily operate. The main feature that the
system offers processing engines is that it changes the standard
input and output descriptors to communication sockets that are
created by the X-Switch system. This means that processing
engines only have to read from standard input and written to
standard output in order to communicate with the X-Switch
system. Processing engines do not have to worry about reading
from sockets or buffering their output. This allows any language
or application that can read from the keyboard and write to the
screen to be used to process requests. Legacy applications can be

 3

The test was performed by using a Web request load meter to
generate 5000 requests and to measure the response times of each
request. The load meter used five threads to simulate heavy Web
traffic conditions.

hooked up to the Web server through the X-Switch system
without having to alter its code.

4.4 The PHP processing engine
The PHP processing engine provides a simple wrapper to turn the
command line interface version of PHP into a processing engine.
It provides the persistence needed to increase the speed of
processing requests and sets the environment in which scripts can
be executed. The engine is responsible for setting up the variables
required by a script and prints the output of the script to the
standard output. Once a script has finished executing, it sends a
control signal to the X-Switch system to indicate its status and
listens for more requests that need to be executed.

The performance of the Java Servlet container was also tested. It
was tested against an array of Java Servlet containers used in the
Web server industry to process Java Servlets. These Java
Containers are the fastest currently available and any comparable
result would prove the X-Switch system and the Java Servlet
container to be acceptable in terms of efficiency. The lower
bound was chosen to be CGI.

5. RESULTS
The X-Switch system was evaluated against two different criteria.
The first was to determine whether the system could provide
context switching for heterogeneous applications or programming
languages. This functionality was proven experimentally by
writing files to the file system as the user whose script was used
to write the file.

Figure 3. Comparing X-Switch to leading Java Servlet
containers. The second criteria was that the system had to be comparable to

similar technologies in terms of efficiency. CGI was used as the
lower bound in the evaluation. If the performance of the X-Switch
system was worse than that of CGI, the X-Switch system would
serve no purpose. The results of the tests revealed that the X-
Switch system was substantially faster than CGI and the
performance was in fact comparable to the most optimised
solutions available.

The graph in Figure 3 shows that the X-Switch system is
comparable with most other Java Servlet containers and that it
exceeds the performance of CGI by a significant margin. Given
that the X-Switch system offers functionality that no other Java
Servlet container can, the X-Switch system is in fact more
desirable than many leading Java Servlet containers.

The test was performed by using a Web request load generator to
send 5000 requests to each Java Servlet container. The response
time for each request was captured. The graph in Figure 3 shows
the throughput of each Java Servlet container per minute over
time.

Response Times For all modules
(five threads)

0
10

20
30

40
50

60

Number of Requests

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

CGI
X-Switch
modPHP

6. CONCLUSIONS
The X-Switch system investigated the feasibility of creating a
multi-user Web application server independent of any particular
implementation language.

Figure 2. Graph comparing three processing engines A prototype was created after examining previous projects and
analysing the requirements of the hypothesis. The prototype was
then tested to see whether the prototype produced a feasible
system in terms of the functionality that it added to a Web server
and in terms of performance.

The graph in figure 2 shows a moving average of the response
times in milliseconds per request over time. The graph clearly
shows that the average response time of the X-Switch module is
considerably less than that of CGI and comparable to the response
time of modPHP. modPHP is the PHP engine the Apache Web
server uses to process PHP scripts. It is designed purely for
efficiency and therefore serves as a good indication of
performance. The X-Switch system is marginally slower than
modPHP. Given the additional functionality that the X-Switch
system provides, the X-Switch system proves to be well within
the bounds of accepted performance.

The results of the evaluation proved that the X-Switch system’s
efficiency and performance is well within today’s standard norms
of Web server response times. The evaluation also proved that the
X-Switch system could add the functionality currently lacking
Web servers.

 4

7. FUTURE WORK
The X-Switch system produced a prototype that proved the
project to be a feasible solution. However, a large number of
improvements need to be introduced before it can be considered
to be an industry-grade Web server solution.

The X-Switch system prototype was developed to be run in
optimal or near optimal conditions. The system would need to be
much more robust and secure in order to be used as part of a Web
server.

The X-Switch system is currently only compatible with Apache
1.3. The mod_X Apache module is not compatible with Apache
version 2. A compatible module would have to be created.
Modules for different Web servers should also be created, as there
is no reason why the X-Switch system would not work with any
Web server available.

The X-Switch system is currently platform dependent. A future
version of the system would have to be platform independent to
be widely accepted and implemented in industry. Platform
independent code would also make more use of standard
programming practices, but may make the system slightly less
efficient.

The prototype was developed without much consideration for its
resource usage. The X-Switch system could be more memory

efficient. Future development could improve the memory
efficiency by sharing static code between identical processing
engines instead of loading it into memory each time a processing
engine is created. Numerous similar optimisations would improve
the overall memory consumption of the X-Switch system.

8. REFERENCES
[1] Knambatti, M. “Named pipes, sockets and other IPC.” April

2001. [Online].
http://www.public.asu.edu/~mujtaba/Articles%20and%20Pa
pers/cse532.pdf. Available.

[2] Sun Microsystems. 2003. The Java Servlet API: White
Paper. Available at:
http://java.sun.com/products/servlet/whitepaper.html.
(Accessed 20 July 2004)

[3] Laurie B., and Laurie P., Apache: The definitive guide.
O’Reilly, Sebastopol, CA, 1999.

[4] Heaton J., Creating a thread pool with Java, Sams. Available
at: http://informit.com/articles (Accessed 18 September
2004)

[5] Open Market Inc. 1996. FastCGI: A high performance Web
server interface. Available at: http://www.fastcgi.com
(Accessed 21 July 2004)

[6] Apache Software Organisation., 2004, Apache suEXEC
Support Technical Document. Available at:
http://www.apache.org

 (Accessed 2 July 2004)

 5

http://www.public.asu.edu/~mujtaba/Articles and Papers/cse532.pdf
http://www.public.asu.edu/~mujtaba/Articles and Papers/cse532.pdf
http://java.sun.com/products/servlet/whitepaper.html
http://informit.com/articles

	INTRODUCTION
	BACKGROUND
	FRAMEWORK
	Overview
	Architecture

	IMPLEMENTATION
	The Mod_X Apache Web server module
	X-Switch component engines
	The X-Switch Servlet Engine
	Light-weight execution environment
	Efficient servicing of requests
	Minimal startup time

	X-Switch module
	The PHP processing engine

	RESULTS
	CONCLUSIONS
	FUTURE WORK
	REFERENCES

