
Towards Model-Based Communication Protocol
Performability Analysis with UML 2.0

Nico de Wet and Pieter Kritzinger
Department of Computer Science

University of Cape Town
Private Bag Rondebosch 7701

South Africa
Tel: +27 21 650 2663
Fax: +27 21 689 9465

{ndewet,psk@cs.uct.ac.za}

Abstract— In this paper we propose a methodology for the
modelling, verification and performance evaluation of communi-
cation components of distributed application building software.
The methodology is centered upon model-driven development
using a subset of UML 2.0 diagrams. It is supported by the
proSPEX model processing tool which translates UML 2.0
specifications into executable simulation models. In our proSPEX
discussion we focus on the translation from a UML 2.0 model to
a simulation model. The model-based development of communi-
cation components of wireless middleware solutions is discussed
as a motivational example.

I. I NTRODUCTION

The use of middleware, of which wireless middleware is
a specialized subset, has been acknowledged as the principal
means of simplifying distributed application building in the
enterprise[5]. In recent years a number of wireless middleware
products [10], [4], [20] have emerged that use proprietary
network protocols when traversing low bandwidth wireless
links. Here we consider the verification and performance eval-
uation1 of the communication components of such middleware
products using UML 2.0 and model-driven development.

It is generally accepted that distributed application building
software (henceforth called middleware) needs to be validated
and verified. However ensuring that such software both ad-
heres to specifications and is error free is not sufficient when
developing quality software. Performance is a fundamental
quality attribute of any software and performance analysis is
often neglected in the software engineering life-cycle[15]. It
has also been accepted that the primary source of performance
failures are due to architectural and design problems that can
be detected at the early stages of the design process[19].

In this work we introduce a methodology for the modelling
and performability analysis of communication components of
middleware. The methodology involves the use of a subset
of UML 2.0 diagrams to model the architecture and protocol
interactions of a communication component. The modelling
process itself should be supported by the use of design patterns

1In this paper we refer to verification and performance evaluation as per-
formability analysis[1], a term encompassing both performance and reliability
(or dependability).

for protocol system architecture[14]. The model is created
in a commercial model editing tool, Telelogic Tau G2, and
verified using this tool. Following the Tau-based verification
a collaboration diagram depicting a simulation scenario is
created by the user as a basis for defining system workloads.
The proSPEX (protocol Software Performance Engineering
using XMI) tool then imports the model using its filters to
Tau G2. It then executes the model, hence providing dynamic
verification, and gives performance measures to the user.

In Sect. II we discuss the validation, verification and per-
formance evaluation of communication components of middle-
ware. Model-driven development using UML 2.0 is outlined in
Sect. III. Performance modelling and evaluation is discussed
in Sect. IV, while in Sect. V, we describe the proSPEX
methodology. The proSPEX tool architecture is discussed in
Sect. VI while concluding remarks are made in Sect. VII.

II. VALIDATION ,VERIFICATION AND PERFORMANCE

The communication components of middleware is partic-
ularly susceptible to both errors and performance problems
due to the complexity of interactions in application and net-
work layer protocols. These errors and performance problems
tend to arise primarily due to the temporal dependencies
among the participating processes. It is generally accepted
that network layer protocols used in middleware and the
interaction protocols among enterprise information system
components using the middleware should be specified using
formal languages[18], [9], [21], [6], thereby allowing high
level design verification. Examples of such languages are the
Process Meta Language (PROMELA, the system description
language of SPIN[8], [18]), the Specification and Description
Language (SDL) and Estelle.

UML could also be used as a specification language, how-
ever it is a general-purpose language without formal semantics.
As a work-around a common approach is to map a subset of
UML diagrams to existing formal methods[2], [12], [11] in
order to allow automated analysis. An alternative approach is
to merge UML with a formal language, as has been done in
the International Telecommunication Union Recommendation
Z.109 titled ”SDL Combined with UML”[3]. Z.109 is a UML

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


profile meaning that it specializes UML using stereotypes,
tagged values, constraints and notational elements.

Having established that a communication component is error
free, the next step in performability analysis (the construction
of quality software) is performance analysis. The formally
specified network and component interaction protocols would
be analyzed by either analytic evaluation, experimentation or
simulation. In proSPEX, the prototype tool supporting our
methodology, we use process-based discrete event simulation
and statistical performance evaluation. Simulation has the
advantage of being able to evaluate protocol performance
according to given metrics as well as being useful in aiding
in the understanding of protocol interactions[13].

III. M ODEL-DRIVEN DEVELOPMENT

Model-driven development2 is an approach to software
development in which the resultant implementation is automat-
ically generated from models. In order to realize model-driven
development one needs graphical programming abilities which
is the ability to program directly in the modelling language.
SDL has been used as a model-driven development language
for some time in the telecommunication industry. Part of the
attraction of SDL stems from the availability of specialized
abstractions, such as signalling, that are useful in model-driven
communication software development. The merger of UML
2.03 and SDL, via the ITU-T Z.109 Recommendation[3], is
a powerful realization of model-driven development geared
towards communication software development. The Telelogic
Tau G2 tool uses such a merger resulting in the non-standard
TelelogicUML Syntaxthat largely resembles SDL.

Using UML 2.0 as a language for model-driven develop-
ment of communication software is appealing due to it being
an evolution of the de facto UML 1.x standard. This evolution
has been driven by the need to address deficiencies of UML
1.x noted since UML was first proposed in 1997. These
deficiencies include a lack of formal semantics, inadequate se-
mantics definition[17] and excessive size. Of the enhancements
offered by UML 2.0, the architectural modelling capabilities
are of particular importance when conducting model-driven
development of communication components. The architectural
modelling capabilities of UML 2.0 are based on mature lan-
guages such as SDL and ROOM (Real-Time Object-Oriented
Modelling).

Model-driven development of communication components
of wireless middleware implementations using UML 2.0
merged with SDL is appealing due to SDL being a formal
language with useful protocol engineering abstractions. The
appeal also derives from the fact that the language and its
higher level abstractions aretarget-language-independent[3].
This means that following verification and validation of a
component programming language code such as C, C++ or
Java could be generated. The non-standard Telelogic TauUML
Syntaxis target language independent, meaning that equivalent
implementations and simulation models can be generated.

2”The model is the implementation”[17]
3Adopted as an official OMG standard specification in June 12, 2003

IV. PERFORMANCEMODELLING AND EVALUATION

The performance analysis of communication components
specified in a model-driven development language such as
UML 2.04 requires a clear definition of the semantics of time
regardless of the analysis method used. For example it should
be clear whether signal transfer over connectors that do not
traverse network links take time. Unfortunately such semantics
are not not always clearly defined.

In this work, simulation-based performance analysis is
conducted to predict a communication system’s performance.
More specifically, we use process-based discrete event sim-
ulation. In such simulation the event list of the simulation
scheduler contains processes and the order within the event
list (or scheduler queue) is determined by the time of the
next events in the processes’ event sequences. In addition the
processes interact with each other through message passing
and other simulation primitives in order to realize the opera-
tional path of the system. The semantics of time is therefore
embedded within the implementation of the simulation sched-
uler and simulation primitives. Naturally the semantics of time
embedded in simulators must be validated, in the sense that the
semantics must be shown to produce performance predictions
that can be relied upon.

V. THE PROSPEX METHODOLOGY

The proposed methodology for the modelling, verification
and performance evaluation of communication components of
software for enterprise information systems is presented in Fig.
1. The steps in our methodology are outlined below.

Fig. 1. The proposed methodology supported by the simulation-based
proSPEX performance analysis tool

Requirements Definition:The first step is to establish the
requirements of the communication component. In the case
of a wireless middleware product a primary requirement
would be to use the available bandwidth as efficiently as
possible. Following requirement definition we identify5 or
design suitable network and application layer inter-component
protocols. UML 2.0 use case and sequence diagrams could

4Henceforth when we refer to UML 2.0 it is assumed to be specialized for
communication software development by the ITU-T Z.109 UML profile.

5Requests for Comments (RFC) documents could be used here.



be used to aid understanding but these are not used when
generating the simulation model, as can be seen in Fig. 1.

Architecture Specification:The next step is to use a combi-
nation of UML 2.0 class and architecture diagrams (with ports,
connectors and interfaces) to design the protocol architecture.
The use of design patterns for protocol system architecture[14]
is recommended at this stage. The focus of this stage is to
identify the active classes (classes with their own thread of
control) and their interfaces.

Interface-based design has the benefit of both reduced
design complexity and giving distributed teams the ability to
work concurrently while using the interface as a contract. In
UML 2.0 an interface is a classifier representing a declaration
of a set of public features and obligations[7]. Interfaces are
not instantiable, instead they are eitherprovided or required
by a classifier such as a class. When a class provides an
interface it carries out its obligations to clients of instances of
the class. When a class requires an interface it means that it
needs the services specified in the interface in order to perform
its function and fulfill its own obligations to its clients. The
notation introduced for a provided interface is a full-circle
lollipop whilst the notation introduced for a required interface
is a semi-circle lollipop.

Fig. 2 shows the architecture diagram of an active class
with two parts, namely any number of Sessions and a single
RoutingPeerProxy. The parts are linked withconnectorsthat
are attached toports. Note that notationally ports are the
squares to which the required interfaces, provided interfaces
and connectors are attached. Eachport serves the duel
purpose of being used to group an active class’s related
interfaces and also acting as interaction (or connecting) points
through which the services of a class can be accessed. In the
architectural view of an active class we want to be able to
distinguish between behaviour that is delegated to the class
itself and behaviour that is delegated to its parts. Connectors
terminating in a behaviour port mean that the signals sent to
the port are handled by the containing class. Notationally a
behaviour port is represented by a state symbol attached to a
square port symbol, as can be seen in Fig. 2.

Behaviour Specification: Following the architectural
specification we specify the detailed behavior of active
classes by implementing state machines using statechart
diagrams. As discussed in section III, we use specialized
communication abstractions derived from SDL in this
model-driven development process. Fig. 3 shows a part of
a UML 2.0 statechart diagram, note that the syntax used
is the Telelogic TauUML Syntaxderived from SDL. Once
this stage is complete the software is verified using facilities
provided by the model editing tool, in our case Telelogic Tau
G2.

Simulation Scenario Specification:Once the software has
been verified the performance analysis phase commences
which starts with the modelling of the environment of the

Fig. 2. Architecture specification with UML 2.0

Fig. 3. Behaviour specification with UML 2.0

communication component. That is, we create client and
server (or peer) active classes and their associated state
machines. A collaboration diagram (see Fig. 4) is then drawn



up illustrating a simulation scenario which in combination
with the statechart diagrams of the client(s) and server(s) serve
as the workload. This scenario would indicate the number
of clients and servers and also network link characteristics
(loss probability, bandwidth and delay distribution). Once the
scenario has been completed the proSPEX tool user imports
the model from which a semantically equivalent simulation
model is generated.

Fig. 4. Simulation scenario and workload specification

Results: The events and corresponding trace messages that
the simulator is able to generate dictate the set of performance
statistics that can be calculated. The simulation model gener-
ated by proSPEX is able to generate the following types of
trace messages6:

1) Message M sent via Connector C from process P1 to
process P2 at time t

2) Message M from process P1 read by process P2
at time t

3) Message M from process P1 arrives in queue of process
P2 at time t

4) Process P created at time t
5) Process P destroyed at time t
6) Overflow: message M from P1 to P2 discarded

at time t

6For brevity we use the termprocessinstead ofactive class

7) Process P has transition from state S1 to state S2
at time t

8) Message M from process P1 discarded by process P
at time t

9) Timer T set to duration d in process P at time t
10) Timer T reset in process P at time t
11) Timeout: Timer T in process P at time t

The performance measures that can be calculated from
analysis of simulation traces containing the above mentioned
messages includes:

1) Mean queue waiting time
2) Connector throughput
3) Mean and maximum queue length
4) Detection of queue overflows
5) Throughput of a state
6) Discarded signals
7) List Unreachable states
8) Average time spent blocked in a state for a signal
9) The lifetime of a process

10) Timeout reset and expiration ratios

Naturally any analysis results would refer to the steady-
state behaviour of the system and would be computed with
confidence intervals. These measures would then prompt the
user to either change the simulation parameters or the model
itself.

VI. T HE PROSPEX TOOL ARCHITECTURE

In this section we give a general overview of the proSPEX
tool architecture and certain technical issues encountered when
translating a UML 2.0 model to an executable simulation
representation. We also motivate our design decisions and
report on the manner in which we overcame challenges.

With proSPEX our intention was to create a model-
processing tool and not a model editor since developing an
editor would deviate from the primary objective of the project.
Telelogic Tau G2 offered an XML-based model file format
which was sufficient for our purposes, although the standard
XML Metadata Interchange (XMI) 2.0 file format would have
been preferable, since this would theoretically allow any future
UML 2.0 editor to be used. We had to filter the Telelogic Tau
XML and place the filtered aspects into data structures that can
be used for simulation code generation. With the Tau XML
being extremely verbose this was not a trivial task.

We were faced with the option of either developing a
process-based discrete event simulator from the ground up
or to use existing simulation packages. A review of the
available simulation packages showed that Simmcast[13], an
object-oriented framework for network simulation, would be
ideal. Simmcast is specifically intended to be used in research
environments with limited resources, as the excerpt from [13]
shows:

...the complete development of a dedicated simu-
lation tool from scratch is not practical, since the
amount of resources dispensed in such a project
would detract the researcher’s focus from the project.



Simmcast offers extensible building blocks (such as nodes,
paths, network and packet) that are combined to describe the
simulated network environment. Nodes, each of which are
uniquely identified by an integer and contains at least one
thread of execution, are the fundamental interacting entities
and are connected via paths. The user extends the Node
class, via inheritance and places protocol logic and simulation
action primitives (such as send, receive, setTimer, sleep) in the
extended class.

Despite offering a framework with extendible building
blocks we found the need to extend the list of simulation action
primitives in order to accommodate required actions such as
process creation and termination. Simmcast does not offer such
primitives since a Simmcast simulation experiment is defined
using a simulation description file that specifies the network
topology and startup parameters. We extended Simmcast to
generate simulation traces with the messages mentioned in
Sec.V.

An additional technical issue that had to be overcome in the
translation process involved addressing. During the translation
from an UML 2.0 model to a (modified) Simmcast simulation
model we had to map concepts such asPid (process identifier)
expressions7, which can either beself, parent, offspring or
sender, to Simmcast simulation code.

In the Simmcast code generation process we found the need
to use templates, as can be seen in Fig. 5. The templates are fed
into a text templating engine in order to insert dynamic content
into prewritten Simmcast source code. Text templating engines
are essential tools in code generation as they solve the problem
of inserting dynamic content into prewritten text. Our chosen
text templating engine, the Velocity Template Engine[16]), is
used for Java implementation code generation in the popular
Poseidon UML tool created by Gentleware AG.

VII. C ONCLUSION

The verification and validation of formally specified com-
munication software has been accepted as being vital in
overcoming the complexity of interactions in application and
network layer protocols. In this work we have argued that in
addition to correctness, performance is a vital quality attribute
of communication software. In support of this view we have
presented a model-driven methodology for the performability
analysis of the communication components of software for
EIS. This methodology is supported by the proSPEX perfor-
mance analysis tool.

In developing our methodology we found that UML 2.0
class, architecture and state chart diagrams were necessary
to define the architecture and behaviour of communication
software. The use of patterns for communication software ar-
chitecture proved to be useful in the model-driven development
of the architectural aspects of network and application layer
protocols. We found that simulation scenarios and network pa-
rameters (loss probability, bandwidth and delay distributions)
could be specified by using UML 2.0 collaboration diagrams.

7These expressions are derived from SDL and incorporated into UML 2.0
via the ITU-T Z.109 Recommendation

Fig. 5. The proSPEX architecture

In addition to presenting our methodology we have high-
lighted the architectural aspects of the proSPEX tool which
takes advantage of XML-based application integration and
an extendible simulation framework, namely Simmcast. We
found it necessary to extend the set of simulation primitives
offered by Simmcast in order to allow for dynamic node (or
active class) creation and termination. At the same time we
found that the UML 2.0 communication abstractions, offered
by extending UML 2.0 with SDL actions, map readily to
Simmcast simulation primitives.

We have used and extended an existing simulation frame-
work and focused our efforts on building a model-processor
and not an editor. We hope for these aspects to serve as an
example of the efficient use of resources in the research en-
vironment. Ongoing work on proSPEX includes development
on state machine code generation and a user interface.

VIII. B IOGRAPHY

Nico de Wet hold a BSc Honours degree in Computer Sci-



ence,Cum Laude, from the University of Cape Town, where he
is currently completing an MSc Computer Science dissertation
on communication protocol performance engineering using
UML 2.0. He aims to become an entrepreneur following the
completion of his MSc.

REFERENCES

[1] A Avizienis, J C Laprie, and Randell. Fundamental concepts of
dependability. InProc. of the 3rd Information Survivability Workshop,
pages 7–12, 2000.

[2] S Bernardi, S Donatelli, and J Merseguer. From uml sequence diagrams
and statecharts to analysable petri net models. InProceedings of the
Third International Workshop on Software and Performance, pages 35–
45, New York, USA, 2002. ACM Press.

[3] M Bjorkander. Graphical programming using uml and sdl.IEEE
Computer, 33(12):17–22, December 2002.

[4] BROADbeam. Broadbeam: Mobile application development, wireless
software development. http://www.broadbeam.com/index.asp, 2004.

[5] W Emmerich. Software engineering and middleware: A roadmap. In
Proceedings of the conference on The future of Software engineering,
pages 117–129, New York, USA, 2000. ACM Press.

[6] X Logean et. al. On applying formal techniques to the development
of hybrid services: Challenges and directions.IEEE Communications
Magazine, 37(7):132–138, July 1999.

[7] Object Management Group. Uml 2.0 superstructure specification. Object
Management Group Online Publication, August 2003.

[8] G Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[9] G J Holzmann. Protocol design: Redefining the state of the art.IEEE
Software, 9(1):17–22, January 1992.

[10] Softwired Inc. Pure java messaging solutions for electronic business.
http://www.softwired-inc.com/, 2004.

[11] L Lavazza, G Quaroni, and G Venturelli. Combining uml and formal
notations for modelling real-time systems. InProceedings of the 8th
European Software Engineering Conference, pages 196–206, New York,
USA, 2001. ACM Press.

[12] W E McUmber and B H C Cheng. A general framework for formalizing
uml with formal languages. InProceedings of the 23rd international
conference on Software engineering, pages 433–442. IEEE Computer
Society, 2001.

[13] H Muhammad and M Barcellos. Simulating group communication
protocols through an object-oriented framework. InProceedings of
the 35th Annual Simulation Symposium, pages 14–18, San Diego (New
York), 2002. IEEE.

[14] J Parssinen and J Turunen. Patterns for protocol system architecture. In
Pattern Languages of Programs (PLoP) Conference, 2000.

[15] R Pooley. Software engineering and performance: A road-map. In
Proceedings of the conference on The future of Software engineering,
pages 189–199, New York, USA, 2000. ACM Press.

[16] The Apache Jakarta Project. The apache jakarta project: Velocity.
http://jakarta.apache.org/velocity/, 2004.

[17] B Selic. Brass bubbles: An overview of uml 2.0 (and mda). Tutorial
presented at OTS’2003 18-19 June 2003, 2003.

[18] S Sircar and A Kott. Enterprise architecture analysis using an archi-
tecture description language. InProceedings of DARPA Symposium on
Advances in Enterprise Control, 2000.

[19] C U Smith and M Woodside. Performance validation at early stages of
software development. InPerformance 99, 1999.

[20] Spiritsoft. Spiritsoft: Go beyond jms. http://www.spiritsoft.com, 2004.
[21] M Steppler. Performance analysis of communication systems formally

specified in sdl. InProceedings of the First International Workshop on
Software and Performance (WOSP98), pages 49–62. ACM Press, 1998.


