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Abstract

The 3D shape and position of objects inside the human body are commonly detected using Com-

puted Tomography (CT) scanning. CT is an expensive diagnostic option in economically disadvan-

taged areas and the radiation dose experienced by the patient is significant.

In this dissertation, we present a technique for reconstructing the 3D shape and position of bullets

from multiple X-rays. This technique makes us of ubiquitous X-ray equipment and a small num-

ber of X-rays to reduce the radiation dose. Our work relies on Image Segmentation and Volume

Reconstruction techniques.

We present a method for segmenting bullets out of X-rays, based on their signature in intensity

profiles. This signature takes the form of a distinct plateau which we model with a number of

parameters.

This model is used to identify horizontal and vertical line segments within an X-Ray corresponding

to a bullet signature. Regions containing confluences of these line segments are selected as bullet

candidates. The actual bullet is thresholded out of the region based on a range of intensities occupied

by the intensity profiles that contributed to the region.

A simple Volume Reconstruction algorithm is implemented that back-projects the silhouettes of

bullets obtained from our segmentation technique. This algorithm operates on a 3D voxel volume

represented as an octree. The reconstruction is reduced to the 2D case by reconstructing a slice of

the voxel volume at a time.

We achieve good results for our segmentation algorithm. When compared with a manual segmen-

tation, our algorithm matches 90% of the bullet pixels in nine of the twelve test X-rays. Our recon-

struction algorithm produces an acceptable results: It achieves a 70% match for a test case where

we compare a simulated bullet with a reconstructed bullet.
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Chapter 1

Introduction

Due to the prevalance of violent crime in South Africa, a large percentage of trauma patients ad-

mitted to hospitals suffer from bullet wounds. The bullets that caused these wounds are sometimes

lodged within the body. It is important to identify the location and shape of these bullets within the

body for the purpose of surgical planning.

In order to identify this location, an internal scan of the body must be performed.Computerised

Tomography(CT) [23] is by far the most prevalent method of obtaining a three-dimensional repre-

sentation of the internal structure of the body. CT has been in used since the early 1970’s.

In economically disadvantaged regions CT remains an expensive option. In South Africa where the

national health care budget is stretched by low resources and a burgeoning population, CT Machines

are expensive for hospitals to buy, operate and maintain. Only major health care centres can afford

this equipment. The costs associated with CT are often passed to the patient, who is usually unable

to afford this diagnostic treatment.

Additionally, to generate an accurate representation of the internal structure of the body, CT needs

to project a large number of X-rays through the body from a wide range of angles. Therefore, the

radiation dosage received by a patient is also significant.

Due to the logistical and radiation issues that have been mentioned, it would be advantageous to

provide an alternative solution to CT diagnostic treatment when searching for bullets lodged in the

body. This solution would therefore need to be relatively inexpensive, have a wide geographic

distribution and reduced radiation dose.

1
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Object

Plane

Projection
of Object

Figure 1: Projecting a 2D object onto a 1D plane.

The X-ray scanner was the first machine used to perform internal scans of the structure of the body.

It has been in use for over a century now. Most rural clinics have an X-ray machine and they

are relatively inexpensive to operate. However, a X-ray machine only produces atwo-dimensional

projection of a three-dimensional structure. Fortunately, with the proper application of Computer

Vision techniques it is possible to obtain a three-dimensional approximation of the of the structure

that is being scanned.

1.1 Volume Carving

The Computer Vision technique ofVolume Carving[2] is used to approximate a three-dimensional

object from a number of two-dimensional projections of the object taken at multiple angles. Math-

ematically speaking, a projection maps a function operating in a space of dimensionn to a dimen-

sionn − 1. Figure 1 shows how an object is projected from a two-dimensional space onto a one-

dimensional space or plane. Figure 2 indicates how a two-dimensional object can be approximated

from a number of one-dimensional projections.

Therefore, given enough X-rays of an object it is possible to generate an approximation of the shape

of the object. The problem with using the Volume Carving technique on an X-ray of a patient with

a bullet wound is that many other bodily structures are projected as well. Thus, an X-ray image will

show the bullet as well as the bones and flesh of the patient. In order for Volume Carving to work,
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Object
Approximation

Figure 2: Approximating a 2D object from a three 1D projections

only the projection of the bullet can be used to approximate its three-dimensional shape. To deal

with this problem we will need to turn to the field ofImage Segmentation.

1.2 Image Segmentation

The region occupied by the bullet in the X-ray must be distinguished from other regions in the X-

ray image. This process of distinguishing and identifying regions within an image is referred to as

Image Segmentation[43]. Image Segmentation is a very broad field with many different techniques

and approaches. Often it is necessary to specifically develop a technique that is tailored to identify

the specific properties that a region exhibits within an image. This can be difficult if these properties

do not differ significantly from surrounding regions. Fortunately, bullets exhibit distinct properties

in X-ray images: they form regions of fairly uniform intensity.

1.3 Research Aims

From the topics that we have briefly presented, it is plausable to suggest that using the techniques of

Volume CarvingandImage Segmentation, it is possible to approximate the three-dimensional shape
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and position of a bullet from a number of X-rays taken multiple angles. This hypothesis forms the

basis of our research.

The overall aim of our research is to develop a cheap three-dimensional imaging technique that can

replace CT when searching for bullets within the body. As mentioned in the previous section, we

will need to investigate two areas of Computer Vision to accomplish this.

1. Image Segmentation: We need to develop a segmentation algorithm to identify bullets within

X-rays. This algorithm should be as automatic as possible. i.e. it should require very little

user intervention.

2. Volume Carving: We need to develop a reconstruction technique that recovers the three-

dimensional shape and position of the bullet from multiple X-ray projections. The reconstruc-

tion field is very mature. Therefore we do not need to research a new technique for performing

reconstruction. However, we will need to implement a suitable technique in order to prove that

the method that we are proposing works.

Using these techniques it should be possible to provide an alternative to CT that can be implemented

on cheap, widely available X-ray machine equipment. There are calibration issues associated with

this technique that involve making decisions on how to align the different X-rays that are input to

the volume carving algorithm. This is a closed problem and is not addressed in this dissertation.

The radiation dose administered using our proposed technique should also be lower than that of a

CT scan. The reason for this is that CT makes no use of a priori information regarding the data

that is being reconstructed. It is a general technique used for reconstructing the entire contents of a

volume and therefore it requires many X-ray projections to accurately approximate the volume.

Our proposed technique searches for an object within an X-ray image and uses this information

to infer the three-dimensional shape of the object. Therefore, we use a priori information about

the object we are reconstructing. This reduces the number of X-ray projections that are required

to estimate an object significantly. Due to this reduction in the number of X-ray projections, our

technique will result in less radiation being used to perform a reconstruction.
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1.4 Overview of Dissertation

The framework of this dissertation is as follows

• Chapter 2: Background. We present some of the relevent background information that is

central to this dissertation. The properties of X-ray radiation are discussed. We also present an

overview of a number of segmentation techniques that are widely used in the field of Computer

Vision. Finally we discuss reconstruction of three-dimensional objects from two-dimensional

projections. We discuss two techniques from this field,Volume CarvingandComputed To-

mography.

• Chapter 3: Segmentation. In this chapter we present the algorithm that we use to segment

bullets in X-ray projections. Firstly we discuss the properties of bullets and proceed to de-

rive a model from these properties. We then describe how we use this model to develop the

segmentation algorithm.

• Chapter 4: Volume Reconstruction.This chapter describes the process we use to reconstruct

the three-dimensional shape and position of a bullet from multiple X-ray projections. Firstly,

we discuss the data structure that we use to represent our volume. Secondly, we discuss the

image and projection data that is input to the reconstruction algorithm. Finally we describe

the reconstruction process itself.

• Chapter 5: Evaluation. We present the results of our research in this chapter. The segmen-

tation and volume reconstruction sections of our project are tested separately. We describe the

tests that we use to obtain these results and discuss the implications of our results. We also

describe the X-ray simulator that we use to generate artificial X-rays for testing our recon-

struction algorithm.

• Chapter 6: Conclusion and Future Work. Finally, we conclude our work, describing what

we have achieved. We also mention possible avenues for future work.



Chapter 2

Background

This chapter describes the background material that is related to our work. We first examine X-Rays

and X-Ray images in order to provide an understanding of how their properties in the physical world

are used to generate images.

Secondly, we discuss the topic ofSegmentation, the identification of regions with in an image. This

section describes a number of different techniques that are used to identify structures within an

image. We will cover basic segmentation techniques, the Canny Edge-Detector, the various Snake

algorithms and Seeded Region Growing algorithms.

Finally, we introduce the reconstruction of three-dimensional structures from two-dimensional im-

ages. This class of algorithms estimates a three-dimensional object from its projections. In this

section we coverInferred Visual HullsandComputed Tomography. Three-dimensional reconstruc-

tions are very useful. For example, Computed Tomography scans generate a three-dimensional

representation of the internal structures of the human body.

2.1 X-Ray Images

X-Rays are a form of electromagnetic radiation which can be used to perform examinations of the

internal structures of the human body. X-Ray images are used to diagnose a wide range of medical

conditions such as bone fractures and breast tumours. This section will describe the physical prop-

erties of X-Rays and their creation. We will also describe how an X-Ray machine operates and how

X-Rays images are created.

6
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2.1.1 X-Rays

X-Rays are a form of electromagnetic radiation carried by photons [44]. X-Rays have an extremely

short wavelength: 10 nanometres and below. One of their most useful properties is their ability to

penetrate objects that are opaque to visible light. Both visible light photons and X-Ray photons are

generated by the movement of electrons within an atom. An atom consists of a number of electrons

situated at different energy levels around it’s nucleus. In order for an electron to drop to a lower

energy level it needs to release some energy. It does this by releasing a photon. The energy level of

the photon is dependant on the number of energy levels that the electron dropped.

Atoms do not normally emit radiation. However, if a fast-moving electron strikes an atom, it may

collide with one of the atom’s electrons and push it up to a higher energy level. However, the

electron is unstable in its new state and falls back down, releasing the energy as an electromagnetic

wave in the form of visible light.

A similar process occurs in the creation of X-Rays. However, in this case both the colliding electron

and the electron that struck it carome off. An electron from a higher energy level immediately

replaces the lost electron. This shift in energy level is very abrupt since the attraction between the

nucleus and the electron is much greater. Correspondingly, the wavelength of the electromagnetic

wave that is released is much shorter, less than 10 nanometres. These waves are X-Rays.

The X-Rays with the highest frequency (and therefore the shortest wavelength) are generated when

free electrons strike the nucleus of an atom. These collisions are not fully understood. It appears

that when a electron strikes the nucleus of an atom head-on, the field of the atom stops the electron

dead in its track and converts the mass of the electron into an X-Ray of very high frequency and

wavelength. Other electrons are deflected by the nucleus and decelerate. This generates an emission

of energy proportional to the decelaration factor.

Therefore, when an atom with a large nucleus is bombarded by a stream of electrons, two ranges

of X-Rays are created. Firstly, X-Rays created from the collision of free electrons with orbital

electrons in an atom’s nucleus. Their wavelength and energy correspond to the energy levels that

the electrons occupy. Secondly, there are X-Rays created from the collision of free electrons with

the nucleus of an atom. These X-Rays occupy a wavelength ranging from the ultraviolet to the

infinitesmal.
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X-Ray Images

X-Rays where first discovered by Wilhelm Roentgen in 1895. One of the first experiments that

Roentgen performed was to take an X-Ray image of his wife’s hand by placing the hand between

an X-Ray source and some photographic film. The X-Ray machine still follows the same basic

principles today.

The most important component of an X-Ray machine is the cathode anode electrode pair that is

placed within a sealed glass vacumn tube. A direct-current potential is created between the cathode

and the anode. This creates an electric field. Positive ions are driven by this field to bombard the

cathode, releasing electrons. Due to the large potential difference created between the cathode and

the anode, these electrons are attracted to the anode. The anode is usually made of tungsten. As

explained earlier, the collision between the tungsten atoms and the electrons generate x-rays. The

X-Rays that are released are focused through a filter to form a beam of X-Rays.

The object that is being X-Rayed is placed between the X-Ray source and a sheet of photographic

film. The direct current is created between the x-ray sources cathode-anode pair, bombarding the

photographic film with x-rays. The object in between the source and the film scatters the stream of

x-rays depending on its density. Flesh will allow most X-Rays to pass through it since it consists

largely of water which is a very a light molecule. Bone is denser and causes more X-Ray scattering.

When an object causes X-Ray scattering, the photographic film behind it is exposed to less X-Ray

radiation and therefore will not fade to black as quickly as the parts of the film that are not exposed

to radiation. Thus, an X-Ray image is created, representing the amount of scattering experienced

by the X-Rays as they travelled to the photographic film. An X-Ray image can also be thought of

as an image of density.

2.2 Segmentation

Segmentation, in the context of imaging, is the identification of important regions within an image.

It falls under the general category of “Computer Vision”, the science of developing algorithms that

allow a computer to perceive and understand visual information [43]. Segmentation is an especially

important field of Biomedical Imaging.

For example, in [34], the bones of a patient’s hand are segmented out of a set of x-rays. These

regions are then used to measure whether the skeleton of the patient has experienced growth that
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Figure 3: This graph shows the intensity of an image as a function of its position. The section of the
graph where the value of the image intensity changes rapidly is marked as an edge

is accelerated or retarded with respect to the patient’s age. This system is helpful in diagnosing

conditions such as diabetes and arthritis.

In this section we cover some of the most common techniques used in Medical Segmentation. We

first cover thresholding and edge-detection techniques and then move on to the more advanced

methods of edge-detection and region-growing.

2.2.1 Basic Segmentation Techniques

One of the simplest segmentation techniques is theThresholding[43] algorithm. This algorithm is

based upon the idea that regions of an image will occupy a range of intensities between an upper

bound and a lower bound. Thresholding retains these intensities while disposing of those outside

the range. So for each pointp in an imageI(x, y), the imageT (x, y) obtained by thresholding

between the lower boundl and the upper boundu, is defined by

T (p) =

{
1 if l ≤ I(p) ≤ u

0 otherwise
(1)
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For this algorithm to work the exact range of intensities that the region occupies needs to be known.

These algorithms ignore the concept of spatial locality: separate regions may be lumped together

because they share the same range of intensities.

Other algorithms are based on the idea that pixel values will change rapidly at a region boundary.

The original image is filtered with a Sobel or a Roberts [43] filter. These filters produce large values

at parts of the image where the intensity values change rapidly. The sections of high intensity are

then processed to produce a continuous edge representing the boundary of the region. This concept

is illustrated in Figure 3. For this reason, these algorithms are calledEdge Detection Algorithms.

These algorithms suffer when the boundary of a region is not distinct since a number of different

edges may be produced that represent part of the boundary of the region. These edges then need to

be joined which can be difficult if there are edges from other regions nearby.

2.2.2 Edge Detection - Canny

One of the best-known edge detectors developed to date is theCannyedge detector [9]. Canny

developed his edge detector to satisfy three performance criteria

Good Detection: There should be a low probability of failing to mark real edge points, and low

probability of falsely marking non-edge points.

Good Localization: The points marked as edge points should be as close as possible to the true

centre of the edge.

Only One Response to a Single Edge:If there are two responses to an edge, one of them must be

false. This criterion is similar to the first.

There are a number of steps to the Canny Edge Detection process. Firstly, the input image is

smoothed using a Gaussian convolution. This convolves the image signal with the bell-shaped

Gaussian filter in order to remove noise from the signal.

The following simple two-dimensional first derivative operator is then applied to the smoothed

image.

M(x, y) =
(

∂I

∂x

2

(x, y),
∂I

∂y

2

(x, y)
)

(2)
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whereI is the original image andx andy are its coordinates. This operator highlights the portions

of the image with a high first derivative. The image that results from this process is thegradient

magnitude image. Edges in the original input image cause ridges in the gradient magnitude image.

These ridges are tracked and thinned using a process callednon-maximal suppressionto form edges

that are one pixel thick.

The tracking process is controlled by two threshold levelsα andβ whereα > β. Tracking may

only begin on a ridge at a pixel value greater thenα, but will continue in both directions until the

pixel value falls belowβ. This process is calledhysteresisand helps to prevent noisy edges from

being split up into multiple edges.

The output of the Canny Edge Detector is determined by three parameters, the width of the Gaussian

filter and the the upper and lower threshold levels,α andβ. Increasing the width of the Gaussian

mask will reduce the edge detector’s sensitivity to noise at the expense of some of the finer detail in

the image.

Generally, setting the upper threshold levelα to a high value and the lower thresholdβ to a low

value will produce good results. Setting theβ too high will cause noisy edges to break up and

settingα too low will make the detector find too many small edges or edge fragments that are often

unnecessary.

One of the problems associated with the Canny Edge Detector is its difficulty in dealing with Y-

junctions [9]. This occurs when three ridges meet each other at a single point. The detector treats

two of the ridges as one line and the third as a line that almost joins up with the other two.

2.2.3 Snakes

In this section we cover the so-called "Snake Algorithms". We will describe the originalActive

Contour Model[24] developed by Kass et al. and then examine two techniques that were derived

from it, Pressurised SnakesandActive Region Models.

Active Contour Models

An Active Contour Model [24] or snake is a parametric contour that deforms over a series of time

steps or iterations [20] due to the minimisation of its energy. The contour,u, depends on two

parameters,s which varies from0 to N − 1, andt which is the current iteration in time.
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u(s, t) = (x(s, t), y(s, t))

{
s = spatial parameter

t = time parameter
(3)

The energy of the contour is determined by a number of forces that are classified asinternal, external

andimageforces. The sum of the energies determine the total energy of the snake

Esnake =
∫ N−1

0
Einternal(u) +

∫ N−1

0
Eexternal(u) +

∫ N−1

0
Eimage(u) (4)

Internal forces control the stiffness and tension of the contour model and ensure that the contour

remains smooth and does not curve too sharply.α(s) andβ(s) are user controlled constants.

Einternal(u) = α(s)
∣∣∣∣∂u
∂s

∣∣∣∣2︸ ︷︷ ︸
Tension

+β(s)
∣∣∣∣∂2u
∂s2

∣∣∣∣2︸ ︷︷ ︸
Stiffness

(5)

External forces are high-level forces that are introduced by the user in order to make the snake

behave in a certain way. An expansion parameter can be inserted in order to encourage the snake to

balloon outwards or a spring force can be created between a pointi and a point on the snakeu, by

using the following equation for the external energy term

Eexternal(u) = k |i− u| (6)

Image forces are generated from processing an image in order to identify points of interest that the

snake will move toward. For example, snakes are most commonly used as edge detectors. The

following energy equation causes the snake to be attracted to edges.Gσ is a Gaussian filter with

standard deviationσ.

Eimage(u) = −
∣∣∣∣ ∂

∂u
Gσ ∗ I(u)

∣∣∣∣2 (7)

By minimising the energy of the snake, the snake is encouraged to move itself to find image features.

Minimising the tension term causes the snake to contract, while minimising the stiffness term pre-

vents the snake from bending too much. Minimising the edge term in equation 7 causes the snake to

be attracted to the minimums created by strong edges in the image. In practice, the snake is moved
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towards a local minimum using an iterative gradient descent method such asEuler Time-Stepping

or Implicit Energy Minimisation.

The basic snake algorithm uses edge energy to drive the segmentation. This means that the algo-

rithms performance depends largely on the quality of edges obtained from an image. If there are

many edges or the strength of the edge that is being searched for is weak compared to other edges,

the snake will have difficulty obtaining a correct solution.

TheActive Shape Model[14] is an extension of the Active Contour Model that attempts to deal with

this issue by teaching a snake to conform to particular contour configurations. The snake algorithm

is initialised with a set of training contours which it uses to seek out similar contours within an

image. This extension of snakes is useful if the shape of the region that is being searched for is

known beforehand.

Pressurised Snakes

As described in the previous section, minimising the tension term of a snake causes the snake to

contract to a point. Cohen et al. therefore introduced the idea of aPressurised Snake[13]. An extra

pressure term is added to the snake energy equation.

Epressure(u) = − ρ(s)
∫ N−1

0

∂u
∂s
× uds (8)

This causes the snake to expand in a direction perpendicular to the contour. The edges that a pres-

surised snake is searching for should be strong otherwise the snake may grow out of control.

Active Region Models

In the implementations of snakes that we have described, edge forces have been used to drive the

snake towards features in an image. As we have noted, these edges have to be fairly strong otherwise

the snake may not be sufficiently attracted to them.Active Region Models[21] dispose of the edge

energy term and replace it with a region energy term. This region energy is a function of statistical

properties of the pixels in the region enclosed by the snake, and generates a pressure that causes

the snake to expand or contract to fit a homogenous region. This function is called the "Goodness"

functionG.
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Therefore the snake will expand when the pixels within it lie within a statistical measure and contract

when they are outside it. Statistical Distance Metrics are well-suited for use as goodness functions

[21]. The energy equation of the snake now looks as follows.

Esnake = α(s)
∫ N−1

0

∣∣∣∣∂u
∂s

∣∣∣∣2︸ ︷︷ ︸
TensionEnergy

+β(s)
∫ N−1

0

∣∣∣∣∂2u
∂s2

∣∣∣∣2︸ ︷︷ ︸
StiffnessEnergy

− ρ

∫∫
R

G(I(x, y)) d2A︸ ︷︷ ︸
RegionEnergy

(9)

The functionG measures the extent to which the pixelsI(x, y), within the region enclosed by the

snakeR, fall within the accepted statistical limits.G is designed in such a way as to produce large

values for the areas that are being searched for. A pressure term associated with the region energy

is used to determine the direction of the region pressure at a particular point on the snake. In the

following equationfpre is simply the normal to the boundary weighted by the local value of the

goodness function.

fpre =
ρ

2
G(I(u))

(
∂u
∂s

)⊥
(10)

A common choice forG is a linear function based on the meanµ and standard deviationσ of the

region enclosed by the original configuration of the snake .

G(I) = 1− 1
kσ
|I − µ| (11)

This function allows the pressure to reach an equilibrium when the boundary of the snake encounters

pixels that fall on the statistical limit specified byµ andσ. k specifies how many standard deviations

of the mean will be accepted. When|I − µ| = 0 then the region will expand. Conversely when

|I − µ| is large the region will contract very quickly. And when|I − µ| = kσ there will be no

pressure.

Active Region Modelsperform well at segmenting homogenous regions and can be adapted to seg-

ment regions characterised by colour or texture. Ivins [21] demonstrated that an Active Region

Model can segment a region of homogenous texture from an image containing a number of Brodatz

Textures [6]. However, the texture algorithm parameters do need to be tweaked on a per image basis

in order to obtain good segmentations, which implies a large degree of user control. The snake also

needs to be initialised within the region that is being segmented. This is because the region mean
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needs to be representative of the region that is being segmented in order for the Goodness function

to provide the correct pressure on the contour.

2.2.4 Region Growing

The Region Growing algorithm family focus on growing a region by adding connected pixels which

fit certain criteria. This is based on the theory that the pixels contained in a region will be fairly

homogenous. In this section we will examineSeeded Region Growingand thenDynamic Region

Growing.

Seeded Region Growing

The Seeded Region Growing[1] algorithm segments an image based on the position and charac-

teristics of a number of starting points orseeds. One of the goals of the paper was to produce a

segmentation algorithm that is free of tuning parameters. The seeds are the only input to the algo-

rithm and determine which parts of the image are classified as regions of interest or noise. Firstly,

the seeds are grouped inton setsA1, A2, . . . , An.

The algorithm is inductive and is based upon adding a pixel to one of the setsAk at each step.

Firstly, for each iteration, the pixels that neighbour with each set are grouped into a setT .

T =

{
x /∈

n⋃
k=1

Ak|N(x) ∩
n⋃

k=1

Ak 6= ∅

}
(12)

whereN(x) is the set of pixels that are neighbours tox. Then for each pixelx ∈ T , a distance

metric d(x) is calculated which measures how “far”x is from the region that it neighbours with.

Firstly we define J, the set of the indices of the regions borderingx.

J = {k|N(x) ∪Ak 6= ∅} (13)

The simplest metric comparesx’s intensity with the mean intensity of the neighbouring region.

d(x) = |i(x)−mean(Aj)| (14)
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wherej ∈ J andi returns the intensity ofx. The regionAj which isx is added to is determined

by finding thej which minimisesd(x). In other words,x will be added to the region whose mean

intensity is closest tox’s intensity value. This completes an iteration of the algorithm. The algorithm

continues untilT = ∅, there are no more boundary pixels to be found and the image has been

tesselated into separate regions.

This algorithm was developed as a tool for performing manual segmentation and requires careful

selection of the seeds in order to achieve good results. If a region exhibits noise, a range of seeds

must be picked that represent the range of intensities within the region. This implies that a degree

of user control is required in order to obtain a good segmentation. Adams proposes automating the

algorithm by selecting local minima and maxima as seeds.

Dynamic Region Growing

Dynamic Region Growing[42] combines region growing with some features of edge-detection and

is based on the theory that regions will have strong contours. As withSeeded Region Growingthe

input to the algorithm is a number of seeds. Siebert defines thestrengthof a region’s contourcs(R),

as

cs(R) =
1
n

∑
pi∈CR

|pi − qi| (15)

whereCR is the set of pixels on the contour of regionR andqi /∈ R are in the 4-connected pixel

neighbourhood ofpi. n is the number of pixels on contourCR. This metric provides a method of

testing the quality of a region’s segmentation.

Region Growing is performed by incorporating pixels that are connected to the region which satisfy

the following condition

|µ− Ip| < ε (16)

whereµ is the mean intensity of the region,Ip is the intensity of the candidate pixel andε is the

distance from the mean that will be accepted. This algorithm iteratively grows a region by steadily

increasingε, the range of pixel intensities that will be accepted into the region.
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Each region is initially defined by a seed pixel. At each iteration of this algorithm, region growing

is performed based onε and a regionRk is generated by adding pixels toRk−1. When there are no

more candidate pixels to be added to the region,cs(Rk) is measured.ε is then increased and another

iteration of the algorithm takes place, adding more pixels toRk to produceRk+1. This continues

until an upper bound ofε, εhigh is reached or the region grows too rapidly, creating an overspill.

An overspill usually occurs when two regions of similar intensity are joined together, usually by

a thin “bridge” of pixels. Siebert states that overspill is generally undesirable. Overspill can be

detected by observing the following phenomena

• A rapid increase in the region’s size occurs

• A decrease in the region’s circularity

• A change in the region’s average intensity

Whenεhigh is reached, the contour strengthscs(Rk), of the regionR during its growth are compared

with one another to determine the point in its growth where its contour was strongest. This contour

is then selected as the final segmentation of regionR. The pseudocode for this algorithm is as

follows

while seeds remain

initialiseR1 with a seed

ε = εlow

k = 1

while ε ≤ εhigh and no overspill occurs inRk

compute contour strengthcs(Rk)

grow regionRk to produceRk+1

ε = ε + 1

k = k + 1

end

R = Rj |cs(Rj) = max(cs(Rk))

end

The values forεlow andεhigh are not critical.εlow can be set so that no reasonable segmentation can

be expected forε < εlow. εhigh can also be set to a value beyond which reasonable segmentation

is not expected, since the overspill condition will usually cause the algorithm to move to the next
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iteration beforeEhigh is reached. If two regions overlap with each other, the larger region is kept,

while the smaller one is thrown away.

In order to provide a level of automation in the Dynamic Region Growing algorithm, Siebert pro-

poses a seeding strategy where seeds are constructed from micro-regions of similar intensity. Siebert

notes that it is worthwhile being profligate with the number of initial seeds, since overlapping re-

gions that inevitably occur from a large number of seeds will be dealt with as mentioned in the

previous paragraph.

Dynamic Region Growing is a time consuming algorithm since a number of possible configurations

of a region have to be tested before one is selected as a final region. The quality of the segmentation

is also highly dependant on the seeds chosen, the only input to the algorithm. Automation is pos-

sible as suggested by the author, but this requires a large number of redundant seeds which further

increase the time taken by the algorithm, even though the algorithm itself is linear in the amount of

seeds.

2.3 Three-Dimensional Reconstruction from Two-Dimensional Pro-

jections

In this section we will introduce the techniques for generating a three-dimensional model from

a number of two-dimensional projections. We will first introduce the concept of a visual hull, the

estimation of a three-dimensional object from a number of images. We will then describe the method

of Computed Tomography which generates a three-dimensional representation of the density of an

object from x-ray projections.

2.3.1 Inferred Visual Hulls

One of the first techniques of volume reconstruction involved approximating thevisual hull [4] of

the imaged object. This technique is also known asvolume intersection. Thevisual hull is defined

as follows [2].

The visual hullV H(S, R) of an objectS relative to a viewing regionR is a region of

the Euclidean spaceE3 such that, for each pointP ∈ V H(S, R) and each viewpoint

V ∈ R, the half-line starting atV and passing throughP contains at least a point ofS.
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An intuitive definition is that thevisual hull is the maximal object that gives the same silhouette of

S from any viewpoint.

Figure 4: The Visual hull of an Object. The dashed line encloses the visual hull

The input to the algorithm is a set ofN images that are projections of the objectS ontoN viewing

planes. The projections of the objectS must be segmented out of each image. These segmented

regions are back-projected into 3D space and intersected. The resultant volume is theinferred visual

hull. This can be seen in Figure 5.

An important property of theinferred visual hullis that the size ofV H(S, R) decreases as more

images are used. However, this algorithm is not suited to concavities in the objectS, since these

concavities are usually occluded.

The first basic work in deriving avisual hull was accomplished by Martin and Aggarwal [30] in

1983. They dealt with the case of a number of orthogonal projections of an object. Firstly, the

silhouette of the object in an image is discretised into a set of horizontal lines that describe the area

that the silhouette encloses. The start and end points of these horizontal lines are back-projected

to form a pair of lines that are coplanar and form a constraint on the extent of the approximated

volume. When another pair of line contraints from another silhouette and which are in the same

plane, are intersected with the original pair, a parallelogram is formed, finitely bounding the extent

of the approximated volume. The locus of all the parallelograms in a plane is thevisual hull.
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Volume Representations

Martin and Aggarwal also developed avolume segmentstructure to efficiently represent thevisual

hull. This representation consists of a list of y-coordinate pairs which are accessed through a x-

coordinate list (line), which is in turn accessed by a z-coordinate list (plane). This representation is

far more space efficient than a three-dimensional voxel representation.

Chien and Aggarwal [11] experimented with using octrees to represent thevisual hullof an object.

An octree is a hierarchical structure used to represent a three-dimensional space. Octrees subdivide

space by placing different sections of space into a node. Each node can have up to eight children,

hence the name octree. If a node cannot exactly contain the space, the space is divided up among

its children and the process continues until the representation is fine enough.

Their technique required three images taken from orthogonal viewing directions as input. The

object in each image is converted into a quadtree representation which is subsequently merged into

an octree. Unfortunately, the restriction of three images and the orthogonality requirement limit the

quality of the reconstruction.
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VH(S,R)

S

V1V2

V3

Figure 5: Deriving the Visual HullV S(S, R) of an objectS from a number of viewpoints
V 1, V 2, V 3
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2.3.2 Computed Tomography

Computed Tomography (CT) [23] is a technique for generating a three-dimensional representation

of the density of an object. A CT machine consists of a number of x-ray emitters and detectors. The

object for which the three-dimensional representation is being constructed is placed between the

emitter and the detectors. The detectors measure how much the object attenuates the stream of x-

rays projected by the X-Ray emitter and uses this information to generate the the three-dimensional

representation.

Mathematically, x-rays are modelled as line integrals, the integral of some parameter of the object

along a line. In this case line integrals are used to measure the total attenuation of an x-ray as it

travels in a straight line through the object. Figure 6 will be used to describe line integrals and

projections. In this diagram, an object is represented by the functionf(x, y). Also present in the

diagram are a number of line integrals which are defined by theθ andt parameters.θ is the rotation

angle of the projection. Rotating the(x, y) coordinate system byθ produces the(s, t) system. Using

the coordinate systems defined in figure 6 a line can be defined as follows.

xcos(θ) + ysin(θ) = t (17)

Using this line definition we define the line integralPθ(t) over the objectf(x, y)

Pθ(t) =
∫

(θ,t)
f(x, y)ds (18)

A projection is simply a set of line integrals. The simplest type of projection is a set of parallel line

integrals as shown in figure 7 (a). A fan beam projection can also be contructed using a single fixed

source relative to a line of detectors as shown in figure 7 (b) and (c).

The theorem that provides the mathematical basis for performing a CT reconstruction is theFourier

Slice Theorem. This theorem states that the one-dimensional Fourier transform of a parallel projec-

tion Pθ(t) is equivalent to a slice of the two-dimensional Fourier transformF (u, v) of the original

objectf(x, y) as shown in figure 8. More formally,

The Fourier transform of a parallel projection of an imagef(x, y) taken at angleθ gives

a slice ofF (u, v), the two-dimensional Fourier transform off(x, y), subtending an angle

θ with theu-axis.
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Figure 6: For an angleθ the projectionPθ (t1) of an objectf(x, y) is shown
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Figure 7: Different CT configurations
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Figure 8: The Fourier Slice Theorem
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Interested readers may wish to refer to [23] for a full derivation of this theorem. The implication of

this theorem is that from a number of projectionsPθ(t) we can estimateF (u, v), and by performing

an inverse Fourier transform onF (u, v) we can estimatef(x, y). F (u, v) is defined as the two-

dimensional Fourier transform of the original object.

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy) dxdy (19)

We also defineSθ(u) as the Fourier transform ofPθ(t).

Sθ(u) =
∫ ∞

−∞
Pθ(t)e−j2πut dt (20)

Now according to the Fourier Slice Theorem we can estimate slices ofF (u, v) from a set of pro-

jectionsSθ(w) taken at anglesθ1, θ2, . . . , θk. Then, to obtain an estimation of the original object

f(x, y) it is necessary to perform an inverse Fourier transform

f(x, y) =
∫ ∞

−∞
F (u, v)ej2π(ux+vy) du dv (21)

In practice, only a finite number of projections are taken. This means that the functionF (u, v) is

only estimated from a finite number of radial lines emanating from the origin of the(u, v) Fourier

coordinate system shown in figure 9.

Figure 9: Estimate of the Fourier transform of the objectf(x, y) in the Fourier Domain, formed by
the radial Fourier Transforms of a set of projections
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Performing an inverse Fourier transform on such data would produce artifacts in the estimation of

f(x, y) since data is missing between the radial lines. In order to deal with this, the estimation of

F (u, v) needs to be filtered in order to interpolate data from existing projections. For the parallel

projection configuration, this is as simple as taking a projection and using it to estimate a wedge of

F (u, v).

In practice, the estimation or reconstruction off(x, y) is determined by adding the two-dimensional

inverse transform of each filtered projection over an image. This process is commonly calledfiltered

backprojection.

The physical operation of a basic CT machine involves rotating the array of emitters and detectors

around a patient and measuring x-ray projections at various angles. From this projection data, a

two-dimensional slice of the internal structure of the patient is generated. The array is then moved

along the axis of rotation and another slice is scanned. In this way a stack of two-dimensional slices

of the patient are constructed which are then combined to create a three-dimensional volume.

The following algorithm summarises the CT reconstruction of a two-dimensional slice.

• For each angle of the N angles between0 and180◦

1. Measure the projectionPθ(t)

2. Fourier TransformPθ(t) to determineSθ(u)

3. FilterSθ(u)

4. Sum the inverse Fourier Transforms of the filter projections over the image plane

The first Computed Tomography scanner was constructed by Godfrey Hounsfield [19]. The sig-

nificance of his invention showed that it was possible to generate highly accurate cross-sectional

images even though projection data did not completely match the theoretical models underpinning

the reconstruction algorithms.

Computed Tomography is the most commonly used method for generating three-dimensional data

for medical purposes. CT machines are expensive and are usually only available in large South

African hospitals. They also subject the patient to a significant amount of radiation since multiple

x-rays must be emitted at various angles for each slice.
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Segmentation

This chapter describes the algorithms that we use to identify bullets in X-Ray images. Firstly, we

examine the physical properties of bullets and the effects these properties cause when creating X-

Ray images containing bullets. We then describe our model of a bullet in an X-Ray image. Finally

we describe the algorithm that uses this model to identify the bullet within an image.

3.1 Related Work

A large amount of research has been directed towards segmenting various structures in x-ray images.

Many approaches are used, depending on the structure that is being segmented.

Edge-tracking algorithms are some of the oldest segmentation techniques in use. However, it is

difficult to identify an object from edge data since edges may be split up or “lost” by an algorithm

amonst a group of edges. One of the more successful way of using edges to identify features in an

X-ray is to search for edges relative to a spatial location. Thus, if a certain part of the body can be

identified using some heuristic, the edges belonging to another part of the body can be recognised

as important data.

Research has been performed in developing speech recognition algorithms that analyse the move-

ment of the vocal tract from X-ray information. Thimm [46] uses a heuristic combined with a

knowledge-based approach to segment and track the lips, teeth, palate and upper throat of a sub-

ject. Thimm first identifies the position of the teeth by analysing the x-ray histograms. From this

information, the relative size of the head can be estimated. The rest of the structures are found by

27
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predicting their location with a template and correlating this with the edges produced by a Canny

Edge Detector [9].

Brown et al. [7] also use a Canny Edge Detector and a knowledge-based approach to segment out

the lungs of a patient. Long et al. [27] extract edges from x-rays and identify the jaw-bone as a

reference point for finding the cervical vertebrae of the spine. Shimizu et al. also develop a method

to segment out the lungs of a patient, based on an implementation ofActive Contour Models(ACM)

[24].

The knowledge-based approaches that we have described depend on first segmenting a structure that

is highly visible and then searching for the desired structure based on its expected position relative

to the first structure. This approach is not suited to searching for bullets since it is not possible to

predict their position within the human body.

If the approximate shape of the structure that is being searched for is known, anActive Shape Model

[21] (ASM) may be a good segmentation tool to use. Nopola et al. [34] use Active Shape Models to

segment finger bones and Active Contour Models to segment wrist bones out of an x-ray image. This

information is used to estimate thebone ageof a patient which is useful for diagnosing conditions

such as arthritis and diabetes. Lotjonen et al. [28] also use ASM’s to segment bones out of x-rays,

but use this information to provide a 3D reconstruction of the skeletal structure of a patient.

ACMs depend on strong edges to drive the model. This dependancy can be problematic since

the edges of the region that is being searched for may be weaker than edges representing more

spurious regions. In these cases the model will be attracted to the strong edges yielding an incorrect

segmentation.

ACMs also requirea priori information to position and initialise the model. Human intervention is

often needed to initially position the snake. If a heuristic algorithm is used to position the snake, the

actual usefulness of the snake is debatable since the heuristic could be extended to perform a full

segmentation

ASMs provide an improvement on the basic ACM by searching for edges that fit a certain config-

uration. This version would seem better suited for a bullet searching algorithm. However, bullets

may lose their shape when impacting with bodily structures or disintegrate into separate fragments.

Texture can also be used to segment structures within images. Action Region Models [22] extend

ACMs to drive the model by the contents or texture of a region. Ivins approach to texture seg-

mentation appears to be highly dependent on the snake parameters configured for each particular
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case.

Additionally, solutions based on Active Contour Models typically need to iterate towards a solution.

This affects the speed of the operation, especially if accuracy is required.

Mammography, the procedure of analysing X-rays of the female breast to detect breast cancer,

frequently makes use of texture analysis. Gupta et al. [16] use texture analysis to identify lesions in

breast tissue.

Two approaches have been taken in texture analysis [35]. The first approach involves filtering an

image to produce frequency sub-bands that represent the response of the filter to different textures.

These response are then used to segment out the textured regions that produced the responses. The

second involves generating statistical models for textures and using them to identify regions of

texture.

Highnam et al. [17] have developed thehint representation of a mammogram, that removes the

noise caused by imaging conditions and associates with each pixel within an image, a thickness

value indicating the “thickness” of the tissue at that point. This representation simplifies the process

of segmentation since the removal of noise ensures that the features within a mammogram are better

defined. The relative density of the breast tissue at each pixel can also be classified, which is useful

for detecting abnormalities.

Thehint representation is extended in [18, 50] to account for blurring in the process of capturing a

mammogram. This results in easier detection of breast calcifications since their sharp definition in

mammograms is lost due to a combination of blurring of their small size.

The texture exhibited by bullets in X-rays tends be very uniform. While a texture analysis algorithm

may be able to easily detect these homogenous regions, it would be excessive to use texture analysis

algorithms when a simpler algorithm requiring less computing power could be used.

3.2 Analysis of the properties of a bullet in an X-Ray image

A useful approach to developing a segmentation algorithm is to understand how an image of an

object is formed. In this subsection we will describe the physical properties of bullets and how

these lead to the visual properties exhibited by bullets in x-ray images.
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3.2.1 The Physical Properties of Bullets

Bullet are mostly composed of lead. Lead is one of the heaviest metal elements, with an atomic

number of 82 and an atomic weight of 207.2 (atomic mass units) [49]. This mass is due to the 82

protons that make up the nucleus of a lead atom.

Because lead atoms are so dense, it is difficult for X-Rays to pass through materials composed of

lead. Most of the X-Rays will be deflected. This is why lead is used to shield the operators of X-Ray

machines from the effects of prolonged exposure to X-Ray radiation.

3.2.2 Properties of Bullets in X-Ray Images

As described in the previous section, the material used to construct bullets will deflect X-Ray parti-

cles. Therefore, a bullet will occupy a range of bright intensities within an X-Ray image since the

area it occupies will not have been exposed to many X-Ray particles. This area will also be fairly

uniform in intensity, again due to the lack of exposure.

These properties are useful in distinguishing between bullets and normal bodily structures within a

Medical X-ray image. The human body does not contain any material as dense and heavy as lead.

Human flesh and organs are largely composed of water, a very light molecule that easily allows

X-Rays to pass through. Bone is a denser substance, but X-Rays can still penetrate it.

Therefore, bodily structures will occupy more varied ranges of intensity compared to a bullet. Since

bullets occupy a very bright, uniform range of intensities, this property can be used as the basis for

modelling a bullet within an image.

As can be seen in Figure 11 the bullet creates a very distinct plateau in the line profile taken across

Figure 10. The plateau has steep side gradients and little variance in intensity across the plateau.

3.3 Model

Now that we have identified the properties of bullets in X-rays that distinguish them from other

structures, we can model their image properties. Using the model, we can drive a search algorithm

to find structures within X-ray images that correspond to the model. From our analysis of the line

profiles of an image, we decided to use the distinctive plateau created by bullets as our model. We

define our model of the plateau using Figure 12
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Figure 10: Original Image with Line Profile

1. The sides of the plateau have steep gradients and these gradients are similar. i.e. for some

gmin:

f(istart)− f(iend)
istart − iend

> gmin and (22)

f(istart)− f(iend)
istart − iend

≈ −f(dstart)− f(dend)
dstart − dend

(23)

2. The increase in height from the bottom to the top of the plateau is significant. i.e. for some

hmin:

f(iend)− f(istart) > hmin and f(dstart)− f(dend) > hmin (24)

3. We fit a linear regression to the values at the top of the plateau. The line XY represents this

in Figure 12. Since the top of the plateau represents the area occupied by the bullet, this

area should be fairly uniform. Thus, the average residualraverage of the linear regression plot

should be small, below some valuermax:

raverage =
1
n

n∑
i=1

|ri| < rmax (25)

whereri is a residual of the linear regression.
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Figure 11: Line Profile of Figure 10. The bullet plateau can clearly be seen between Line Position
300 and 400

4. The angle that XY makes with the x-axis should not be too steep since the plateau of a bullet

should normally be fairly flat. i.e. for someθmax:

θp < θmax (26)

5. The width of the plateau should be wider than a certain valuewmin:

dstart − iend > wmin (27)

These parameters need to be configured. They will need to be based on the typical profile exhibited

for a particular X-ray machine configuration. X-ray machines are usually configured usingphan-

toms. Phantoms are physical dummies that approximate bodily structures that the machines will be

X-raying. By inserting a lead object into a phantom, the typical profile exhibited by lead for that

particular machine can be established and used to configure the algorithm.
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(istart, f(istart)) is the start of the plateau’s increasing gradient sideB = (iend, f(iend)) is the
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decreasing gradient sideD = (dend, f(dend)) is the end of the plateau’s decreasing gradient side.
We also fit alinear regressionto the top of the plateau. This is represented by the line XY. We
measure the angleθp that XY makes with the x-axis
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Since lead deflects so many X-rays, the profile will not change significantly for different types of

lead objects. In fact the profile can be used to detect other types of heavy metal. Therefore, the

algorithm will only need to be configured once during the setting up of an X-ray machine. In our

Evaluation chapter, we describe the parameter configuration we use for testing our algorithm on

X-rays.

3.4 Segmentation Algorithm

We now describe our algorithm for segmenting bullets out of x-rays. The aim of this algorithm is

to identify regions of the image that may contain a bullet using the model described in the previous

section. We first list the main elements of the algorithm and describe each section of it separately.

1. Examine the horizontal line profiles of each row in the input x-ray image to find line segments

that fit the model described in section 3.3. Create an image of these line segments called

hregion.

2. Examine the vertical line profiles of each column in the input x-ray image to find line segments

that fit the model described in section 3.3. Create an image of these line segments called

vregion.

3. Generate a imageiregion of regions that correspond to intersection ofhregion andvregion.

(a) Perform disc erosion oniregion to produceieroded.

(b) Perform disc dilation onieroded to produceidilated.

4. Backtrack from each region to identify the horizontal and vertical line segments that first

created the region.

5. Use the line segments to identify the range of intensities that the plateau occupies. Threshold

this range of intensities.
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Algorithm 1 Algorithm to find matching increasing and decreasing gradient pairs

1: P = ∅
2: k = 0
3: istart = iend = dstart = dend = −1
4: while k < n− 1 do
5: Find a range ofx’s {xj |k ≤ l ≤ j ≤ u < n− 1} with some lower boundl and upper bound

u such that
f(xj+1) > f(xj)∀j (the range is increasing) or
f(xj+1) < f(xj)∀j (the range is decreasing).

6: if f(xj+1) > f(xj)∀j then
7: if f(xu)− f(xl) > hmin and f(xu)−f(xl)

xu−xl
> gmin then

8: istart = xl

9: iend = xu

10: end if
11: else
12: if f(xl)− f(xu) > hmin and f(xl)−f(xu)

xl−xu
> gmin then

13: dstart = xl

14: dend = xu

15: if istart 6= −1 andiend 6= −1 then
16: P = P ∪ {{istart, iend, dstart, dend}}
17: istart = iend = dstart = dend = −1
18: end if
19: end if
20: end if
21: k = xu

22: end while
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Algorithm 2 This section of the main algorithm identifies horizontal and vertical line segments that
match the plateau model

1: Input an X-Ray imageiXray

2: Create an imagehregion of the same size asiXray

3: Create a setHrows = ∅.
4: for all rows in the x-ray image defined by their height coordinatey do
5: Identify the set of candidate plateausP for the row using Algorithm 1.
6: for all p ∈ P do
7: Fit a linear regression to the values ofiXray betweeniend anddstart on rowy. From this

fit we obtain the angle of the regressionθp and the average of the fit’s residualsraverage.
8: if θp < θmax and raverage < rmax and dstart - iend > wmin then
9: Fill in the pixels betweenistart anddend in the corresponding row at heighty of the

hregion image.
10: SetHrows = Hrows ∪ {istart, iend, dstart, dend, y}
11: end if
12: end for
13: end for
14: Create an imagevregion of the same size asiXray

15: Create a setVcolumns = ∅.
16: for all columns in the x-ray image defined by their width coordinatex do
17: Identify the set of candidate plateausP for the column using Algorithm 1.
18: for all p ∈ P do
19: Fit a linear regression to the values ofiXray betweeniend anddstart on columnx. From

this fit we obtain the angle of the regressionθp and the average of the fit’s residuals
raverage.

20: if θp < θmax and raverage < rmax and dstart - iend > wmin then
21: Fill in the pixels betweenistart anddend in the corresponding row at heighty of the

vregion image.
22: SetVcolumns = Vcolumns ∪ {istart, iend, dstart, dend, y}
23: end if
24: end for
25: end for

Section 1 and 2: Identifying horizontal and vertical line segments. An image is a two-dimensional

structure. This algorithm attempts to identify two-dimensional plateaus within this image. However,

the model that we have specified can only identify plateaus in one dimension. By taking intensity

profiles across the image and finding sections of the profiles that match our model, we can identify

lines in the image corresponding to a cross-section of a two-dimensional plateau. If our model fits

the plateau well, we can expect a large number of these lines to be present in the same area. We can

then take advantage of this spatial coherence to to estimate a region containing the two-dimensional
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plateau.

The core of the algorithm is therefore based upon examining the intensity profiles of each row and

column in an image. The sections of these profiles that match our model are accepted as candidate

plateau cross-sections. We store the candidate cross-sections for the horizontal and vertical cases in

thehregion andvregion images respectively.

Firstly we describe the algorithm we use to identify a horizontal plateau cross-section candidate .

We take a line profile across a row of the X-ray image. We define the line profile as functionf(x)

of the row positionx. We also define a candidate plateau as the set{istart, iend, dstart, dend} where

istart andiend define thex coordinates of the start and end of the steeply increasing segment of the

plateau.dstart anddend similarly define the start and end coordinates of steeply decreasing section

of the plateau.

The process of identifying a set of candidate plateausP along a row ofn pixels is described in

Algorithm 1. This algorithm searches for a range ofx wheref(x) is constantly increasing. If the

height of this range is greater thanhmin and the gradient is steeper thangmin this range is treated as

the side of a plateau and the extremes of this range are labelledistart andiend. The algorithm then

tries to find a range ofx wheref(x) is constantly decreasing and which also satisfies thehmin and

gmin requirements. The extremes of this range are labelleddstart anddend. These ranges are used

to define a candidate plateau{istart, iend, dstart, dend} which is added to the setP .

Algorithm 1 is used to identify candidate plateaus based on thegmin andhmin parameters. However,

these candidate plateaus must also satisfy the other three parameters of our model.

(a) (b) (c) (d)

y

x

y

xxx

f(x)f(x)

Figure 13: The process of identifying a candidate plateau and storing a corresponding line in the
hregion image. (a) Line Profile across Image (b) Line Profile (c) Identification of Plateau in Line
Profile (d) Storing corresponding line segment inhregion
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We scan through the rows and then the columns of the x-ray image using algorithm 1 to identify

candidate plateaus. For each candidate plateau we fit a linear regression to the top segment. From

this regression we can extract variables for the flatness,θp and variabilityraverage, of the plateau.

If the plateau is flat enough (θp < θmax), its values are relatively stable (raverage < rmax) and is

not too small (dstart − iend > wmin) we accept the candidate. For the horizontal case, the accepted

candidate’s position is recorded as a line in the imagehregion and a list of accepted candidates is

maintained inHrows. For the vertical case the image and list arevregion andVcolumns respectively.

Figure 13 shows how a line is generated inhregion from a candidate plateau found along a line

profile. This part of the main algorithm is listed in algorithm 2.

Figure 14 provides a graphical view of the segmentation process. Panels (b) and (c) show thehregion

andvregion images that result from scanning in the horizontal and vertical directions.

(a) (b) (c) (d)

(e) (f) (g)

Figure 14: A step-by-step view of each stage of the segmentation process performed on a region of
an x-ray containing a bullet (a) The Original Image (b) Horizontal Line Segments (c) Vertical Line
Segments (d) Intersection of Horizontal and Vertical Line Segments (e) Eroded Image (f) Dilated
Image (g) Final Segmentation
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Algorithm 3 This section of the main algorithm describes how the intensities that are occupied by
a two-dimensional plateau are identified

Create the output imageisegmented

Group the separate 4-connected regions ofidilated into setR.
for all regionsregion ∈ R do

Calculate the bounding boxB of region.
Setplateau_max_1 = 0
Setplateau_max_2 = 0
Setplateau_min = 0
Setcount = 0
for all rowsr = {istart, iend, dstart, dend, y} ∈ Hrows that intersect withB do

Setincrease_halfpoint = iend−istart

2

Setdecrease_halfpoint = iend−istart

2
plateau_min = maximum(iXray(increase_halfpoint, y), iXray(decrease_halfpoint, y))
plateau_max_1 = maximum(iXray(v, y)) whereiend ≤ v ≤ dstart

count = count + 1
end for
for all columnsc = {istart, iend, dstart, dend, x} ∈ Vcolumns that intersect withB do

Setincrease_halfpoint = iend−istart

2

Setdecrease_halfpoint = iend−istart

2
plateau_min = maximum(iXray(x, increase_halfpoint), iXray(x, decrease_halfpoint))
plateau_max_2 = maximum(iXray(x, v)) whereiend ≤ v ≤ dstart

count = count + 1
end for
plateau_max = maximum(plateau_max_1, plateau_max_2)
plateau_min = plateau_min

count
for all pixelsb ∈ B such thatplateau_min ≤ iXray(b) ≤ plateau_max do

isegmented(b) = 1
end for

end for
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Section 3: Using Spatial Coherence to Identify Two-Dimensional Candidate Regions. At this

stage of our algorithm, we have identified lines that fit our model in the horizontal and vertical

direction. These lines may correspond to the cross-section of a two-dimensional plateau. In order

to determine whether this is true, we take advantage of the fact that if a two-dimensional plateau

is present the horizontal and vertical cross-sections of this plateau will overlap with one another.

To determine the region of overlap, and therefore the approximate shape of the two-dimensional

plateau, we intersect thehregion andvregion images with each other to produce theiregion image.

This intersected region is shown in panel (d) of Figure 14.

The regions that are produced by this operation may be insignificant and only consist of two or three

pixels. In order to remove these spurious regions we perform adisc erosion[43] operation with a

radius of three pixels on theiregion image to produceieroded. An example of the erosion process is

shown in panel (e) of Figure 14.

A sequence of plateau cross-section candidates in thehregion or vregion images may contain gaps

where a row or column did not fit the model criteria. An example of this can be seen in Figure 14

(b). When the intersection operation betweenhregion andvregion occurs, these gaps are propagated

to the region representing the plateau in theiregion image. The gaps are exaggerated when the disc

erosion operation occurs. We therefore perform adisc dilation[43] operation to expand the region

and fill these gaps. We use a disc radius of nine pixels to make sure these gaps are filled. This

also results in the region being slightly larger than the actual area of the bullet as shown in panel

(f) of Figure 14. The region represents the local area containing a strong plateau, formed by the

intersection of one-dimensional plateau candidate lines.

Section 5 and 6: Backtracking to determine the range of intensities occupied by the plateau.

By this stage of the algorithm, we have determined a number of two-dimensional regions that con-

tain strong plateaus. We now need to determine the exact region occupied by each plateau. To

do this we return to the one-dimensional plateau candidates that originally created these regions.

We use the fact that these one-dimensional plateaus define a range of intensities occupied by the

two-dimensional plateau. By examining each one-dimensional plateau we can estimate the range

of intensities occupied by the corresponding two-dimensional plateau. Using this technique we can

segment each plateau out of the corresponding region inidilated with a simple threshold operation.

We now describe this section of the algorithm in more detail. Firstly, we examine the regions that

exist in idilated and associate these regions with the horizontal and vertical plateau candidates that

contributed to their creation. This is accomplished by testing if the candidate plateaus intersect with
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Figure 15: Determining the range of intensity for thresholding purposes. The lowest lower bound
is chosen as the bottom of the intensity range. The maximum intensity value for the plateau, plus a
“buffer” value is chosen as the top of the intensity range

the bounding box of each region. These plateau candidates are retrieved from theHrow andVcolumn

sets that we determined in part 1 and 2 of our algorithm.
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Since a plateau candidate represents a curve of intensities, we can examine the curve to determine

the lower and upper intensity bound of the plateau. By examining the intensity curves of all the

plateau candidates that contribute to a region, we determine the average lower and upper intensity

bound of the plateau contained within a particular region. We then use thresholding to extract this

range of intensities out of the bounding box of the region.

A graphical view of the thresholding intensity bound selection process is shown in Figure 15. The

upper bound is simply set to the highest intensity value found amongst the plateaus. A small “buffer-

ing” value is added to the upper bound to ensure that all high intensities are included. This is be-

cause these high intensity values may have occurred in intensity profiles that were discarded by our

algorithm for not meeting other parameters.

In practice, the lower intensity bound of a plateau is found by examining the intensity values of the

halfway points on the steeply increasing and decreasing sections of the curve ie.f( iend−istart

2 ) and

f(dend−dstart

2 ) and selecting the lowest one. The reason for this is that the steep section of the curve

represent strong edges and the halfway point these edges traditionally dilineate the boundaries of a

region [29] in edge-detection algorithms. This final section of the main algorithm is described in

algorithm 3.

3.5 Summary

In this chapter we briefly mention a number of techniques that are used to segment structures out

of X-rays. A discussion on the physical structure of a bullet and the image properties of a bullet

follows. We developed the model we used to drive our segmentation algorithm. Finally we described

our algorithm to segment bullets from X-rays.
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Reconstruction

In this chapter we present the reconstruction algorithm that we use to estimate the three-dimensional

shape and position of the three-dimensional object from its two-dimensional X-ray projections. Re-

construction algorithms can be divided into two different approaches, those that are based on com-

putational geometry and those that are voxel-based. We examine the advantages and disadvantages

of using these techniques.

Next, we describe our reconstruction algorithm. We provide an overview of the octree data struc-

ture which we use to represent our reconstructed object. The input data that the reconstruction

algorithm operates on is detailed, as well as the constraints that we place upon this data to simplify

the algorithm. Finally we describe the actual algorithm.

4.1 Related Work

Our reconstruction algorithm is based upon the concept of theVisual Hull first proposed by Baum-

gart [4], and placed upon a firm theoretical basis by Laurentini [2]. Visual Hull Reconstruction

Algorithms have also been calledVolume Carvingalgorithms since they perform intersection oper-

ations of silhouette projections. The volumetric nature of the data has resulted in two approaches in

respect to Volume Carving: techniques based on voxel and geometric representations.

Voxel-based techniques are storage intensive if the volume representation is implemented as a three-

dimensional array . Octrees address this problem by hierarchically representing voxel data to take

advantage ofspatial coherence. This involves grouping voxels within spatial areas and testing

43
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whether they all share the same value. If this is the case, all the voxels within a spatial area can be

represented by the area and the shared intensity value, drastically saving on the amount of memory

required to represent a voxel volume. Chien et al. [11] reconstruct an object from three orthogonal

views to produce an octree representation of the final object. Veenstra et al. [47] perform an octree

reconstruction from thirteen prescribed orthogonal viewpoints.

Potmesil [38] also presents an octree reconstruction based upon creating octree representations of

silhouette projections and intersecting them to form a final octree representation. His approach

allows for multiple arbitrary viewpoints and perspective projections. Szileski [45] improves upon

this by maintaining a single octree that is refined by projections.

Voxel-based techniques suffer from resolution problems [8]. It is difficult to determine the voxel

resolution required to accurately represent the object that is being reconstructed. Octree representa-

tions ameliorate this somewhat. However, voxel-based techniques provide fast reconstruction since

intersection of silhouette projections simply involves testing whether a voxel is in both projections.

Martin and Aggarwal [30] reconstruct slices of a three-dimensional volume by intersecting parallel-

ograms derived from projection cones. Petitjean[37] extends Laurentini’s [2] work using visibility

graphs to improve the algorithmic complexity for 2D and 3D reconstruction. Matusik et al. [31]

perform 3D reconstruction by projecting the 3D visibility cones onto 2D planes, which are then

intersected with the projections of other 3D cones.

Geometrically-based techniques are more complex than voxel-based methods and are difficult to

implement robustly [8]. Silhouettes consisting of many segments will result in the generation of a

large number of faces in the reconstructed model. Implementing reconstruction from 3D projections

of silhouettes is also more challenging than the 2D case [2, 37]. Geometrically-based methods do

not suffer from the resolution problems found in voxel-based methods.

4.2 Reconstruction Algorithm

Our reconstruction process is relatively simple since it involves the reconstruction of the two-

dimensional slices of a three-dimensional volume. We do this because the two-dimensional case

is not as as challenging to implement as the three-dimensional case. Chien et al. [11] take this

approach when they perform a reconstruction from three orthogonal views as this can be reduced to

intersecting two-dimensional slices together. Matusik et al. [31] project three-dimensional silhou-

ettes onto two-dimensional planes so that the two-dimensional case can be used.
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More general algorithms exist that allow a reconstruction to be performed from arbitrary viewpoints

[38]. However, due to time constraints we implemented a simple reconstruction algorithm that has

a number of constraints on the input data. Future Work may involve implementing a more general

algorithm that does not have these constraints.

Firstly, we describe the octree volume representation that we will use to perform our reconstruction

operation on. Secondly, we describe the input data and the constraints upon the input data and

finally we describe the actual reconstruction process.

4.2.1 Octree Volume Representation

We use an octree to represent the volumetric data that we obtain from our reconstruction algorithm.

An octreeis an hierarchical data structures that recursively subdivides a three-dimensional space. It

is the three-dimensional version of the two-dimensional quadtree [25, 3, 40].

Figure 16: Subdivision of the top lower right octant of an octree

The most common form of octree consists of a tree of nodes, each describing a cube-shaped region

of space and the contents of that space. Each node contains a descriptor, describing the contents of

the cube, and eight child nodes. The descriptor can be set to WHITE, BLACK and MIXED. The

descriptor is set to WHITE if the entire region in the cube is WHITE and BLACK if the entire region
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Figure 17: An image and the quadtree derived from it. White and black nodes represent space
occupied by WHITE and BLACK markers respectively. Grey nodes represent space occupied by
both WHITE and BLACK markers. The quadrants correspond to child nodes in the following order,
northwest, northeast, southeast, southwest.
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is BLACK. If the cube describes a region of space containing both WHITE and BLACK values, the

descriptor is set to MIXED and the node is subdivided into its eight child nodes.

These child nodes subdivide the cube occupied by the parent node into eight cubes or octants as

shown in Figure 16. This subdivision continues until each node’s descriptor is either WHITE or

BLACK, or a one unit resolution has been achieved. Due to this subdivision operation, the dimen-

sions of the cube are usually powers of two, so that subdivision results in a cube or voxel that has

a dimension of one unit. In Figure 17, we show how the tree structure of aquadtreeis constructed

from an image as it is somewhat easier to understand the process in two dimensions. Note that

WHITE or BLACK nodes are leaf nodes while MIXED nodes are always parent nodes.

One of the most useful properties of an octree is that it heirarchically describes the contents of a

three-dimensional space. It is therefore advantageous to use octrees in cases where the spatial data

exhibits a high degree ofspatial coherence. For example, if an octant with a width, height and

depth of 16 only contains a BLACK region of space, the contents of this region can be stored in the

octant’s node without resorting to further subdivision. By taking advantage of thespatial coherence

of this region of space the voxels in this region can be represented more concisely as (a) the region

and (b) the intensity of the voxels within the region. This results in large savings in the memory cost

of the volume representation when compared to a more naive implementation as a three-dimensional

array.

Due to this hierarchical representation, relevant regions of space can quickly be found using a divide

and conquer approach. Since an octree is a tree structure, insertion and deletion operations have an

algorithmic complexity ofO log(n) which are slightly more expensive than the correspondingO(1)

complexity operations on a three-dimensional array. This tradeoff in speed is well-worth the savings

in memory.

4.2.2 Input to the Reconstruction Algorithm

The input to the reconstruction algorithm is a sequence of X-ray images and the associated projec-

tion data for each X-ray image. The X-rays are images of a bodily structure containing a bullet. In

order to effect a good reconstruction these images should be taken at a variety of different angles.

The projection data describes the path that an X-ray projection took from the X-ray source to the

image.

Our algorithm accepts X-ray images in the gray-scale BMP file format. This can be easily changed
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to do deal with other formats. We definew andh to be the width and height of the image respec-

tively. Each image needs to have an associated file describing the projection data for the image.

This file contains a series of two-dimensional projections{P1, P2, . . . , Ph}, each corresponding to

theh rows of the image.

Each projectionPi =
{
li1, l

i
2, . . . , l

i
w

}
describes the paths of a set of line integralslij which formed

the row ofw pixels within the X-ray image. In other words, each pixel(x, y) has an associated line

integrallyx ∈ Py that describes the path that an X-ray took from the X-ray source to the point on

the plane on which the X-ray image was projected. Each line integrallij =
{
~a,~b

}
, consists of two

vectors,~a, the gradient of the line and~b the offset of the line. This representation is quite verbose

compared to other representations such as projection matrices or cones of projection. However, it

allows for greater flexibility in specifying different types of projections.

This projection data will be used to back-project bullet silhouettes from an X-ray image in order to

reconstruct the bullet. Therefore, the coordinate system of the reconstructed data will correspond to

that of the projections that create it.

It may be necessary to scale the projection data in order to suit the resolution of the voxel matrix.

This can be performed as a pre-processing step.

As we have mentioned earlier, our reconstruction process reconstructs two-dimensional slices of

the three-dimensional reconstruction volume. In order to simplify the reconstruction procedure to a

two-dimensional case we place the following constraints on our input data:

1. An X-ray image is a projection of an object onto a two-dimensional plane in a three-dimensional

space. The planes containing the X-rays must be parallel to the Z-axis.

2. The projections that form the X-ray image must be perpendicular to the Z-Axis. This means

that the line integrals that form a single projection must all exist in a plane that is perpendicular

to the Z-axis. In other words the projections must be two-dimensional.

These two constraints are shown in Figure 18. By introducing these constraints, the reconstruction

algorithm can be reduced to the two-dimensional case. By requiring the X-ray image planes to

be parallel to the Z-axis, we ensure that a row in one image shares the same projection space Z-

coordinate with an equivalent row in another image. By requiring projections to be perpendicular to

the Z-axis we ensure that when a row in an image is back-projected, it is only back-projected over

one slice of the three-dimensional reconstruction volume.
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X-Ray
Plane

Projection

ObjectZ

Figure 18: This diagram illustrates the constraints that X-rays used in the reconstruction process
must adhere to (1) The two-dimensional planes onto which the X-ray images are projected must be
parallel to the Z-axis (2) The projections that form the X-Ray image must be perpendicular to the
Z-axis



CHAPTER 4. RECONSTRUCTION 50

The reconstruction algorithm is now reduced to a two-dimensional case because equivalent rows of

pixels in the set of input images correspond to a single slice of the reconstruction volume.

The consequence of introducing these constraints is that our algorithm will not be able to deal with

the data generated from an X-ray scanner that operates in a spiralling motion. This modality is

the standard mode for CT [48]. It trades off some reconstruction accuracy for faster acquisition

time. This reduction in the amount of time the patient needs to keep still reduces the temporal

error associated with capturing the data. Our technique is therefore restricted to use with “stepping”

modalities, where a slice of an object is scanned from a number of angles and the scanner is then

stepped up to the next slice.

4.2.3 Reconstruction Process

The aim of this process is to generate a three-dimensional model of an object from its two-dimensional

projections. We represent this three-dimensionalreconstruction volumeas an octree which uses a

large range of integers to mark different regions of space. We use 0 to mark an empty region of space

and positive integers to mark regions of space occupied by the object that we are reconstructing. The

entire reconstruction volume is initially marked with 0: empty space.

By allowing the entire range of positive integers to be used as a mark, we reduce the effectiveness

of the octree’s hierarchical decomposition in describing the volume containing the object. This is

because the nodes of the octree that describe sections of the volume containing the object will tend

to be MIXED, leading to subdivision right down to the voxel level.

However, we expect most of the reconstruction volume to be occupied by empty space. Therefore,

we still take advantage of the octree’s hierarchical decomposition property over large sections of the

reconstruction volume. By allowing the volume occupied by an object to be represented as the range

of positive integers, we will be able to determine how many projections contributed to creating an

object voxel. This will be used to determine whether a voxel should be retained or discarded in

our final estimation of the reconstructed object. In this sense, the reconstruction volume is a three-

dimensionalaccumulation buffer.

The process starts by reading in an X-ray image that contains a bullet and the projection data for the

X-ray. The segmentation algorithm described in Chapter 3 is then applied to the image, producing

a region that describes the area occupied by the bullet. This is the silhouette that will be back-

projected over the reconstruction volume.
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Figure 19: A series of pixel spans that represent a region of an image

We back-project one row of the silhouette at a time since a row corresponds to a slice of the re-

construction volume. To do this, we represent the silhouette as an table ofpixel spans[32]. This

data structure represents an image regionRk as a series of rows, each containing a number of pixel

spans. Each span describes a horizontal set of contiguous pixels that contribute to the region as

shown in Figure 19.

The pixel span table is constructed from a region’s contour. See [32] for an explanation of this

process. The contour of a region can be extracted using the algorithm described in [15].Pk, the

pixel span table representation ofRk is defined as follows

Pk =
{

yk
min, yk

max, Y k
1 , Y k

2 , . . . , Y k
nk

}
(28)

yk
min and yk

max are the lowest and highest points on the region’s contour respectively. TheY k
i
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symbols refer to the separate rows ofPk. There areyk
max − yk

min + 1 = nk rows inPk. Each row

Y k
i contains a number of pixel spans and is defined as follows

Y k
i =

{
rik, x

ik
1 , xik

2 , . . . , xik
rik

}
(29)

Thexik
j are points on the contour ofRk that are used to define the pixel spans.rik is used to store

the number of points in the span.rik is always even since it takes two points to define the start and

end of a span. In Figure 19, we showY12 =
{
r12 = 4, x12

1 = 3, x12
2 = 4, x12

3 = 10, x12
4 = 13

}
.

(a) (b)

Pixel
Span

Line Integral
Paths

Back-Projection
Slice

Figure 20: Creating a back-projection slice from a pixel span. (a) Each pixel in the pixel span has
a line integral associated with it. (b) We define the back-projection slice as the space between the
line integrals of the starting and ending pixels.

Now that the silhouette is represented as a pixel span table, we iterate through the rows of the

table, back-projecting pixel spans. Due to the constraints that we have specified, each row of the

image corresponds to a slice of the reconstruction volume. Therefore, they coordinate describing

the row of an image can be used to determine which slice of the reconstruction volume that row is

back-projected over.

Firstly, we create aback-projection slicefrom the span that we are back-projecting. As described

in section 4.2.2, each pixel(x, y) in the row has a line integrallyx associated with it as shown in

Figure 20 (a). We define a back-projection sliceB as the space between the line integralslyxi , l
y
xi+1

associated with the pixelsxi, xi+1 at the start and end of the span. This is shown in Figure 20 (b).

Once the back-projection slice has been determined, it is intersected with the corresponding slice of

the reconstruction volume as shown in Figure 21. However, the back-projection slice must first be



CHAPTER 4. RECONSTRUCTION 53

X-ray

Pixel
Span

Pixel
Span

Back-Projection
Slice

Reconstruction
Volume

X X

Y

Z

A B

C D

Z

Figure 21: Intersecting theback-projection slicewith the reconstruction volume
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Figure 22: The result of intersecting three back-projection slices on the reconstruction slice. The
labelling process results in the voxels being marked with the number of images that were back-
projected through the voxel. Note that the area labelled with 3 is the visual hull for the three
projections.
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discretised. To do this, we clip the back-projection slice with the outer bounds of the reconstruction

slice to produce a polygon. The polygonABCD in Figure 21 is an example of this.

This polygon is then converted to a two-dimensional voxel span table representation which is used

to indicate which areas of the voxel slice are occupied by the polygon. This structure is exactly

the same as a pixel span table. One operates over an two-dimensional image, the other over a two-

dimensional slice of voxels. We term it a voxel span table to distinguish the type of data it is iterating

over.

The intersection operation is then easy to perform. The reconstruction volume is a three-dimensional

accumulator and the intersection merely involves performing an accumulation operation over the

voxels in the table. We iterate through the voxel spans in the table. For each voxel the a span, we

add 1 to its mark value. Once we have intersected all the voxel spans, we can move onto another

pixel span from the X-ray image, and once all the pixel spans have been back-projected we move

on to another X-ray image.

By incrementing voxels values we determine how many images contributed to the voxel. If the input

to the reconstruction algorithm was 12 X-ray images, a voxel could have 13 different values, 0 if it

was empty, or 1–12 depending on how many images managed to back-project over that voxel. We

can use this information to determine whether the voxel is in the visual hull or not. If a voxel has a

value of 12, it is in the visual hull of the reconstructed object since all 12 images contributed to it.

An example of this is shown in Figure 22.

The final step of the reconstruction algorithm involves iterating over the reconstruction volume and

thresholding voxels out. For example, for an input of 12 X-ray images, we would scan through the

reconstruction volume, searching for voxels with a value of 12. We then set these voxels to 1 and

any other voxels to 0.

Algorithm 4 describes the main section of the reconstruction algorithm. The back-projection section

of the algorithm is described in Algorithm 5.



CHAPTER 4. RECONSTRUCTION 56

Algorithm 4 Main Reconstruction Algorithm

1: Initialise an octreeO of width, height and depthd
2: nimages← 0
3: while Input X-ray images remaindo {Determine an image’s contribution to the Visual Hull}
4: nimages← nimages + 1
5: Input an X-ray imageI of width w and heighth.
6: Input the projection dataP = {P1, P2, . . . , Ph} associated with imageI
7: Apply segmentation algorithm from Chapter 3 toX − Ray to produce a set of regionsR =

{R1, R2, . . . , Rn}, containing bullets
8: for all Rj ∈ R do
9: Extract the contourCj of regionRj

10: Construct a pixel span tablePSTj =
{

yj
max, yj

min, Y j
1 , Y j

2 , . . . , Y j
nj

}
of regionRj from

its contourCj

11: for all rowsY j
k ∈ PSTj do

12: y ← k + yj
min − 1

13: row ← y
14: for all pixel span pairsxjk

i , xjk
i+1 ∈ Y j

k do

15: xs ← xjk
i

16: xe ← xjk
i+1

17: Create back-projection sliceB = {row, lyxs , l
y
xe} from line integral pathslyxs , l

y
xe ∈

Py

18: Call Algorithm 5 withB andO as input
19: end for
20: end for
21: end for
22: end while
23: for all u, v, w where−d/2 ≤ u, v, q ≤ d/2− 1 do {Discard voxels outside the Visual Hull}
24: if O(u, v, w) = nimages then
25: O(u, v, w)← 1
26: else
27: O(u, v, w)← 0
28: end if
29: end for
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Algorithm 5 Back-Projection Algorithm

1: Input a back-projection sliceB = {row, lyxs , l
y
xe} and an octreeO

2: z ← row
3: Clip the space contained betweenlyxs andlyxe with a square of dimensiond to produce a polygon

F
4: Construct a voxel span tableVST = {ymax, ymin, Y1, Y2, . . . , Yn} from F
5: for all Yj ∈ VST do
6: y ← j + ymin − 1
7: for all pixel span pairsxj

i , x
j
i+1 ∈ Yj do

8: xs ← xj
i

9: xe ← xj
i+1

10: for all x wherexs ≤ x ≤ xe do
11: O(x, y, z)← O(x, y, z) + 1
12: end for
13: end for
14: end for
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4.3 Summary

We presented our Reconstruction Algorithm in this chapter. We discussed some related techniques

in the literature, examining their advantages and disadvantages to assist in the development of our

algorithm. We provided an overview of the octree data structure that we used to represent our

reconstructed object. A description of the input data and the constraints upon this data followed.

Finally we described our reconstruction algorithm.



Chapter 5

Evaluation

This chapter describes the tests that we used to evaluate our algorithms and the results of these

tests. We first describe the tests and results of our segmentation algorithm. Next we describe the

X-ray simulator that we developed to generate artificial X-ray data for testing our reconstruction

algorithm. Finally we describe the tests and results pertaining to the reconstruction algorithm.

5.1 Evaluation of Segmentation Algorithm

In this section we describe the tests that we performed on our segmentation algorithm and the results

derived from these tests.

We start by describing the data that we use as the input to our segmentation algorithm and the

process of estimating the parameters that we use for our segmentation algorithm.

Next, we describe the three tests we use to evaluate our segmentation algorithm. The first is the

pixel comparison test where we evaluate how well the pixels of our segmentation match those of the

actual bullet. The second involves comparing the contour of the segmented bullet with that of the

actual bullet. The third tests our algorithm’s performance in the presence of noise.

Finally, we discuss the results of these tests.

59



CHAPTER 5. EVALUATION 60

5.1.1 Input Data

We used a set of 12 medical X-ray images to test our data. These images were not generated using

a digital X-ray scanner. Instead they were created using the older, more traditional X-ray scanner

that creates X-ray images on photographic material. The X-rays were scanned and converted to the

BMP file format. They ranged in dimension from 1024 by 1225 to 1024 by 2004 pixels.

Our algorithm is designed to provide an automatic segmentation. In order to test our algorithm, we

need to compare the automatic segmentation algorithm with a manual method.

To this end, we performed a manual segmentation of the bullets in each X-ray image. These manual

segmentations provided the basis of comparison in testing our segmentation algorithm.

5.1.2 Estimation of Segmentation Model Parameters

Our Segmentation Model is based on modelling a line profile plateau using five parameters

1. gmin: The minimum gradient for the sides of the plateau

2. hmin: The minimum height for the sides of the plateau

3. rmax: The maximum value of the residual average derived from a linear regression of the

values on top of the plateau

4. θp: The angle between the linear regression and the x-axis

5. wmin: The width of the plateau

We empirically derived the values for these parameters from the X-ray in our input set labelled

XRAY03. These values were used for the other X-rays. We expect that the algorithm parameters

would only need to be configured once for a particular X-ray machine since the effects that a bullet

creates on an X-ray image are unlikely to vary.

gmin andhmin are the most important parameters since they are used by the segmentation algorithm

to determine candidate plateaus. These candidate plateaus are then accepted or rejected based on

whether they fit the remaining parameters.

gmin andhmin work together to determine candidate plateaus. A plateau is both high and steep.

Many sections of the line profile fit bothgmin and many fithmin but not many will fit both. For

example, a line profile section may be very steep, matchinggmin, but also very low in height.
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Correspondingly a section may be very high, matchinghmin, but this gain in height may take place

over a large section of the profile, producing a weak gradient.

By requiring the plateau to be both high and steep we discard large sections of a line profile. Since

these parameters are quite stringent in combination, we set them to be fairly low in order to seg-

ment plateaus that are indistinct from the rest of the line profile. We look to thespatial coherency

requirement of our algorithm to further discard superfluous plateaus.

We set the gradientgmin to a value of2. This equates to accepting plateaus whose sides are twice

as high as their width i.e. the sides of the plateau are greater than60◦. We set the minimum height

of the plateau sideshmin to a value of5 when dealing with a range of intensities from0 . . . 255.

rmax andθp work together to ensure that the top of the plateau occupies a range of intensities that

does not drastically vary since we expect a bullet to occupy a uniform range of intensities.

We setrmax to 3. This parameter ensures that the values on the top of the plateau do not vary too

much from the linear regression that is fitted to it. This value also indirectly ensures that plateaus

that are too large are discarded: the values in these plateaus will vary too much.

We setθp to 45◦. This ensures that the gradient of the linear regression that is fitted to the top of the

plateau is not too steep since a steep gradient implies a large change in the plateau’s intensity.

We setwmin to 10. This parameter ensures that plateaus that are too small are discarded. This value

should be tailored to match the width of the object that is being searched for.

5.1.3 Pixel Comparison

This test provides a simple pixel-by-pixel comparison between an automatic and a manual seg-

mentation. The parameters used to perform the automatic segmentation are as follows:gmin =

2, hmin = 5, rmax = 3, θp = 1, wmin = 10.

We iterate through each pixel in the bullet region defined by the manual segmentation. At each

iteration, we test if the pixel occurring in the manual segmentation also occurs in the automatic

segmentation.

The following table shows the number of pixels in the manual segmentation, the number of pixels in

the automatic segmentation that occur in the manual segmentation and the corresponding percentage
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X-ray Image Number of Pixels in

Manual Segmentation

Number of Pixels in

Automatic Segmenta-

tion matching Manual

Segmentation

Percentage of Pixels

Matching

XRAY01 2431 2211 90

XRAY02 4416 4028 91

XRAY03 2425 2346 96

XRAY04 2201 1665 75

XRAY05 2331 2331 100

XRAY07 1670 1670 100

XRAY12 1661 1600 96

XRAY14 734 423 57

XRAY15 954 920 96

XRAY16 1640 1581 96

XRAY21 1637 1616 98

XRAY22 1885 1309 69

5.1.4 Contour Comparison

For our second test, we compare the distances between the contours of the manual and automatic

segmentations. The parameters used to perform the automatic segmentation are as follows:gmin =

2, hmin = 5, rmax = 3, θp = 1, wmin = 10.

Firstly, we extract the contours of the manual and automatic segmentations, representing them as

two separate lists of contiguous pixels,M andA where

M = {m1,m2, . . . ,mj}
A = {a1, a2, . . . , ak}

mh andai are coordinates of the form(x, y) (30)

To compare the distances between the contours, we iterate through each pixel inM . For each

mh ∈M we searchedA for someai that would minimised in the following metric

d = |mh − ai| (31)
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In other words, for a pointmh ∈ M we find the point that is closest to itai ∈ A, and take the

distance between them as the distance between the contours. For each pointmh ∈ M we find this

distanced and determine the average contour distance from all thed’s that are calculated.

In the following table, we show the average distance between the contours of the manual and auto-

matic segmentations as well as the standard deviation of the contour distance.

X-ray Image Mean Contour

Distance (pixels)

Standard Deviation

of Contour Distance

(pixels)

XRAY01 1.07282 0.381029

XRAY02 1.36458 0.561245

XRAY03 0.467456 0.49894

XRAY04 3.01093 3.67087

XRAY05 0.132275 0.33879

XRAY07 0.643357 0.534222

XRAY12 0.32967 0.48164

XRAY14 3.31624 3.00043

XRAY15 0.288136 0.452895

XRAY16 0.3625 0.480722

XRAY21 0.442105 0.517398

XRAY22 4.80949 5.05236

We were unable to obtain header information on the provided X-rays and are therefore unable to

provide measurements in millimetres.

5.1.5 Performance in the Presence of Noise

Sensor noise is present in every operating environment. Therefore, it is important to evaluate our

algorithm’s performance in the presence of noise.

In order to test performance in the presence of noise, we took the XRAY05 X-ray image and added

Gaussian white noise with a specified standard deviation to it. We chose to use XRAY05 because a

very good segmentation was achieved with this image. By running tests on this image we are able to

separate the effects of issues internal to the algorithm and the noise that affects the performance of

the algorithm. Therefore, by testing with a better performing image we are able to see more clearly

the effects of noise upon our algorithm.
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We applied our segmentation algorithm with different noise values. The result of this is shown in

the following table for Gaussian white noise with standard deviations of 1, 2 and 5.

The parameters used to perform the automatic segmentation are as follows:gmin = 2, hmin =

5, rmax = 3, θp = 1, wmin = 10.

Standard Deviation of

Gaussian Noise

Percent Pixels Match-

ing

Mean Contour Dis-

tance (pixels)

Standard Deviation

of Contour Distance

(pixels)

1 99 0.037037 0.188853

2 0 N/A N/A

5 0 N/A N/A

When adding Gaussian Noise with a standard deviation of 2, the automatic segmentation does not

detect the bullet. This is primarily due to the sensitivity of thehmin height parameter. By intro-

ducing noise into the line profile, many sharp inclines and declines are introduced. These inclines

and declines are then accepted as candidate plateaus by the segmentation algorithm. In this pro-

cess, the inclines and declines characterising the actual plateau are mismatched with other inclines

and declines. They are then discarded for not meeting with the requirements of thewmin width

parameter.

Setting thehmin parameter to a stricter value of10 and reapplying the segmentation algorithm, we

obtain the following results

Standard Deviation of

Gaussian Noise

Percent Pixels Match-

ing

Mean Contour Dis-

tance

Standard Deviation of

Contour Distance

2 99 0.121693 0.326931

Therefore, in the presence of noise, we have to be stricter with thehmin parameter. However, in

the presence of increasing amounts of noise, setting thehmin parameter to be higher does not help

since the inclines and declines of actual plateaus tend to become obscured by noise.

For example, the bullet in XRAY05 generates plateaus that are approximately 20 intensity units

high or more. Adding Gaussian Noise with a standard deviation of 5 introduces new inclines and

declines that interfere with the inclines and declines of the actual plateau. This effect can be seen in

Figure 23 and 24.

Figure 24 shows the plateau in Figure 23 with Gaussian Noise of Standard Deviation 5 added. The

right side of the plateau, which is very distinct in Figure 23 has become obscured by the noise added

in Figure 24.
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Figure 23: Bullet Plateau from image XRAY05
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Figure 24: Bullet Plateau from image XRAY05 with Gaussian Noise of Standard Deviation 5 added
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We have tested our algorithm’s performance in the presence of noise quite stringently, focusing on

how the parameters of the algorithm may be modified to deal with noise. The noise exhibited in

Figure 24 is extreme and is not usually present in an operating environment.

Additionally, it is worth noting that the images we use for testing have already had noise introduced

into them during the image scanning process to convert the X-rays to image files. Therefore, our

test images have already suffered from operational noise during the actual X-ray capture as well as

image scanning noise before we add artificial Gaussian Noise.

Modifying the algorithm parameters to deal with noise has limited effect and is undesirable since it

reduces the accuracy of the plateau model. In practice there are better ways to deal with noise that

involve performing a pre-processing step to remove noise before the main segmentation algorithm

is applied. This approach is taken by Highnam et al. [18], where operational noise is removed from

a mammogram to generate theirhint representation. To deal with extreme noise we could smooth

the intensity profile with a filter, or fit a spline curve with weak continuity to the intensity profile

to better estimate the general shape of the profile. We have analysed the effect of noise on our

algorithm for the sake of completeness.

5.1.6 Discussion of Results

In nine of the twelve X-rays, our algorithm matched the manual segmentation by 90% or more,

with an average distance contour distance of 1.3 pixels or less. This result was achieved using

just one set of parameters. The X-rays were taken on a number of X-ray machines that recorded

them on photographic film. They were then scanned in to create BMP image files. Considering the

degradation in image quality introduced by this process, we would expect even better results on a

modern digital X-ray scanner. Unfortunately we were not able to obtain X-rays of bullet wounds on

such devices.

We will examine the other three cases to examine their problems and determine whether our algo-

rithm can be improved to deal with them.

The progression of the segmentation in the area containing the bullet in XRAY04 is shown in Figure

25. We can see in panel (g) the final segmentation that the upper contour is fragmented and a leak

has sprung from the lower contour. The leak is the result of thresholding within the bounding box of

the dilated region shown in (f). Thus, we are accepting intensity values that fall within the intensity

range , but do not lie within the region described by the intensity plateaus.
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(a) (b) (c) (d)

(e) (f ) (g)

Figure 25: Progression of Segmentation Algorithm for the area containing the bullet in XRAY04 (a)
Original Image (b) Horizontal Line Segments (c) Vertical Line Segments (d) Intersection of Vertical
and Horizontal Line Segments (e) Eroded Image (f) Dilated Image (g) Final Segmentation

(a) (b) (c) (d)

(e) (f ) (g)

Figure 26: Progression of Segmentation Algorithm for XRAY14 (a) Original Image (b) Horizontal
Line Segments (c) Vertical Line Segments (d) Intersection of Vertical and Horizontal Line Segments
(e) Eroded Image (f) Dilated Image (g) Final Segmentation
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(a) (b) (c) (d)

(e) (f ) (g)

Figure 27: Progression of Segmentation Algorithm for XRAY22 (a) Original Image (b) Horizontal
Line Segments (c) Vertical Line Segments (d) Intersection of Vertical and Horizontal Line Segments
(e) Eroded Image (f) Dilated Image (g) Final Segmentation
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The ill-defined upper contour results from the fact that the region’s contour occupies a rather large

range of intensities. The upper section of the contour occupies a lower range of intensities than

the lower contour. Since the lower threshold is calculated from an average of the contour intensity

values, the lower threshold will be greater than some of the lower contour intensity values. These

contour values are then discarded during thresholding, resulting in the fragmented contour.

The progression of the segmentation in the area containing the bullet in XRAY14 is shown in Figure

26. In panel (b) of Figure 26 we can see that few horizontal plateau lines are generated. Because of

this, the intersection of the vertical and horizontal plateau lines and their erosion creates two sub-

regions, instead of one whole region. Therefore, the backtracking process produces two separate

regions, each describing a part of the region containing the bullet. For this reason the comparison

with the manual segmentation is quite poor.

By lowering thewmin parameter, more horizontal plateau lines would be introduced in the middle

of the bullet. However, this would introduce superfluous regions into the final segmentation. A

better solution would be to introduce a process after the dilation step where regions that are very

close together are merged.

The progression of the segmentation in the area containing the bullet in XRAY22 is shown in Figure

27. In panel (g) we can see that the two ends of the bullet are omitted from the final segmentation.

This is due to two problems: the sparsity of vertical plateaus at each end and the size of the hori-

zontal and vertical plateaus not meeting thewmin parameter at the endpoints.

The sparsity of the vertical plateaus results in fragmentation of the bullet region during the intersec-

tion of the horizontal and vertical plateaus. The erosion process removes these fragmented sections,

leaving the more coherent central region intact.

Unfortunately, since most of the intersected regions are eroded away, the dilated region does not

fully cover the extents of the bullet, especially the endpoints. Therefore plateaus that correspond

to sections of the bullet are not considered during the backtracking process, since they lie outside

the bounding box of the dilatd region. This results in the endpoints being omitted from the final

segmentation of XRAY22.

The orientation of the bullet also poses a problem. Since the bullet lies along the diagonal axis,

the horizontal and vertical segments are very short near the endpoints of the bullet. The plateaus

resulting from these segments fail to meet thewmin parameter and are thus discarded. Therefore

any bullet lying along a diagonal will probably have sections of its endpoints trimmed off.
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A naive solution might be to lower thewmin parameter to allow these endpoints into the solution.

A better solution would take advantage of the fact that the orientation of the bullet lies along the

diagonal. Far wider plateaus can be found by scanning along the northwest-southeast and northeast-

southwest diagonals. Using these diagonal plateaus would result in the regions occupied by the

bullet endpoints contributing to the segmentation.

5.2 X-Ray Simulator

One of the problems associated with our project was the evaluation of our reconstruction algorithm.

In order to test this algorithm we required a set of X-rays of a bullet wound, taken at multiple angles.

We were only able to obtain single X-rays for a number of bullet wounds. To solve this problem we

implemented a simple X-ray simulator in order to provide input data for testing our reconstruction

algorithm.

5.2.1 Physical Basis for Simulator

An X-ray machine projects a stream of X-rays through an object at a X-ray detector that measures

how much the stream has been attenuated. For this reason, X-rays are typically modelled as line

integrals that measure the degree of attenuation experienced by X-rays as they pass through an

object [23]. A set of line integrals can be grouped together to form a projection.

Recall that in our background chapter we showed how the attenuation of an X-ray by an object was

modelled as a line integralPθ(t) over the objectf(x, y):

Pθ(t) =
∫

(θ,t)
f(x, y)ds (32)

This equation represents the sum of the values off(x, y) over a line defined by an angleθ and an

offsett. This equation forms the physical basis for the implementation of our simulator.

5.2.2 Input to Simulator

Our simulator generates X-rays from two types of data. The first type is the volumetric data repre-

senting a three-dimensional range of density. We represent it as a three-dimensional array of vox-

els. In terms of the mathematical formulation in Equation (32) this data would define the function
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f(x, y). The X-rays generated by the simulator are a two-dimensional projection of the volumetric

data. The value of each voxel determines the density of the volume at the coordinate of the voxel.

The second type of data is the projection data. This data defines the paths over which the densities

of the volumetric data will be summed. In terms of Equation (28) each path corresponds to a line

integral defined by some angleθ and an offsett. The result of this sum is stored in an accumulator

which corresponds to a pixel in the X-ray image that is being created. Therefore each pixel in the

simulated X-ray has a path associated with it.

We define a pathlij = (~a,~b) by a gradient~a and an offset~b. We set~b to be equal to the source

of the stream of X-rays. All the paths that contribute to the creation of a single X-ray image

and the pixels associated with them,pj = {xj , yj} are grouped together into a projectionPi ={{
li1, p1

}
,
{
li2, p2

}
. . . ,

{
lin, pn

}}
. In order to define multiple X-rays of a “scene”, multiple projec-

tions must be defined.

0 0 1
1 2 3 3

2 1 0

Source

Accumulator
(13)

Volumetric Data

Volumetric Data

Simulated
X-ray

Source

Projection

Accumulator/
Pixel

Figure 28: Generating an X-ray from volumetric and projection data. A two-dimensional and three-
dimensional diagram of the process is shown here. In the 2D diagram we show how the density
values of the volumetric data are summed along a path and the result is stored in an accumulator.
The 3D diagram shows how this path is part of a projection that creates the X-ray and how it
corresponds to a particular pixel in the X-ray.

5.2.3 Generating a Simulated X-ray

The process of generating a simulated X-ray is simple. For each path/pixel pair in a projection,

the density values along each path are summed. This sum is stored in the pixel associated with the
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particular path. We use a three-dimensional version of the famous Bresenham line algorithm [5] to

step along each voxel that lies along the path.

Once each path/pixel pair in the projection has been dealt with, the range of intensities in the simu-

lated X-ray can be normalised and output to an image file. This process is shown in Figure 28 and

described in Algorithm 6.

Algorithm 6 Algorithm for generating X-rays from volumetric and projection data

1: Input volumetric data into a three dimensional arrayV
2: Input projection data intoPi.
3: Create X-ray imageX

4: for all
{

lij , pj

}
∈ Pi do

5: acc← 0
6: for all (l, m, n) ∈ lij do
7: acc← acc + V (l, m, n)
8: end for
9: X(xj ∈ pj , yj ∈ pj)← acc

10: end for

5.3 Evaluation of Reconstruction Algorithm

In this section we will describe the tests that we performed on our reconstruction algorithm and

results derived from these tests.

Firstly, we describe the simulated data that we use as an input to our algorithm. Secondly, we

describe the voxel comparison test which involves comparing the voxels of the reconstructed data

with those of the simulated data. Thirdly, we describe the iso-surface comparison test which in-

volves comparing an iso-surface of the reconstructed bullet with an iso-surface of the simulated

bullet. Finally we discuss our results.

5.3.1 Input Data

To test our reconstruction algorithm we required a set of X-rays that recorded a bullet wound from

multiple angles. Unfortunately, it was not possible to obtain a set of this data.

To overcome this problem, we generated an artificial set of X-rays using our X-ray simulator. The

voxel data that we fed to the simulator described a5123 voxel volume containing an hip-bone and a
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Figure 29: Configuration of Projections for Generating Artificial X-rays
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bullet. This was obtained by voxelising three-dimensional hip-bone and bullet meshes, overlaying

the bullet voxels on top of the hip voxels. We will refer to this voxel volume as thesimulated

volume.

From this voxel volume, we generated a set of 12 artificial X-rays. The projections used to cre-

ate these X-rays were equally spaced at30◦ angles around the voxel volume. The source of each

projection was located320 voxel units away from the centre of the simulated volume. Each projec-

tion consisted of a stack of512 two-dimensional equiangular projections. These two-dimensional

equiangular projections each contained512 line integrals equally spaced within an angle of60◦.

Each stack of projections therefore generated a 512 by 512 pixel image. This type of projection

configuration can be seen in Figure 29.

The advantage of testing our reconstruction algorithm using artificial X-rays is that it is possible

to compare the voxels of the reconstructed bullet with the voxels of the volume that was used to

generate the artificial X-rays.

We applied our reconstruction algorithm using the set of 12 artificial X-rays and their associated

projection data to produce areconstructed volume.

5.3.2 Voxel Comparison Test

Our first test involved comparing the bullet voxels in the simulated volume with the bullet voxels

in the reconstructed volume. To measure the similarity of the voxel volumes, we first counted the

number of voxel locations that were occupied in either the simulated volume or the reconstructed

volume. We refer to these ascomparison voxels.

We then counted the number of voxel locations that were occupied in both the simulated and the

reconstructed volume. We refer to these asmatching voxels. We divide the number of matching

voxels by the number of comparison voxels to produce a percentage. These values are shown in the

following table.

Number of Compari-

son Voxels

Number of Matching

Voxels

Percentage Match

3419 2415 70.6347%

A percentage match of 70% would seem rather low. Counting the number of voxels in the simu-

lated and reconstructed bullet yields 2965 and 2869 voxels respectively. Thus there are 550 voxels

(3419 − 2869 = 550) that exist in the reconstructed bullet but are not in the simulated bullet and
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454 voxels (3419−2965 = 454) that exist in the simulated bullet but not in the reconstructed bullet.

These 454 voxels are problematic. This is because the reconstructed bullet is avisual hull of the

simulated bullet. According to the definition of a visual hull, it is always greater than the actual

object that is being approximated. In this case, there are 454 voxels in the simulated bullet that lie

outside of the visual hull that is the reconstructed bullet.

5.3.3 Iso-Surface Comparison Test

Our second test involved performing an iso-surface comparison of the simulated bullet with the

reconstructed bullet. Firstly, we extracted iso-surfaces from both the simulated and reconstructed

bullet voxels using the marching cubes algorithm in the VTK toolkit [41]. Secondly, we used the

Metro Mesh Comparison Tool[12] to compare these two iso-surfaces. The Metro tool measures the

Maximal, Mean and Mean Square Surface Difference as well as the Volume Difference between

two meshes. These distances are numerically calculated by sampling between points on the two

meshes.

We begin the definition of these differences with theε function, which determines the distance

between between a pointp and a surfaceS.

ε(p, S) = min d(p, p′) p′ ∈ S (33)

whered is the Euclidean distance between two points inE3. The Maximal Surface Difference

between two surfaceS1 andS2 can then be defined as

E(S1, S2) = max ε(p, S2) p ∈ S1 (34)

This distance definition is not symmetric. It is not necessarily the case thatE(S1, S2) = (S2, S1).

Given a set of uniformly sampled distances, the Volume of the Difference between the two surfaces

can be computed as the surface integral of the distance function overS1.

EV (S1, S2) =
∫

S1

ε(p, S2)ds (35)

The Mean Surface DistanceEm is defined as the as the surface integral of the distance divided by

the area ofS1
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Em(S1, S2) =
1
|S1|

∫
S1

ε(p, S2)ds (36)

1S

2S

2p

1p

1d
2d

Figure 30: Illustration of signed distances between pointsp1, p2 ∈ S1 andS2. The distanced1,
betweenp1 andS2 is positive whiled2, betweenp2 andS2 is negative

If the surface is orientable i.e. it is possible to distinguish between the space contained within the

surface and the space outside the surface, it is possible to extend the concept of surface distance

between a pointp of S1 andS2 so that the distanceε′, is either negative or positive. Figure 30

illustrates this concepts with two surfaces. With this extension to the definition of surface distance,

there exist two definitions for the Maximal Surface Distance, a positive and a negative definition:

E+(S1, S2) = max ε′(p, S2) p ∈ S1 (37)

E−(S1, S2) = |min ε′(p, S2)| p ∈ S1 (38)

The positive and negative equations for the Mean, Mean Squared and Volume Differences can also

be defined. Metro also calculates thetotal differencebetween two orientable surfaces. For example,

the total volume difference betweenS1 andS2 is the volume of(S1 − S2) ∪ (S2 − S1). Interested

readers can refer to [12] for further information.

The results produced by Metro for a comparison between the simulated and reconstruction bullet

iso-surfaces is shown in the following table. Metro also displays information about the bounding

boxes and diameters of the meshes. The bounding box for the simulated iso-surface was(27, 42, 17)
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by (31, 47, 54) units, while the bounding box for the reconstructed iso-surface was(27, 43, 17) by

(29, 48, 54) units.

Test Direction Value Bounding Box % Diameter %

Maximal Surface Difference

E+ 1.5456 3.9501% 4.0448%

E− 2 5.1114% 5.234%

Mean Surface Difference

E+ 0.6345 1.6216% 1.6605%

E− 0.782 1.9987% 2.0467%

Et 0.717 1.8324% 1.8764%

Mean Square Difference

E+ 0.7952 2.0324% 2.0812%

E− 0.8549 2.185% 2.2374%

Et 0.8291 2.1191% 2.1699%

Volume of Difference

V + 8.90923e+06

V − 1.76483e+07

V t 5.17732e+07

Here we can see more evidence that the visual hull of the reconstructed bullet does not encompass

the entirety of the simulated bullet. If the reconstructed bullet encompassed the simulated bullet

we would expect a value of0 for the E− andV − tests since there would be no place where the

reconstructed bullet iso-surface would be inside the simulated bullet iso-surface. The mean surface

difference between the reconstructed and simulated mesh is 0.6345 units forE+ and 0.782 units for

E−.

5.3.4 Discussion of Results

The results of the two tests that we have performed on our reconstruction algorithm clearly indicate

an anomaly in the size of the reconstructed bullet. According to the theory that we introduced in

the Background Chapter, the visual hull of a reconstructed object should always be larger than that

of the original object. However, the differences between the two meshes are small: less than 1% in

both the positive and negative direction.
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The anomaly with regards to the size of the reconstructed object can be attributed to rounding errors

within our reconstruction algorithm. We use Bresenham’s line algorithm to step through the voxel

volume. Bresenham’s algorithm discretises points on a line into voxel locations. This discretisation

introduces rounding errors into the reconstruction.

5.4 Conclusion

In this chapter we presented the evaluation of our segmentation and reconstruction algorithms. For

each test, we described the input data to the test, the method that was used to test the algorithm and

the results of the test. We also discussed the results of each test noting problems and suggesting

solutions.

Our segmentation algorithm performed well on a set of 12 X-rays, achieving a pixel match of 90%

or more with the manual segmentation on nine of these X-rays. The mean contour distance between

the automatic and manual segmentation 1.3 pixels or less, with a standard deviation of 0.56 pixels

or less. For the remaining three X-rays the pixel match was 57%, 69% and 75% with respective

mean contour distances of 3.3, 4.8 and 3.0 pixels. These are good results, considering the quality of

the data that the algorithm operated on:

1. Not all of the X-rays were taken on the same machine.

2. The X-rays were recorded on photographic film.

3. The X-rays were scanned in from the photographic film.

We would expect even better results using X-rays taken on modern digital X-ray scanners. Our

segmentation algorithm is fairly sensitive to noise. This sensitivity can be ameliorated by smoothing

intensity profiles, or fitting splines to the profiles.

The test case that we used to evaluate our reconstruction algorithm achieved a 70% voxel match

and a 0.7952 positive mean surface difference. Our reconstruction algorithm produced anomalous

behaviour by producing a reconstructed bullet that was smaller than the simulated bullet. Since the

reconstructed bullet is a visual hull, it should be larger than the simulated bullet. This can most likely

be attributed to rounding errors introduced by using the discrete Bresenham stepping algorithm.
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Conclusion and Future Work

The goal of this thesis was to develop a technique to identify the three-dimensional shape and

location of a bullet from multiple X-ray projections. To accomplish this, we based our technique on

two techniques: Image Segmentation and Volume Carving.

The Image Segmentation section of our project involved developing an algorithm to identify bul-

lets within X-rays. The basis for our segmentation technique centres around the intensity plateaus

generated by bullets in line profiles taken across X-ray images.

We developed a model to define and identify these plateaus within X-ray images and used this model

to develop a segmentation algorithm. This algorithm searches for line profiles within the image that

fit the plateau model. Regions containing a large confluence of these profiles are selected as bullet

candidates. The range of intensities occupied by these profiles are used to segment the bullet out of

the image.

We base our Volume Reconstruction technique on a simple voxel-based implementation ofVolume

Carving[2]. An octree voxel volume is used to represent the reconstructed three-dimensional shape

and position of the bullet. The reconstruction process involves reconstructing two-dimensional

slices of this three-dimensional volume.

In order to reconstruct a two-dimensional slice, we create back-projection volumes from the bullets

that we segment from the input X-Rays. These back-projection volumes are intersected with the

two-dimensional slice. This involves marking the number of back-projection volumes that intersect

with a voxel. A voxel that intersects with all the back-projection volumes input to the algorithm is

79
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considered to be within the visual hull of the reconstructed bullet. Only voxels that lie within the

visual hull are accepted as contributing to the final reconstruction.

6.1 Summary of Results

Evaluation of Segmentation Algorithm: We tested our algorithm on a set of 12 X-rays. For nine

of these X-rays, the algorithm matched over 90% of the pixels contained within the bullet. In the

nine X-rays, the difference between the contour of the segmentation and the actual bullet was on

average less than one pixel. In the other three X-rays, the algorithm matched 59%, 69% and 79%

of the pixels contained within the bullet respectively.

The three X-rays that do not perform so well reveal interesting issues in our algorithm. Firstly, we

perform a thresholding operation in the region containing the bullet. This region is represented with

a bounding box. Since this bounding box does not always accurately follow the shape of the bullet,

pixels that are not in the bullet may be segmented out.

Secondly, the minimum width parameter (wmin) of our segmentation algorithm can cause problems

if sections of the bullet are very thin. This parameter exists to discard superfluous information

during the segmentation process.

Thirdly, we scan for bullets in the horizontal and vertical directions. This can be problematic when

the bullet lies along a diagonal axis because the endpoints of the bullets will consist of short hori-

zontal and vertical lines. If these lines are too short they will be truncated by thewmin parameter

resulting in the endpoints of the bullets being “trimmed”.

Solutions to some of these problems have been suggested in our future work section.

From these results we conclude that we have successfully researched and implemented a bullet

segmentation algorithm. Our algorithm is successful for three reasons:

• We achieved a segmentation of over 90% on nine of the twelve X-rays we used to test our

algorithm

• We used one set of segmentation parameters for all twelve X-rays. These X-rays were taken on

different X-ray machines with different configuations. As we have stated in our Segmentation

Chapter, one can configure the segmentation algorithm parameters once for a particular X-ray

machine. This is because the intensity profile of lead will vary only slightly due to the high
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attenuation experienced by X-rays interacting with lead. This significantly reduces the user

intervention required to operate the algorithm.

• The X-ray data that we used to test our algorithm was not high quality. It was generated

by older X-ray scanners that recorded X-ray images on photographic film. These images

needed to be scanned in to image files for use by our algorithm, increasing the amount of

noise experienced by our algorithm. We expect that even better results could be achieved

using data captured from digital X-ray scanners.

Evaluation of Reconstruction Algorithm: To test our reconstruction algorithm, we artificially

generated a set of 12 X-rays using the X-ray simulator that we had developed. These X-rays showed

a simulated bullet overlayed on a hip bone. The reconstructed bullet matched 70% of the voxels in

the simulated bullet. The mean surface difference between the reconstructed and simulated bullet

was less than 1 unit. However, rounding errors in the reconstruction algorithm resulted in some

voxels belonging to the simulated bullet not being included in the reconstructed bullet.

This behaviour is anomalous since the reconstructed bullet is a visual hull of the simulated bullet

and thus should include all parts of the simulated bullet. It can be attributed to rounding errors

associated with our use of the Bresenham line stepping algorithm which discretises points on a line.

For these reasons the implementation of our reconstruction algorithm was moderately successful.

In conclusion, we have achieved our aims of developing a segmentation algorithm and implementing

a reconstruction algorithm that reconstructs the shape and position of bullets from multiple X-rays.

6.2 Future Work

There are a number of areas in which our work could be extended.

6.2.1 Creating a Bounding Polygon for use during the thresholding phase of the Seg-

mentation Algorithm

One of the problems associated with our segmentation algorithm is that pixels that fall outside the

bullet may be included in the thresholding operation that extracts the bullet pixels. This is because

a bounding box is used to bound the range of pixels that are being thresheld out of the image. The

bounding box will contain pixels that do not lie within the actual bullet most of the time. However,



CHAPTER 6. CONCLUSION AND FUTURE WORK 82

some of these pixels may fall within the range of intensities that are being thresheld and will thus

be included within the final segmentation.

To deal with this problem, a more precise bounding polygon could be constructed from the endpoints

of the line profiles that contribute to a region containing a bullet.

6.2.2 Thresholding different ranges of intensity for different parts of the bullet

An average lower value is calculated for the purposes of thresholding the bullet out of the general

region that it occupies. This value usually corresponds to the pixel intensities on the contour of the

bullet. However, this value may vary over the bullet’s contour. This results in sections of the contour

being badly fragmented or left out. By allowing the lower threshold value to vary depending on the

area of the bullet that is being segmented, this loss of information could be avoided.

6.2.3 Diagonal Plateau Scanning

At present our segmentation algorithm only scans for plateaus in the horizontal and vertical direc-

tion. When a bullet lies along a vertical axis, the endpoints of the bullet may be truncated by our

algorithm since the width of the horizontal and vertical plateaus in these regions is too short. By

adding plateau scanning along diagonal axes, more significant and wider plateaus can be detected.
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