
1

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

Elton Saul and Andrew Hutchison
Data Network Architectures Laboratory
University of Cape Town
South Africa
{esaul, hutch}@cs.uct.ac.za

Abstract: The development of cryptographic logics to analyze security protocols has
provided one technique for ensuring the correctness of security protocols.
However, it is commonly acknowledged that analysis using a modal logic such
as GNY tends to be inaccessible and obscure for the uninitiated. In this paper
we describe a graphical tree-based specification environment which operates
in conjunction with a Prolog-based GNY analyzer. This environment can be
used to easily construct GNY statements using dynamically-constructed
contextualized pop-up menus. We will show how this environment helps to
distance students and protocol engineers from the syntactical element of GNY
analysis, allowing them to focus more on the associated semantics and distil
the critical issues that arise during protocol analysis. By freeing individuals to
focus on an analysis, instead of hampering them with the necessary syntax, we
can ensure that the fundamental concepts and advantages related to GNY
analysis are kept in mind and applied as well.

Key words: Security protocol analysis, GNY logic, cryptographic protocols, security
education and practice

1. INTRODUCTION

Analysis methods for cryptographic protocols have predominantly
focused on detecting information leakage, rather than determining whether a
protocol attains its stated goals. However, security protocols often fall short

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Elton Saul and Andrew Hutchison

of achieving their intended objectives, usually for very subtle reasons. As a
result of this fact, cryptographic logics have been developed to aid in
determining whether protocols actually fulfil their intended goals. Using
logics to analyze security protocols has a number of advantages:

– The use of logics forces protocol designers to explicitly state the security

assumptions which they have made and will require after the protocol has
executed.

– Reasoning with logics makes designers think about the use for which
each component is intended, thus minimizing redundancy.

– Cryptographic logics can also be used to explicitly bind the evolution of
beliefs in a protocol session to message contents, number of messages
and message rounds, thus helping to determine the minimum number of
messages required to achieve a given set of beliefs and possessions.

Analysis using logics was first popularized in 1989 by the BAN modal

logic [1]. BAN and other logic systems have successfully been used to reveal
flaws in protocols that were previously accepted as correct [3]. A popular
successor of BAN is GNY [4].

However, GNY analyses can appear complicated to uninitiated or non-
mathematically inclined individuals. While teaching students how to analyze
protocols with GNY, we noticed that many of them balked or got bogged
down in syntactic issues, instead of focusing on the actual analysis. This
apprehension regarding the GNY syntax, as well as the size of the postulate
set, often restrained individuals from effectively utilizing the logic to
uncover protocol flaws.

One of the most well-established findings in memory research is that
people can recognize material far more easily than they can recall it [6]. This
fact has clearly been applied in the design of graphical user interfaces over
the past decade. For example, many user interfaces now make use of an
extensive range of menus containing text or iconic lists of operations,
options, files and so on. Instead of having to recall a name or a particular
combination of function keys to perform an operation, users only need to
scan through a menu until they recognize the name or the icon representing
the operation which is required.

So, if we make use of a graphical user interface with sufficient cognitive
aids, we could possibly develop an environment which will facilitate the
rapid and accurate construction of GNY statements. In fact, in this paper we
will demonstrate that by making use of common GUI components such as
tree-views, tabbed panes and pop-up menus, we can create an environment
which helps users to structure, organize and create GNY statements with
ease. We will also show how this environment helps to distance protocol

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

3

engineers from the syntactical element of GNY analysis, allowing them to
focus more on the associated semantics and distil the critical issues that arise
during protocol analysis.

Through the course of this paper we will describe an environment that
has been developed to facilitate and enable high-quality GNY-based
cryptographic protocol analysis. This environment is made up of a
graphically-based GNY specification environment, known as Visual GNY,
which works in conjunction with a Prolog-based GNY analyser and a
graphical protocol design environment. During the development of this
system, we exposed it to students who had previously worked with GNY and
their response was over-whelmingly positive. Instead of forcing individuals
to go through the tedium of manually applying postulates and remembering
cryptic syntax and notation, the system that we have developed frees them
from this task and helps them to distil the more critical issues and focus
more on carrying out an analysis correctly and purposefully.

The remainder of this paper is organized as follows. In Section 2 we
describe the framework in which this work is taking place, while Section 3
presents a brief overview of the GNY logic. Then, in Section 4 we present
our approach for visualizing GNY statements, describing the environment
that implements this approach in Section 5 along with a description of how it
is used in Section 6. Finally, we present experimental results in Section 7
and conclude in Section 8.

2. SPEAR II FRAMEWORK

The Visual GNY environment which we will describe in this paper is a
component of the SPEAR II analysis framework [7]. This framework aims to
provide a unified graphically-based environment within which security
protocols can be specified, analyzed and then implemented. At present, the
framework consists of three primary components::

– A graphical security protocol specification environment named

GYPSIE [8].
– A Prolog-based GNY analysis engine named GYNGER based on the

analyzer outlined in [5].
– The Visual GNY environment that is used for constructing GNY

statements necessary for a protocol analysis [9].

To conduct an analysis the protocol is first specified in GYPSIE. Once

this specification phase is complete, the Visual GNY environment is invoked

4 Elton Saul and Andrew Hutchison

and GNY statements are constructed that will be used in the protocol
analysis. Upon specifying all of the GNY preconditions, the defined GNY
statements are exported to GYNGER where they are used for an analysis.
Once the analysis is complete, the results are sent back from GYNGER to
the Visual GNY environment, where they are displayed.

3. GNY CONCEPTS AND NOTATION

In this section the basic notions underlying the GNY reasoning process
will be introduced. We will first briefly describe the notion of a formula and
formula extensions, after which we will describe how formulae and GNY
operators can be combined to form statements. Finally, we present a brief
description of how a GNY analysis is normally conducted.

3.1 Formulae

A formula in a protocol description is a name referring to a bit string
which would have a particular value in a session. This is analogous to a
variable identifier in a programming language. Principals often exchange
formulae to express their current beliefs or transfer information. Beliefs are
described by statements, introduced in the next section. Let C range over all
statements and let X be a formula. Then CX ~ is also a formula, more
specifically, a formula with an extension. Statement C is the extension and
is considered an integral part of the formula.

3.2 Statements

A basic statement reflects some property of a formula, typically reflecting
a relation between a principal and a formula. Let P and Q range over
principals. The following are statements:

XP � : P is told a formula, X , possibly after performing some
computation, such as decryption. Thus, the formula being told is itself, or
some computable content thereof.

XP *� : P is told a formula, X , which he is not the first to convey in
the current session of the protocol, though he could have transmitted it in a
previous session. Also, it is the first time that P receives X in the current
session.

XP ∋ : P possesses formula X . P is able to repeat this formula in
future messages of the current session. At a particular stage of a session, P
possesses all the formulae that he has been told, all the formulae he started
the session with, and all the ones that he generated during the current

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

5

session. In addition, P possesses all the formulae that are computable from
formulae he already possesses.

XP ~| : P once conveyed formula X . X can be a formula explicitly
exchanged or some computable content of a formula. Thus, a formula can
also be exchanged implicitly.

)(# X : Formula X is fresh. A principal should believe that a formula
originated by another principal is fresh if it has been constructed after the
occurrence of some fresh event. A principal believes anything he has
originated to be fresh if he cannot have chosen the same formula for the
same purpose before.

)(Xφ : Formula X is recognizable. A principal would believe X to be
recognizable if he has certain expectations about the value or structure
thereof. He may recognize a particular value, a particular structure or other
forms of redundancy. In either case, he may not possess part or all of the
formula.

QP S↔ : S is a suitable secret for P and Q . These entities may use S
to prove their identities to each other. They may also use it as, or derive from
it, an encryption key K to communicate, denoted as QP K↔ . This notation
is symmetrical.

PK+
→| : K+ is a suitable public key for Q . The matching secret key is

given by K− .
The only default assumption which we require is that S , K or K− will

never be discovered by any principal except the legitimate owners or
principals which the owners trust. In the latter case, the trusted principals
should never use S , K or K− as a proof of identity or as an encryption
key to communicate. Continuing, the following are also statements:

XP∝ : P is eligible to convey formula X . P holds the relevant
possessions and beliefs. This notation is used to detect inconsistencies in the
protocol description.

)(| XP − : P is not the first principal to originate formula X . This
formula must first be generated and conveyed by another principal.

Statements are often associated with individual principals to specify their
states. Let C range over statements. The following are also statements:

),(21 CC : The conjunction of two statements. Conjunctions represent sets
and have properties such as associativity and commutativity.

CP ≡| : P believes that statement C holds. ≡|P is considered an
empty statement.

CQP ⇒≡ || : P believes that Q has jurisdiction over statement C . He
believes that Q has authority on C and should be trusted in this respect.

*||| ≡≡ ⇒ QQP : P believes that Q has jurisdiction over all his
beliefs. P considers Q to be competent and honest.

6 Elton Saul and Andrew Hutchison

3.3 Conducting an Analysis

An analysis with GNY is very similar to one carried out with BAN.
However, one significant improvement of GNY over BAN is that it defines
an abstract ‘protocol parser’ which helps to derive a form of the protocol
more suitable for manipulation. The major steps carried out before analyzing
a security protocol with GNY are enumerated below:

a) Any implicit information conveyed by a protocol formula that contains a

secret is represented logically by the attachment of an extension to the
formula.

b) A star is placed in front of all formulae containing secrets that the
receiving principal is not the first to convey in the current session of the
protocol. The star also indicates that it is the first time that the receiving
principal receives the formula in the current session.

c) The initial belief and possession sets of each principal are constructed.
The possession set consists of all formulae available to the principal,
while the belief set includes the current beliefs of the principal.

d) The desired final possession and belief sets for each principal are
specified based on the design goals of the protocol.

Once these steps have been performed, an analysis can proceed. Each

analysis essentially consists of deriving a series of assertions, each assertion
being obtained by the application of the GNY inference rules to the
assertions already contained within the belief and possession sets of a
principal. After each assertion is derived, it is added to either the belief or
possession set of the relevant principal. Once the analysis is complete the
belief and possession sets will contain the final state of each principal after
the protocol has run to completion. This information can then be compared
to the desired final conditions to determine whether the protocol has
achieved its intended goals.

4. STRUCTURED TREES AND GNY STATEMENTS

The GNY representation technique which we will now present allows
any GNY statement to be viewed as a structured tree. Each node within this
tree will have an assigned type, and its position within the tree will be
determined by that type. We will see that this approach leads to a clean,
concise, consistent and uncluttered graphical representation.

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

7

gtPrincipal

gtSuitableSecretComponent

gtSharingPrincipals

gtAuthoritativePrincipal

1

4 5 6 7

gtPrincipal

32

gtHoldingPrincipal

gtComponent

gtRecognizableComponents
gtFreshComponents

gtOtherBeliefs gtPublicKeys gtJurisdiction

gtTrustworthyPrincipalsgtOtherConveyed
gtOtherPossesses

gtNeverOriginatedHere
gtOtherTold

gtEligible

gtSuitableSecrets

gtComponent

gtBelievingPrincipal gtSuitablePublicKeyComponent

Figure 1. Relative hierarchy of tree nodes within our structured tree representation.

When using our structured tree approach, a set of GNY statements will
be represented by of a collection of trees, each of the statements of a
particular type belonging to the same tree. For example, a set of statements
that only contains freshness, and conveyance statements would be
represented by two trees, each containing only freshness, and conveyance
statements respectively. Before we describe our structured tree approach any
further, we need to partition all possible GNY statements into seven groups.
All of the statements within a given group share the same structured tree
representation.

– Group 1:)(# X ,)(Xφ
– Group 2: XP ~| , XP ∋ ,)(| XP − , XP ` , XP∝
– Group 3: *|| ≡⇒ PP
– Group 4: CP ≡|
– Group 5: PK+

→|
– Group 6: QP S↔
– Group 7: CQ ⇒|

The illustration in Figure 1 lists the GNY types in each group and the
manner in which nodes belonging to a given group are structured. For
example, when representing a statement in Group 5, the root node must be of
type gtPublicKeys, followed by a child node of type
gtSuitablePublicKeyComponent, terminating with a child node of type

8 Elton Saul and Andrew Hutchison

gtPrincipal. GNY types, prefaced by the letters gt, are used to identify tree
nodes so that the correct captions, icons and pop-up menus will be displayed.
Thus, if a node is of type gtPrincipal, then the principal's name and a
principal icon will be used to represent the node in the tree-view. However,
if a node is of type gtFreshComponents, then the text ‘Fresh Components’
will be used as the node caption and the icon for the freshness category will
be displayed beside the text. A collection of graphical GNY statements is
illustrated in Figure 2.

Nb is fresh

+Ka is a suitable public key for B

B possesses Nb

Sab is a suitable secret for use
between A and B

S has jurisdiction over the statement "Kab is
a suitable secret for use between A and B"

gtOtherPossesses
gtHoldingPrincipal

gtComponent

gtJurisdiction
gtAuthoritativePrincipal

gtSuitableSecrets
gtSuitableSecretComponent

gtSharingPrincipals

gtRecognizableComponents
gtComponent

B is trustworthy

Figure 2. GNY statements specified in our structured tree-view.

The statements represented by the structured trees of Figure 2 form the
initial belief set of principal A , as indicated by the tabbed pane, combo-box
and radio button selections. Thus, every statement within these trees has the
implicit prefix ‘ A believes that’. When using structured trees to store
extensions, there is no implied prefix since an extension statement is merely
an expression that must be believed to be true before a formula can be
transmitted. An important point to note is that we don't require structured
trees to specify the possession set for a given principal, since possession
statements only have one operator and two operands, the left operand being
the principal name and the right operand a formula. In fact, all that we
require is a collection of one-node trees, each node having type
gtComponent. Thus, when determining the GNY statement represented by a
particular node in this collection of trees, we merely need to prefix the
statement `A possesses' to the name of the formula represented by each tree
node.

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

9

5. OVERVIEW OF VISUAL GNY

The structured tree approach which we have developed is implemented in
the Visual GNY environment which is part of the SPEAR II framework. For
each principal within a given protocol specification, up to four sets of
structured trees are created, two for the storage of initial beliefs and
possessions, and another two for the storage of target beliefs and
possessions. A further four sets of trees can be used to store the successful
beliefs, successful possessions, failed beliefs and failed possessions for each
principal upon the completion of a successful GNY analysis. A set of
structured trees is also created for every formula that has extensions, these
extensions being defined in the Visual GNY environment.

Figure 3. The Goals, Extensions and Results Panes from the Visual GNY Environment.

5.1 The Visual GNY Interface

The Visual GNY interface is composed of five tabbed panes. Within each
of these tabbed panes, a drop-down combo-box and a selection of radio
buttons are used to select the appropriate set of structured trees to modify or
view. The currently selected set of structured trees is displayed in a tree-view
component centered within the client area of the tabbed pane. Changing
either the combo-box or radio button selection changes the set of structured
trees being displayed in the tree-view. A label situated below the tree-view
indicates the number of GNY statements represented by the set of structured
trees displayed in the tree view. All interaction with the structured tree takes

10 Elton Saul and Andrew Hutchison

place through pop-up menus that are dynamically constructed depending on
the selected tree node.

The Assumptions tabbed pane, illustrated in Figure 3, is used to specify
the initial belief and possession sets of principals involved in a protocol. The
Goals tabbed pane, displayed in Figure 3, is structured in the same way as
the Assumptions pane, but is used to store the target belief and possession
sets of a given principal. In both the Goals and the Assumptions panes, the
radio buttons are used to switch between the belief and possession sets,
while the combo-box is used to select the believing or possessing principal.
The Extensions tabbed pane, also shown in Figure 3, allows a user to specify
extension statements that are attached to a formula specified in the protocol
messages. This tabbed pane does not include any radio buttons, as only one
set of structured trees is ever used to store the extension statements. The
combo-box is used to select the formula to which a user wishes to append
extensions.

The Analysis pane allows one to invoke a GNY analysis using the
GYNGER protocol analyzer. Within this tabbed pane information such as
the location of the Prolog interpreter, working directories, results files and
the location of the GNY rules in Prolog format must be supplied. Finally, the
Results tabbed pane, shown in Figure 3, displays the outcome of a GNY
analysis. Radio buttons are used to switch between the valid beliefs, valid
possessions, failed beliefs and failed possession sets for the principal
selected by the drop-down combo-box. If one of these sets is missing, then
the radio button for that set is disabled, thereby allowing one to obtain a
quick indication of what occurred during the analysis. The proof for a valid
goal can be obtained by right-clicking its structured tree representation,
while all of the derived statements are obtained by clicking the button in the
lower right corner of the Results pane.

Figure 4. Some pop-up menus used in the Visual GNY environment.

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

11

5.2 Contextualized Pop-Up Menus

When using the Visual GNY interface, all that is required to specify a
GNY statement is a pointing device, such as a mouse or trackball. The power
of the Visual GNY interface stems from the fact that a user is ‘guided’ while
constructing a GNY statement. This guidance is implemented through the
use of pop-up menus. For example, to add the statement pqKQP ∋≡| to
principal P 's target belief set, the user right-clicks in an open area of the
tree-view representing P 's target beliefs. A pop-up menu will then be
displayed from which she can specify that she wants to add a `Formulae
Possessed by Principals' belief category. A parent-less tree node of type
gtOtherPossesses will then be inserted in the tree-view. When right-clicking
on this node, the user will be presented with a pop-up menu that contains a
list of principals. She selects principal Q from the list and a tree node of
type gtHoldingPrincipal is added to the tree-view, the node of type
gtOtherPossesses being its parent. Then, when right-clicking on this node, a
list of formulae that have been specified in the GYPSIE environment are
listed. Upon selecting pqK from the list of shared keys, a tree node of type
gtComponent is added as a child of the node of type gtHoldingPrincipal. At
this point, right-clicking on the formula node only presents a Delete option.
Also, once the formula node has been added, the statement counter at the
bottom of the dialog is updated. A selection of the pop-up menus used to
construct a structured tree representing a GNY statement are presented in
Figure 4. When right-clicking on a tree node, the pop-up menu created to
service that node will be displayed. This pop-up menu selection is based on
the GNY type of the tree node.

An important point to note about the pop-up menus is that their content is
updated dynamically. For example, assume we create a node with type
gtRecognizableComponents that will serve as the root of a structured tree to
store recognizability statements. Also, assume that there are two nonces
defined in the protocol specification, namely aN and bN . When initially
right-clicking on the gtRecognizableComponents node both nonces will be
visible in the resultant pop-up menu. Assume that we click on aN so that it
is added as a child to the gtRecognizableComponents node. Now, the next
time we right-click on the gtRecognizableComponents node only bN will be
displayed, since aN has already been added to the
gtRecognizableComponents node. Essentially, the principle used is that a
formula, principal or belief category is only available for selection from a
pop-up menu if it has not yet been added as a child of the node which was
right-clicked. As a result of this fact, individuals cannot create duplicate
GNY statements in a structured tree.

12 Elton Saul and Andrew Hutchison

5.3 Enforcing Syntactic and Semantic Correctness

A significant advantage of the Visual GNY environment is that it ensures
that syntactically correct statements are constructed. Because the pop-up
menus enforce the predefined order of the nodes in the structured tree, it is
not possible to specify a tree node that has an inappropriate type or to graft a
node into an incorrect location. In fact, it is also not possible to specify an
incomplete tree, since a user will not be allowed to change to another
structured tree set, or press the OK button, unless all of the structured trees
are complete. If a given tree is incomplete, then the node requiring a child
will be highlighted and a message box indicating this fact will be displayed.
The dynamic construction of the contextualized pop-up menus also ensures
that no duplicate GNY statements can be generated. This elimination of
duplication helps to ensure that an efficient and more optimal set of GNY
statements are exported to a GNY protocol analyzer. Besides this, it also
helps to eliminate confusion by ensuring that there is only one copy of any
given statement.

Enforcing semantic correctness is a lot more difficult than ensuring
syntactic compliance. Some semantic checking has been added into the
Visual GNY environment, but it is not capable of eliminating every semantic
error. Type correctness is enforced for the suitable secret and suitable public
key statements by ensuring that a user is only able to use components of the
appropriate type when constructing these expressions with pop-up menus.
Because formula and principal names are imported from the protocol
specification, all constructed GNY statements should refer to components
that exist in the protocol specification. However, if a user imports a formula
into a structured tree, and then removes all of its instances from the protocol
specification, a bright red question mark is displayed as the structured tree
node icon and the statement represented by the node is not considered as
valid or exportable.

5.4 Exporting Visual GNY Statements

The ability to convert structured trees into a format which is compatible
with an external GNY analysis tool or usable by a protocol engineer is
fundamental to the operation of the Visual GNY environment. The
structured trees defined within the Visual GNY interface can be exported to
text, Latex and Prolog-style formats. The textual format displays each GNY
statement in an English-style syntax, so that a statement such as)(#| aNP ≡
is represented by the text string “A believes that Na is fresh”. When
exporting to Latex, each of the structured trees is translated into native GNY
mathematical notation. As can be imagined, this feature is exceptionally

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

13

useful for type-setting Latex documents which contain GNY statements.
Finally, the Prolog-style output is directly compatible with GYNGER,
allowing all of the GNY statements constructed in the visual interface to be
used for automated analysis without any tedious manual translation. Along
with the GNY statements defined in the Visual GNY environment, the list of
protocol messages is also output using being-told statements. This list is
created through interaction with the GYPSIE protocol specification
environment wherein the messages, their receivers and relative order are
defined. The GYPSIE API calls allow this protocol output to be generated
with or without stars. In fact, the protocol parsing and appending of stars is
all carried out by GYPSIE since it is easily automated. No user-interaction is
required for protocol parsing, ensuring that this analysis phase is free from
errors.

Figure 5. The ‘View as Text’ and Visual GNY tooltip in action.

5.5 Reducing Complexity

Within the Visual GNY environment, we have tried to create an
environment that facilitates simple and straight-forward construction of
GNY statements. Now, while working in one of the tree-views, a user might
need to know the GNY statement which is represented by a specific set of
nodes. To facilitate such a query, a feature which displays the GNY
statement represented by a given node through the use of tooltips has been
created. Thus, when hovering over a valid terminal node of a structured tree,

14 Elton Saul and Andrew Hutchison

the GNY statement which this node represents is displayed, as illustrated in
Figure 5. This feature prevents users from having to navigate a tree and
derive the GNY statement which it represents. Tooltips also give an
indication of what the implicit prefix for a given set of structured is. For
example, the implicit prefix of the structured trees illustrated in Figure 5 is
‘A believes that’. To view all of the GNY statements represented by the set
of structured trees, a user can right-click in any open area and select the View
as Text option from the resultant pop-up menu. A dialog containing an
English-style list of GNY statements in an edit box is then displayed, as
illustrated in Figure 5.

Another way in which the Visual GNY environment ‘guides’ a user is by
helping her to structure and order the analysis process. The tabbed panes
give an indication of the information required for an analysis, and are
roughly laid out in the order that this information would be supplied. Belief
and possession sets for a given principal are grouped into a single tabbed
pane, only one being visible at a time through the selection of radio buttons.
The statement counter at the bottom of a tabbed pane also helps to give an
indication of the number of GNY statements already specified. Nodes within
a given structured tree can be expanded or collapsed as required. If a node
contains children then a clickable token is displayed to its left. Clicking on
this token allows the node to be collapsed or expanded, thus allowing a user
to control the amount of information which is presented. In this way the
level of detail provided by the interface can be varied appropriately,
allowing a user to control any possible disorientation to some degree. Also,
because only one type of statement occurs in any given structured tree, the
user does not have to ‘search around’ for similar statements, as is the case
with some manual paper-based analyses. Presentation of the analysis results
is also well laid out, allowing the user to see at a glance whether there are
any valid or failed possessions and beliefs. This is accomplished through the
use of enabled and disabled radio buttons in the Results pane. All of these
results sets can be viewed by selecting the appropriate radio button, if it is
enabled.

6. CONDUCTING A PROTOCOL ANALYSIS

In Figure 6 we sketch the steps that are undertaken during a typical
analysis session. Such a session normally begins by specifying the
principals, messages and formulae of the protocol in question within the
GYPSIE specification environment. Once this phase has been completed, the
Visual GNY environment is invoked and the initial assumptions and goals of
each principal are specified as required. Extensions are also appended to

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

15

formulae. Once all of the necessary preconditions have been defined, details
such as the location of the Prolog interpreter, the location of the GNY rules
Prolog source, working directories and output files are defined within the
Analysis tabbed pane. Upon the initiation of the analysis process, the
structured GNY trees are all translated into a GYNGER-compatible Prolog
syntax and then run through the analyzer. The Visual GNY environment
monitors the analysis thread, and when it is complete, retrieves the results
from the output files, parses these results, and then constructs the appropriate
structured trees to display in the Results pane. Proofs and the list of all
derived statements are also stored.

1

Define the protocol specification in GYPSIE.

2

Define the initial belief and
possession sets for each principal.

3

Define the target belief and
possession sets for each principal.

4

Attach extensions to selected formulae.

5

Provide execution details for the GYNGER
analyzer and then invoke the analysis.

View valid and failed possession
and belief sets for each principal.

6

7

View all derived GNY statements in English-style
textual form.

8

View the annotated English-style GNY proof
for a successful possession or belief statement.

Figure 6. Steps undertaken when conducting a GNY protocol analysis.

16 Elton Saul and Andrew Hutchison

7. EXPERIMENTS WITH VISUAL GNY

In order to examine the suitability of the Visual GNY environment for
specifying GNY statements, we decided to conduct a number of user
experiments. Within these experiments, we decided to pit the Visual GNY
environment against manual, hand-written GNY statement construction. Our
major objective was to determine whether Visual GNY facilitates the
effective construction of syntactically and semantically correct GNY
expressions. We also wanted to gain an understanding of how users who had
never been schooled in GNY analysis techniques would be able to use the
structured tree approach, as opposed to those who had completed some
vestige of a course in security protocol analysis. The subjects involved in the
experiments consisted of two groups of users, namely those educated in
GNY analysis techniques and those who had never even heard of GNY.
Each of the GNY novices had completed a course in network security
principles. None of those who had been educated in GNY analysis
techniques had carried out a GNY analysis for the last six months. In total,
we involved fifteen educated users, and five novice users in the experiments.
The number of novice users was rather small. However, this did not present
a problem as we were more interested in how the educated users responded
to the environment, since they are more representative of those who will use
GNY analysis in the workplace or research arena due to their prior exposure.
In effect, the novice users were merely tested for comparative reasons.

The experiment that we developed took the form of three tests. The first
test required users to translate a given set of English-style GNY statements
into both mathematical GNY notation and structured trees. During this test,
individuals made use of Visual GNY to construct the trees. The second test
required the translation of GNY statements in mathematical-style notation
into English-style expressions. Finally, during the third test individuals had
to convert structured trees into equivalent English-style GNY statements. In
each test, we ensured that every type of GNY statement was exercised.
Before testing the novices, we gave them a brief five minute crash course in
GNY analysis techniques. Both groups of users were also briefly instructed
in how to use the Visual GNY interface. The Visual GNY tooltips feature
and the ability to view all of the structured trees as English-style text were
both disabled.

Prior to conducting the experiments, we realized that certain individuals
might not be able to recall or remember the meaning of a large portion of the
GNY notation. Such a situation might totally bias the results in favour of
Visual GNY. So, we decided to give the test subjects the option of using the
Visual GNY pop-up menu captions as a reference for the mathematical-style
GNY notation. Since the pop-up menus only provide descriptive text and a

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

17

mathematical-style GNY icon for each type of GNY statement, the
examination of an individual's ability to recall the mathematical-style GNY
syntax, construct coherent GNY statements and understand them
semantically was not biased by allowing this type of referencing. In fact,
when presented with the option of using Visual GNY as a reference, every
one of the test subjects accepted, indicating their apprehension regarding the
GNY notation. In this respect, we can say that the Visual GNY environment
assisted in the construction and interpretation of the hand-written
mathematical-style statements to some degree. The results for each of the
tests appears in Table 1.

Table 1. Results of experiments pertaining to GNY statement construction.
15 Educated Users 5 Novice Users

Sample
Mean

95% Confidence
Interval for Population

Mean

Sample
Mean

95% Confidence
Interval for

Population Mean
English to GNY 78.46% (76.91%, 80.02%) 72.31% (71.47%, 73.15%)

English to VGNY 98.46% (98.15%, 98.77%) 100.00% (100.00%, 100.00%)
GNY to English 87.22% (86.36%, 88.08%) 85.00% (84.75%, 85.25%)

VGNY to English 87.78% (86.82%, 88.73%) 91.67% (91.28%, 92.06%)

Listed within Table 1 are the average scores that were obtained by users

from each group for the respective tests. From the data obtained, we also
calculated the 95% confidence interval indicating where the population mean
should lie. This computation assumes that the set of users are a
representative sample of our envisaged user base. Since the sample size for
our set of novice users consisted of only five individuals, the confidence
intervals obtained are not as accurate as those of the educated users, which
had a larger sample of fifteen individuals.

An important conclusion that we can derive from the first two tests is that
Visual GNY effectively helps users to construct GNY statements. All of the
statements that were specified with Visual GNY turned out to be
syntactically correct. Those individuals who did not score perfect results for
the English to Visual GNY test committed semantic errors, specifically the
use of incorrect formulae within expressions. The reason why users always
constructed syntactically correct structured trees was because the Visual
GNY environment did not allow them to exit or change tabs unless all of the
trees were complete. The fact that the novice users all got 100% of the
Visual GNY statements correct and the educated users only got 98% correct
is not very significant. It merely indicates that the novice users concentrated
more closely on the formulae which they inserted into the structured tree.
With a larger sample of novice users, we would have definitely encountered
someone who would have made a substitution error. What's interesting to

18 Elton Saul and Andrew Hutchison

note is that using Visual GNY produces significantly better results than
specifying GNY statements by hand. When using Visual GNY individuals
scored almost 20% higher. Essentially, what the Visual GNY environment
has done is to totally remove the syntactical and notational issues associated
with the construction of GNY statements, thus allowing individuals to
concentrate on the actual protocol analysis process, which is far more
fundamental and important.

The final two tests revealed some interesting results. The scores for
reading off mathematical and structured tree-style GNY statements were
almost identical for the educated users, and not significantly different in the
case of novice users. This seems to indicate that the structured tree
representation of a given GNY statement is not any more readable than its
corresponding mathematical-style rendering. Difficulties encountered when
reading from a structured tree can be attributed to having to jump from node
to node, and sometimes having to skip nodes and only return to them later.
The fact that mathematical-style GNY is primarily structured in a linear
fashion means that it is not that difficult to interpret once the symbols have
been understood. Since the novice users had never used GNY before, they
did not have any preconceived notions as to how it should be written or
structured. This fact might offer a possible explanation as to why they scored
better than the educated users when reading from the tree. An interesting
point to note is that the test subjects found it easier to read mathematical-
style GNY statements than to construct them. This could be because
construction of these statements requires recalling the function of each
symbol and then stringing these symbols together correctly, while writing
out the meaning of mathematical-style GNY statements merely requires one
to have an idea of what each symbol represents.

During the course of this brief experimental analysis, we have noticed
that many individuals struggle to recall the mathematical-style GNY notation
if they have not been using it for some time. As a result of this fact,
individuals will not immediately make use of GNY to analyze protocols,
since their notational ineptitude would serve as a hindrance to the
specification of assumptions and goals. Because of this issue, we chose to
develop Visual GNY, empowering those who have used GNY in the past to
use it again with ease. The experiments which we have carried out have
confirmed that the construction of GNY statements in the Visual GNY
environment is a straight-forward and painless operation, producing high-
quality syntactically correct statements. However, reading GNY statements
from the structured tree is not necessarily a simple task, sometimes
confusing individuals. For this reason, the addition of the tooltips and View
as Text features are exceptionally useful, since they help to create a system
which virtually ensures that users construct error free statements  the pop-

An Environment to Facilitate the Teaching of
GNY-Based Security Protocol Analysis Techniques

19

up menus accelerating and aiding the construction process, and the tooltips
and View as Text features being used to validate, verify and view the
constructed statements.

8. CONCLUSION

Individuals who study network security techniques and then graduate to
become security protocol engineers need to be familiarized with security
protocol analysis techniques. However, we have to realize that to be useful,
an analysis method must also be usable. To expect individuals to remember
the syntax associated with a modal logic such as GNY or the plethora of
inference rules used in an analysis is bordering on the nonsensical. Instead,
the associated semantic issues and an understanding of how an analysis
occurs should be emphasized and taught, tools and reference material being
used for the rest.

There are a number of tools that can be used to carry out automated GNY
protocol analysis [5, 2]. However, an impediment to using most of these is
the construction of the specification which describes the protocol messages,
formulae, initial beliefs and possessions, and target goals. Supplying this
information is not always a simple and straight-forward task and its prompt,
efficient and error-free delivery often depends on the type of software being
used. For this reason, the use of software that helps to distance protocol
engineers from the syntactical element of protocol analysis, allowing them to
focus more on the underlying critical issues, should be encouraged and
taught.

A formal analysis method should not just be studied and forgotten.
Instead, the security community should be encouraged to develop tools that
facilitate and encourage its use by a broad spectrum of individuals. When
creating such tools, we should bear in mind that they should promote
information recall, not require it. A tremendous amount of research has been
carried out on security protocol analysis techniques [3], but how much of
this research actually gets used in the field by the engineers who work there?
Let's not allow good techniques to go unused. By encouraging more protocol
analysis techniques to be applied, we will encourage the development of
more robust and secure protocols.

Thus, by leveraging specially developed tools and techniques, a large
portion of the difficulties that individuals encounter when using formal
methods can be resolved. We have developed a visual environment within
which GNY protocol analysis can be conducted. A number of experiments
which we conducted on Masters and Honours level students indicates that

20 Elton Saul and Andrew Hutchison

the approach which we have used in this environment helps to facilitate the
construction of GNY statements, thus freeing individuals to focus more on
the analysis and the issues related thereto, instead of having them bogged
down in syntax and tedious inference rule application. We hope to continue
development of the SPEAR II framework by adding more analysis
techniques and ensuring that these techniques can be used by students and
protocol engineers alike when implementing and learning about network
security techniques.

9. REFERENCES

1. M. Abadi, M. Burrows and R. Needham. A Logic of Authentication. In
Proceedings of the Royal Society, Series A, 426, 1871, pages 233271,
December 1989.

2. S.H. Brackin. Deciding Cryptographic Protocol Adequacy with HOL:
The Implementation. In The 1996 International Conference on Theorem
Proving in Higher Order Logics, pages 6176, Turku, Finland, August
1996.

3. P. Georgiadis, S. Gritzalis and D. Spinellis. Security Protocols Over
Open Networks and Distributed Systems: Formal Methods for Their
Analysis, Design and Verification. Computer Communications,
22(8):695707, May 1999.

4. L. Gong, Cryptographic Protocols for Distributed Systems, PhD thesis,
University of Cambridge, April, 1990.

5. A. Mathuria, R. Safavi-Naini and P. Nickolas, On the Automation of
GNY Logic. In Proceedings of the 18th Australian Computer Science
Conference, volume 17, pages 370379, Glenelg, South Australia,
Fenruary, 1995.

6. J. Preece, Y. Rodgers, H. Sharp, D. Benyon, S. Holland and T. Carey.
Human-Computer Interaction. Addison-Wesley, 1994.

7. E. Saul and A.C.M. Hutchison, SPEAR II: The Security Protocol
Engineering and Analysis Resource. In Second Annual South African
Telecommunications, Networks and Applications Conference,
pages 171177, Durban, South Africa, September 1999.

8. E. Saul and A.C.M. Hutchison. A Generic Graphical Specification
Environment for Security Protocol Modelling. In Proceedings of the
Sixth Annual Working Conference on Information Security. pages
311320, Beijing, China, August 2000. Kluwer Academic Publishers.

9. E. Saul and A.C.M. Hutchison. A Graphical Environment for the
Facilitation of Logic-Based Security Protocol Analysis. South African
Computer Journal. (26):196 200, November 2000.

	INTRODUCTION
	SPEAR II FRAMEWORK
	GNY CONCEPTS AND NOTATION
	Formulae
	Statements
	Conducting an Analysis

	STRUCTURED TREES AND GNY STATEMENTS
	OVERVIEW OF VISUAL GNY
	The Visual GNY Interface
	Contextualized Pop-Up Menus
	Enforcing Syntactic and Semantic Correctness
	Exporting Visual GNY Statements
	Reducing Complexity

	CONDUCTING A PROTOCOL ANALYSIS
	EXPERIMENTS WITH VISUAL GNY
	CONCLUSION
	REFERENCES

