
Automated Attack Analysis and Code Generation in
a Multi-Dimensional Security Protocol Engineering

Framework
Simon Lukell, Christopher Veldman and Andrew Hutchison

Data Network Architecture Group
Department of Computer Science

University of Cape Town
Rondebosch 7701

Ph: (021) 650 3127
Fax: (021) 689 9465

{slukell, cveldman, hutch}@cs.uct.ac.za

Abstract— A unified, multi-dimensional approach to security
protocol engineering is effective for creating cryptographic pro-
tocols since it encompasses a variety of design, analysis and
implementation techniques, thereby providing a higher level of
confidence than individual approaches. SPEAR II, the Security
Protocol Engineering and Analysis Resource II is a tool which
supports this unified, multi-dimensional approach by offering
protocol designers an environment in which to graphically design
and analyse security protocols. The premise of this paper is that
providing a means of analysing security protocols for attack
vulnerabilities that are not detected by static methods, and
allowing for the translation of an abstract protocol specification
into a correct and secure protocol implementation in the context
of a multi-dimensional tool such as SPEAR II, will assist in
producing more secure security protocols.

I. I NTRODUCTION

Security protocol design, analysis and implementation have
become so advanced and complex that it is not viable to
perform certain moments by hand as they take too long
and/or tend to become tedious and error-prone over time.
Specialised tool support for formal methods can significantly
aid protocol engineers in creating and implementing more
secure cryptographic protocols, thus helping to prevent errors
that often creep into protocol implementations.

Each of the techniques currently available to the security
community is not capable of detecting every possible flaw or
attack against a protocol when used in isolation. However,
when used in combination with other formal methods, they
all complement each other and allow a protocol engineer to
obtain a more accurate overview of the security of a protocol
which is being designed. What is required is a unified approach
to protocol engineering, one which combines a number of
protocol engineering dimensions into one application that is
consistent and easy to use.Multi-dimensional security protocol
engineeringis an effective approach for creating and deploy-
ing cryptographic protocols, since it encompasses a variety
of analysis techniques, thereby providing a higher security
confidence than individual approaches can achieve [1].

A tool that employs such a multi-dimensional engineering
approach is the Security Protocol Engineering and Analysis
Resource (SPEAR) II [2]. SPEAR II is a tool that adopts
a unified, multi-dimensional approach to security protocol
engineering and analysis. It consists of various interacting
modules, combined into one graphical user interface, which
equip protocol engineers with an easily accessible array of
proven techniques with which they can design and analyse a
security protocol in an efficient and controlled manner.

II. T HE SPEAR II FRAMEWORK

An overview of the SPEAR II Framework is shown in
Figure 1. The modules employing the attack analysis and code
generation techniques presented in this paper are coloured
in black in the figure. The figure shows how the protocol
specification module of SPEAR II called GYPSIE [3] serves
as a basis for all the other dimensions. Protocol specification
in SPEAR II is done graphically in the GYPSIE environ-
ment, while GNY belief logic [4] analysis is done using the
Visual GNY and GYNGER components of the SPEAR II
environment.
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Fig. 1. Scope and ambitions of the SPEAR II Framework.

GYPSIE protocol specifications which are only subjected
to belief logic analysis such as GNY can still contain certain
flaws. In order to increase the confidence of protocols specified
in SPEAR II, the attack analysis dimension in Figure 1 was
investigated and implemented. The aim of this module is to
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analyse a GYPSIE protocol specification for security vulner-
abilities and detect certain flaws that GNY logic analysis is
incapable of finding. The implementation includes a graphical
attack analysis environment called GRACE and a dynamic
analysis engine called ACE. Both of these components are
shown in the figure, and are described in Sections III and IV.

In order for the abstract specification and logical analysis
of security protocols to be beneficial to the security protocol
engineering process, methods are required which provide an
efficient and effective translation from the high level protocol
abstraction to a secure and correct low level implementation.
Therefore, the aim of security protocol code generation in
the context of the multi-dimensional SPEAR II environment
is to provide a translation from the protocol specification in
GYPSIE and any associated protocol analysis information,
into a secure protocol implementation. The addition of a
code generation module to the SPEAR II Framework also
allows for the inclusion of performance analysis methods
into the SPEAR II Framework. Automatic code generation
of security protocols specified in SPEAR II is implemented
via the graphical code generation environment called GENIE
and the protocol code generator PCG, which are described in
Sections V and VI.

Another important aspect in protocol engineering is the
performance of the implementation. To assist the engineer in
evaluating the generated code, a performance analyser module
called SPANA has been incorporated into the SPEAR II
Framwork. This module enables measurement of various
performance metrics of different cryptographic libraries and
algorithms and is described in Section VII.

III. T HE ATTACK CONSTRUCTIONENGINE

The core of the attack analysis module is theAttack
ConstructionEngine (ACE). One of the main features of ACE
is that it is capable of modellingconstructed keys, i.e. the
attacker in the model can use more than one component,
possibly encrypted, as a key to send and receive encrypted
messages. ACE is based entirely on the method developed
in [5]. This model converts the reachability problem (finding
a state that violates some condition), into a constraint solving
problem, which can be analysed in a straightforward way.
In the model, the standard Dolev-Yao attacker model [6]
is used, in which the attacker of a protocol is assumed
to have full control of the network. It is also capable of
replaying old messages, but can also construct new messages
by decomposing previously sent messages into their parts and
recombining those parts, possibly encrypted with known keys
or other components. The model is based on thestrand space
model [7], but uses parameterised strands instead of constant
strand definitions.

To model a security protocol, the roles of the principals that
participate in a protocol are defined. A role definition serve
as a schema for instantiations of principals. Two instances of
a role are distinguished by the values of their parameters in a
protocol analysis model. Astrand is is a representation of an
instantiated role. ACE takes as input asemibundle, which is a

set of strands, and tries to find a protocol trace by instantiating
the parameters of the strands in the semibundle. Such an
instantiated set of strands is called abundle. A semibundle
can be modified in a number of ways to test different aspects
of the protocol. For a complete analysis of a protocol using
ACE, a vast number of different semibundle constructs must
be processed. If a completed protocol execution is found, ACE
outputs a protocol trace that describes the principals, their
actions and the sequence of these actions.

IV. DYNAMIC SECURITY PROTOCOLANALYSIS WITH

GRACE

Although possible, direct use of ACE requires good un-
derstanding of the model used in the engine and knowledge
of the format in which the roles and semibundles are defined.
Furthermore, the user would have to enumerate a large number
of semibundle combinations, which is both tedious and error
prone if done by hand. TheGraphical Attack Conduction
Environment (GRACE) assists the user in performing a proto-
col analysis with ACE, so that even an engineer with limited
insight in the analysis method can benefit from the system.

GRACE takes as input a protocol specification together with
parameters for the analysis. The protocol specification is taken
from from the SPEAR II specification environment, GYPSIE,
and the analysis parameters are taken from the graphical user
interface of GRACE. It returns either a trace of an abnormal
protocol trace (an attack on the protocol) or no result at all
(no attack found). This functional view of the module can be
decomposed into subfunctions as in Figure 2.
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Fig. 2. Data flow in the dynamic analysis module

The protocol specification is used for the generation of the
role definitions of the participants in the protocol. Components
of the role definitions are also used in the semibundles that
the analysis engine takes as input.

The semibundle enumeratorprovides a series of different
semibundles for the analysis engine to attempt to solve. The



most general case for the enumerator is to generate all possible
permutations of principal instances in a protocol run. Without
an upper bound on the number of instances, the enumeration
would be infinite. Therefore the semibundle enumerator also
takes as input a number of parameters that limit the size of its
output.

The enumeration is split into individual semibundles that
the analysis engine tests one at a time. This is done by the
sequencer. Each role definition contains a message sequence
in a SPEAR II format. In order for the analysis engine to
understand the message sequences, they must be translated
into a suitable format that the engine can understand. This
task is carried out by therole definition translator.

At this stage, ACE has all the data it needs to perform
a search on a semibundle. The output is either a trace of a
protocol run, or a termination message. Theoutput parser
gathers the necessary information from the output and passes
this information on to theresult analyser. This function de-
cides whether the trace that the engine returned is an abnormal
protocol run. If the trace is normal, it tells the sequencer
to continue the input to the analysis engine. If the trace
represents an attack, the result analyser passes the result on to
the presenter. If no trace was found, it reports this too. Finally,
thepresenteris a function that converts the trace into a format
that SPEAR II can use.

The current implementation of GRACE is capable of pro-
ducing input to ACE that detects secrecy violations for sym-
metric key protocol specifications, including those generated
by type flaw attacks. However, only a subset of authentication
failures can be detected. In order to detect the remaining
attacks, a number of rules must be added to the semibundle
enumeration procedure, to ensure that a complete search is
performed.

V. THE PROTOCOLCODE GENERATOR

The Protocol Code Generator (PCG) parses an abstract
GYPSIE specification and generates a secure implementation
of this specification. Java was chosen as the target language for
a PCG implementation due to the language’s excellent security
architecture and resistance to common security attacks caused
by buffer overflows as well as it’s suitability to heterogenous
networks. All message formatting in PCG is specified using
ASN.1 [8]. Using an accepted standard such as this makes it
possible for SPEAR II implementations to communicate with
other non-SPEAR II implementations. Parameters and settings
for code generation are specified in the graphical GENIE
environment before PCG begins generation. PCG parses both
the GYPSIE and GENIE data structures are also parsed by
PCG in order to:

• generate code for any additional message processing
actions specified

• extract message formats specified in ASN.1 and generate
ASN.1 Java files.

• which cryptographic algorithms and library to use and
• what communication settings to use such as port number

and transport protocol.

PCG does not build an intermediate parse tree from the
protocol specification as other security protocol code genera-
tors such asSPEAR I[1], AGVI [9] and Cryptographic Code
Generation From CAPSL[10] projects do. This is a benefit of
the multi-dimensional approach followed in SPEAR II since
the GYPSIE environment takes care of any semantic checking
and symbol references so that all is required is the direct
translation from the GYPSIE data structures to Java source
code.
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Fig. 3. The design and structure of protocol implementations.

Code generated by PCG follows the structure shown in
Figure 3. The Communications layer handles all network
connections for a principal and is part of the Java runtime
library developed for SPEAR II. The Principal Control layer
controls the actual principal application and the spawning
of new threads. The Protocol and Message Handling layers
are the actual protocol implementation are independent of
the implementation which exists at the Principal Control and
Communications layers. TheSecurityServiceslayer is also part
of the Java runtime library and acts as a common interface to
the Cryptix1 and Crypto-J2 cryptographic libraries which are
supported for generated implementations.

B. The PCG Generation Method

PCG contains the following public methods to initi-
ate generation:genPrincipals() , genProtocol() ,
genMsgHandlers() andgenASN1Specification() .
The former two methods generate classes for thePrincipal
Control andProtocol Logiclayers in Figure 3 while the latter
two are concerned with generating classes for theMessage
Handling layer. Code is generated by these methods using
code templates distributed with SPEAR II which contain
tokens that are replaced by generated code. An excerpt from
a template file is shown below:

1The Cryptix library is available from http://www.cryptix.org
2Crypto-J is an RSA product, more information regarding it can be obtained

from http://www.rsa.com



/* Prepare a message for sending */
public byte[] pack(int message)
{

byte[] returnMsg = null;

/* Pack routines for all messages sent */

<\$MSGPACKROUTINES>← A code template token

return returnMsg;
}

The excerpt above is a simplified example from theMessage
Handler template. A token such as the one shown in the
excerpt will be parsed and replaced by code generated to
handle message processing for each message in the protocol.
This approach is used for the generation of all the classes of a
protocol implementation. The only exception to this being the
ASN.1 Java classes for each message and message component.

The ASN.1 Java classes are generated by an external ASN.1
compiler, which takes a complete ASN.1 specification of all
the messages and message components in a protocol as input.
The ASN.1 compiler used for the current SPEAR II imple-
mentation is the ASN1C compiler3. PCG’s job is to generate
a complete ASN.1 specification from all the separate ASN.1
definitions specified for each message component described in
Section VI. This is done without the use of any templates.

Code that PCG generates for performance analysis in
SPANA (see Section VII) follows the same generation process
as other code and the same classes are generated. The only
difference is that PCG queries SPANA to determine what
performance metrics to generate code for.

VI. T HE GRAPHICAL CODE GENERATION ENVIRONMENT

Code cannot be generated in SPEAR II by relying on the
GYPSIE protocol specification alone, since certain actions,
such as checking the freshness of a nonce, are not explic-
itly specified in the GYPSIE specification. TheGENeration
Environment (GENIE), therefore provides a method for the
protocol engineer to control the implementation process, and
be able to focus on the semantics of an implementation rather
than the syntactical element in order to reduce the chance of
programming errors and having to modify the generated code
manually afterwards.

The GENIE environment comprises four interacting com-
ponents, each of which is concerned with the specification of
different areas of the implementation. Cryptographic settings,
such as the cryptographic library used, are specified in the
Cryptographic Settingscomponent while parameters such as
transport protocols and port numbers are specified in theCom-
munication Settingscomponent. The format of each message
component and essentially, each message, is specified in the
properties box of each message component. TheMessage
Processing Actionscomponent of the GENIE environment
is concerned with the specification of both pre-processing
and post-processing message actions such as checking the
freshness of a nonce.

3ASN1C Compiler is a product of Objective Systems and more information
can be found at http://www.obj-sys.com

The GENIE environment runs in tandem with the GYPSIE
protocol specification environment and PCG. Sub-protocols,
principals, messages and message components specified in
GYPSIE are imported and used for constructing message
processing actions and specifying cryptographic and commu-
nications settings. Parameters and settings are then parsed
by PCG for source code generation. Results and progress
indicators from the code generation process are retrieved from
PCG so that they can be displayed appropriately.

GENIE allows a protocol engineer to specify cryptographic
libraries and algorithms for each cryptographic operation in
a SPEAR II protocol specification. Transport protocols and
port numbers can also be specified for each principal. GENIE
allows a protocol designer to specify both multi-threaded and
single-threaded principals.

ASN.1 definitions are specified by the designer in GENIE
for each message in the protocol specification. Message pro-
cessing actions such as checking the freshness of a nonce are
specified using an easy to use structured tree. Any message
processing actions required such as checking the freshness of a
nonce, are generated by default from the information produced
for a GNY analysis in GYNGER, that is if such an analysis
has been conducted. GENIE interacts closely with existing
SPEAR II modules such as GYPSIE and the Visual GNY
environment in order to carry the benefits gained from using
GYPSIE and conducting a GNY logic analysis through to a
protocol implementation.

VII. T HE PERFORMANCEANALYSER

The source code generated from a GYPSIE protocol specifi-
cation can be augmented to provide performance measures for
several aspects of a protocol implementation. TheSPEAR II
PerformanceANA lyser (SPANA) is the component of the
SPEAR II Framework which interacts with the code generation
module to produce executable source code for a specification
and then gathers performance information from controlled
source code executions and displays it to the protocol engineer.

A. Performance Measures Supported by SPANA

Each of the metrics belongs to a category most fitting to
the aspect of a protocol that it measures. Under theProtocol
category, a protocol engineer can choose to measureTimings
for the entire protocol executionwhich will measure the total
time taken for the complete execution of each protocol run
and provide a mean time for all the protocol executions.

The metrics in theMessagescategory measure the following
aspects of a protocol:

1) Timings for each principal’s messages:This metric
measures the time taken between the start of processing of one
message to the start of processing of the next message for each
message of the principal. The mean time for each message
is returned as well as the mean time for all the principal’s
messages.



2) Timings for packing messages for sending:This metric
measures the time taken to process a message for sending
which includes cryptographic operations and ASN.1 encod-
ings. The mean time for each message processing procedure
in the protocol is returned as well as the mean time for all
pack operations.

3) Timings for unpacking received messages:This mea-
sures the time taken to process a message that has been
received which includes any ASN.1 decoding and decryption
which must be performed. The mean time for each message
unpacking procedure in the protocol is returned as well as the
mean time for all unpack operations.

The metrics in theCryptographicmetrics category operate
as follows:

1) Timings for all cryptographic operations:This provides
mean and total times for all cryptographic operations in the
entire protocol execution. This is ultimately a sum of all the
timings for the cryptographic operations of each message and
so provides an overall method of comparing cryptographic
libraries. However it is not an entirely accurate comparison
of cryptographic libraries since one library may be faster for
an algorithm used in the first message while another is faster
for an algorithm used in the second message and this measure
provides an overall picture which ignores such subtleties.

2) Timings for cryptographic operations of principals:
This measure provides mean and total times for all the
cryptographic operations of each principal which is useful
if the protocol engineer wishes to compare the time for two
principals using different cryptographic libraries.

3) Timings for cryptographic operations of each message:
This measure also provides both mean and total times for
the cryptographic operations of each message. This measure
is particularly useful since it can be used to compare the
effect of using different cryptographic algorithms in a message
and it provides a more accurate comparison of different
cryptographic libraries since their times for each message’s
operations can be compared.

The most important contribution these metrics make to the
performance analysis dimension is that they provide a basis
from which to compare performance and hence act as com-
parison measures rather than precise measures of individual
performance.

B. The SPANA Performance Analysis Method

A typical performance analysis session using SPANA starts
with the specification of which metrics described above to
measure. This is all done in a graphical user interface em-
bedded in the SPEAR II tool. It is required that all code
generation parameters are specified in GENIE first before a
performance analysis can be conducted. Once the metrics the
designer wishes to use have been specified the performance
analysis can begin. SPANA will then invoke PCG to generate
executable Java source code containing methods to write out
measurements for the specified metrics which SPANA reads
in and displays.

SPANA then invokes the SUN Java compiler to compile
the PCG generated code and then begins executing the
protocol. The number of protocol executions specified in
the SPANA graphical interface prior to the start of analysis
and determines the number of protocol runs that will be
started and used to gather the performance measurements.
Once all protocol executions are complete the mean values
for the specified performance measurements are displayed in
a tree-view of a results tab-sheet in the SPANA graphical
interface. The results displayed in the tree-view follow a
similar format to that shown below:

Category (e.g. Cryptographic Metric)
⇒Principal Name

⇒Message Name
⇒Measurement

However if the metric being measured is an overall metric
like theProtocolmetric then thePrincipal NameandMessage
Namenodes won’t exist in the results tree and only the mean
measurement will be shown.

The only results shown in the results tree-view are mean
results for all protocol executions. If the protocol engineer
would like more detailed measurements, another dialog can be
triggered which shows the total figures for each measurement
taken for all the protocol executions which are, essentially,
the figures used to calculate the mean values in the results
tree-view.

VIII. C ONCLUSION

In this project, the SPEAR II Framework has been expanded
and updated to realise a prototype for a complete attack
analysis module as well as the addition of a code generation
module and expansion of the performance analysis module.
At the completion of this project the following modules had
been integrated with the SPEAR II Framework:

• The GRACE attack analysis graphical interface (proto-
type).

• The ACE attack analysis engine (prototype).
• The GENIE code generation control and specification

environment.
• The PCG code generator and translation engine.
• The SPANA performance analysis module.

A. Attack Analysis Dimension

The investigation into dynamic protocol analysis (attack
analysis) methods and theory provided a solid basis from
which to implement the prototype of the attack analysis dimen-
sion which includes the GRACE environment and the ACE
attack analysis engine. The objective for the implementation
of the attack analysis dimension from the start of the project
was to show the usefulness of the available dynamic protocol
analysis techniques in the context of a multi-dimensional
protocol engineering tool. It is felt that this has effectively been
shown through the capability of discovering protocol flaws
that are undetectable in a static analysis such as GNY. Even



though both the implementation and the chosen platform are
far from optimal, the execution time for most protocol analyses
is comparatively short, which is an argument in favour of the
strand space algorithm that was used.

B. The Code Generation Dimension

The GENIE environment, through the use of intuitive and
flexible graphical interfaces, assists the designer in abstractly
specifying code generation settings, parameters and actions.
The same graphical interfaces is used to illustrate the ease
with which a protocol engineer can control the protocol im-
plementation process with a degree of flexibility that allowed
for many customised source code settings and actions to be
specified without having to manually modify source code after
the generation process.

The code generation process of the PCG Java generator
was also described in detail and evidence was provided
that PCG effectively provides a direct translation from the
abstract data structures of GYPSIE and GENIE to a source
code implementation. This means that the benefits of logi-
cal analysis and dynamic protocol analysis performed on a
GYPSIE specification is effectively transferred through to a
SPEAR II protocol implementation. All PCG generated code
was developed by strictly following the guidelines outlined for
secure Java development [11], thus increasing the trust in the
security of SPEAR II implementations.

C. The Performance Analysis Dimension

The measurement of performance metrics in SPANA,
such as the mean time to apply the cryptographic operations
of a message, allows for useful comparisons to be made
between the performance of different cryptographic libraries
and algorithms. Other performance measures supported
by SPANA assist the protocol engineer in identifying
performance lags in the specified protocol as well as
providing a comparison on the performance of different
message structures. Another important contribution made by
SPANA is the testing of how well protocol implementations
handle concurrency as well as the number of connections
capable of being supported before performance begins to lag.
All of these measures and comparisons provided by SPANA
give the protocol designer yet another perspective on the
protocol engineering process which contributes to enhancing
the efficacy and the efficiency of a protocol engineering and
implementation session.

In combination with the existing modules, the described ad-
ditions to the SPEAR II Framework form another step towards
the implementation of a complete multi-dimensional security
protocol engineering tool which will assist in producing more
secure cryptographic protocols.
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