
BLOX: Visual Digital Library Building
Technical Report No. CS03-20-00

David Moore
Department of Computer Science

University of Cape Town
+27 21 424 3492

dmoore@cs.uct.ac.za

Stephen Emslie
Department of Computer Science

University of Cape Town
+27 21 788 6278

semslie@cs.uct.ac.za

Hussein Suleman
Department of Computer Science

University of Cape Town
+27 21 650 5106

hussein@cs.uct.ac.za

ABSTRACT
This paper describes a visual system which was created for
connecting and configuring OAI/ODL digital library components.
The feasibility of this approach was shown and results were
encouraging.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: User Issues and Systems Issues.

General Terms
Management, Design, Human Factors, Languages, Theory.

Keywords
Digital libraries, BLOX, components, connection, ODL, OAI.

1. INTRODUCTION
Systems used for storing data electronically and allowing that
data to be accessed through standard electronic means (such as
the Internet) are often referred to as digital libraries. Software has
been created which eases the creation of these systems [1,4]. The
Open Archives Initiative (OAI) [2] provided standards for
communication between digital libraries.

In particular, the Open Digital Libraries (ODL) project [3]
provided components which can be combined to create digital
libraries. BLOX was created to provide a visual interface for
these components, in the hopes that using them would become
easier.

2. BACKGROUND AND MOTIVATION
As more information becomes available on the Internet and
corporations and academic institutions move towards recording
all information digitally, digital library systems are gaining in
popularity. It is important that these systems adhere to digital
library standards and protocols, to ensure they can communicate
with other information stores. These protocols can be complex
and custom solutions are less likely to adhere to them strictly.

As an increasing number of end users attempt to create digital
libraries for different purposes, it is also desirable for digital
libraries to be easier to create. For these reasons, tools which aid
the development of digital libraries are needed.

At present, there are a few digital library creation tools.
Greenstone [4] is one of the more popular applications for
creating digital libraries. It is simple to use, and research has

recently been done in making it easier to use [Patel, Personal
Communication].

Ease of use comes at some loss of functionality. Greenstone
systems are limited to running on a single machine. They are also
limited to storing and servicing information using their specific,
inbuilt method.

The ODL project was an attempt to provide a more flexible
approach to building digital libraries. It provided a set of
components which covered different areas of digital libraries,
such as data store, merging archives and searching and browsing
archives. These components can be configured and connected
together to create many types of digital libraries.

For example, in Figure 1, a simple digital library is shown. Two
collections of XML files are exposed through a data provider.
These are linked to an archive merger (DBUnion), which exposes
both these data sources as a single archive of information. A
search engine and a browse engine are connected to the merger,
and these components provide discovery services which a user
interface can then use.

Figure 1: An example digital library using ODL components

Components connect to each other using protocols layered over
HTTP. To connect to another component, a component is given
the relevant source’s URL.

The components remain difficult to configure. Although
configuration scripts are provided, it is often necessary to edit
XML configuration files manually to complete configuration.

DBUnion
Archive
Merger

IRDB Browse
Engine

IRDB Search
Engine

XML File Data
Provider 1

XML File
Collection 1

XML File Data
Provider 2

XML File
Collection 2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Server Machine

ODL Component
Collection

Server

Server Machine

ODL Component
Collection

Server

Client Machine

Server Stub

Graphic User
Interface

Client Machine

Server Stub

Graphic User
Interface

The configuration files used to describe component setup can be
complex. In particular, configuration errors are often introduced
when defining connections between components, as the relevant
URLs are usually long.

“The digital library in a box project was created to simplify and
enable the creation of digital libraries” [7]. The current interface
to the creation procedure uses a command line interface in a
UNIX environment. Even skilled computer users have
experienced considerable frustration before successfully making
use of these components [8]. This lack of usability makes Digital
Library creation using ODL components less feasible for novice
users.

3. APPROACH
3.1 Aims
The aim of the BLOX system is to facilitate using the ODL
components by abstracting them in a visual manner.
Configuration information is separated from the connections
between the components. BLOX provides an interface in which
users can enter configuration data and connect components
together in an intuitive manner.

3.2 System Structure
A visual environment for creating digital libraries needs a location
or locations at which to create the necessary components.
Creating a central repository on which to store these components
is sensible for several reasons. For instance, more than one party
might want access to the same data.

In addition, once components have been created, other parties
might want to use the already created components for their own
digital libraries. For instance, if a user wants to create a digital
library, and another then wants to connect their own user interface
to the already existing library, they should be able to use the
visual interface to achieve this.

Figure 2: Overview of BLOX system

Alternatively, if two collections of components exist, a user
should be able to access both collections and use components
from either or both to create digital libraries.

For this reason, BLOX adopted a distributed client/server model.
The client provides the graphic user interface and mechanisms for
communicating with the server (Server Stubs in Figure 2). The
server manages, configures and creates new instances of ODL

components in certain locations. Figure 2 demonstrates this
concept, showing two BLOX clients collaborating with two
BLOX servers simultaneously.

Information needed to successfully configure components was
represented using XML Schemas. These define what the
configuration options are, which protocols a component can use
(i.e., what type of components it can connect to) and what
protocols it exposes (i.e., what types of components can connect
to it).

3.3 Communications
A protocol was developed using the Simple Object Access
Protocol (SOAP) standard [5] for all communication between
client and server. This leaves the system open for external clients
and servers to be developed. Due to potentially long
configuration times, the SOAP messages were sent
asynchronously.

3.4 Managing ODL Components
3.4.1 Automated Configuration
A system has been developed to ease automated creation and
configuration of ODL components [Eyambe, Personal
Communication]. The ODL components are stored in such a way
that multiple instances of a component can be configured
separately from a single installation.

A component which has not been configured can be viewed as a
“type” of component, or potential component. A configured
component can be viewed as an “instance” of its type. Using this
model, root directories were assigned which held a specific type
of component. Instances of that type of component were stored in
subdirectories of the root directory.

Scripts written in the Perl scripting language, stored in the root
directory, provide access to configuration of the components, to
obtain information on the type of component and on what
instances of that type currently exist.

The BLOX server uses this system to manage ODL components.
It is configured with a list of the root directories of the types. It
interacts with the scripts to obtain component information for the
client, and to create new instances of components and change the
configuration of already existing instances.

3.4.2 Manual Configuration
The system described in the previous section leaves the BLOX
server loosely coupled to the components themselves. The server
does not keep a register of the component types or instances – it
relies on the scripts for that information at run-time. It is also
robust in the face of non-existent scripts due to incorrect or out-
of-date components.

Thus, components can be manually configured and deleted
without special consideration for the BLOX server. Other
systems or users could also use the scripts without conflict.

3.5 The Graphical User Interface
A Graphical User Interface has been developed for the creation
and configuration of OAI/ODL components. A screenshot is
shown in Figure 3. For comparison, a screenshot of manually
configuring ODL components is shown in Figure 4.

Figure 3: The BLOX user interface

This interface allows users to assemble components on a canvas.
Components can then be configured and connected. Once
configured, a set of components can be “published” as a digital
library. This sends the configuration information to the server
which creates an instance of the digital library.

Components are modelled as windows. The content of each
window describes how the component should be configured.
Arrows can be dragged between windows to represent
connections between components. A form is used to capture all
other configuration data.

Figure 4: The current method of configuring components

3.5.1 Representing the Components
The user interface needs to provide the user with a representation
of the available component types and component instances for use
in creating a digital library.

This is done through the Type and Instance notepads at the top of
the screen. Types and instances are represented by icons which
can be dragged onto the canvas to create component windows.
Types and instances are organised in separate tabs according to
the server on which they reside.

3.5.2 The Component Windows
Critical to the whole system is the method of representing
configuration information and possible connections in a way
which separates these concepts.

Once a user has dragged a component type on to the canvas,
creating a potential instance, he or she is presented with a window
representing the component. The window consists of a tabbed
interface. The tabs are “Details”, “Connection” and
“Configuration”.

The decision to model components as windows is partly because
windows are the primary container in the Windows operating
system. This is similar to the concept of a component in BLOX,
which is a container of configuration information.

Another point in favour of the use of windows is that it allows us
to make use of prior user knowledge. In this respect windows are
controlled in the same way in BLOX as they are in Windows.
This includes resizing them, moving them around and closing
them.

3.5.2.1 Details tab
The Details tab presents the user with the protocols which this
component exposes. This will be discussed in conjunction with
the Connections tab. This tab also allows the user to specify a
unique name for this component instance.

3.5.2.2 Connections Tab
The Connections tab presents the user with a list of the protocols
to which it is possible for the component to connect. Thus, if a
protocol in the connections tab of this component corresponds
with a protocol in the Details tab of another component, this
component can connect to that other component.

For ODL components, connections are fields in the describing
XML. Thus, they appear as optional or necessary fields in the
Schemas which represent types. To differentiate connections
from configuration information, the “appinfo” tag of the XML
Schema description is used to convey information about which
protocols a component can potentially connect to. Since
configuration elements will not have the protocol information in
this tag, presence of the information is enough to identify the
relevant fields.

Connecting components is achieved fairly simply. A protocol is
selected from the Connections tab, and dragged to the component
to which it should connect. The dragging is represented by rubber
banding an arrow across the canvas. If a connection is
successfully made, a permanent arrow will be drawn between the
two components. This can be seen in Figure 3. In addition,
connections can be removed by selecting the relevant connection
and pressing the “delete” key.

3.5.2.3 Configuration tab
The Configuration tab presents the user with a form consisting of
all the available configuration fields. This form is created using
the XML Schema representing the relevant type of component.

At present, two XML Schema Description (XSD) data constructs
are explicitly supported, one is partially supported, and one is
implicitly supported. Integers are represented in the form using a
spin button. This consists of a text control, and two buttons
which increment and decrement the integer in the text control.
The text control can still be manually edited.

Enumerations, or a list of string values representing all possible
values for a field, are also supported. They are represented with a
drop-down list.

All other simple values are assumed to be strings. Thus, strings
are implicitly supported. These are represented with a normal text
control.

The partially supported data construct is the complex type. This
data construct represents any collection of more than one other
simple type. BLOX only supports complex types consisting of a
sequence of simple types (complex types can also handle
structures such as unions).

Figure 5: Repeatable fields in the configuration tab

Whenever a field can occur more than once, a button appears
which enables the user to duplicate the relevant fields in the form.
This also works for the supported complex types, which is shown
in Figure 5.

3.5.3 Canvas Control
For users to feel comfortable with the interface they should have
sufficient control over the canvas space. A number of functions
can be performed in this respect. Users can:

• Delete component windows. This is done in the standard way
of closing windows in Windows. Deleting a component
window means that any connections to that component are
also deleted.

• Change the size and position of windows. This is done in the
same way that windows are moved and resized in Windows.
If windows are dragging off the canvas then the size of the
canvas is increased. This means that users have control over
both component size and position and the size of the canvas
they reside on.

• Windows can be automatically arranged in a number of
preset ways: Cascade, Tile Horizontally and Tile Vertically.

This is provided for ease of configuration when many
component windows are on the same canvas. However this
hides lines between components. It is probably simpler for a
user to simply enlarge the canvas when more space is
needed.

3.5.4 Tools Used
XML is used to communicate type and instance configuration
information to the user interface. This medium is also used to
communicate a completed digital library configuration back to the
server.

The interface was implemented using the wxPython windowing
toolkit and is therefore deployable on both UNIX and Windows
operating systems. This was a design objective as existing digital
libraries administrators, who are accustomed to using UNIX
environments, should be able to switch to this interface without
being required to change operating systems.

3.5.5 Usability Methodologies
A Graphical User Interface to the creation of digital libraries is
not implicitly easier to use than the current command line method.
To provide an interface that is easier to use BLOX applies certain
usability criteria.

The GUI is intended to make design and creation of digital
libraries easier. As such it is designed in such a way as to support
the user’s conceptual model of a digital library. An OAI/ODL
digital library is a set of components that communicate to form a
working structure.

Conceptually, this can be likened to a set of building blocks that
work together. The BLOX interface aims at being consistent with
this model in the following ways:

Components are modelled as windows. Windows are the primary
container in the Windows Operating System. This is similar to the
concept of a component in BLOX, which is a container of
configuration information.

To make use of prior user knowledge in this respect windows are
controlled in the same way in BLOX as they are in Windows.
This includes resizing them, moving them around and closing
them.

Connections are represented using lines with arrows showing the
conceptual direction of connection (not necessarily the direction
of flow of data). Connections are differentiated by assigning
colours to the lines.

3.6 BLOX User Experience
A step-by-step description of a typical user experience with
BLOX follows:

1. BLOX is loaded.

2. The user lets BLOX know what servers exist by adding
servers to the server manager.

3. The user starts a new project using digital library
components.

4. Types will start appearing in the types box. If more than one
server supports the selected handler then a notebook tab will
be created for each server. Each tab contains the types
available on that server.

5. The user can now click on “Get Instances”, which was
disabled till the project was started. If this is done then
instances start to fill the instances box. Instances are
organized according to the server on which they reside in the
same manner as in the types box.

6. A user will now have a set of types (and instances if the “get
instances” button was pressed). The user will drag types or
instances onto the canvas. For each type or instance dragged
in this way a component window is created.

7. Components are configured and connected. Names for
components will be entered through the “details” tab.
Configuration information will be entered in the
“configuration” tab and connection information is supplied
by dragging connections from the “connections tab”.

8. If the user is unsure what configuration fields represent, they
are able to click on a question mark icon next to the field that
supplies this information.

9. Once all components have been configured the user selects
“publish” from the components menu.

10. The server attempts to create the digital library from the
configuration given. If it succeeds then this is reported to the
user. If it fails then an error is given that describes what the
error was and where it occurred.

4. RESULTS
Preliminary tests have been performed on the system. Users were
chosen for prior knowledge of digital library concepts, but the
testers used were not familiar with all the ODL components used
in the test.

4.1 Testing Format
Users read a short description of BLOX and a synopsis of the
specific components used in the test. They were then required to
follow a sequence of tasks which resulted in them first building a
simple digital library, and then expanding the digital library to a
fairly complex model.

The resulting digital library combined two archives with an
archive merger, exposed this merged archive using a searching
interface and a browsing interface, and connected these both to a
simple Web-based user interface. The developed system is shown
in Figure 6, with connection direction as specified in the BLOX
user interface. The names given in brackets refer to the specific
ODL components used.

The users were then given a questionnaire which tested reaction
to aspects of the system ranging from usability of the graphic user
interface to whether BLOX produced the digital library they
expected it to. Questions were also asked concerning whether the
user would want to use the system again. The tests ran for
approximately 30 minutes, including reading time and answering
the questionnaire.

Figure 6: The digital library system created in the user tests

4.2 Test Results
All but one user successfully completed all the tasks in the test.
The user who did not complete the tasks experienced some
difficulty with creating the more complex digital library due to a
limitation of the interface, but still managed to create the simple
digital library.

The users’ impressions, as recorded by the questionnaire, were
mixed. Some felt that BLOX was both faster and easier than
manually configuring digital libraries, while others felt otherwise.

Users also had difficulty with understanding the components.
There was confusion at times as to what the purpose of certain
configuration fields was. Users occasionally had to be prompted
with correct values for configuring.

The confusion arose when certain information configured the
manner in which specific connections were made, rather than the
internal state of the component.

However, the speed with which users developed digital libraries
compare favourably with reported speed for building a digital
library manually. Users building simple digital libraries from
ODL components are reported to take anywhere from eight hours
to three months to create their first digital library [8]. The testers
managed to configure a fairly complex digital library in 30
minutes, including the time taken to understand the system and
the relevant components.

One issue with the interface which arose consistently was the lack
of sufficient feedback for user’s actions. The asynchronous
model used, and the amount of time taken to run the scripts on the
server, caused a time lag which caused many users to get
frustrated with waiting.

However, positive feedback was uniformly given for BLOX as a
visual component connection system.

Internal Archive
(Box)

External Archive
(OADP)

Archive Merger
(DBUnion)

Browse Engine
(DBBrowse)

Search Engine
(IRDB)

Web-based User
Interface (UI)

5. CONCLUSION
The testing showed the viability of a system such as BLOX for
creating digital libraries. All but one of the users successfully
created digital libraries using BLOX.

It has been shown that the methods used by BLOX increase the
speed of creating digital libraries. The tests demonstrated users
who were unfamiliar with the components still developed digital
libraries in a fraction of the time usually taken.

It cannot be said whether using BLOX to create digital libraries is
easier than the alternative. Issues which users discovered
concerning the system caused confusion for the more complicated
tasks. Due to those issues, BLOX cannot be considered as a
production-quality system. Instead, it has demonstrated a
methodology which looks very promising.

6. FUTURE WORK
As mentioned in the results, there are still problems with the user
interface which need to be resolved. In particular, methods for
linking certain configuration information to connections need to
be investigated. At present, the user interface represents them as
fully distinct.

Preliminary tests have been performed with BLOX. More in-
depth tests are needed to prove whether or not BLOX can fully
replace manual configuration of ODL components.

7. REFERENCES
[1] Castelli, D., Pagano, P., Simi, M. Open DLib System.

Accessed 12 April 2003.
<http://opendlib.iei.pi.cnr.it/home.html>

[2] Lagoze, C. and Van de Sompel, H. The Open Archives
Initiative: Building a Low-barrier interoperability
framework. JCDL ’01, June 17-23, ACM, 2001.

[3] Suleman, H. and Fox, E. A Framework for Building
Open Digital Libraries. D-Lib Magazine Volume 7
Number 12, 2001.

[4] Witten, I., Bainbridge, D., Boddie, S., Don, K.,
McPherson, J. Inside Greenstone Collections.
Greenstone Digital Library, 2003. Accessed 14 April
2003.
<http://www.cs.waikato.ac.nz/~ihw/greenstone/inside.ht
m>

[5] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H. F., Thatte, S., Winer, D.
Simple Object Access Protocol (SOAP) 1.1. W3C,
2000. Accessed 12 April 2003.
<http://www.w3.org/TR/2000/NOTE-SOAP-
20000508>

[6] Mountain, H. M., Kopecky, J., Williams, S., Daniels,
G., Mendelsohn, N. Experimental SOAP Binding to
Email (RFC2822 – Internet Message Format). W3C
2002.

[7] Digital Libraries in a Box Homepage. Accessed 10
October 2003. <http://dlbox.nudl.org/index.html>

[8] Luhrs, E.. DL-in-a-Box. Rutgers University, New
Jersey. 10 May 2003.

http://opendlib.iei.pi.cnr.it/home.html>
http://www.cs.waikato.ac.nz/~ihw/greenstone/inside.ht
http://www.w3.org/TR/2000/NOTESOAP
http://dlbox.nudl.org/index.html

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

