A comparison of Unified Modelling
Language (UML) and Specification and
Description Language (SDL)

Marshini Chetty

02-01-00
March 17, 2002

Data Network Architectures
Department of Computer Science
University of Cape Town
Private Bag, RONDEBOSCH
7701 South Africa

e-mail: dna@cs.uct.ac.za



https://core.ac.uk/display/232195746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

This report serves as a basic introduction to the formal specification languages,
UML and SDL.

1.1 What is UML ?

According to Booch et al [1], UML (Unified Modelling Language) is a standard
language for visualizing, specifying, constructing and documenting the artifacts
of a software system. It is an object oriented language with a graphical repre-
sentation and is standardised by the Object Management Group (OMG). UML
can be used to model many different types of software and other systems.

1.2 What is SDL ?

SDL (Specification and Description Language) is a standard language used
to specify and describe the functional behaviour of telecommunication and
other systems. SDL is standardized by ITU (International Telecommunications
Union), as standard Z.100. It has a both a graphical format (SDL/GR) and a
textual format (SDL/PR) [2].

More specifically, an SDL specification models systems with concurrently
running processes. These processes are finite state machines that communicate
with each other and with the environment via signals.

1.3 How can one compare the two languages?

UML and SDL can be compared on the diagrams that they offer. The main
diagrams that will be considered in this report are:

1. Class Diagrams in UML and Block Diagrams in SDL
2. State Charts in UML and Process/Procedure Diagrams in SDL

3. Sequence Diagrams in UML and Message Sequence Charts used in con-
junction with SDL

After a basic discussion of the above diagrams, the report examines the gen-
eral similarities and differences between the two languages. Lastly, it discusses
the future of the languages.

2 UML Class Diagrams and SDL Block Dia-
grams

UML class and object diagrams describe the static structure of a system. In
SDL, the static structure of a system is described in system and block diagrams.



ClassName

Attributes

Operations

Figure 1: Class Symbol

O

Figure 2: Interface Symbol

2.1 Class And Object Diagrams

A class diagram contains classes, interfaces, collaborations and relationships.

A class is a set of objects with the same attributes, operations, relationships
and semantics. Classes may implement one or more interfaces. The notation
for a class is a rectangle as shown in figure 1.

An interface is a collection of operations that specify a service which a class
should provide. It describes the externally visible behaviour of an element. It
only defines operation specifications and not operation implementations. The
notation for an interface is a circle, which is usually attached to the class that
realises it. This is shown in figure 2.

A collaboration is an interaction and defines a group of elements that work
together to provide some cooperative behaviour. Collaborations have structural
and behavioural properties. A class may participate in more than one collabo-
ration . A collaboration is shown as an ellipsis with dashed lines as depicted in
figure 3.

A dependency relationship is a semantic relationship between two objects. It
is used to depict the fact that a change to one object may affect the semantics
of another object. In other words, it represents that one object is dependent on
another [1]. It is shown as a dashed line, which may be directed. This is shown
in figure 4.

An association relationship is a structural relationship that describes a set
of links. A link is a connection between objects. A special type of link is
aggregation, which shows a structural relationship between a whole, and its
parts. An association is depicted as a solid line [1]. It may have adornments
such as multiplicity and role names such as in the example in figure 5.

A generalization relationship shows the relationship between a general ele-
ment (or parent) and a specialised version of this element (or child)[1]. It is

/" Collaboration
«_ Name -

Figure 3: Collaboration Symbol



,,,,,,,,,,,,,,, =

Figure 4: Dependency Symbol

1.2

parent children

Figure 5: Association Symbol

depicted as solid line with a hollow arrowhead pointing toward the parent. This
is shown in figure 6.

A realization relationship is a relationship between two elements in which
one element specifies a contract that the other element carries out. These occur
between interfaces and classes or components that implement them as well as
between use cases and the collaborations that carry them out [1]. A realization
is shown as a directed arrow with a filled in arrowhead and can be seen in figure
7.

Other relationships include refinement, trace, include and extend which will
not be discussed here.

Class diagrams depict the static view of a system and are the most common
type of diagram used in object-oriented systems.

An object diagram contains a set of objects and their relationships. Object
diagrams show instances of things found in class diagrams. They also show the
static view of a system.

2.2 System and Block Diagrams

An SDL system consists of a number of blocks. SDL Blocks represent com-
ponents of a system. Each block may be connected to other blocks or to the
boundary of the system via channels. Channels convey signals between blocks.
A block contains a number of process descriptions and possibly subblock de-
scriptions [2].

A system diagram gives a high level view of a system. The system contains
everything to be specified. A system diagram contains:

e system name

e signal descriptions - for the signals exchanged between blocks in the system
or between blocks and the environment.

e channel descriptions - for the channels that interconnect blocks in the
system and that connect blocks to the environment. A channel description
contains the name of the channel, a list of signals that can be transported
by that channel and the identification of the end points of that channel.
A channel is depicted as a line with an arrowhead as shown in figure 8.

Figure 6: Generalization Symbol



Figure 7: Realization Symbol

[signal name]

Figure 8: Channel Symbol

data type descriptions - for user defined data types that exist in the system
an its environment.

block descriptions - for the blocks that make up the system. A block is
shown as a rectangle with cut off edges as depicted in figure 9.

System diagrams may also contain signal list descriptions and macros de-
scriptions, which are not discussed here [2]. Descriptions that are written in the
textual syntax of SDL are placed within a text symbol as shown in figure 10.

A block diagram gives more detail than a system diagram [2] . A block
diagram contains:

block name
signal descriptions - for signals within that block.

signal route descriptions - for the signal routes that connect the processes
within a block together as well as to the environment of the block. A
signal route is depicted as a line with arrowheads at the ends of the signal
route symbol. This is shown in figure 11.

channel to route connections - which describe the connections of the chan-
nels outside the block with the signal routes within the block.

process descriptions - for the process types that describe the behaviour of
the block. A process is shown as a rectangle with cut off edges as shown
in figure 12.

The above diagrams show the static view of the system and can be considered
equivalent of UML class and object diagrams.

o

Figure 9: Block Symbol



o

Figure 10: Text Symbol

Figure 11: Signal Route Symbol

3 State Charts in UML and Process/Procedure
Diagrams in SDL

3.1 State Charts

UML state charts show how an object moves from one state to another and the
rules that govern the change of state. State charts provide a state overview and
focus on states. State charts usually have a start and an end condition.

A statechart diagram contains a state machine with states, transitions, events
and activities. It depicts a dynamic view of a system and is used to model the
behaviour of a class, interface or a collaboration. It can also be used to show
the event ordered behaviour of an object.

A state machine represents a sequence of states an object or an interaction
undergoes in response to certain events. It is used to represent the behaviour of
collaboration of classes or of a specific class. It is made up of states; transitions
which are a flow from one state to the next; events which are the things that
trigger transitions and activities which are the response to transitions [1]. A
state is shown as a rounded rectangle. This is shown in figure 13.

3.2 Process and Procedure Diagrams

SDL process diagrams show state-to-state behaviour as well. However, they
focus on transitions, actions and the control of flow.

An SDL process is an extended finite state machine. It works independently
or concurrently with other processes. Processes can cooperate by sending asyn-
chronous signals to one another. A process can also communicate with the
environment of the system via signals. The behaviour of a process changes as
it responds to external stimuli and is represented by a number of states and
transitions. A process can use and manipulate data stored in variables local to

its finite state machine [2].

Figure 12: Process Symbol



Figure 13: State Symbol

g
Start State ] input < output
L
nextstate save
task decisio

Figure 14: Basic Symbols in a Process Diagram

An SDL procedure is a finite state machine within a process. It is created
when a procedure call is interpreted and dies when it terminates. SDL procedure
diagrams help make process diagrams less cluttered by moving the detail to a
separate diagram.

A process diagram describes a process [2]. It contains:

® Drocess name

formal parameters

variable descriptions

timer descriptions

procedure descriptions

e descriptions of the finite state machine of the process

The basic symbols used in a process diagram are shown in figure 14.

A procedure diagram is similar to a process diagram. Two symbols that are
differ in a procedure diagram are the start symbol and the return symbol as
depicted in figure 15.

return
start

Figure 15: Symbols in a Procedure Diagram



3.3 Differences in the diagrams

Looking at statecharts in UML and finite state machines (in process or procedure
diagrams) in SDL, one notices differences between the two. UML statecharts
focus on states and give a much better overview of the different states in which
an object can be. Furthermore, there is a lack of good notation in UML to
model transitions in greater detail [4].

SDL finite state machines, conversely, focus on transitions and are much
more detailed than statecharts. Several symbol differences in the diagrams exist
as well. For instance, UML include the notion of nested hierarchical states and
entry as well as exit level actions. This is not done in SDL except as flattened
states with entry and exit level actions modelled in appropriate transitions.
Another difference is that a procedure in SDL is represented by an operation or
a state machine in UML.

A further dissimilarity is that input in SDL process/procedure diagrams are
represented as transition triggers in state charts. Saved signals in SDL are
represented by deferred events in UML and nested states in UML are modelled
as flattened states in SDL. Lastly, a dash state in an SDL finite state machine is
shown as an internal transition in an UML state chart. The notation differences
are shown in figure 16.

4 Sequence Charts in UML and Message Se-
quence Charts used in conjunction with SDL

4.1 Differences in the diagrams

UML sequence diagrams are used to model the logic of usage scenarios. A usage
scenario describes a potential way that your system is used. Thus a sequence
diagram shows a pass through part of or a whole use case. A sequence diagram
emphasises the time ordering of messages.

Similarly, MSCs depict a path taken through an SDL specification. Accord-
ing to [5], they show sequences of signals sent between two or more processes.
Therefore they are used to help understand the information that needs to be
passed between parts of a system. Furthermore, they identify the logical time
order in which information is available and can be processed. A MSC entity
name should correspond to the name of an equivalent entity in the associated
SDL specification.

There are several differences between UML sequence diagrams and MSCs.
Firstly, MSCs have inline expressions. These provide a compact notation to
represent minor variations in an MSC. The variations could be alternative paths,
optional parts, repetitions or exceptions. Within a sequence diagram in UML,
it is more difficult to define variability in a single diagram.

Secondly, in MSCs one can include references to other MSCs within a single
diagram. This allows one to leave out certain details in one diagram and put
them in a separate diagram for easier readability. In UML, on the other hand,
one cannot reference one sequence diagram from another.

Thirdly, in MSCs, high-level MSCs show how different diagrams are related
to each other. This is done in a similar fashion to an inheritence hierarchy.
These high level charts provide a good overview and a compact way of describing



UML symbols SDL symbols

O

Start symbol

Start symbol

©

Termination Symbol Termination Symbol

Dx

State symbol State symbol

Transition from A to B Transition from A to B

]

.

Action

B
entry/action B
Substate notation State symbol with comment symbol

oA

substate of A

:

Figure 16: UML and SDL notation differences in state charts and process dia-
grams respectively - UML symbols are shown on the left and SDL symbols are
shown on the right



several MSCs. This feature of MSC is useful for large requirements specifications
composed of many MSCs because it helps to structure the diagrams. In UML,
showing an overview of how the sequence diagrams are related is not possible.

Conversely, UML has guard conditions, transition names and the ability
to express constraints, which one cannot do in MSCs. Thus the diagrams are
similar but each has several different features from the other. The notation of
the diagrams is also slightly different and is shown in figure 17.

4.2 Sequence Diagram Notation

In a UML sequence diagram, the rectangles at the top of the diagram represent
classifiers or their instances. These may be use cases, objects, classes or ac-
tors. Objects are named in the following way: ObjectName: ClassName Object
names are optional. If an object has no name, it is known as an anonymous
object. Classes and actors are named in the following ways: ClassName Actor-
name These names are placed inside the rectangles representing the entities at
the top of a UML sequence diagram. Dashed lines that run vertically from the
rectangular entities at the top of a sequence diagram represent object lifelines.
A lifeline depicts the life span of an object during the scenario being modelled.
Long thin vertical rectangles on lifelines represent method invocations. Method
invocations indicate processing that is being performed by the target object or
class to fulfil a message. A cross at the bottom of a lifeline indicates object ter-
mination. This means that the object is destroyed and is removed from memory.
Messages in sequence diagrams are represented by labelled arrows. These are
the basic symbols used in UML sequence diagrams and can be viewed in figure
17.

4.3 MSC Notation

In a MSC, the notation for a message is also a horizontal labelled arrow from
one entity axis to another. An entity axis is the solid vertical line representing
the lifeline of the entity. Each entity is also depicted as a rectangle as in UML.
However, the labelling conventions differ slightly. In MSCs, the instance kind
is placed inside the rectangle representing the entity and the instance name is
placed above it. Another difference between MSC notation and UML notation
is that every instance axis in MSC terminates with a filled in box. MSCs have
no formal notation for actions. An action taken is defined by text in an action
box. This has no meaning in MSC but can be given formal meaning in SDL.
This is the basic notation for MSCs.

5 What are the similarities between the two
languages?

SDL and UML have many things in common - both languages are object oriented
and have a graphical representation. Good readability is a feature of both
languages and extensive tool support exists for SDL and UML. Lastly, both
languages can be used to model many different types of software systems.



UML symbols MSC symbols

Note Symbol Text Symbol
Type
Name
Name:Type
I
I
I
I
I
I
] ] Instance end
filled in box
Object termination Process stop
Focus of Control/ Method Invocation No Focus of Control
Typel Type2
ObjectA:Typel ObjectB: Type2 InstanceA InstanceB

I I

| |

| message | message

I I

I I

How amessage is depicted How a message is depicted

Figure 17: UML and MSC notation differences in sequence diagrams and mes-
sage sequence charts - UML symbols are shown on the left and MSC symbols
are shown on the right

10



6 What are the differences between the two lan-
guages?

However, many distinctions between the two languages are present. This section
compares and contrasts SDL and UML.

Firstly, SDL has both a graphical (SDL/GR) and a textual syntax (SDL/PR)
[3]. This makes SDL a precise and complete language, which is unambiguous
and has formal semantics.

The formal semantics of SDL support the automatic generation of code from
SDL specifications. This gives one the ability to verify and validate specifications
written in SDL to ensure that they conform to their requirements. SDL also
allows one to generate test cases to check specifications for correctness.

It is for this reason that SDL is widely used in the telecommunications
industry. When specifying protocols, for example, ensuring that the protocol
runs correctly is imperative. SDL can, of course, be used to model many other
types of system as well.

UML, on the other hand, is just a graphical language. All textual parts of a
UML model are written in English prose and are usually placed in adornments
on a UML diagram or in separate documents.

The only textual language that is a part of UML is Object Constraint Lan-
guage (OCL)[7]. It is used to specify constraints over entities in a model. Con-
straints expressed in English prose may be unclear and OCL eliminates these
ambiguities due to its formal nature. However, at present, OCL is not regarded
as the textual format of UML models. Thus UML can be regarded as more
flexible and expressive than SDL due to fewer formalities.

Also, UML’s lack of notational and semantic detail often makes it favoured
as a formal specification method because it is easier for users to grasp. Yet, it
also means that UML has no formal semantics which is disadvantageous. This
point is elaborated on below.

UML is used for modelling many different types of software systems. Amongst
different, specifications for different systems, the UML symbols and concepts
may have different meanings. According to [8], the interpretation of a UML
model also depends on the background and environment of the reader. Further-
more, due to the extensibility of UML via the use of stereotypes, constraints
and tagged values, different UML documents may have entities unique to those
documents.

For this reason, although UML has a standard notation, it does not have a
standard meaning and this complicates the process of trying to generate code
from, simulate or execute UML models. Therefore one is unable to check UML
models for correctness and this puts UML at a great disadvantage as compared
to SDL.

Another difference between SDL and UML is that UML has many more
diagrams on offer than SDL. As a result, in UML, one can get many more views
on the same information. For instance, one can get a functional view of the
system (in use cases), a structural view (in class and object diagrams), a dynamic
view (in collaboration diagrams and sequence diagrams) and an implementation
view (in deployment and component diagrams) of a system.

Also, use case diagrams and collaboration diagrams are unique to UML and
have no direct equivalent in SDL. Use case diagrams are useful because they

11



show how users of a system interact with the system. They easily demonstrate
whether the system is doing what is required of it. Collaboration diagrams are
convenient because they show one the structural organisation of objects that
send and receive messages. This is one of the advantages of UML as compared
with SDL.

Moreover, as [9] states, in UML, one can more easily see how classes are
related by dependencies and associations, e.g. by inheritence/generalization
hierarchies, at a glance. In SDL, these relations are not as easily apparent from
just looking at the four basic SDL diagrams. For instance one cannot simply
see how type definitions are related to each other via the textual format of this
information as it is presented in SDL.

On the other hand, SDL diagrams form a much nicer hierarchy of detail from
the high-level system diagram to the lowest level of detail in procedure diagrams
[4] UML diagrams are not arranged in such a step-by-step decomposition of
detail.

One major disadvantage of UML as mentioned in [4] is that if one specifies
a model in UML, one has to manually implement it. At most, tools presently
exist that can generate a skeleton code from a UML specification but one still
has to fill in the gaps in code manually. SDL is superior in this regard as it
supports automatic code generation. This also cuts down development time
as one’s specification gives one an application without having to code one line
manually!

7 How can one translate between the two lan-
guages?

Many mappings exist between the two languages in spite of their differences.
An example of such a mapping is given below. UML classes can be mapped
onto SDL types. For instance, classes with the same attributes and behaviour
can be mapped onto process types. Another example would be that of container
classes mapping onto block types.

Some concepts in SDL have no direct or obvious equivalent in UML and
vice versa. This section briefly discusses some of these constructs. In UML,
there is no construct such as macros [10]. Macros definitions allow one to place
a description in one part of a system and reference that description from any
other part of the system [3]. Data modelling in SDL also cannot be mapped
onto UML directly [10]. SDL models data in great detail whereas UML does
not.

In addition, according to [9], the concept of interfaces in UML cannot be
directly represented in SDL due to a lack of a corresponding construct. Fur-
thermore, SDL does not have a construct equivalent of multiple inheritence in
UML. In SDL, only single inheritence is supported [10].

Lastly, receiving priority in SDL cannot be modelled in UML directly [11].
Receiving priority refers to the fact that a receiving process in SDL can specify
that a given input has priority over all other input. However, with the use of
extra stereotypes, this concept can be modelled in UML [10]. These are just
several of the concepts that differ between the two languages.

12



8 Conclusion

At present, UML and SDL are viewed as complementary languages. The two
languages are increasingly being used together to specify software systems. UML
is used in the analysis (of requirements) and early design parts of the software
engineering process as it is more flexible and provides better overviews. More
detailed design and behaviour specifications are done in SDL with the advantage
of being able to test these for correctness.

Other ventures that have been undertaken using the two languages include
attempts to show how one can be mapped to the other [10]. Selic and Rumbaugh
[11] have written a paper showing how SDL can be mapped to UML and ITU
have released a recommendation Z.109 showing how UML can be mapped to
SDL.

[10] states that this ITU specification defines rules for translating UML class
diagrams and statecharts into SDL equivalent architecture and behaviour. The
translation defined in the specification gives the UML model SDL semantics.
This allows for the compilation of UML models as well as simulation.

Furthermore, the latest version of SDL, SDL-2000 has tried to align SDL with
UML [10] and includes descriptions of how to use UML models within SDL [4].
The Object Management Group (OMG) who are responsible for standardising
UML are , in turn, trying to incorporate the use of SDL 2000 in the latest
version of UML - UML 2.0.

Thus UML 2.0 will include an extension known as Action Semantics as well
as an improved version of OCL. Action semantics [13] lets one express actions as
UML objects and define actions that occur in state machines or class operations
in more detail than previously. According to [4], actions semantics have been
included to enable UML to specify behaviour in sufficient detail to allow for
execution and verification of UML models.

Also, many companies such as Telelogic Tau are interested in the combined
use of SDL and UML [12]. Recently, Telelogic released a tool that combines
the languages, allows one to simulate specifications written in the combined
language and generate test cases for specifications.

In conclusion, the future of both languages looks bright since they each have
their supporters. Also, the developers of the respective languages are actively
trying to remedy problems associated with both the methods. At this stage, it
seems that UML and SDL are moving toward becoming a combined specification
language that would be beneficial to all.

13



References

[1]

[2]

[3]

[5]

[6]

[10]
[11]

[12]

[13]
[14]
[15]

Grady Booch, James Rumbaugh, Ivar Jacobson The Unified Modelling Lan-
guage User Guide, Addison-Wesley, 1999.

Ferenc Belina, Dieter Hogrefe, “The CCITT-Specification and Description
Language SDL” , Computer Networks and ISDN Systems 16 (1988/89)
311-341, Elsevier Science Publishers B.V. (North-Holland), 1989.

Ove Faergemand, Anders Olsen, “Introduction to SDL-92”, Computer Net-
works and ISDN Systems 26 (1994) 1143-1167, Elsevier Science Publishers
B.V.(North-Holland), 1989.

Morgan Bjorkander , “Graphical Programming using UML and SDL”.
http://www.telelogic.com/download /paper/graphicalprogramming.pdf

O Faergemand, A Olsen, B Moller-Pedersen, R Reed, J R W Smith, Sys-
tem Engineering using SDL-92, Elsevier Science Publishers B.V.(North-
Holland), 1994.

International Engineering Consortium online edu-
cation, “ SDL -specification and description lan-
guage” http://www.iec.org/online/tutorials/sdl/.

Object Constraint Language, http://www-
3.ibm.com/software/ad/library /standards/ocl.html.

Jos Warmer, “ The future of UML” http://www .klasse.nl/ocl/index.html.

E. Holz, “Application of UML in the SDL Design Process”, SAM98 Work-
shop, Berlin, June 1998 http://citeseer.nj.nec.com/268645.html.

Analysis to design - HOORA . http://www.hoora.org

B Selic, J Rumbaugh, “Mapping SDL to
UML”, Rational Software white paper, 1999.
http://www.rational.com/products/rosert/prodinfo/reading/sdl2umlv13.pdf

“Telelogic First Tool Vendor To Provide Full Support For Both UML
and SDL; Teleogic Tau Significantly Reduces Time To Market Large
Scale Projects”, Screaming Media, Business Wire, September 1999.
http://industry.java.sun.com/javanews/stories/story2/0,1072,19107,00.htm

Action Semantics. http://www.omg.org/gettingstarted
SDL Forum Society http://www.sdl-forum.org/

Rational Software www.rational.com

14



